Human Health and Ecological Risk Assessment Northeast Cape, St. Lawrence Island, Alaska

Appendices A through I

Final

Contract No. DACA85-98-D-0007 Task Order No. 026 MWH Americas, Inc. Job No. 1850574.260130

March 2004

Prepared for: Department of the Army U.S. Army Engineer District, Alaska Corps of Engineers P.O. Box 898 Anchorage, Alaska 99506-0898

Prepared by:

MWH 1835 S. Bragaw Street, Suite 350 Anchorage, Alaska 99508 (907) 248-8883 (907) 248-8884 Fax

F10AK096903_03.11_0006_a 200-1e NPDL WO# 01-106

APPENDIX A

Description of the Subarctic Coastal Plains Ecoregion, Northeast Cape, St. Lawrence Island, Alaska

.

109. Subarctic Coastal Plains

- Distinctive Features
- Climate
- Terrain
- Soils
- Vegetation
- Wildfire
- Land Use and Settlement
- Delineation Methods
- References
- A Representative Photo

Distinctive Features

The 91,000 km2 ecoregion mainly includes coastal plains of the Kotzebue Sound area and the Yukon and Kuskokwim River delta area. Flat, lake-dotted coastal plains and river deltas are characteristic of the region (fig. 19). Streams have very wide and serpentine meanders. Soils are wet and the permafrost table is shallow, providing conditions for wet graminoid herbaceous communities, the predominant vegetation type. The region is affected by both maritime and continental climatic influences.

<u>Climate</u>

Climate is transitional between maritime and continental influences. In general, the southern portion of the region has warmer temperatures and receives more precipitation than the northern portion. Average annual precipitation varies from around 250 mm, around Kotzebue Sound, to 500 mm, in the Yukon-Kuskokwim lowlands. Annual snowfall is approximately 100 cm in the north, and ranges from 105 cm to 150 cm in south. Temperatures in winter range from average daily lows of -25 C in the north and -20 C to -15 C in the south, to average daily maximums of -16 C in the north and -10 C in the south. July and August are usually frost free months over most of the region. Average daily minimum temperatures in summer range from 6 C in the north, to a couple of degrees warmer in the south. Average summer daily maximum temperatures vary from 13 C to 17 C in both the northern and southern sections of the ecoregion, generally increasing inland from the coast.

<u>Terrain</u>

The ecoregion is comprised mainly of flat, poorly drained coastal plains with shallow permafrost tables. Low hills of basalt surmounted by cinder cones and broad shallow volcanic craters occur in some locations, creating a range in regional elevation from sea level to greater than 120 m. Slope gradients in the plains are generally less than 1ø. The region is predominantly covered by older coastal deposits of interstratified alluvial and marine sediments. Quaternary mafic and undifferentiated volcanic rocks occur in the western portion of the Yukon-Kuskokwim lowlands and on Nunivak and St. Lawrence Islands. Cretaceous intermediate volcanic rocks occur in the Selawik Wildlife Refuge Area. Only the northernmost portion of the ecoregion, around

Kotzebue, was subject to Pleistocene glaciation. Continuous thin to moderately thick permafrost currently underlies the entire region. Thaw lakes and thaw sinks are numerous. Pingos are common around the Selawik River area. Streams are sluggish and have very wide meanders.

<u>Soils</u>

Dominant soils are Histic Pergelic Cryaquepts and Pergelic Cryofibrists. Soils are shallow over permafrost and are constantly wet. Soils have formed from stratified silty and sandy alluvial deposits that, in many areas, have additionally incorporated deposits of volcanic ash and loess. Soils on Nunivak Island formed in very gravelly and stony materials derived from basaltic rock.

Vegetation

Standing water is almost always present in this ecoregion. Wet graminoid herbaceous communities, such as wet meadows and bogs, predominate in saturated soils. Peat mounds, barren sand dunes, and volcanic soils support dwarf scrub communities dominated by ericaceous species. In areas where peat or alluvium accumulation and growing season temperatures are sufficient, as in the southern section of the ecoregion, invasion by trees is possible and stands of needleleaf forests occur (fig. 20).

Wet meadows are typically dominated by sedges such as *Eriophorum angustifolium* and *Carex* spp. Mosses such as *Sphagnum spp*. are common and may codominate with sedges.

Bogs develop where peat mounds and polygonal ridges provide drained substrates for woody plants, such as ericaceous shrubs, including *Empetrum nigrum*, *Ledum decumbens*, *Loiseleuria procumbens*, *Vaccinium vitis-idaea*, and *Andromeda polifolia*). Sedges are common or codominant with woody species. Sphagnum species usually dominate the moss layer.

Dwarf scrub communities are typically dominated by crowberry (Empetrum nigrum). A number of other ericaceous species, including Vaccinium vitis-idaea, V. uliginosum, Ledum decumbens, Loiseleuria procumbens, and Arctostaphylos alpina and dwarf willows are common in these communities. Fruticose lichens such as Alectoria spp., Cladina spp., and Cetraria spp. often codominate with shrubs. Mosses such as Rhacomitrium spp., Hypnum spp., Polytrichum spp., Sphagnum spp., and Dicranum spp. are also common.

Needleleaf forests consist of black spruce (Picea mariana) and white spruce (P. glauca). Alder (Alnus spp.), willow (Salix spp.), birch (Betula glandulosa and B. nana), and ericaceous shrubs (Vaccinium vitis-idaea, Ledum decumbens, and Empetrum nigrum) may be found in the understory. Mosses such as Sphagnum spp., Dicranum spp., Hypnum spp., Polytrichum spp., Hylocomium splendens, and Pleurozium schreberi cover the ground.

Wildfire

Occurrence of wildfires in the Subarctic Coastal Plains Ecoregion is low. Fires generally range in size from less than 1 ha to 4,050 ha. Mean burn size is 280 ha.

Land Use and Settlement

Small permanent and seasonal settlements occur throughout the region, primarily adjacent to rivers or along the coast. The eastern end of Kotzebue Sound was settled by the Kotzebue Sound Inuit, who rely on small ocean mammals such as seals, land mammals such as caribou, fish such as salmon, and migratory birds and their eggs as important sources of food and materials. The western end of Kotzebue Sound and the northeastern portion of Norton Sound was settled by the Bering Strait Inuit, who depend more heavily on large marine mammals such as beluga whale, bowhead whale, and walrus. The remainder of the ecoregion was settled by the Yup'ik. The Yup'ik of St. Lawrence Island rely on walrus as a main source of food and materials. Bowhead whales and seals are also important. The Yukon-Kuskokwim Delta Yup'ik depend primarily on salmon, but other fish, seals, beluga whales, and terrestrial mammals are also important. Migratory waterfowl and their eggs provide resources during the spring. Edible and medicinal greens and berries are collected during summer.

Though mining is not extensive in this region, gold and silver have been extracted.

Delineation Methods

The ecoregion boundary represents the coincidence of low and very low terrain roughness and the "Wet Tundra" and "Moist Tundra" ecosystems portrayed on the map of "Major Ecosystems of Alaska." In the Yukon-Kuskokwim portion, areas that are north of the Yukon River include both "Wet Tundra" and "Moist Tundra" and exclude the forests of the interior regions. South of the Yukon River, only "Wet Tundra" is included because the "Moist Tundra" grades into the adjacent Ahklun and Kilbuck Mountains Ecoregion. Transition zones eliminate "Moist Tundra" from the periphery of the Subarctic Coastal Plains Ecoregion.

References

The information provided in this regional description has been compiled from: Beikman, 1980; Coulter and others, 1962; Ferrians, 1965; Gabriel and Tande, 1983; Joint Federal-State Land Use Planning Commission for Alaska, 1973; Karlstrom and others, 1964; Langdon, 1993; Larson and Bliss, written commun., 1992; Moore, written commun., 1993, Morgan, 1979; Ping, written commun., 1993; Reiger and others, 1979; Selkregg, 1974; U.S. Geological Survey, 1964; U.S. Geological Survey/EROS Data Center, Alaska Field Office, 1993; Viereck and Little, 1972; Viereck and others, 1992; Wahrhaftig, 1965; WeatherDisc Associates, Inc., 1990; and Wibbenmeyer and others, 1982.

Source: USGS, 1997

110. Seward Peninsula

- Distinctive Features
- Climate
- Terrain
- Soils
- Vegetation
- Wildfire
- Land Use and Settlement
- Delineation Methods
- References
- A representative photo

Distinctive Features

Some of the oldest geologic formations in Alaska provide a backdrop for the 47,000 km2, predominantly treeless Seward Peninsula Ecoregion (fig. 21). Mesic graminoid herbaceous communities and low scrub communities occupy extensive areas. The ecoregion is surrounded on three sides by water, yet this has little ameliorating effect on the climate. Winters tend to be long and harsh and summers short and cool.

Climate

Long, severe winters are typical of this ecoregion. Overall climatic characteristics range from maritime (a narrow strip along the coast), to transitional between maritime and continental influences (most of the region), to continental (in the eastern portion). Winds are persistent and strong throughout the region. Approximately ten weeks are frost-free each summer. All weather stations in the region are located at the lower elevations. Annual precipitation is heaviest in late summer and early fall, occurring as rain. Mean annual precipitation ranges from 250 mm to 510 mm at lower elevations, with 100 cm to 190 cm of snowfall occurring. Mean annual precipitation for the highlands, interpolated from lowland data, exceeds 1,000 mm, and snowfall may be as much as 250 cm. Average daily minimum temperature in winter ranges from -24¢C to -19¢C, and average daily maximum from -16¢C to -11¢C. Average daily minimum temperature in summer ranges from 1¢C to 6¢C, and maximum from 13¢C to 17¢C. Temperatures are generally warmer in the southern portions of the region.

<u>Terrain</u>

The ecoregion has narrow strips of coastal lowlands that grade into extensive uplands of broad convex hills and flat divides. Small, isolated groups of rugged mountains occur in a few locations. Elevation ranges from sea level to 500 m for most of the region; the higher mountains climb to 1,400 m. Slope gradients are generally from 0ø to 5ø in the lowlands and hills, but typically from 5ø to 15ø in the mountains. Geologic parent materials include Paleozoic sediments and metamorphosed volcanic rocks, and Precambrian volcanic rocks. Highland areas are possible Cenezoic uplifts of these formations. An extensive area of Quaternary or Tertiary volcanic rock occurs in the northeastern portion of the ecoregion.

Permafrost is continuous throughout the ecoregion, ranging from a thin to moderately thick layer. Related features, such as gelifluction lobes (fig. 22) and stone stripes on sloping areas, frost scars on low knolls, and polygons in level valley bottoms, are common. Streams draining interior basins travel through narrow canyons across broad uplands. Lowlands have numerous thaw lakes, but lakes are rare in the highlands. Except for the highest elevations, the region was unglaciated during the Pleistocene epoch.

<u>Soils</u>

Predominant soils are Histic Pergelic Cryaquepts, Pergelic Cryaquepts, Typic Cryochrepts, Pergelic Cryumbrepts, Lithic Cryorthents, and Pergelic Cryorthents. Soils are generally poorly drained and shallow over permafrost. Soils on hillslopes and ridges formed in very gravelly residual materials over weathered bedrock. Soils in valleys and on lower slopes formed mainly in colluvial and alluvial sediments.

Vegetation

The coastal beaches, rolling hills, and mountains in this ecoregion provide a variety of climate and substrate characteristics. Mesic graminoid herbaceous communities (fig. 23) and low scrub communities occupy extensive areas on hills and lower mountain slopes. Saturated or flooded soils sustain wet graminoid herbaceous communities. Tall scrub vegetation occurs along streams and on floodplains. Ridgetops and higher elevations are barren or support dwarf scrub communities.

Mesic graminoid herbaceous communities are dominated by tussock-forming sedges. Low scrub communities result when woody species colonize the area between tussocks. Principal sedges are Eriophorum vaginatum and Carex bigelowii. Woody species include dwarf arctic birch (Betula nana), resin birch (B. glandulosa), mountain-cranberry (Vaccinium vitis-idaea), bog blueberry (V. uliginosum), diamondleaf willow (Salix planifolia), netleaf willow (S. reticulata), and crowberry (Empetrum nigrum). Mosses such as Pleurozium schreberi, Hylocomium splendens, Aulacomnium spp., and Sphagnum spp. are prevalent and lichens such as Cetraria cucullata, C. islandica, Cladonia spp., Cladina rangiferina, and Thamnolia subuliformis can be common.

Wet graminoid herbaceous communities consist of sedges such as Carex aquatilis, C. lyngbyaei, C. rostrata, C. saxatilis, C. sitchensis, and Eriophorum angustifolium and grasses including Calamagrostis canadensis and Arctophila fulva.

Tall scrub communities are dominated by willow species including Salix alaxensis, S. glauca, S. planifolia, and S. lanata). Birch (Betula nana) may codominate with willow in some areas. Other woody constituents include alder (Alnus sinuata and A. crispa) and shrubby cinquefoil (Potentilla fruticosa). A dense herb layer may be present, typically including oxytrope (Oxytropis spp.), vetch (Astragalus spp.), dwarf fireweed (Epilobium latifolium), wormwood (Artemisia spp.), and bluejoint (Calamagrostis canadensis). Mosses such as Polytrichum spp., Hylocomium splendens, and Drepanocladus uncinatus can be abundant.

Dwarf scrub communities are composed of low shrubs, grasses, and lichens. Communities are dominated by mountain-avens (Dryas octopetala and D. integrifolia), or codominated by a combination of mountain-avens and sedges including Carex scirpoidea, C. misandra, and C. bigelowii or mountain-avens and lichens including Alectoria spp., Cetraria spp., and Cladina spp.. Other typical shrubs occurring in these communities are willows (Salix reticulata and S. phlebophylla) and ericads such as Cassiope tetragona, Empetrum nigrum, Arctostaphylos spp., Vaccinium vitis-idaea, and V. uliginosum. Mosses including Tomenthypnum nitens, Rhytidium rugosum, and Hylocomium splendens can be common.

<u>Wildfire</u>

Occurrence of wildfires in the Seward Peninsula Ecoregion is common. Burns range in size from less than 1 ha to 109,260 ha, with an average size of 2,815 ha. Mosses and lichens dry out during summer, allowing fire to spread readily through the tundra. Fire season is usually from June through August.

Land Use and Settlement

Population is low and small settlements are scattered throughout the region. The land has been historically used for subsistence hunting and fishing by the Bering Strait Inuit. Their livelihood has depended on large marine mammals, such as bowhead whales, beluga whales, and walrus. Winter ice fishing and seal hunting are important to supplement spring and summer ocean catches. Away from the coast, streams provide sources of salmon and freshwater fish. Large game such as caribou and smaller mammals including rabbits, squirrels, muskrats, and beaver are also taken. Reindeer herding is unique to this area.

A number of metallic elements, including antimony, barium, gold, lead, silver, tin, tungsten, and zinc occur in the region. Numerous mines are scattered throughout large portions of the region, including many gold mining operations. Other important metals include: copper, mercury, platinum, and uranium. Antimony, bismuth, and coal have also been mined.

Delineation Methods

The ecoregion boundary delineates a break between the forested ecosystems of interior Alaska, and the non-forested peninsula. One of the characteristic features of the Seward Peninsula is the age of the bedrock geologic formations; the transitional area on the ecoregion map excludes the more recent geologic formations along the eastern portion of the ecoregion from the older formations throughout the core of the region.

References

The information provided in this regional description has been compiled from: Beikman, 1980; Coulter and others, 1962; Ferrians, 1965; Gabriel and Tande, 1983; Joint Federal-State Land Use Planning Commission for Alaska, 1973; Karlstrom and others, 1964; Langdon, 1993; Larson and Bliss, written commun., 1992; Moore, written commun., 1993; Morgan, 1979; Ping, written commun., 1993; Reiger and others, 1979; Selkregg, 1974; U.S. Geological Survey, 1964; Viereck and Little, 1972; Viereck and others, 1992; Wahrhaftig, 1965; and WeatherDisc Associates, Inc., 1990.

Source: USGS, 1997

APPENDIX B

USACE Trip Report – Biological Sampling

DEPARTMENT OF THE ARMY U.S. ARMY ENGINEER DISTRICT, ALASKA P.O. BOX 898 ANCHORAGE, ALASKA 99506-0898

CEPOA-EN-CW-ER (1105-2-10b)

MEMORANDUM FOR RECORD: Final Draft printed, 6 September 2001.

SUBJECT: Northeast Cape, Saint Lawrence Island fish data collection report, August 18 through August 22, 2001.

Introduction

A formally used defense site (FUDS) is located near the Northeast Cape of Saint Lawrence Island, Alaska. The site was abandoned in 1972 and a clean up of the facility is currently underway. Fuel spills were known to exist during the facility's operation and contamination from the spills and other sources may have contaminated fish resources in the Suqitughneq River drainage that originates at the site. The purpose of this field effort was to collect fish samples for human-risk analysis in accordance with the biological sampling plan (BSP). Anadromous Dolly Varden (*Salvelinus malma*), pink salmon (*Onchorhynchus gorbuscha*) and Alaska blackfish (*Dallia pectoralis*) were the target species.

Survey Location

Locations of capture attempts were the Suqitughneq River, Tapisaghak River and the outlet of the Seepanpak Lagoon, Northeast Cape, Saint Lawrence Island, Alaska. The latitude and longitude of each data collection point is listed.

Schedule

The data collection took place between 17 August and 22 August, 2001.

Methods

Dolly Varden and Alaska blackfish were captured in baited hoop nets and minnow traps, and with gillnets. The traps were baited with salmon eggs preserved with a mixture of laundry borax, non-iodized table salt, sugar, and strawberry flavored jello. The salmon eggs used to bait the hoop nets were placed in a container designed to release scent and the fish captured in the hoop nets were not directly exposed to the bait. The blackfish captured in the minnow traps were directly exposed to the bait and could have ingested it while in the traps. Traps were soaked for approximately 24 hours.

Capture with sport gear was attempted, but no fish were caught with sport tackle.

Results and Discussion

Dolly Varden and Alaska blackfish were caught as in the below table (Table 1). Only the fish listed in table 2 were retained. All others were released.

Date	Location	Trap	N Lat.	W Lon.	Gear	Dolly	Varden	Bla	ackfish	Pink Salmon
		#				Num	mm	Num	mm	Num
18 Aug 01	Suqi River	1	63 18 45.0	168 56 38.2	HN	23	118- 208	0		
	Suqi River	2	63 18 50.6	168 56 59.9	HN	2	146- 207	0		
	Suqi River	3	63 18 52.9	168 56 59.9	HN	1	232	0		
	Suqi River	4	63 19 21.0	168 58 26.8	HN	0		0		
	Suqi Lagoon	5	63 19 36.4	168 57 54.4	HN	0		0		
	Suqi Lagoon	6	63 20 03.6	168 56 45.6	HN	0		0		
	Suqi Ditch	1	63 18 40.5	168 57 42.0	MT	0		0		
	Suqi Ditch	2	63 18 41.4	168 57 46.0	MT	0		0		
	Suqi Ditch	3	63 18 42.6	168 57 50.2	MT			0		
	Suqi Ditch	4	63 18 49.1	168 57 46.6	MT			3	125- 137	
	Suqi Ditch	5	63 18 50.4	168 57 45.6	MT			6	117- 210	
	Suqi Ditch	6	63 18 50.9	168 57 45.9	MT	0		3	118- 134	
19 Aug 01	Suqi River	1-A	63 18 46.1	168 56 41.6	HN	15	82-174	1	62	
	Suqi River	2-A	63 18 50.3	168 57 02.4	HN	28	98-285	0		
	Suqi River	3-A	63 18 52.9	168 57 32.5	HN	0		0		
	Suqi Lagoon	5-A	63 19 36.4	168 57 54.4	HN	1	153	0		
	Suqi Lagoon	6-A	63 20 03.6	168 56 45.6	HN	0		0		
	Suqi Lagoon	7	63 20 01.4	168 56 50.2	HN	0		0		
	Suqi Ditch	1-a	63 18 42.6	168 57 50.2	MT	0		0		
	Suqi Ditch	2-a	63 18 42.6	168 57 50.2	MT	0		0		
	Suqi Ditch	3-a	63 18 49.1	168 57 46.6	MT	0		0		
	Suqi Ditch	4_a	63 18 49.1	168 57 46.6	MT	0		2	110- 125	
	Suqi Ditch	5-a	63 18 50.4	168 57 45.6	MT	0		11	107-	
	Suqi Ditch	6-a	63 18 50.9	168 57 45.9	MT	0			152	
20 Aug 01	Suqi River	1-B	63 18 45.0	168 56 38.2	HN	51	82-218	0		
	Suqi River	2-B	63 18 50.3	168 57 02.4	HN	21	87-222	0		
	Suqi River	3-В	63 18 53.3	168 57 25.8	HN	4	190- 306	0		

Table 1. Target species caught during the survey.

	Tap River	4-B	63 18 57.7	168 50 51.7	HN	0		0		
	Tap River	5_b	63 18 57.7	168 50 51.7	HN	0		0		
	Tap River	6-B	63 18 52.0	168 51 174.9	HN	0		0		
	Suqi Ditch	1-b	63 18 53.4	168 57 44.1	MT					
	Suqi Ditch	2-b	63 18 53.4	168 57 44.1	MT					
	Suqi Ditch	3-b	63 18 53.4	168 57 44.1	MT	2	137-	16	92 150	
	Suqi Ditch	4-b	63 18 53.4	168 57 44.1	MT	5	155	10	82-150	
	Suqi Ditch	5-b	63 18 53.4	168 57 44.1	MT					
	Suqi Ditch	6-b	63 18 53.4	168 57 44.1	MT					
	Suqi Lagoon	1	63 19 35.7	168 57 51.4	GN	3	455- 480			
	Tap Lagoon	1	63 18 59.5	168 50 49.0	GN	0		0		4
21 Aug 01	Suqi River	3-C	63 18 53.3	168 57 25.8	HN	0		0		
	Suqi River	8-C	63 18 52.4	168 57 21.5	HN	2	124- 213	2	132- 148	
	Suqi Lagoon	1	63 19 35.7	168 57 51.4	GN	8	415- 477	0		
	Tap Lagoon	1	63 18 59.5	168 50 49.0	GN	4	420- 464	0		3
	Seep Lagoon	1	63 20 42.7	169 16 12.1	GN	0		0		1
22 Aug 01	Suqi Lagoon	1	63 19 35.7	168 57 51.4	GN	8	420- 520	0		0

Suqi = Refers to locations within the Suqitughneq River drainage. Tap Lagoon = Tapisaghak River Lagoon. Seep Lagoon = Seepanpak Lagoon

	Data Logation		Dolly Varden		Blackfish		Pink Salmon	
Date	Location	Length ^a	Wt. (g)	Length ^a	Wt. $(g)^b$	Length ^a	Wt. (g)	
18 Aug	Suqi River			125				
	Suqi River			137				
	Suqi River			210				
	Suqi River			135				
	Suqi River			138				
	Suqi River			139	415			
	Suqi River			122				
	Suqi River			117				
	Suqi River			134				
	Suqi River			128				
	Suqi River			118				
19 Aug	Suqi River	285	200	125				
	Suqi River	254	170	110				
	Suqi River	208	80	138				
	Suqi River	240	125	140				
	Suqi River	218	100	122				
	Suqi River	215	90	131				
	Suqi River			125	280			
	Suqi River			152				
	Suqi River			110				
	Suqi River			125				
	Suqi River			45				
	Suqi River			107				
	Suqi River			145				
20 Aug	Suqi River	306	300	128		470	980	
	Suqi River	455	800	12		445	880	
	Suqi River	470	1100	119		463	1140	
	Suqi River	480	1090	124				
	Suqi River			128				
	Suqi River			110				
	Suqi River			117				
	Suqi River			133	660			
	Suqi River			129	000			
	Suqi River			102				
	Suqi River			142				
	Suqi River			118	-			
	Suqi River			140				
	Suqi River			128				
	Suqi River			122				
	Suqi River			120				

Table 2. Fish from Table 1 that were retained for analysis (all others in Table 1 were released).

Continued

Dete	Lesting	Dolly Varden		Blackfish		Pink Salmon	
Date	Location	Length	Wt. (g)	Length	Wt. (g)	Length	Wt. (g)
	Suqi River			124			
	Suqi River			112			
	Suqi River			116			
	Suqi River			135			
	Suqi River			135			
	Suqi River			128			
	Suqi River			135			
	Suqi River			112			
	Suqi River			150			
	Suqi River			125			
	Suqi River			138			
	Suqi River			135			
	Suqi River			110			
	Suqi River			119			
	Suqi River			108			
	Suqi River			82			
21 Aug	Suqi River	455	980				
	Suqi River	505	1220				
	Suqi River	450	930				
	Suqi River	415	640				
	Suqi River	445	780				
	Suqi River	477	950				
	Suqi River	448	900				
	Suqi River	420	740				
	Tap River	465	980				
	Tap River	460	860				
	Tap River	490	1240				
22 Aug	Suqi River	450	860				
	Suqi River	440	900				
	Suqi River	420	780				
	Suqi River	480	1090				
	Suqi River	520	1320				
	Suqi River	445	830				
	Suqi River	430	680				
	Suqi River	480	1170				

Table 2. Continued.

Length is from tip of snout to fork of tail in millimeters for comparison between species (a statistical, mid-eye-to-fork-of-tail measurement was also taken, but not reported). Composite live weight. a.

b.

Drainage	Dolly Varden		Blac	Pink Salmon		
	Goal	Retained	Goal	Retained	Goal	Retained
Suqi River	10	10	300 grams ^a	1,355 grams ^a	2	0
Tap River	6	3	0	0	2	3
Additional	9	9	0	0	0	0
Suqi River						
Samples						
Suqi River	0	8	N/A	N/A	N/A	N/A
Resident Fish						
Samples						
Total	25	30	300	1,355	4	3

Table 3. Summary of sample goals. Anadromous Dolly Varden of subsistence harvest size was preferred for analysis. Resident fish were retained for possible contaminant comparison.

a Live weight.

The BSP called for sample weights of heads, filets, and roe of 100 grams from anadromous Dolly Varden of a size (approximately 7 + inches) that might typically be retained for human consumption. Recommended sample sizes and weights of Dolly Varden and Alaska blackfish from the Suqitughneq River were met, but the background sample size from the Tapisaghak River was short by three fish.

There is no known discharge data available from the Tapisaghak River, but during this survey it was approximately 30 feet wide and one foot deep when it is contained in one channel. The river appeared to be at normal stage and the water was exceptionally clear. The mouths of all lagoons at Northeast Cape, except perhaps the Seepanpak Lagoon, appear to berm with surf-deposited, sand and gravel during periods of brisk northerly winds. The Seepanpak Lagoon is reported to berm over, but it was open during our visits. The Tapisaghak River and Suqitughneq River lagoons were bermed during the survey, and it was not possible for fresh fish to enter the lagoons from the Bering Sea. Prior to the breaching of the Tapisaghak River berm, only one pink salmon was seen in the lagoon during several visits when we attempted to capture fish with hoop nets and sport tackle. We caught late-run pink salmon and Dolly Varden in the lower lagoon with a gillnet after the berm was breached and fresh fish entered the lagoon, but because of time and weather, only one gillnet set was possible after the berm was breached.

The Tapisaghak River (3.8 miles east of the Suqitughneq River) appears to support a reasonable sized run of pink salmon judged by the few hundred pink salmon estimated spawning up to about 3 miles upstream from the lagoon. The river is braided in places and shows definite signs of scouring, but it is probable that during an even-numbered year, even more pink salmon would spawn in this stream. Pink salmon are of questionable value for this study because of their short resident time in freshwater as fry, but three adult pink salmon were retained as possible background samples. Three sockeye salmon were also seen a few miles upstream in the Tapisaghak River, but they were considered strays to the drainage.

The Suqitughneq River normally lacks the discharge to breach the berm during northerly winds, and probably has never been able to support viable spawning runs of pink salmon because of it. Unlike in the Tapisaghak River where anadromous Dolly Varden that entered prior to berming

had already moved upstream, anadromous Dolly Varden in the Suqitughneq River lagoon had not moved upstream and they were susceptible to the gillnet set in the lagoon.

The Suqitughneq River also supports a stock of resident Dolly Varden that do not appear to migrate to sea. These fish were noted to be sexually mature starting at about 6 inches in length. Resident fish might be expected to have higher contaminant levels present than the anadromous fish because of their continuous residence in the affected drainage. Resident fish from the Suqitughneq River were retained because: 1) we were not catching any anadromous fish during the first few field days and could not guarantee filling the sample goal with anadromous fish, and 2) they spend their lives in the Suqitughneq River, and could possibly be used to help fingerprint any specific Suqitughneq River contaminants that might be found in the anadromous fish.

The mouth of the Seepanpak Lagoon, 9.4 miles west of the Suqitughneq River mouth, was visited on several occasions in an attempt to collect background samples of anadromous Dolly Varden in the event collection attempts at the Tapisaghak River failed. We were informed by the local Natives that, similar to the other streams in the area, the run of anadromous Dolly Varden in the Seepanpak Lagoon drainages was several weeks past peak, but that we may get lucky and catch some late fish. Several angler hours of fishing with sport tackle and one 24 hour set of a 60 foot gillnet produced two strikes from Dolly Varden on sport tackle and the capture of one pink salmon and a large warty sculpin (*Myoxocephalus verrucosus*) in the gill net. According to the local Natives, late July through the first week of August is the best times to catch anadromous salmon and Dolly Varden as they enter the lagoons in this area of Saint Lawrence Island. We appeared to be about two weeks behind the run for this effort, and only low numbers of late-run fish appeared to be entering the rivers once the berms were breached.

A small lake at the head of the Suqitughneq River was visited several times during the survey. This lake appears to be very shallow (no more than about 5 feet deep) with a mud bottom. Although there are reports of fish in the lake, we saw none except the small resident Dolly Varden near the outlet. A flock of several dabbler ducks, possibly pintails, were observed tipping to feed in the center of the lake testifying to its shallowness. Additionally, the water is very clear and the substrate appears to have a uniform, gray appearance with no darker appearing holes when viewed from a higher vantage point. Unless large springs are present, this lake would most likely freeze to the bottom during winter and result in a winterkill of most fish. It is speculated that resident, and perhaps anadromous, Dolly Varden in the Suqitughneq River drainage overwinter in deeper holes and under the abundant cutbanks, or in the lagoon. Alaska blackfish are exceptionally hardy and can overwinter in muddy areas of the drainage with low oxygen concentrations.

A late run of chum salmon reportedly entered the Tapisaghak River and anadromous Dolly Varden were seen upstream in the Suqitughneq River after the COE biologists departed the area on 23 August 2001 (F. Kingeekuk Jr., personal communication to W. O'Connell). The extent of these reported sightings is unknown.

Site Photos

Photo 1. Recovery of a hoop net trap from the Suqitughneq River at Northeast Cape, Saint Lawrence Island, Alaska on 20 August 2001.

Photo 2. Catch of resident and possibly pre-smolt Dolly Varden from the Suqitughneq River at Northeast Cape, Saint Lawrence Island, Alaska on 20 August 2001 with a baited hoop net trap.

Photo 3. Example of a resident female Dolly Varden (306 mm) in spawning condition from the Suqitughneq River at Northeast Cape, Saint Lawrence Island, Alaska during late August 2001.

Photo 4. Typical Alaska blackfish habitat in the Suqitughneq River drainage ditch at Northeast Cape, Saint Lawrence Island, Alaska during late August 2001.

Photo 5. Recovery of a Dolly Varden from a gillnet in the Suqitughneq River lagoon at Northeast Cape, Saint Lawrence Island, Alaska on 20 August 2001.

Photo 6. Catch of anadromous Dolly Varden from the Suqitughneq River lagoon at Northeast Cape, Saint Lawrence Island, Alaska on 21 August 2001.

Photo 7. Corps of Engineers biologists weighing Dolly Varden caught in the Suqitughneq River lagoon at Northeast Cape, Saint Lawrence Island, Alaska on 21 August 2001.

Photo 8. Berm of sand isolating the Suqitughneq River lagoon at Northeast Cape, Saint Lawrence Island, Alaska from the Bering Sea. This berm is typically present during periods of northerly, onshore winds and prevents the migration of anadromous fish into the lagoon.

Personnel

The following persons conducted this sampling effort in the field.

Larry Bartlett, Corps of Engineers. Lead biologist. Chris Hoffman, Corps of Engineers. Assisting biologist. William O'Connell, Montgomery-Watson-Harza. Fish sample recipient and shipping preparation. Floyd Kingeekuk Jr. Polar bear watch and local guide.

This Trip Report was written by:

Larry D. Bartlett General Biologist En-Cw-Er

And review by:

Chris Hoffman General Biologist En-Cw-Er

This trip report is electronically filed in:

G:\\En-Cw\En-Cw-Er\LarryB\NE Cape FUDS\trip report Aug 17-23-01.doc

APPENDIX C

Community Surveys

I I I I I I I I I

SUMMARY OF PRELIMINARY SURVEY RESULTS

5 Surveys returned

3 Male (ages 37,35,45), 1 Female (age 43), 1 married couple (no age given)

FISH FROM SUQITUGHNEQ RIVER

The Suqi River currently supports a relatively small population of fish, compared to the Tapisaghak, Seepenpak, or other rivers on St. Lawrence Island.

What kinds of fish do you currently catch from the Suqi River?

Male	Female	Married Couple
None (3)	None	Dolly's

How many fish do you currently catch from the Suqi River?_____

Male	Female	Married Couple
None (3)	None	0

What kinds of fish do you catch from other rivers?

(including the Tapisaghak, Seepenpak, and others)

Male	Female	Married Couple
Dolly's (3), Silvers (3), Trout (1), Tom Cod (1), Humpies (2)	Dolly's, Tom Cod, Silvers	Dolly's, Humpies, Silvers, White

How many fish do you currently catch from other rivers?

Male	Female	Married Couple
About 200 (1), About 100 (2)	About 200	100+

How many people in your family eat the fish that you catch?_____

Male	Female	Married Couple
Whole family (3)	Whole family except 1	Whole family

Do you share the fish you caught with relatives?

Male	Female	Married Couple
Yes (3)	Yes	Yes

Before the 1960's, how many fish did you (or your family) catch from the Suqi River?

More than today	How much more?	
Less than today		

About the same

Male	Female	Married Couple
Don't know (wasn't born) (2)	More than today. Don't know	More than today. A lot more,
More than today (1). Don't	how much more.	don't fish anymore

Page 1

know how much more.

What kinds of fish were caught from the Suqi River before the 1960's?

Male	Female	Married Couple
Don't know (2), Dolly's (1)	Doesn't remember	Dolly's

In the future, could the Suqi River support a significantly larger Dolly Varden population?

YesNo	Don't know/maybe	
Male	Female	Married Couple
No (1), Don't know/maybe (2)	No	Yes

In the future, could the Suqi support as many Dolly Varden as the Tapisaghak or Seepenpak rivers?

$_$ res $_$ No	Hard to Predict why?	
Male	Female	Married Couple
No (1), Hard to Predict (2)	Hard to predict	Hard to Predict

Do you harvest fish from the Suqitughneq River?

No

Male No	Female	Married Couple
No (3)	No	No

What proportion of the total fish you catch on the island comes from the Suqitughneq River only?

____ Less than 25% (specify:_____)

Equal to 25%

Van

____ Greater than 25% (specify: _____)

Male	Female	Married Couple
Less than 25% (3). (0%)	Less than 25%	Less than 25% (0%)

What proportion of the fish you catch on the island comes from rivers other than the Suqitughneq?

____ Less than 75% (specify:____) (for ex: Tapisaghak, Seepenpak, others...) ____ Equal to 75%

____Greater than 75% (specify: ____) Male Female Married Couple Greater than 75% (3) (100%) Greater than 75% Greater than 75% (100%)

Consumption of fish

Fish are typically prepared as fried or boiled, with the skin on. Fillets represent the main food item.

I agree I disagree		
Male	Female	Married Couple
Agree (3)	Agree	Agree

I also prepare fish as follows: _____

Male	Female	Married Couple
Dry (2), Bake (2), Fried (1)	Bake, half dried, frozen, etc.	

I eat fresh fish fillets during the <u>summer</u> months (mid-June to mid-September):

_____ More than 3 times per week (Please specify how many times per week _____)

_____ About 3 times per week

Less than 3 times per week (Please specify how many times per week ____)

Male	Female	Married Couple
More than 3x per week (6 times) (1)	About 3X per week	Less than 3X per week (1X per week)
Less than 3x per week (1 time) (1)		
About 3 times per week		

How many fish fillets do you consume in a month? _

Male	Female	Married Couple
24 (1)	About 12	6
About 3 (2)		

Do you eat fresh fillets at other times of the year?

Male	Female	Married Couple
Yes (3)	Yes	Yes

Fish heads are also eaten in late summer, approximately 2 meals per month.

I agreeI disagree.				
Male	Female		Married Couple	
Agree (2)	Agree	· · · · · · · · · · · · · · · · · · ·	Agree	
Disagree (1) – More than 2 meals per month				

I eat fish heads approximately _____ meals per month, during the following months: _____

or times per year		
Male	Female	Married Couple
10 meals per month (June-Sept) (1)	4 meals per month during June, Sept, Oct or	2 meals per month
1 meal per month (June-Sept) (1)	20 times per year	
2 meals per month (1)		

Fish eggs are also mixed with fish for eating.

I agree I disagree.		
Male	Female	Married Couple
Agree (3)	Agree	Agree

I eat fish eggs _____ about once every month or two

more than once every month or two (How much more? _____)

less than once every month or two (How much less?)		
Male	Female	Married Couple
About once every month or two (2)	More than once every month or two (about 4 to 5 times)	About once every month or two
Less than once every month or two (1) – only on birthdays		

What other fish parts are eaten?_____

Male	Female	Married Couple	
Everything except the guts (1)	Fish cheeks, heads	All the parts	
Everything except the guts, bones (1)			
Head, whole fish except the cartilage (1)			

I eat these fish parts approximately _____ meals per week, or _____ meals per month during the following months of the year:

Male	Female	Married Couple
24 meals per week, during June- Sept (1)	3 meals per week, during June to September	1 meal per week, 4 meals per month during June through
1 meal per week (1)		September
2/3 meals per month (1)		

Do you dry the fish you catch? _____ If so, how many fish are dried?

Male	Female	Married Couple
Yes (3). About 100+ (1)	Yes. About 1/2 the catch	Yes. About ¹ / ₂ the catch
About ¹ / ₂ the catch (2)		

List types of fish dried:

Male	Female	Married Couple
Dolly's (1)	Dolly's, Silvers, Bull fish, Tom	
Dolly's, silvers, and trout (1)	Cod	

When do you usually eat dried fish?

____ All year

Mostly in the fall/winter/spring (approximately 9 months of the year)

Other

Male	Female	Married Couple
All year (2)	All year	All year.
Mostly in the fall/winter/spring		
(1)		

Dried fish are eaten at a rate of 1 meal per week in the <u>non-summer</u> months (mid-September to mid-June). I agree I disagree.

Male	Female	Married Couple
Agree (3)	Agree	Agree

I eat dried fish approximately _____ meals per week, or _____ meals per month during the following times of the year:______

Male	Female	Married Couple
1 meal per week (2)	1 meal per week whenever	1 meal per week during
3 meals per month (1)	available	September to June

Depending on the kind of fish, fish is frozen for future consumption.

I agree I disag	ree	
Male	Female	Married Couple
Agree (3)	Agree	Agree

What kinds of fish are frozen for future consumption?

Male	Female	Married Couple
Dolly's, Trout (3)	Dolly's, Tom Cod, Silvers, etc.	Dolly's, Steelhead salmon
Tom Cod (2)		

A portion of fish caught in the summer are frozen for eating during the remainder of the year (9 months). Frozen fish are eaten at a rate of 1 meal per week in the <u>non-summer</u> months.

Male Female Married Couple		
Agree (3)	Agree	Agree

I eat frozen fish approximately _____ meals per week, or _____ meals per month during the following times of year:______

Male	Female	Married Couple
1 meal per week (3)	1 meal per week	1 meal per week
during Sept-June (1)		

Do you age fish for future consumption? What kinds of fish are aged?

YesNo		
Male	Female	Married Couple
No (2) Yes (1) Dolly's Trout	Yes. Dolly's, Trout	Yes. Just the heads.
103 (1). Dony 3, 110ut		

I eat aged fish approximately ____ meals per week, or ____ meals per month during the following times of year:_____

Male	Female	Married Couple
1 meal per month (1)	2 or 3 times a year	Once in a great while.
Don't eat (2)		

The average sized edible Dolly Varden collected from the Suqi River in 2001 weighed 2 pounds (whole) and was 18 inches long.

How many people does 1 Dolly Varden usually feed? adults, or children (under age 8)			
Male	Female	Married Couple	
2 adults or 3 children (1)	2 adults or 3 children	2 adults or 3 children	
1 adult or 2 children (1)			
1 or 2 adults or 4 children (1)			

How many meals (portions) would 1 typical sized Dolly Varden yield?

- _____ as fresh fillets
- _____ as dried fish
- _____ as aged fish

as frozen fish

Male	Female	Married Couple
As fresh, frozen (3)	As fresh fillets, dried fish,	As fresh fillets, dried fish,
As dried (2)	frozen fish.	frozen fish.

An adult eats 6 ounces of fish per meal, or approximately 1/3 pound.

I agree ____ I disagree. I eat approximately ____ pounds of fish per meal.

Male	Female	Married Couple
Disagree (3)	Disagree. 1 pound of fish per	Agree
34 pound of fish per meal (2)	meai.	

A child eats 2 ounces of fish per meal, or approximately 1/8 pound.

I agree I disag	ree. Children eat approximately	pounds of fish per meal.
Male	Female	Married Couple
Disagree (3)	Disagree. ¹ / ₂ pound of fish per	Agree
¹ / ₂ pound of fish per meal (2)	meal	
³ / ₄ pound of fish per meal (1)		1

What is the history of the beach berm (physical barrier) at the Suqi River lagoon/estuary?

- _____ Always occurs at least once in the summer months
- Sometimes occurs during the summer months

____ Never occurred until recently

Male	Female	Married Couple
Sometimes occurs (3)	Sometimes occurs	Sometimes occurs

Does the beach berm at the Suqi River occur more often today than in previous years?

Yes	No	Don't know			
Male	Fe	emal e	N	larried Couple	
Don't know (3)	Do	on't know		Oon't know	

ľ

Historically, did the Suqi River become periodically blocked by a berm during the summer months?

YesNo	If yes, how often?	
Male	Female	Married Couple
No (2)	Yes. Not very often.	Yes. Once or twice.
Don't know (1)		

When harvesting for subsistence foods at Northeast Cape, where do you stay?_

Male	Female	Married Couple
Seepenpak (1)	Tamniq	Sepenpak
Alngiighyak (1)		
NE Cape uncle's house (1)		

Where do you get your water?_

Male	Female	Married Couple
Seepenpak (1)	A small creek by Tamniq Lake	Tapinsak
Alngiighyak (1)		
Tapiisak (1)		

PLANTS HARVESTED AT NORTHEAST CAPE STUDY AREA (Drainage Area North of Main Complex)

I eat native plants (greens, roots or berries) during the <u>summer</u> months (mid-June to mid-September):

_____ More than 4 times per week (Please specify how many meals per week ______) _____ About 4 times per week

Less than 4 times per week (Please specify how many meals per week)		
Male	Female	Married Couple
About 4x per week (2)	About 4X per week	Less than 4X per week
Less than 4x per week (1)		

Harvested native plants are frozen for eating during the winter.

I agreeI disagree.		
Male	Female	Married Couple
Agree (3)	Agree	Agree

I also prepare native plants as follows: _____

Male	Female	Married Couple
N/A – berries (1)	Aqutaq, aged, fresh, frozen	
Don't know (2) – women		
usually prepare them	· · · · · · · · · · · · · · · · · · ·	

In the winter months, I eat approximately _____ meals of native plants per week,

or meals of native plants per month.			
Male	Female	Married Couple	
1 meal per month (1)	2 meals per month	2 meals per month	
2 meals per month (1)			1
1 meal per week (1)			

3 categories of native plants are eaten: berries, greens, and roots.

I agreeI disagree		
Male	Female	Married Couple
Agree (3)	Agree	Адгее

An average adult eats nearly 1/2 pound* of native plants per meal.

1 agree1 disagree.		
Male	Female .	Married Couple
Agree (3)	Agree	Agree

I eat pounds or cups o	f native plants per meal. (* ½ pound	d equals about 1 1/2 cups of berries)
Male	Female	Married Couple
¹ /2 pound (3)	½ pound	½ pound

Children eat native plants at a rate approximately 1/4th of adults.

I agreeI disagree.		
Male	Female	Married Couple
Agree (3)	Agree	Agree

Children eat _____ pounds or _____ cups of native plants per meal.

Male	Female	Married Couple
¹ / ₄ pound (3)	¼ pound	¼ pound

The majority of locally harvested native plants are collected from outside the Northeast Cape Study Area (the drainage north of the Main Complex).

25% of locally harvested native plants and berries are obtained from within the Northeast Cape Area.

Male	Female	Married Couple
Agree (1)	Agree	Agree (less than 25%)
Disagree (2) – don't		
know/women harvest		

Currently, I harvest _____ % of my native plants and berries from within the Northeast Cape Study Area.

Male	Female	Married Couple
30% (1)	10%	0%
0% (1)		
Don't know (1)		

Page 8

Currently, I narvest 9	6 of my native plants and bernes not	n aleas outside Northeast Cape.	
Male	Female	Married Couple	
70% (1)	90%	100%	
0 % (1)	Comment: very poor with		
Don't know (1)	plants, berries		

Currently, I harvest ______ % of my native plants and berries from areas outside Northeast Cape.

If no contamination was present, I would harvest ______ % of my native plants and berries from within the Northeast Cape Study Area (the drainage north of the Main Complex).

Male	Female	Married Couple
100% (1)	100%	50%
0% (1)		
(1)		

People eat succulent greens (roseroot or *nunivak*), other greens (white arctic mountain heather or *kittmik*), berries (blackberry/crowberry, or *ququnqhaq* and *aqavzik*), *saqllak* and *allqegkaq* (sourdough).

Male	Female	Married Couple	
Agree (2)	Agree	Agree	
(1)			

I also harvest and eat the following plants from within the Northeast Cape Study Area:

Male	Female	Married Couple
Berries.	Anylugra k	Hardly harvest.

Male ____ Female ____ Name (optional): _____ Age: _____ Contact phone (optional): _____

Northeast Cape Site

The U.S. Army Corps of Engineers is investigating and remediating environmental conditions at the former military installation at Northeast Cape. In addition to the ongoing building demolition and hazardous waste removal activities, the Army Corps is conducting an analysis of potential risks to human health and the environment due to exposure to contaminants remaining at the site. As part of these efforts, additional fish sampling will be conducted in the Suqitughneq River.

Your help in answering the following questions will assist the Corps with planning the field investigation, and analyzing the potential for any site-related risks.

Questions:

- 1. What fish species are present in the vicinity of Northeast Cape?
 - a. Current _____

b. Historically (pre-1960 spill)

2. During what time of year did you historically fish at Northeast Cape?

and for how many days per year were they harvested?

3. During what time of year are fish currently harvested at Northeast Cape?

and for how many days per year are they harvested?

4. Where specifically are the freshwater and saltwater species currently harvested? (Please mark on the attached map where the freshwater and the saltwater fish are harvested. Please use (F) for the freshwater and (S) for the saltwater.)

5. Do you harvest fish from the estuary/lagoon area at the mouth of the Suqitughneq River drainage?

- a. YES
- b. NO
- c. If YES, what species?

6. Which freshwater fish species do you normally eat?

7. How often do you eat freshwater fish? Please indicate the number of:

. <u> </u>	meals/day
	meals/we ek
	meals/month

8. Which saltwater fish species do you normally eat?

9. How often do you eat saltwater fish? Please indicate the number of:

_____ meals/day _____ meals/week _____ meals/month

10. What percentage of your diet is freshwater fish?

- a. less than 25% ______
- c. 51-75%
- d. greater than 75%
- 11. What percentage of your diet is saltwater fish?
 - a. less than 25%
 - b. 26-50%
 - c. 51-75%
 - d. greater than 75%

12. What percentage of your diet is fish harvested at Northeast Cape?

- a. less than 25%
- b. 26-50%
- c. 51-75%

d. greater than 75%

13. How do you prepare fish for eating? For each species eaten, please describe what you do and what parts you eat (e.g., whole body, fillets, specific body parts, other).

.....

14. What marine mammal species (e.g., whale, polar bear, walrus, seal) do you harvest from near Northeast Cape for eating?

15. During what time of year are marine mammals harvested at Northeast Cape?

and for how many days per year are they harvested?

16. Where specifically are the marine mammals harvested? (Please mark on the attached map where the marine mammals are harvested. Please use (MM) for the locations.)

17. How do you prepare the marine mammals for eating? Please describe what you do for each species eaten and what parts you eat.

18. How often do you eat marine mammals? Please indicate the number of:

_____ meals/day _____ meals/week _____ meals/month

19. What percentage of your diet consists of marine mammal species?

- a. less than 25%
- b. 26-50%
- d. greater than 75%
- 20. What percentage of your diet consists of marine mammals harvested from the Northeast Cape?
 - a. less than 25%
 - b. 26-50%

 - d. greater than 75%

3

21. What land mammal species (e.g., reindeer) do you harvest from the Northeast C	cape or from	
the Island for eating?		

	at time of year are lan	nd mammals han	vested at Nor	heast Cape?	
and for how	w many days per yea	r are they harves	sted?		
Where spe where the	ecifically are the land land mammals are h	mammals harve arvested. Pleas	sted? (Please e use (LM) for	mark on the the locations	attached map .)
I. How do yo species ea	ou prepare the land m aten and what parts y	nammals for eatin you e at.	ng? Please d	escribe what	you do for each
		······································			
5. How often	do you eat land mar meals/day	mmals?			
	meals/week				
6. What percent	meals/week meals/month centage of your diet of less than 25% 26-50%	consists of land r	nammal spec	ies?	
26. What pero a. b. c. d.	meals/week meals/month centage of your diet of less than 25% 26-50% 51-75% greater than 75%	consists of land r	nammal spec	ies?	
26. What pero a. b. c. d. 27. What pero Northeast	meals/week meals/month centage of your diet of less than 25% 26-50% 51-75% greater than 75% centage of your diet of Cape?	consists of land r	nammal spec	ies? ies harvested	from the
6. What pero a. b. c. d. 27. What pero Northeast a. b.	meals/week meals/month centage of your diet of less than 25% 26-50% 51-75% greater than 75% centage of your diet of t Cape? less than 25% 26-50%	consists of land r	nammal spec	ies? ies harvested	from the
6. What pero a. b. c. d. 7. What pero Northeast a. b. c. d.	meals/week meals/month centage of your diet of less than 25% 26-50% 51-75% greater than 75% centage of your diet of Cape? less than 25% 26-50% 51-75% greater than 75%	consists of land r	nammal spec	ies? ies harvested	from the
for other uses (e.g., medicinal, spiritual, smoking, weaving, dying)?

1.519.153.0**000.0000.0000**.0

٠

80.	Which plar	nts are usually found	in lowland areas or near streams?	
5 1.	From when are harves	re are the plants harv sted. Please use (P)	vested? (Please mark on the attached map where the plants for the plant locations.)	
32.	2. During what months are the plants harvested?			
33.	How often	do you eat plants ha meals/day meals/week meals/month	arvested from the Northeast Cape?	
34.	What perc a. b. c. d.	entage of your diet c less than 25% 26-50% 51-75% greater than 75%	consists of plants?	
		entage of your diet c	consists of the plant species harvested from the Northeast	
35	What perc Cape? a. b. c. d.	less than 25% 26-50% 51-75% greater than 75%		

4/17/01

•

Į.

¢

.

37. Please provide any other observations, comments?

H. + A. Fungowiyi 2- purson

Northeast Cape Site

The U.S. Army Corps of Engineers is investigating and remediating environmental conditions at the former military installation at Northeast Cape. In addition to the ongoing building demolition and hazardous waste removal activities, the Army Corps is conducting an analysis of potential risks to human health and the environment due to exposure to contaminants remaining at the site. As part of these efforts, additional fish sampling will be conducted in the Suqitughneq River.

Current ______ Dolly Varelan

Your help in answering the following questions will assist the Corps with planning the field investigation, and analyzing the potential for any site-related risks.

Questions:

a.

NH-

1. What fish species are present in the vicinity of Northeast Cape?

- b. Historically (pre-1960 spill) NA
- · 2. During what time of year did you historically fish at Northeast Cape?

and for how many days per year were they harvested?

3. During what time of year are fish currently harvested at Northeast Cape?

and for how many days per year are they harvested?

July August months

4. Where specifically are the freshwater and saltwater species currently harvested? (Please mark on the attached map where the freshwater and the saltwater fish are harvested. Please use (F) for the freshwater and (S) for the saltwater.)

- Sattwater Only

5. Do you harvest fish from the estuary/lagoon area at the mouth of the Suqitughneq River drainage?

a. YES b. NO Χ___ c. If YES, what species? 6. Which freshwater fish species do you normally eat? NA 7. How often do you eat freshwater fish? Please indicate the number of: MA meals/day ____ meals/week ___ meals/month 8. Which saltwater fish species do you normally eat? Salmon, Dolly Vardas 9. How often do you eat saltwater fish? Please indicate the number of: _____ meals/day __ meals/week 2 _ meals/month 10. What percentage of your diet is freshwater fish? a. less than 25% X b. 26-50% c. 51-75% d. greater than 75% 11. What percentage of your diet is saltwater fish? a. less than 25% Χ____ b. 26-50% c. 51-75% d. greater than 75% 12. What percentage of your diet is fish harvested at Northeast Cape? a. less than 25% X b. 26-50% c. 51-75% d. greater than 75%

13. How do you prepare fish for eating? For each species eaten, please describe what you do and what parts you eat (e.g., whole body, fillets, specific body parts, other).

Row, Looked, Enid, Fillet, Hands, Eggs,

14. What marine mammal species (e.g., whale, polar bear, walrus, seal) do you harvest from near Northeast Cape for eating?

Watis		
Szal		

15. During what time of year are marine mammals harvested at Northeast Cape?

April May and for how many days per year are they harvested?

Anth 2

 \checkmark

- 16. Where specifically are the marine mammals harvested? (Please mark on the attached map where the marine mammals are harvested. Please use (MM) for the locations.)
- 17. How do you prepare the marine mammals for eating? Please describe what you do for each species eaten and what parts you eat.

lived, Ledment, intestic, heart, blubber Walrus find 11 Kidny Bild Fril " "

18. How often do you eat marine mammals? Please indicate the number of:

__ meals/day 2 _ meals/week yrar Runt ____ meals/month

- 19. What percentage of your diet consists of marine mammal species?
 - a. less than 25% X
 - b. 26-50%
 - c. 51-75%
 - d. greater than 75%
- 20. What percentage of your diet consists of marine mammals harvested from the Northeast Cape? X
 - a. less than 25%
 - b. 26-50%
 - c. 51-75%
 - d. greater than 75%

21. What land mammal species (e.g., reindeer) do you harvest from the Northeast Cape or from the Island for eating?

Keinder

1

22. During what time of year are land mammals harvested at Northeast Cape?

Thanksqiving Fall and for how many days per year are they harvested?

- 23. Where specifically are the land mammals harvested? (Please mark on the attached map where the land mammals are harvested. Please use (LM) for the locations.)
- 24. How do you prepare the land mammals for eating? Please describe what you do for each species eaten and what parts you eat.

Bo, lid find Reinched, FAT, MEAT, Hard, liver -

25. How often do you eat land mammals?

_____ meals/day _____ meals/week

____ meals/month

26. What percentage of your diet consists of land mammal species?

- d. greater than 75%
- 27. What percentage of your diet consists of land mammal species harvested from the Northeast Cape?

a. less than 25% b. 26-50%

c. 51-75%

- ______ ______
- d. greater than 75%
- 28. What plant species do you harvest from the Northeast Cape

for eating? Solmon Burries Crow Burney

4/17/01

•

for other uses (e.g., medicinal, spiritual, smoking, weaving, dying)?

ø

29. What parts of the plants are consumed (e.g., leaves, stems, roots, berries)?

Burins

30. Which plants are usually found in lowland areas or near streams?

Salmon Burizs, Crowburizs

31. From where are the plants harvested? (Please mark on the attached map where the plants are harvested. Please use (P) for the plant locations.)

. •

V

32. During what months are the plants harvested?

July - August

33. How often do you eat plants harvested from the Northeast Cape?

_____ meals/day _____ meals/week _____ meals/month

34. What percentage of your diet consists of plants?

а.	less than 25%	A

b. 26-50%

- c. 51-75% ______ d. greater than 75% _____
- 35. What percentage of your diet consists of the plant species harvested from the Northeast Cape?
 - a. less than 25% _____X b. 26-50% ______ c. 51-75% ______ d. greater than 75% _____
- 36. Other than those food items already listed in you answers above, please list any other food items that are harvested from the Island's land or freshwater, or from the ocean surrounding the Island.

5

37. Please provide any other observations, comments?

Ø .

38. Date the survey was completed.

6/22/01

39. Your name and age (optional).

Adeline Pungowiyi, Pary Pungowiyi

40. May we contact you with questions? How may we reach you?

Yes 984-6311

Northeast Cape Site

The U.S. Army Corps of Engineers is investigating and remediating environmental conditions at the former military installation at Northeast Cape. In addition to the ongoing building demolition and hazardous waste removal activities, the Army Corps is conducting an analysis of potential risks to human health and the environment due to exposure to contaminants remaining at the site. As part of these efforts, additional fish sampling will be conducted in the Suqitughneq River.

Your help in answering the following questions will assist the Corps with planning the field investigation, and analyzing the potential for any site-related risks.

Questions:

1. What fish species are present in the vicinity of Northeast Cape?

Current Salmon, Dolly Varden (Silvers, Chimoks, Rods, Pinks) Herning, Tom Cod, from Surpaypall & Tapisaghall Rivers a.

- b. Historically (pre-1960 spill) Sigi Salmon + Dollys.
- 2. During what time of year did you historically fish at Northeast Cape?

SUMMOR

and for how many days per year were they harvested?

All Sumar a months

3. During what time of year are fish currently harvested at Northeast Cape?

and for how many days per year are they harvested?

2 MMHY

4. Where specifically are the freshwater and saltwater species currently harvested? (Please mark on the attached map where the freshwater and the saltwater fish are harvested. Please use (F) for the freshwater and (S) for the saltwater.)

No Frishvater Only Saltwater

- 5. Do you harvest fish from the estuary/lagoon area at the mouth of the Suqitughneq River drainage?
 - a. YES <u>×</u>

b. NO

c. If YES, what species?

Salmon, Dollys Not much sinis spill 6. Which freshwater fish species do you normally eat? 7. How often do you eat freshwater fish? Please indicate the number of: <u>
<u>
</u>
meals/day
</u> _____ meals/week ____ meals/month 9. How often do you eat saltwater fish? Please indicate the number of: _____ meals/day 2-3 meals/week summer / / mial/work During meals/month 10. What percentage of your diet is freshwater fish? NA a. less than 25% b. 26-50% c. 51-75% d. greater than 75% 11. What percentage of your diet is saltwater fish? a. less than 25% X b. 26-50% c. 51-75% d. greater than 75% 12. What percentage of your diet is fish harvested at Northeast Cape? X NEL a. less than 25% b. 26-50% c. 51-75% X_____ Seepaupak, Tapisaghat Rivers d. greater than 75%

13. How do you prepare fish for eating? For each species eaten, please describe what you do

and what parts you eat (e.g., whole body, fillets, specific body parts, other). Fileb, Eggs, Heads Dired, Control, Fried Bo, ted, Row Solme, Dollys Herring Tom Lad Looked fried

14. What marine mammal species (e.g., whale, polar bear, walrus, seal) do you harvest from near Northeast Cape for eating? Walrus

Seg/ Biar very Rara

15. During what time of year are marine mammals harvested at Northeast Cape? Walrus + Seal April/May

Polar Bear run but is April May before the us goes out, or any time it stranded and for how many days per year are they harvested?

1 Mmth ۷

- 16. Where specifically are the marine mammals harvested? (Please mark on the attached map where the marine mammals are harvested. Please use (MM) for the locations.)
- 17. How do you prepare the marine mammals for eating? Please describe what you do for each species eaten and what parts you eat.

Walrus - live, Redment, intesting, heard, blubber Scal - livil, Kedment, inteshing heard, blobber, Kidwids very saraht. Caked very well tolar Bear - Kad Maat

18. How often do you eat marine mammals? Please indicate the number of:

_ meals/day meals/week year road _ meals/month

- 19. What percentage of your diet consists of marine mammal species?
 - a. less than 25% ____X
 - b. 26-50%
 - c. 51-75%
 - d. greater than 75%
- 20. What percentage of your diet consists of marine mammals harvested from the Northeast Cape? X
 - a. less than 25%
 - b. 26-50%
 - c. 51-75%
 - d. greater than 75%

21. What land mammal species (e.g., reindeer) do you harvest from the Northeast Cape or from the Island for eating?

Lunder Only

-

22. During what time of year are land mammals harvested at Northeast Cape?

and for how many days per year are they harvested?

Runders per household per year 01 2

- 23. Where specifically are the land mammals harvested? (Please mark on the attached map where the land mammals are harvested. Please use (LM) for the locations.)
- 24. How do you prepare the land mammals for eating? Please describe what you do for each species eaten and what parts you eat.

Lednead, heart, Kidning, For Boiled, Fried, Frashed, Dried

25. How often do you eat land mammals?

meals/day meals/week July / August meals/month

26. What percentage of your diet consists of land mammal species?

- a. less than 25% X
- c. 51-75%
- d. greater than 75%
- 27. What percentage of your diet consists of land mammal species harvested from the Northeast Cape?
 - a. less than 25% X
 - b. 26-50%
 - c. 51-75%
 - d. greater than 75%

28. What plant species do you harvest from the Northeast Cape

for eating? Stealing: Crowberries, Salmonburnes, Cloudburies Loserved, Siberian Spring Beaty, Dock, Willow, Soxitrage, low-wortf Shakored lawbush cray bony.

for other uses (e.g., medicinal, spiritual, smoking, weaving, dying)?

29. What parts of the plants are consumed (e.g., leaves, stems, roots, berries)?

Traves, Lasts, Burriss.

30. Which plants are usually found in lowland areas or near streams?

Comburgis, Solmaturais, Claudburges, - Roserost Mountains - Tapisaghak Kiril. _____

- 31. From where are the plants harvested? (Please mark on the attached map where the plants are harvested. Please use (P) for the plant locations.)
- 32. During what months are the plants harvested?

July August - Friende for Winter

33. How often do you eat plants harvested from the Northeast Cape?

meals/day meals/week 3 meals/month

34. What percentage of your diet consists of plants?

- a. less than 25%
- b. 26-50% c. 51-75%
- d. greater than 75%
- 35. What percentage of your diet consists of the plant species harvested from the Northeast Cape?
 - a. less than 25%
 - b. 26-50% _____ c. 51-75% _____

d. greater than 75%

36. Other than those food items already listed in you answers above, please list any other food items that are harvested from the Island's land or freshwater, or from the ocean surrounding the Island.

37. Please provide any other observations, comments?

38. Date the survey was completed. 6/20/01 39. Your name and age (optional). Maria Toolia 53 Eugene Toolis 62 40. May we contact you with questions? How may we reach you? 984 - 4-22 f-Yes_

6 mg mm Mar

Clarcace Waghiyi

Northeast Cape Site

The U.S. Army Corps of Engineers is investigating and remediating environmental conditions at the former military installation at Northeast Cape. In addition to the ongoing building demolition and hazardous waste removal activities, the Army Corps is conducting an analysis of potential risks to human health and the environment due to exposure to contaminants remaining at the site. As part of these efforts, additional fish sampling will be conducted in the Suqitughneq River.

Your help in answering the following questions will assist the Corps with planning the field investigation, and analyzing the potential for any site-related risks.

Questions:

1. What fish species are present in the vicinity of Northeast Cape?

Dolly, Trout, Aritic Char Current a. Historically (pre-1960 spill) ______ Jolky b. 2. During what time of year did you historically fish at Northeast Cape?

and for how many days per year were they harvested?

3. During what time of year are fish currently harvested at Northeast Cape?

and for how many days per year are they harvested? July/ Augast

4. Where specifically are the freshwater and saltwater species currently harvested? (Please mark on the attached map where the freshwater and the saltwater fish are harvested. Please use (F) for the freshwater and (S) for the saltwater.)

U Saltarator

5. Do you harvest fish from the estuary/lagoon area at the mouth of the Suqitughneq River drainage?

2

a. YES b. NO c. If YES, what species? 6. Which freshwater fish species do you normally eat? Frish 7. How often do you eat freshwater fish? Please indicate the number of: __ meals/day _ meals/week meals/month 8. Which saltwater fish species do you normally eat? dhe Trout 9. How often do you eat saltwater fish? Please indicate the number of: _____ meals/day __ meals/week _ meals/month -γ **⊄** • **/** 2 10. What percentage of your diet is freshwater fish? a. less than 25% X NA b. 26-50% c. 51-75% d. greater than 75% 11. What percentage of your diet is saltwater fish? a. less than 25% b. 26-50% c. 51-75% d. greater than 75% 12. What percentage of your diet is fish harvested at Northeast Cape? a. less than 25% b. 26-50% c. 51-75% d. greater than 75%

13. How do you prepare fish for eating? For each species eaten, please describe what you do and what parts you eat (e.g., whole body, fillets, specific body parts, other).

Oceasing Areta Char

14. What marine mammal species (e.g., whale, polar bear, walrus, seal) do you harvest from near Northeast Cape for eating?

15. During what time of year are marine mammals harvested at Northeast Cape?

Spring O.V. April May

and for how many days per year are they harvested?

16. Where specifically are the marine mammals harvested? (Please mark on the attached map where the marine mammals are harvested. Please use (MM) for the locations.)

17. How do you prepare the marine mammals for eating? Please describe what you do for each species eaten and what parts you eat.

Lichneys (ranly), Kidiang Walnos, Loved, Redmost intention, bead, blobber.

18. How often do you eat marine mammals? Please indicate the number of:

 meals/day
 meals/week -
meals/month

19. What percentage of your diet consists of marine mammal species?

- a. less than 25%
- b. 26-50%c. 51-75%

Walass Szat

- d. greater than 75%
- 20. What percentage of your diet consists of marine mammals harvested from the Northeast Cape?
 - a. less than 25%
 - b. 26-50%
 - c. 51-75%
 - d. greater than 75%

21. What land mammal species (e.g., reindeer) do you harvest from the Northeast Cape or from the Island for eating?

cindend

22. During what time of year are land mammals harvested at Northeast Cape?

NN. Araust

1

Ę

and for how many days per year are they harvested?

23. Where specifically are the land mammals harvested? (Please mark on the attached map where the land mammals are harvested. Please use (LM) for the locations.)

24. How do you prepare the land mammals for eating? Please describe what you do for each species eaten and what parts you eat.

Lunder Only Meat, Heart, Lived, Fut. Raw. Cooled. Boiled, Fried

25. How often do you eat land mammals?

____ meals/day _ meals/week meals/month

26. What percentage of your diet consists of land mammal species?

- a. less than 25% b. 26-50%
- c. 51-75%
- d. greater than 75%
- 27. What percentage of your diet consists of land mammal species harvested from the
 - Northeast Cape? a. less than 25% b. 26-50% c. 51-75%
 - d. greater than 75%
- 28. What plant species do you harvest from the Northeast Cape

for eating? Salam Berris Chas Burnes.

for other uses (e.g., medicinal, spiritual, smoking, weaving, dying)?

29. What parts of the plants are consumed (e.g., leaves, stems, roots, berries)?

Bam?).

30. Which plants are usually found in lowland areas or near streams?

SB, CB Salmonburio, Lowburis

31. From where are the plants harvested? (Please mark on the attached map where the plants are harvested. Please use (P) for the plant locations.)

1

32. During what months are the plants harvested?

40000

33. How often do you eat plants harvested from the Northeast Cape?

_____ meals/day meals/week

some for Winter meals/month

34. What percentage of your diet consists of plants?

- a. less than 25%
- b. 26-50% c. 51-75%
- d. greater than 75%
- 35. What percentage of your diet consists of the plant species harvested from the Northeast Cape?
 - a. less than 25%
 - d. greater than 75%
- 36. Other than those food items already listed in you answers above, please list any other food items that are harvested from the Island's land or freshwater, or from the ocean surrounding the Island.

37. Please provide any other observations, comments?

ć,

38. Date the survey was completed. 39. Your name and age (optional). Clarence 6 bghiys 693 T 40. May we contact you with questions? How may we reach you? Yes

Northeast Cape Site

The U.S. Army Corps of Engineers is investigating and remediating environmental conditions at the former military installation at Northeast Cape. In addition to the ongoing building demolition and hazardous waste removal activities, the Army Corps is conducting an analysis of potential risks to human health and the environment due to exposure to contaminants remaining at the site. As part of these efforts, additional fish sampling will be conducted in the Suqitughneq River.

Your help in answering the following questions will assist the Corps with planning the field investigation, and analyzing the potential for any site-related risks.

Questions:

1. What fish species are present in the vicinity of Northeast Cape?

Current а.

- b. Historically (pre-1960 spill) trout white fish
- 2. During what time of year did you historically fish at Northeast Cape?

and for how many days per year were they harvested? Summer - 45 days. free - 4-5 days winter 4-5 days

3. During what time of year are fish currently harvested at Northeast Cape?

and for how many days per year are they harvested?

4. Where specifically are the freshwater and saltwater species currently harvested? (Please mark on the attached map where the freshwater and the saltwater fish are harvested. Please use (F) for the freshwater and (S) for the saltwater.)

4/17/01

- 5. Do you harvest fish from the estuary/lagoon area at the mouth of the Suqitughneq River drainage?
 - a. YES
 - b. NO _____
 - c. If YES, what species?
- 6. Which freshwater fish species do you normally eat?
- 7. How often do you eat freshwater fish? Please indicate the number of:

- 8. Which saltwater fish species do you normally eat? Sculpin, helibert, palmon, ramber trout; tom cods
- 9. How often do you eat saltwater fish? Please indicate the number of:

__ meals/day meals/week meals/month

10. What percentage of your diet is freshwater fish?

- a. less than 25% b. 26-50% c. 51-75%
- d. greater than 75%
- 11. What percentage of your diet is saltwater fish?
 - a. less than 25%
 - b. 26-50%
 - d. greater than 75%
- 12. What percentage of your diet is fish harvested at Northeast Cape?

13. How do you prepare fish for eating? For each species eaten, please describe what you do and what parts you eat (e.g., whole body, fillets, specific body parts, other).

- eggs and liver tom cods are them mon ONEru over opener Shere Un 1

14. What marine mammal species (e.g., whale, polar bear, walrus, seal) do you harvest from near Northeast Cape for eating?

le: Gray whole walrus seals mukluks murrer minke wh

15. During what time of year are marine mammals harvested at Northeast Cape?

and for how many days per year are they harvested? 2-3 days a most

16. Where specifically are the marine mammals harvested? (Please mark on the attached map where the marine mammals are harvested. Please use (MM) for the locations.)

17. How do you prepare the marine mammals for eating? Please describe what you do for each species eaten and what parts you eat.

in word th balls and oosiks. whiles - mest; wateres ever some as untrus 2 back Stals mukluk hist menst

18. How often do you eat marine mammals? Please indicate the number of:

	meals/day
5.	meals/week

_____ meals/month

19. What percentage of your diet consists of marine mammal species?

- a. less than 25%
- b. 26-50%

c. 51-75%

- d. greater than 75%
- 20. What percentage of your diet consists of marine mammals harvested from the Northeast Cape?

X

- a. less than 25%
- b. 26-50%
- c. 51-75%
- d. greater than 75%

21. What land mammal species (e.g., reindeer) do you harvest from the Northeast Cape or from the Island for eating?

22. During what time of year are land mammals harvested at Northeast Cape? spring and november and for how many days per year are they harvested? 3 23. Where specifically are the land mammals harvested? (Please mark on the attached map where the land mammals are harvested. Please use (LM) for the locations.) 24. How do you prepare the land mammals for eating? Please describe what you do for each species eaten and what parts you eat. innola reinder-everything but 25. How often do you eat land mammals? meals/day meals/week meals/month 26. What percentage of your diet consists of land mammal species? a. less than 25% b. 26-50% c. 51-75% d. greater than 75% 27. What percentage of your diet consists of land mammal species harvested from the Northeast Cape? a. less than 25% b. 26-50% c. 51-75% d. greater than 75% 28. What plant species do you harvest from the Northeast Cape for eating?

for other uses (e.g., medicinal, spiritual, smoking, weaving, dying)?

29. What parts of the plants are consumed (e.g., leaves, stems, roots, berries)? 30. Which plants are usually found in lowland areas or near streams? nuniver ruslah atter, the river drie of river greens 31. From where are the plants harvested? (Please mark on the attached map where the plants are harvested. Please use (P) for the plant locations.) 32. During what months are the plants harvested? spring, summer 33. How often do you eat plants harvested from the Northeast Cape? meals/day meals/week meals/month 2 34. What percentage of your diet consists of plants? a. less than 25% b. 26-50% c. 51-75% d. greater than 75% 35. What percentage of your diet consists of the plant species harvested from the Northeast Cape? a. less than 25% b. 26-50% c. 51-75% d. greater than 75% 36. Other than those food items already listed in you answers above, please list any other food items that are harvested from the Island's land or freshwater, or from the ocean surrounding the Island. en journben

5

37. Please provide any other observations, comments? herrier n 1 2 isun an yp 3 writed a N.E nt n e a he ~ n n A in, Cita

6-22-01

38. Date the survey was completed.

39. Your name and age (optional).

40. May we contact you with questions? How may we reach you?

APPENDIX D

Example Dose and Risk Calculations for Human and Ecological Receptors

HUMAN HEALTH EXPOSURE DOSE EQUATIONS

The example calculations below derive the total chemical-specific risk for Arsenic in soil at Site 9. This is a cancer risk calculation for a future permanent resident. Exposure parameters for this receptor are available in Table 3-6, Table 3-9, Table D-1 and Table D-2, where applicable.

• INGESTION EXPOSURE PATHWAY

Ingestion Intake of Soil/Sediment/Dust (mg/kg-day) = -

Where:

CS = Concentration in soil (milligrams per kilogram [mg/kg])

IR = Ingestion rate (milligrams [mg] soil/day)

 $CF = Conversion factor (10^{-6} kg/mg)$

EF = Exposure frequency (days/year)

- ED = Exposure duration (years)
- BW = Body weight (kilogram [kg])
- AT = Averaging time (period over which exposure is averaged days)

The ingestion equation is used for both the adult and then the child receptors. The results are added together to attain an overall ingestion exposure pathway for human receptors.

<u>Adult: (17 mg/kg x 100 mg/kg-day x 10⁻⁶kg/mg x 270 days/year x 24 years)</u> = 6.2E-06 mg/kg-d (70 kg x 25,550 days)

<u>Child:</u> (17 mg/kg x 200 mg/kg-day x 10⁻⁶kg/mg x 270 days/year x 6 years) = 1.4E-05 mg/kg-d (15 kg x 25,550 days)

The adult and child soil ingestion doses are then added together to arrive at 2.1E-05 mg/kg-day. That value is then multiplied by the oral cancer slope factor for arsenic, $1.5E+00 \text{ (mg/kg-day)}^{-1}$, to arrive at the pathway-specific cancer risk of 3.0E-05.

Soil ingestion pathway specific cancer risk = Soil Ingestion dose (mg/kg-day) x CSF $(mg/kg-day)^{-1}$ 3.1E-05 = 2.1E-05 mg/kg-d x 1.5E+00 $(mg/kg-day)^{-1}$

CSF = Cancer Slope Factor

• DERMAL EXPOSURE PATHWAY

Dermal Intake for Soil/Sediment/Dust (mg/kg-day) = $\frac{\text{CS x CF x SA x AF x ABS x EF x ED}}{\text{BW x AT}}$

Where:

- CS = Concentration in soil (mg/kg)
- $CF = Conversion factor (10^{-6} kg/mg)$

SA = Skin surface area exposed (square centimeter $[cm^2]$)

- AF = Adherence factor of soil (mg/cm^2-day)
- ABS = Skin absorption factor (unitless)
- EF = Exposure frequency (days/year)
- ED = Exposure duration (years)
- BW = Body weight (kg)
- AT = Averaging time (period over which exposure is averaged-days)

The dermal equation is used for both the adult and then the child receptors. The results are added together to attain an overall dermal exposure pathway for human receptors.

<u>Adult:</u> $(17 \text{ mg/kg x } 10^{-6} \text{ kg/mg x } 3,300 \text{ cm}^2 \text{ x } 0.2 \text{ mg/cm}^2 \text{-day x } 0.03 \text{ x } 270 \text{ days/yr x } 24 \text{ yrs}) = 1.2\text{E-06 mg/kg-d}}{(70 \text{ kg x } 25,550 \text{ days})}$

<u>Child:</u> (<u>17 mg/kg x 10⁻⁶ kg/mg x 2,800 cm² x 0.2 mg cm²-day x 0.03 x 270 days/yr x 6 yrs</u>) = 1.2E-06 mg/kg-d (15 kg x 25,550 days)

The adult and child soil dermal doses are then added together to arrive at 2.4E-06 mg/kg-day. That value is then multiplied by the dermal cancer slope factor for arsenic, $1.5E+00 \text{ (mg/kg-day)}^{-1}$, to arrive at the pathway-specific cancer risk of 3.6E-06.

Soil dermal pathway specific cancer risk = Soil Dermal dose $(mg/kg-day) \times CSF (mg/kg-day)^{-1}$ 3.6E-06 = 2.4E-06 $(mg/kg-day) \times 1.5E+00 (mg/kg-day)^{-1}$

INHALATION EXPOSURE PATHWAY

Inhalation Intake for Indoor Dust (mg/kg-day) = $\frac{\text{CS x (1/PEF) x InhR x EF x ED}}{\text{BW x AT}}$

Where:

CS = Concentration in solit (mg/kg)	CS	= Concent	ration in	soil	(mg/kg)
-------------------------------------	----	-----------	-----------	------	---------

PEF = Particulate emission factor (1.3E+09) (cubic meters $[m^3]/kg$)

- InhR = Inhalation rate (m^3/day)
- EF = Exposure frequency (days/year)
- ED = Exposure duration (years)
- BW = Body weight (kg)
- AT = Averaging time (period over which exposure is averaged days)

The inhalation equation is used for both the adult and then the child receptors. The results are added together to attain an overall inhalation exposure pathway for human receptors.

<u>Adult: $(17 \text{ mg/kg x } (1/1.3\text{E}+09 \text{ m}^3/\text{kg}) \text{ x } 20 \text{ m}^3/\text{day x } 270 \text{ days/yr x } 24 \text{ yrs})} = 9.5\text{E}-10 \text{ mg/kg-d}}{(70 \text{ kg x } 25,550 \text{ days})}$ </u>

<u>Child</u>: $(17 \text{ mg/kg x} (1/1.3\text{E}+09 \text{ m}^3/\text{kg}) \times 10 \text{ m}^3/\text{day x} 270 \text{ days/yr x} 6 \text{ yrs}) = 5.5\text{E}-10 \text{ mg/kg-d}$ (15 kg x 25,550 days)

The adult and child soil inhalation doses are then added together to arrive at 1.5E-09 mg/kg-day. That value is then multiplied by the inhalation cancer slope factor for arsenic, 1.5E+01 (mg/kg-day)⁻¹, to arrive at the pathway-specific cancer risk of 2.3E-08.

Soil inhalation pathway specific cancer risk = Soil inhalation dose $(mg/kg-day) \times CSF (mg/kg-day)^{-1}$ 2.3E-08 = 1.5E-09 $(mg/kg-day) \times 1.5E+01 (mg/kg-day)^{-1}$

All three pathway-specific cancer risk values are then added together to obtain the chemical-specific risk for arsenic of 3.4E-05.

Ingestion risk(mg/kg-d)	+	Dermal risk(mg/kg-d)	+	Inhalation risk (mg/kg-d)	=	Chemical specific risk
3.1E-05	+	3.6E-06	+	2.3E-08	=	3.4E-05

This value is then summed with all other chemical-specific risks to attain the final incremental lifetime cancer risk (ILCR) for a particular receptor in a particular medium.

ECOLOGICAL EXPOSURE DOSE EQUATIONS

The example calculations below derive the total chemical-specific risk for Arsenic in soil at Site 9. Exposure parameters for ecological receptors are available in Table 3-21, Bioaccumulation Factors for use in Modeling Food Chain Exposures for Ecological Receptors are available in Table 3-22, and Ecological Toxicity Reference Values for Indicator Receptors are available in Tables 3-32 and 3-24, where applicable.

FOOD INGESTION RATE CALCULATIONS

Food ingestion rates (FIR) for each indicator receptor were calculated using allometric equations provided in USEPA's *Wildlife Exposure Factors Handbook* (USEPA, 1993) that are based on established relationships between body size and metabolic requirements. Food ingestion rates expressed in grams of food per day were calculated based on the following equations: 3-9 for the tundra vole 3-6 for the glaucous-winged gull, and 3-7 for the cross fox.

Equation 3-6 seabirds FIR $(g/day) = 0.495 \text{ x Wt}^{0.704} (g)$

Equation 3-7 all mammals

FIR $(g/day) = 0.235 \text{ x Wt}^{0.822}$ (g) or FIR $(kg/day) = 0.0687 \text{ x Wt}^{0.822}$ (kg)

Equation 3-9 herbivores FIR $(g/day) = 0.577 \times Wt^{0.727} (g)$

SKIN SURFACE AREA CALCULATIONS

The skin surface area (SSA) is an exposure parameter used to estimate dermal exposure of indicator receptors to soil COPECs. This parameter was calculated based on methods outlined in the *Wildlife Exposure Factors Handbook* (USEPA, 1993). Equation 3-22 was used to calculate exposure for mammals. Equation 3-21 was used to calculate exposure for birds. Exposed skin surface area was calculated assuming the area of the feet (4 percent of total skin surface area) for the tundra vole and the beak and legs (8 percent of total surface area) for the glaucous-winged gull. It was assumed that for the indicator receptors selected, fur or feathers would tend to protect other body surfaces from dermal exposure.

Equation 3-21 all birds $SSA_{skin} (cm^2) = 10 \text{ x Wt}^{0.667} (g)$

Equation 3-22 all mammals $SSA_{skin} (m^2) = 0.11 \text{ x Wt} {}^{0.65} (kg) \text{ or}$ $SSA_{skin} (cm^2) = 12.3 \text{ x Wt} {}^{0.65} (g)$

Notes:

FIR= Food Ingestion Rateg/day= Grams per daykg/day= Kilograms per dayWt= Average weight of indicator receptorSSA_{skin}= Surface area of the receptor

WATER INGESTION RATE CALCULATIONS

The water ingestion rate is an exposure parameter used to estimate exposure of indicator receptors to surface water COPECs. This parameter was calculated based on methods outlined in the Wildlife Exposure Factors Handbook (USEPA, 1993). Equation 3-17 was used to calculate exposure for mammals. Equation 3-15 was used to calculate exposure for birds.

Equation 3-15 all birds $WI (L/day) = 0.059 \text{ x Wt}^{0.67} (kg)$

Equation 3-17 all mammals $W\bar{I}$ (L/day) = 0.099 x Wt^{0.90} (kg)

Notes:

WI = Water Ingestion Rate L/day = Liters per day = Kilograms kg Wt = Average weight of indicator receptor

EXPOSURE DOSE CALCULATIONS

The initial step in calculating indicator receptor exposure doses is calculation of concentration in food items.

Average Concentrations of Chemicals of Potential Ecological Concern (COPEC) in Food Items

Food items include terrestrial plant tissues and herbivorous prey tissues. Actual concentrations in food items were used where available (i.e., plant and fish tissue sampled in site 28). For sites other than Site 28 - Drainage Basin (where plant and fish tissue concentrations were measured), estimating contaminant concentrations in plants is necessary for evaluating exposures to terrestrial indicator receptors. Estimating EPCs in plant and animal tissues were based on guidance in Screening Level Ecological Risk Assessment Protocol for Hazardous Waste Combustion Facilities (USEPA, 1999a). The media transfer and exposure dose equations presented in USEPA (1999a) are generic in nature, and are not specific to products of combustion (e.g., oxidized chemicals). USEPA (1999a) lists a variety of chemical classes that these methods are applicable to; these chemical classes are representative of the contaminant types present at the Northeast Cape Installation.

Contaminant Concentration in Terrestrial Plant Tissues

For the ecological assessment, COPEC concentrations in terrestrial plants (CPLANTS) were assumed to equal plant concentrations due to root uptake (Pr). The equation used to compute COPEC concentrations in terrestrial plants due to root uptake is:

$$C_{PLANTS} = 0.12 \text{ x Pr}$$

w	nere:	

C _{PLANTS}	=	Total COPEC concentration in the plant (mg COPEC/kg wet tissue).
Pr	=	Concentration of COPEC in the plant due to root uptake (mg/kg dry tissue)
0.12	=	Converts from dry tissue concentration to wet tissue concentration (USEPA, 1999a)

The concentration taken up by the roots is calculated by:

$Pr = C_{SOIL} \times BCF_{S-P}$

117h			
wnere:			
	Pr	=	COPEC concentration in plant due to root uptake (mg/kg tissue)
	Cson	=	COPEC concentration in soil (mg/kg dry soil)
	BCF _{S-P}	=	Soil-to-terrestrial plant bioconcentration factor (kg dry soil/kg wet or dry tissue)

Because actual measured plant tissue concentrations were not taken at Site 9, we used the above presented equations to estimate plant concentrations.

0.12 x (C_{SOIL} x BCF_{S-P) = C_{PLANTS} 0.12 x (17 mg/kg x 0.036) = 0.073 mg/kg}

Contaminant Concentrations in Herbivorous Prey Tissues

The food chain model for indicator receptors considers one herbivorous prey species, the tundra vole. COPEC concentrations in herbivores depend on ingestion of abiotic media and plant matter. The equation for calculating COPEC concentrations in herbivores is:

$$C_{\text{HERB}} = (C_{\text{PLANT}} \times BCF_{\text{TL2/TL1}}) + (C_{\text{SOIL}} \times BCF_{\text{S-H}})$$

Where:

Cherb	=	COPEC concentration in herbivore (mg/kg wet tissue)
C _{plants}	=	Total COPEC concentration in the plant (mg COPEC/kg wet tissue)
BCF _{TL2/TL1}	=	Plant-to-herbivore bioconcentration factor (kg wet plant tissue/kg wet herbivore tissue)
С _{SOIL} BCF _{S-н}	=	COPEC concentration in soil (mg/kg dry soil or dry sediment) Bioconcentration factor for soil-to-herbivore (kg dry media/kg wet tissue)

(0.073 mg/kg x 2.0E-03 + 17 mg/kg x 2.0E-03) = 0.034 (mg/kg wet tissue)

Ingestion Dose Calculation

Exposure dose calculation consolidates exposure pathways and routes, exposure point concentrations (EPCs), and exposure parameters into an equation that provides an exposure dose estimate in units of mg/kg-day.

Ingestion dose estimates were calculated using the following general equations derived from USEPA's Wildlife Exposure Factors Handbook (USEPA, 1993):

Dose $_{\text{Ingestion}} = \frac{[(IR_{\text{Biotic}} \times C_{\text{Biotic}}) + (IR_{\text{Abiotic}} \times EPC_{\text{Abiotic}})] \times ED \times SUF \times UC}{BW}$

Where:

Dose Ingestion	= Estimated exposure dose from ingestion of food and ingestion of abiotic media (mg/kg-day)
IR _{Biotic}	= Food ingestion rate (mg/day)
CBiotic	= Average concentration of COPEC in food items (mg/kg)
IRAbiotic	= Abiotic media ingestion rate (mg/day)
EPCAbiotic	= Concentration of COPEC in abiotic media (mg/kg) (referred to as C _{son} below)
ED	= Exposure duration (unitless)
SUF	= Site utilization factor (unitless)
UC	= Unit conversion 10^{-6} kg/mg
BW	= Body weight (kg)

Ingestion Dose for the Tundra Vole

 $= [(IRplant x Cplant) + (IRsoil x Csoil) + (IRwater x Cwater)] x ED x SUF x 10^{-6}$

(BW)

$= \frac{[(1.03E+04 \text{ mg/d x } 0.073 \text{ mg/kg}) + (2.47E+02 \text{ mg/d x } 17 \text{ mg/kg}) + (6.98E-03 \text{ L/d x } 0 \text{ mg/L})] \times 1 \times 1 \times 10^{-6}}{(5.25E-02 \text{ kg})}$

= 9.4E-02 mg/kg

Ingestion Dose for the Cross Fox

The ingestion dose equation for the Cross Fox includes modeling the concentration in the herbivore consumed by the fox. This concentration in represented by Canimal in the below presented dose equation. Canimal is calculated as follows:

Canimal = Cplant*BCF_{TL2/TL1}+Csoil*BCF_{S-H}

Where:

 $\begin{array}{ll} C_{animal} &= Modeled \ concentration \ in \ herbivorous \ prey \\ C_{plant} &= Concentration \ in \ plant \\ BCF_{TL2/TL1} = Biomagnification \ factor \ from \ trophic \ level \ 1 \ to \ trophic \ level \ 2 \\ C_{soil} &= Concentration \ in \ soil \\ BCF_{S-H} &= Bioconcentration \ factor \ from \ soil \ to \ herbivore \end{array}$

Canimal = 0.073 mg/kg x 0.002 mg tissue/kg herbivore tissue + 17 mg/kg x 0.002 mg tissue/kg herbivore tissue = 0.034 mg/kg

 $= \frac{[(\text{IRplant x Cplant}) + (\text{IRanimal x Canimal}) + (\text{IRsoil x Csoil}) + (\text{IRwater x Cwater})] \times \text{ED x SUF x 10}^{-6}}{(\text{BW})}$

 $= \frac{(2.47E+05 \text{ mg/d x } 0.073 \text{ mg/kg}) + (2.23E+05 \text{ mg/d x } 0.034 \text{ mg/kg}) + (6.93E+03 \text{ mg/d x } 17 \text{ mg/kg}) + (4.02E-01 \text{ L/d x } 0 \text{ mg/L}) \text{ x } 1 \text{ x } 6.80E-03 \text{ x } 10^{-6}}$

(4.75E+00 kg)

= 1.8E-04 mg/kg

Ingestion Dose for the Glaucous-Winged Gull

= [(IRplant x Cplant) + (IRanimal x Cfish) + (IRsoil x Csoil) + (IRwater x Cwater)] x ED x SUF x 10⁻⁶(BW)

 $= \frac{[(4.08E+03 mg/d x 0.073 mg/kg) + (7.76E+04 mg/d x 0 mg/kg) + (7.80E+03 mg/d x 17 mg/kg) + (7.44E-02 mg/d x 0 mg/L)] x 0.5 x 9.5E-05 x 10^{-6}}{(4.08E+03 mg/L)} = \frac{[(4.08E+03 mg/d x 0.073 mg/kg) + (7.44E-02 mg/d x 0 mg/kg) + (7.80E+03 mg/d x 17 mg/kg) + (7.44E-02 mg/d x 0 mg/L)]}{(4.08E+03 mg/L)} = \frac{[(4.08E+03 mg/d x 0.073 mg/kg) + (7.44E-02 mg/d x 0 mg/kg) + (7.80E+03 mg/d x 17 mg/kg) + (7.44E-02 mg/d x 0 mg/L)]}{(4.08E+03 mg/L)} = \frac{[(4.08E+03 mg/d x 0.073 mg/kg) + (7.44E-02 mg/d x 0 mg/kg) + (7.44E-02 mg/d x 0 mg/L)]}{(4.08E+03 mg/L)} = \frac{[(4.08E+03 mg/d x 0.073 mg/kg) + (7.44E-02 mg/d x 0 mg/kg) + (7.44E-02 mg/d x 0 mg/L)]}{(4.08E+03 mg/L)} = \frac{[(4.08E+03 mg/d x 0.073 mg/kg) + (7.44E-02 mg/d x 0 mg/L)]}{(4.08E+03 mg/L)} = \frac{[(4.08E+03 mg/d x 0.073 mg/kg) + (7.44E-02 mg/d x 0 mg/L)]}{(4.08E+03 mg/L)} = \frac{[(4.08E+03 mg/d x 0 mg/kg) + (7.44E-02 mg/d x 0 mg/L)]}{(4.08E+03 mg/L)} = \frac{[(4.08E+03 mg/d x 0 mg/kg) + (7.44E-02 mg/d x 0 mg/L)]}{(4.08E+03 mg/L)} = \frac{[(4.08E+03 mg/L)]}{(4.08E+03 m$

(1.41 kg)

= 1.0E-08 mg/kg

Estimated exposure doses for each chemical and indicator receptor were compared to ecological TRVs to calculate a chemical-specific HQ and a total cumulative HI for each site. The equation for calculating HQ is:

 $HQ = \frac{Dose}{TRV}$

Where:

HQ = Hazard quotient (unitless)

Dose = Modeled exposure dose for indicator species (mg/kg-day)

TRV = Toxicity reference value for the indicator species (mg/kg-day)

Tundra Vole: = 9.4E-02 mg/kg = 0.0194.9E+00 mg/kg-d

Cross Fox: = $\frac{1.8E-04 \text{ mg/kg}}{2.8E-01 \text{ mg/kg-d}} = 0.00064$

Glaucous-Winged Gull:

 $= \frac{1.0E-08 \text{ mg/kg}}{1.1E+00 \text{ mg/kg-d}} = 0.000000010$

HI were calculated by summing the HQs obtained from food chain modeling for all COPECs identified at Northeast Cape for each indicator receptor.

NOTES

Please note that the HQ calculations shown above include only two significant digits consistent with ADEC risk assessment policy. However actual calculations presented in Appendices F and H used more significant digits and rounding to two significant digits was not done at each step, but rather only done for presentation of the chemical-specific ecological HQ or cumulative human health HI.

Compound	ABS (unitless)	Source
Inorganics		
Arsenic	0.03	a
Cadmium	0.001	a
All other inorganics	0	а
Organics		
Pentachlorophenol	0.25	а
Semivolatile organic compounds	0.10	a
All other Organic Compounds	0	a
PAHs		
Benzo(a)pyrene & other PAHs	0.13	а
PCBs		
Aroclors 1254/1242 & other PCBs	0.14	a
Dioxins & Furans		
TCDD and other dioxins	0.03	а
Pesticides		
Chlordane	0.04	а
DDT	0.03	а
Lindane	0.04	a
Petroleum Hydrocarbons		
GRO (AK101)		
GRO Aliphatic	NA ^B	
GRO Aromatic	NA ^b	
DRO (AK102)		
DRO Aliphatic	NA ^b	
DRO Aromatic	NA ^b	
RRO (AK103)		
DRO Aliphatic	NA ^b	
DRO Aromatic	NA ^b	

DERMAL ABSORPTION FACTORS FOR CHEMICALS IN SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

Notes:

^a Exhibit 3-4 from USEPA, 2001a. Risk Assessment Guidance for Superfund Voluem I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Interim. Review Draft. September.

^b Potential dermal exposures to DRO, GRO and RRO were not quantified in the HHRA due to uncertainties in route-to-route extrapolation methods (refer to Section 3.1.2.3.3). ABS - Dermal absorption factor.

DERMAL ABSORPTION FACTORS FOR CHEMICALS IN SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

Compound	ABS (unitless)	Source	
DRO - Diesel range organics.	τ.		
DDT - Dichlorodiphenyltrichloroethane.			
GRO - Gasoline range organics.			
NA - Not applicable.			
PAHs - Polynuclear aromatic hydrocarbons	•		
PCBs - Polychlorinated biphenyls.			
RRO - Residual range organics.			

TCDD - Tetrachlorodibenzo-p-dioxin.

TABLE D-2

PERMEABILITY COEFFICIENTS AND VOLATILITY FACTORS FOR COPCs IN WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Volatility Factor	Permeabiltiy Coefficient (Kp)	Кр
Compound	(m ⁻ /L) ⁻	(cm/hr)	Source
Inorganics			
Cadmium	NA	1.0E-03	b
Chromium VI	NA	2.0E-03	Ъ
Cobalt	NA	4.0E-04	b
Lead	NA	1.0E-04	b
Mercury	NA	1.0E-03	ь
Nickel	NA	2.0E-04	b
Potassium	NA	2.0E-03	b
Silver	NA	6.0E-04	b
Zinc Chloride	NA	6.0E-04	b
All other inorganics	NA	1.0E-03	b
Volatile Organic Compounds			
4-Isopropyltoluene	2.5E-03 °	1.2E-01	b
Benzene	1.2E-03	2.1E-02	b
Ethylbenzene	1.8E-03	7.4E-02	Ъ
Methylene Chloride	4.8E-04	4.5E-03	b
n-Propylbenzene (Isocumene)	2.9E-03	3.1E-01	b
sec-Butylbenzene	4.1E-03 ^d	8.0E-02	Ь
Toluene	1.4E-03	4.5E-02	ĥ
Trichloroethylene (TCE)	2.3E-03	1.6E-02	b
Semivolatile Organic Compounds	na	па	
bis(2-ethylexyl)phthalate (DEHP)	5.9E-08	2.5E-02	Ъ
Polychloringted Rinhenvls			
Aroclor 1260	na	4 3E-01	h
	110	1.52-01	0
Polynuclear Aromatic Hydrocarbon	S		
Naphthalene	NA	6.9E-02	b
Pesticides	NA	na	
Dioxins & Furans			
2 3 7.8-Tetrachlorodibenzo-p-dioxins			
(TCDD) Toxicity Equivalents (TEO)			
	NA	8.1E-01	b
Potroleum Hydrocaybons			-
CDO(AK101)	1 0E 03		
GRO Alinhatic	1.7 E- U5 NA	Tna	
GRO Atomatic	NA NA	Inc	
DRO(AK102)	11M 0 4E 05	inc	
DRO Aliphatic	7.0E-03 NA	Inc	
DRO Aromatic	NΔ	Inc	
RRO (AK103)	1 0F-07	IIIÇ	
DRO Aliphatic	NA	Inc	
DRO Aromatic	NA	Inc	
	A 12 B	1110	

TABLE D-2

PERMEABILITY COEFFICIENTS AND VOLATILITY FACTORS FOR COPCs IN WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

Compound	Volatility Factor (m ³ /L) ^a	Permeabiltiy Coefficient (Kp) (cm/hr)	Kp Source
Noton			
Notes:			
cm/nr - Centimeters per nour.			
DRO - Diesel range organics.		•	
GRO - Gasoline range organics.			
Kp - Permeability coefficient.			
m ³ /L - Cubic meters per liter.			
na - Not available.			
NA - Not applicable.			
RRO - Residual range organics.			

^a Calculated based on the methods of Andelman (1990).

^b Calculated with Equation 3.8 from USEPA, 2001. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Interim. Review Draft - For Public Comment. September, 2001.

^c Isopropylbenzene was used as a surrogate, based on similarities in chemical structure.

^dButylbenzene was used as a surrogate based on similar chemical structure.

APPENDIX E

Human Health Tier 1 Screening Tables

Table E-1 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil Site 3 Northeast Cape, St. Lawrence Island, Alaska

		Soil Gravel Data							COPC Screening	
	Maximum	Minimum	Numb	per of	Detection	BUTL (mg/kg) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
Inorganics										
Chromium	12	9.8	2	2	1.0	48	50	26	2.6	No
Copper	22	9	2	2	1.0	107	44	4,060	406	No
Lead	119	27	3	3	1.0	106	112	400 ^d	40	Yes
Nickel	16	8	2	2	1.0	59	30	87	8.7	No
Zinc	118	35	2	2	1.0	615	157	9,100	910	No
VOCs										
Methylene chloride	0.0093	0.0093	1	1	1.0	nc	nc	0.015	0.0015	Yes
PCBs										
PCB-1260 (Aroclor 1260)	0.75	0.29	2	2	1.0	nc	nc	10	1	No
PAHs										
Anthracene	10.29	10.29	3	1	0.3	nc	nc	4,300	430	No
Naphthalene	50.8	50.8	4	1	0.3	nc	nc	21	2.1	Yes
Petroleum Hydrocarbons										
Diesel Range Organics (DRO)	3,760	314	6	5	0.8	nc	nc	250	25	Yes
TRPH	6,550	393	3	3	1.0	nc	nc	NA ^e	NA	No

Notes:

na - Not available.

NA - Not applicable.

nc - Not calculated.

BUTL - Background upper tolerance limit.

mg/kg - Milligram per kilogram.

COPC - Chemical of Potential Concern

PAH - Polynuclear Aromatic Hydrocarbons

TRPH - Total Residual Petroleum Hydrocarbons

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment, Derivation of Ambient Concentrations for Abiotic Media Associated with the Northeast Cape, St. Lawrence Island, Alaska (MWH, 2003).

Table E-1 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil Site 3

Northeast	Cape, St	. Lawrence	Island, Alaska
-----------	----------	------------	----------------

		Soil Gra	vel Data				Regulatory	COPC Screening	
	Maximum	Minimum	Numb	oer of	Detection	BUTL (mg/kg) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
 ^b Regulatory Criteria is equal to the minim 1. Minimum of 3 pathways listed in Table Hazardous Substances Pollution Control. 2. Minimum of 3 pathways listed in Table Hazardous Substances Pollution Control 	um ADEC Soil Cl es B1 and B2, Und January 30. es B1 and B2, Und Public Comment J	eanup Level prop ler 40 inch zone: A ler 40 inch zone: A	ADEC, 2002	following 3. 18 AAC 2. Oil and	hierarchy: C 75 Oil and Other				
 Minimum of 3 pathways listed in Table 	es B1 and B2, Und	ler 40 inch zone: A	ADEC, 2002	2. Cumula	tive Risk				
Guidance. November 7.4. Minimum of 3 pathways listed in Table Levels for Compounds without Tabular V.	es B1 and B2, Und alues in Site Clean	ler 40 inch zone: A up Rules - Techni	ADEC, 200 cal Memora	 Calcula andum 01- 	ted Cleanup 007.				
December 18.		1							
^c Benchmark Criteria is equal to 1/10 the	indicated regulator	ry criteria.							
^d Screening Criteria for lead is based on re Procedures Manual guidance (18 AAC 75	esidential cleanup .340).	value calculated a	ccording to	Risk Asse	essment				

^e TRPH is excluded as a COPC due to outdated analysis methods.

Table E-2 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Subsurface Water Site 3 Site 3 Northeast Cape, St. Lawrence Island, Alaska

		Shallow Subsurf	face Water	Data				Regulatory	COPC Screening		
	Maximum	Minimum	Numb	er of	Detection	Subsurface Wate	r BUTL (mg/L) ^a	Criteria ^b	Benchmark ^c	COPC?	
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Shallow	Deep	(mg/L)	(mg/L)	(Yes/No)	
VOCs											
Ethylbenzene	0.066	0.066	1	1	1.0	nc	nc	0.7	0.07	No	
Xylenes	0.54	0.54	1	1	1	nc	nc	10	1	No	
PAHs											
Fluorene	0.0012	0.0012	1	1	1.0	nc	nc	1.46	0.146	No	
Naphthalene	0.013	0.013	1	1	1.0	nc	nc	1.46	0.146	No	
Petroleum Hydrocarbons											
Diesel Range Organics (DRO)	14	1.8	4	4	1.0	nc	nc	1.5	0.15	Yes	
Residual Range Organics (RRO)	8.1	1.3	3	3	1.0	nc	nc	1.1	0.11	Yes	

Notes:

BUTL - Background upper tolerance limit.

COPC - Chemcial of Potential Concern.

mg/L - Milligrams per liter.

na - Not available.

nc - Not calculated.

PAH - Polynuclear Aromatic Hydrocarbons

VOC - Volatile Organic Compounds

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment, Derivation of Ambient Concentrations for Abiotic Media Associated with the Northeast Cape, St. Lawrence Island, Alaska (MWH, 2003).

^b Benchmark Criteria is equal to the minimum ADEC Groundwater Cleanup Level proposed by the two most recent guidance documents, below.

ADEC Groundwater Cleanup Levels Table C.

ADEC, 2001. Calculated Cleanup Levels for Compounds without Tabular Values in Site Cleanup Rules - Technical Memorandum 01-007. December 18.

ADEC Groundwater Cleanup Levels Table C.

ADEC, 2002. Oil and Other Hazardous Substances Pollution Control. Public Comment Draft. 18 AAC 75. December 14.

^c Benchmark Criteria is equal to 1/10 the indicated regulatory criteria.

Table E-3
Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil
Site 4
Northeast Cape, St. Lawrence Island, Alaska

	Soil Tundra Data						Soil Gravel Data						Regulatory	COPC Screening	
	Maximum	Minimum	Numb	er of	Detection	Maximum	Minimum	Numb	per of	Detection	BUTL ((mg/kg) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
Inorganics															
Lead	160	7.4	2	2	1.0	na	na	na	na	na	106	112	400 ^d	40	Yes
PAHs															
Anthracene	na	na	na	na	na	14	14	1	1	1.0	nc	nc	4,300	430	No
Chrysene	na	na	na	na	na	11	11	1	1	1.0	nc	nc	620	62	No
Fluorene	na	na	na	na	na	13	13	1	1	1.0	nc	nc	270	27	No
Petroleum Hydrocarbons															
Diesel Range Organics (DRO)	5,300	150	3	3	1.0	459	459	1	1	1.0	nc	nc	250	25	Yes
Residual Range Organics (RRO)	na	na	na	na	na	3,420	3,420	1	1	1.0	nc	nc	10,000	1,000	Yes
TRPH	47,000	690	3	3	1.0	na	na	na	na	na	nc	nc	NA ^e	NA	No

Notes:

na - Not available.

NA - Not applicable.

nc - Not calculated.

BUTL - Background upper tolerance limit.

mg/kg - Milligram per kilogram.

COPC - Chemical of Potential Concern

PAH - Polynuclear Aromatic Hydrocarbons

TRPH - Total Residual Petroleum Hydrocarbons

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment, Derivation of Ambient Concentrations for Abiotic Media Associated with the Northeast Cape, St. Lawrence Island, Alaska (MWH, 2003).

^b Regulatory Criteria is equal to the minimum ADEC Soil Cleanup Level proposed by the following hierarchy:
 1. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2003. 18 AAC 75 Oil and Hazardous Substances Pollution Control. January 30.

2. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2002. Oil and Other

Hazardous Substances Pollution Control. Public Comment Draft. 18 AAC 75. December 14.

3. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2002. Cumulative Risk Guidance. November 7.

4. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2001. Calculated Cleanup Levels for Compounds without Tabular Values in Site Cleanup Rules - Technical Memorandum 01-007. December 18.

^c Benchmark Criteria is equal to 1/10 the indicated regulatory criteria.

^d Screening Criteria for lead is based on residential cleanup value calculated according to Risk Assessment Procedures Manual guidance (18 AAC 75.340).

^e TRPH is excluded as a COPC due to outdated analysis methods.

Table E-4 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Subsurface Water Site 4 Northeast Cape, St. Lawrence Island, Alaska

		Shallow Subsur	face Water	Data				Regulatory	COPC Screening		
	Maximum	Maximum	Number of		Detection	Subsurface Water BUTL (mg/L) ^a		Criteria ^b	Benchmark ^c	COPC?	
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Shallow	Deep	(mg/L)	(mg/L)	(Yes/No)	
VOCs											
Xylenes	0.0069	0.0069	1	1	1.0	nc	nc	10	1	No	
Petroleum Hydrocarbons											
Diesel Range Organics (DRO)	3.7	0.96	4	4	1.0	nc	nc	1.5	0.15	Yes	
Residual Range Organics (RRO)	6.5	2.6	3	3	1.0	nc	nc	1.1	0.11	Yes	

Notes:

BUTL - Background upper tolerance limit.

COPC - Chemcial of Potential Concern.

mg/L - Milligrams per liters.

na - Not available.

nc - Not calculated.

VOC - Volatile Organic Compounds

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment, Derivation of Ambient Concentrations for Abiotic Media Associated with the Northeast Cape, St. Lawrence Island, Alaska (MWH, 2003).
 ^b Benchmark Criteria is equal to the minimum ADEC Groundwater Cleanup Level proposed by the two most

recent guidance documents, below.

ADEC Groundwater Cleanup Levels Table C.

ADEC, 2001. Calculated Cleanup Levels for Compounds without Tabular Values in Site Cleanup Rules - Technical Memorandum 01-007. December 18.

ADEC Groundwater Cleanup Levels Table C.

ADEC, 2002. Oil and Other Hazardous Substances Pollution Control. Public Comment Draft. 18 AAC 75. December 14.

^c Benchmark Criteria is equal to 1/10 the indicated regulatory criteria.

Table E-5
Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil
Site 6
Northeast Cape, St. Lawrence Island, Alaska

	Soil Tundra Data					Soil Gra	avel Data				Regulatory COPC Screenin				
	Mavimum	Minimum	Numb	per of	Detection	Maximum	Minimum	Numb	er of	Detection	BUTL (mg/kg) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
Inorganics															
Aluminum	9,850	9,850	1	1	1.0	7,790	7,790	1	1	1.0	30,357	nc	na	na	Yes
Arsenic	4.1	4.1	1	1	1.0	1.6	1.6	1	1	1.0	7.8	11	2	0.2	No
Barium	53.8	53.8	1	1	1.0	53	53	1	1	1.0	174	nc	1,100	110	No
Beryllium	0.8	0.8	4	1	0.25	1.3	0.6	9	2	0.22	3.8	nc	42	4.2	Yes
Calcium	2,360	2,360	1	1	1.0	1,790	1,790	1	1	1.0	nc	nc	NA ^f	NA	No
Chromium	20	13.9	4	3	0.75	18	6	9	9	1.0	48	50	26	2.6	No
Cobalt	5.1	5.1	1	1	1.0	2	2	1	1	1.0	49	nc	na	na	Yes
Copper	23	8	4	4	1.0	17	7.4	9	9	1.0	107	44	4,060	406	No
Iron	16,400	16,400	1	1	1.0	12,200	12,200	1	1	1.0	nc	nc	NA ^f	NA	No
Lead	34	13	4	4	1.0	71	8	9	9	1.0	106	112	400 ^d	40	No
Magnesium	2,900	2,900	1	1	1.0	1,530	1,530	1	1	1.0	nc	nc	NA ^f	NA	No
Manganese	164	164	1	1	1.0	72.7	72.7	1	1	1.0	1,589	nc	na	na	Yes
Nickel	15	9	4	3	0.75	10	5	9	9	1.0	59	30	87	8.7	No
Potassium	820	820	1	1	1.0	1,500	1,500	1	1	1.0	nc	nc	NA ^f	NA	No
Sodium	160	160	1	1	1.0	450	450	1	1	1.0	nc	nc	NA ^f	NA	No
Vanadium	25.8	25.8	1	1	1.0	16	16	1	1	1.0	73	nc	710	71	No
Zinc	93	29.8	4	4	1.0	172	20	9	9	1.0	615	157	9,100	910	No
VOCs															
Ethylbenzene	0.00088	0.00088	5	1	0.20	0.012	0.012	9	1	0.11	na	na	5.5	0.55	No
m,p-Xylene	0.0033	0.0033	2	1	0.50	0.044	0.044	3	1	0.33	na	na	na	na	Yes
Methylene chloride	0.0076	0.0076	1	1	1.0	0.0079	0.0044	2	2	1.0	na	na	0.015	0.0015	Yes
o-Xylene	0.001	0.001	2	1	0.50	0.014	0.014	3	1	0.33	na	na	na	na	Yes
Toluene	0.0047	0.0047	5	1	0.20	0.078	0.0052	9	3	0.33	na	na	5.4	0.54	No
Petroleum Hydrocarbons															
Diesel Range Organics (DRO)	4,660	34	4	4	1.0	102,000	12	13	13	1.0	na	na	250	25	Yes
Residual Range Organics (RRO)	370	220	1	1	1.0	8,500	880	5	5	1.0	na	na	10,000	1,000	Yes
TRPH	19,200	31	3	3	1.0	262,000	67	8	8	1.0	na	na	NA ^e	NA	No

Notes:

NA - Not available. na - Not applicable.

nc - Not calculated.

BUTL - Background upper tolerance limit.

mg/kg - Milligram per kilogram.

COPC - Chemical of Potential Concern

PAH - Polynuclear Aromatic Hydrocarbons

TRPH - Total Residual Petroleum Hydrocarbons

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment, Derivation of Ambient Concentrations for Abiotic Media Associated with the Northeast Cape, St. Lawrence Island, Alaska (MWH, 2003).

^b Regulatory Criteria is equal to the minimum ADEC Soil Cleanup Level proposed by the following hierarchy:

Table E-5 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil Site 6 Northeast Cape, St. Lawrence Island, Alaska

Soil Tundra Data	Soil Gravel Data	Reg

		Soil Tundra Data					Soil Gravel Data					Regulatory		
	Maximum	Minimum	Numbe	er of	Detection	Maximum	Minimum	Numl	ber of	Detection	BUTL (mg/kg) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)

1. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2003. 18 AAC 75 Oil and Hazardous Substances Pollution Control. January 30.

2. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2002. Oil and Other Hazardous

Substances Pollution Control. Public Comment Draft. 18 AAC 75. December 14.

3. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2002. Cumulative Risk Guidance.

November 7.

4. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2001. Calculated Cleanup Levels for Compounds without Tabular Values in Site Cleanup Rules - Technical Memorandum 01-007. December 18.

^c Benchmark Criteria is equal to 1/10 the indicated regulatory criteria.

^d Screening Criteria for lead is based on residential cleanup value calculated according to Risk Assessment Procedures Manual guidance (18 AAC 75.340).

^e TRPH is excluded as a COPC due to outdated analysis methods.

^f This analyte is excluded as a COPC due to status as an essential nutrient.

Table E-6 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Subsurface Water Site 6 Northeast Cape, St. Lawrence Island, Alaska

		Shallow Subsur	face Water	Data				Regulatory	COPC Screening	
	Maximum	Minimum	Numb	oer of	Detection	Subsurface Wate	r BUTL (mg/L) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Shallow	Deep	(mg/L)	(mg/L)	(Yes/No)
Inorganics, Total										
Aluminum	78.3	78.3	1	1	1.0	nc	nc	na	na	Yes
Arsenic	0.022	0.022	1	1	1.0	0.025	nc	0.05	0.005	No
Barium	0.406	0.406	1	1	1.0	nc	nc	2	0.2	Yes
Beryllium	0.02	0.004	2	2	1.0	0.021	nc	0.004	0.0004	No
Cadmium	0.006	0.006	2	1	0.5	0.060	nc	0.005	0.0005	No
Calcium	15.8	15.8	1	1	1.0	nc	nc	NA ^e	NA	No
Chromium	1.22	0.37	2	2	1.0	1.7	nc	0.1	0.01	No
Cobalt	0.052	0.052	1	1	1.0	0.011	nc	na	na	Yes
Copper	0.27	0.26	2	2	1.0	0.087	nc	1.3	0.13	Yes
Iron	98.8	98.8	1	1	1.0	nc	nc	NA ^e	NA	No
Lead	0.23	0.16	2	2	1.0	0.013	nc	$0.015^{\ d}$	0.0015	Yes
Magnesium	15.6	15.6	1	1	1.0	nc	nc	NA ^e	NA	No
Manganese	1.58	1.58	1	1	1.0	0.20	nc	na	na	Yes
Mercury	0.0001	0.0001	1	1	1.0	0.00041	nc	0.002	0.0002	No
Nickel	1.68	0.23	2	2	1.0	0.056	nc	0.1	0.01	Yes
Potassium	7.92	7.92	1	1	1.0	nc	nc	NA ^e	NA	No
Sodium	17.7	17.7	1	1	1.0	nc	nc	NA ^e	NA	No
Thallium	0.002	0.002	2	1	0.5	nc	nc	0.002	0.0002	Yes
Vanadium	0.153	0.153	1	1	1.0	0.10	nc	0.26	0.026	Yes
Zinc	17.7	0.8	2	2	1.0	0.29	nc	11	1.1	Yes
Inorganics, Dissolved										
Lead, Dissolved	0.002	0.002	1	1	1.0	nc	nc	0.015	0.0015	Yes
VOCs										
2-Butanone	0.017	0.017	2	1	0.50	na	na	22	2.2	No
Acetone	0.035	0.0053	2	2	1.0	na	na	3.65	0.365	No
Benzene	0.0035	0.0035	3	1	0.33	na	na	0.005	0.0005	Yes
Toluene	0.0074	0.0074	3	1	0.33	na	na	1.0	0.1	No

Petroleum Hydrocarbons

Table E-6 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Subsurface Water Site 6 Northeast Cape, St. Lawrence Island, Alaska

		Shallow Subsur	face Water	Data				Regulatory	COPC Screening			
	Maximum	Minimum	Numb	oer of	Detection	Subsurface Wate	r BUTL (mg/L) ^a	Criteria ^b	Benchmark ^c	COPC?		
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Shallow	Deep	(mg/L)	(mg/L)	(Yes/No)		
Diesel Range Organics (DRO)	1.7	0.27	4	3	0.75	na	na	1.5	0.15	Yes		
Gasoline Range Organics (GRO)	0.08	0.08	3	1	0.33	na	na	1.3	0.13	No		

Notes:

BUTL - Background upper tolerance limit.

COPC - Chemcial of Potential Concern.

mg/L - Milligrams per liter.

NA - Not applicable.

na - Not available.

nc - Not calculated.

VOC - Volatile Organic Compounds

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment, Derivation of Ambient Concentrations for Abiotic Media Associated with the Northeast Cape, St. Lawrence Island, Alaska (MWH, 2003).
 ^b Benchmark Criteria is equal to the minimum ADEC Groundwater Cleanup Level proposed by the two most recent guidance documents, below.

ADEC Groundwater Cleanup Levels Table C.

ADEC, 2001. Calculated Cleanup Levels for Compounds without Tabular Values in Site Cleanup Rules - Technical Memorandum 01-007. December 18.

ADEC Groundwater Cleanup Levels Table C.

ADEC, 2002. Oil and Other Hazardous Substances Pollution Control. Public Comment Draft. 18 AAC 75. December 14.

^c Benchmark Criteria is equal to 1/10 the indicated regulatory criteria.

^d Screening Criteria for lead is based on residential cleanup value calculated according to Risk Assessment Procedures Manual guidance (18 AAC 75.340).

Table E-7 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil Site 7 Northeast Cape, St. Lawrence Island, Alaska

		Soil Tun	ndra Data		Regulatory COPC Screening					
	Maximum	Minimum	Numb	per of	Detection	BUTL (mg/kg) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
Inorganics										
Aluminum	12,000	3,640	5	5	1.0	30,357	nc	na	na	Yes
Arsenic	50	2.0	18	18	1.0	7.8	11	2	0.2	Yes
Barium	135	28	5	5	1.0	174	nc	1,100	110	No
Beryllium	2.3	0.40	19	8	0.42	3.8	nc	42	4.2	No
Cadmium	4.1	1.0	19	9	0.47	1.4	3.1	5	0.5	Yes
Calcium	5,070	1,780	5	5	1.0	nc	nc	NA ^e	NA	No
Chromium	100	5.0	19	18	0.95	48	50	26	2.6	Yes
Cobalt	19	2.0	5	5	1.0	49	nc	na	na	Yes
Copper	320	6.6	19	19	1.0	107	44	4,060	406	No
Iron	152,000	8,380	5	5	1.0	nc	nc	NA ^e	NA	No
Lead	460	10	20	20	1.0	106	112	400 ^d	40	Yes
Magnesium	3,180	740	5	5	1.0	nc	nc	NA ^e	NA	No
Manganese	694	55.3	5	5	1.0	1,589	nc	na	na	Yes
Mercury	0.56	0.10	18	4	0.22	0.43	nc	1.4	0.14	Yes
Nickel	280	5.0	19	16	0.84	59	30	87	8.7	Yes
Potassium	1,080	370	5	5	1.0	nc	nc	NA ^e	NA	No
Silver	2.0	2.0	19	2	0.11	nc	nc	21	2.1	No
Sodium	210	120	5	5	1.0	nc	nc	NA ^e	NA	No
Thallium	1.2	0.28	2	2	1.0	1.6	0.56	na	na	Yes
Vanadium	31	9.8	5	5	1.0	73	nc	710	71	No
Zinc	540	29	19	19	1.0	615	157	9,100	910	No
VOCs										
1,1,1-Trichloroethane	0.28	0.14	10	3	0.30	na	na	1	0.1	Yes
Acetone	1.4	0.048	10	4	0.40	na	na	10	1	Yes
Bromoethane	0.4	0.098	10	5	0.50	na	na	na	na	Yes
m,p-Xylene	0.13	0.13	10	1	0.10	na	na	na	na	Yes

Table E-7 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil Site 7 Northeast Cape, St. Lawrence Island, Alaska

		Soil Tur	ndra Data			Regulatory COPC Screening					
	Maximum	Minimum	Numl	oer of	Detection	BUTL (mg/kg) ^a	Criteria ^b	Benchmark ^c	COPC?	
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)	
Methylene chloride	0.013	0.0065	9	4	0.44	na	na	0.015	0.0015	Yes	
Toluene	0.14	0.026	19	3	0.16	na	na	5.4	0.54	No	
SVOCs											
4-Methylphenol (p-Cresol)	3.9	1.7	14	3	0.21	na	na	na	na	Yes	
Di-n-butyl phthalate	3.0	3.0	14	1	0.07	na	na	1700	170	No	
PCBs											
PCB-1260 (Aroclor 1260)	13	0.13	22	4	0.18	na	na	10	1	Yes	
Dioxins & Furans											
1,2,3,4,6,7,8,9-Octachlorodibenzofuran	0.00052	0.0000011	13	4	0.31	na	na	na	na	Yes	
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin	0.020	0.00000091	13	12	0.92	na	na	na	na	Yes	
1,2,3,4,6,7,8-Heptachlorodibenzofuran	0.00016	0.00000043	12	4	0.33	na	na	na	na	Yes	
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	0.0011	0.00000047	13	8	0.62	na	na	na	na	Yes	
1,2,3,4,7,8,9-Heptachlorodibenzofuran	0.0000013	0.0000013	13	1	0.08	na	na	na	na	Yes	
1,2,3,4,7,8-Hexachlorodibenzofuran	0.000027	0.00000012	13	4	0.31	na	na	na	na	Yes	
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	0.0000020	0.0000020	13	1	0.08	na	na	na	na	Yes	
1,2,3,6,7,8-Hexachlorodibenzofuran	0.000011	0.000011	13	1	0.08	na	na	na	na	Yes	
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	0.000046	0.00000019	13	4	0.31	na	na	na	na	Yes	
1,2,3,7,8,9-Hexachlorodibenzofuran	0.00000040	0.00000040	13	1	0.08	na	na	na	na	Yes	
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.000031	0.0000051	13	2	0.15	na	na	na	na	Yes	
1,2,3,7,8-Pentachlorodibenzofuran	0.0000045	0.0000045	13	1	0.08	na	na	na	na	Yes	
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	0.0000015	0.0000015	13	1	0.08	na	na	na	na	Yes	
2,3,4,6,7,8-Hexachlorodibenzofuran	0.000019	0.00000041	13	8	0.62	na	na	na	na	Yes	
2,3,4,7,8-Pentachlorodibenzofuran	0.000012	0.000012	13	1	0.08	na	na	na	na	Yes	
2,3,7,8-Tetrachlorodibenzofuran	0.000029	0.00000028	13	6	0.46	na	na	na	na	Yes	
Total Heptachlorodibenzofurans (HpCDF)	0.00053	0.00053	3	1	0.33	na	na	na	na	Yes	
Total Heptachlorodibenzo-p-dioxins (HpCDD)	0.0022	0.000095	3	2	0.67	na	na	na	na	Yes	

Table E-7 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil Site 7 Northeast Cape, St. Lawrence Island, Alaska

		Soil Tun	dra Data			Regulatory COPC Screening				
	Maximum	Minimum	Numb	oer of	Detection	BUTL (1	mg/kg) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
Total Hexachlorodibenzofurans (HxCDF)	0.00019	0.00019	3	1	0.33	na	na	na	na	Yes
Total Hexachlorodibenzo-p-dioxins (HxCDD)	0.00034	0.00034	3	1	0.33	na	na	na	na	Yes
Total Pentachlorodibenzofurans (PeCDF)	0.00011	0.00011	3	1	0.33	na	na	na	na	Yes
Total Tetrachlorodibenzofurans (TCDF)	0.00015	0.00015	3	1	0.33	na	na	na	na	Yes
Total Tetrachlorodibenzo-p-dioxins (TCDD)	0.000039	0.000039	3	1	0.33	na	na	na	na	Yes
PAHs										
2-Methylnaphthalene	0.047	0.047	19	1	0.053	na	na	43	4.3	No
Benzo(a)pyrene	0.082	0.082	19	1	0.053	na	na	1	0.1	No
Benzo(b)fluoranthene	0.014	0.014	19	1	0.053	na	na	11	1.1	No
Benzo(k)fluoranthene	0.014	0.014	19	1	0.053	na	na	110	11	No
Chrysene	0.035	0.013	19	2	0.11	na	na	620	62	No
Naphthalene	0.027	0.027	20	1	0.050	na	na	21	2.1	No
Phenanthrene	0.014	0.014	19	1	0.053	na	na	4,300	430	No
Pyrene	0.026	0.013	19	2	0.11	na	na	1,500	150	No
Petroleum Hydrocarbons										
Diesel Range Organics (DRO)	32,000	11	24	21	0.88	na	na	250	25	Yes
Residual Range Organics (RRO)	3,900	620	7	7	1.0	na	na	10,000	1,000	Yes
TRPH	156,000	18	14	14	1.0	na	na	NA ^f	NA	No

Notes:

na - Not available.

NA - Not applicable.

nc - Not calculated.

BUTL - Background upper tolerance limit.

mg/kg - Milligram per kilogram.

COPC - Chemical of Potential Concern

PAH - Polynuclear Aromatic Hydrocarbons

TRPH - Total Residual Petroleum Hydrocarbons

Table E-7 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil Site 7 Northeast Cape, St. Lawrence Island, Alaska

		Soil Tun	dra Data				Regulatory		
	Maximum	Minimum	Numb	er of	Detection	BUTL (mg/kg) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment, Derivation of Ambient

Concentrations for Abiotic Media Associated with the Northeast Cape, St. Lawrence Island, Alaska (MWH, 2003).

^b Regulatory Criteria is equal to the minimum ADEC Soil Cleanup Level proposed by the following hierarchy:

1. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2003. 18 AAC 75 Oil and Hazardous

Substances Pollution Control. January 30.

2. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2002. Oil and Other Hazardous Substances

Pollution Control. Public Comment Draft. 18 AAC 75. December 14.

3. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2002. Cumulative Risk Guidance. November 7.

4. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2001. Calculated Cleanup Levels for Compounds without Tabular Values in Site Cleanup Rules - Technical Memorandum 01-007. December 18.

^c Benchmark Criteria is equal to 1/10 the indicated regulatory criteria.

^d Screening Criteria for lead is based on residential cleanup value calculated according to Risk Assessment Procedures Manual guidance (18 AAC 75.340).

^e This analyte is excluded as a COPC due to status as an essential nutrient.

^f TRPH is excluded as a COPC due to outdated analysis methods.

Table E-8 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Subsurface Water Site 7 Northeast Cape, St. Lawrence Island, Alaska

		Shallow Subsur	face Water	Data				Regulatory	COPC Screening	
	Maximum	Maximum	Numb	per of	Detection	Subsurface Wate	er BUTL (mg/L) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Shallow	Deep	(mg/kg)(mg/L)	(mg/L)	(Yes/No)
Inorganics, Total										
Aluminum	26	11	3	3	1.0	nc	nc	na	na	Yes
Arsenic	0.010	0.0040	4	3	0.75	0.025	nc	0.05	0.005	No
Barium	0.13	0.13	3	3	1.0	nc	nc	2	0.2	Yes
Beryllium	0.0020	0.0020	4	1	0.25	0.021	nc	0.004	0.0004	No
Calcium	7.6	4.0	3	3	1.0	nc	nc	NA ^e	NA	No
Chromium	0.26	0.014	4	3	0.75	1.7	nc	0.1	0.01	No
Cobalt	0.064	0.0040	3	3	1.0	0.011	nc	na	na	Yes
Copper	0.067	0.011	4	3	0.75	0.087	nc	1.3	0.13	No
Iron	47	11	3	3	1.0	nc	nc	NA ^e	NA	No
Lead	0.040	0.005	4	4	1.0	0.013	nc	0.015 ^d	0.0015	Yes
Magnesium	3.8	3.6	3	3	1.0	nc	nc	NA ^e	NA	No
Manganese	0.59	0.060	3	3	1.0	0.20	nc	na	na	Yes
Mercury	0.00020	0.00020	4	2	0.50	0.00041	nc	0.002	0.0002	No
Nickel	3.5	3.5	4	1	0.25	0.056	nc	0.1	0.01	Yes
Potassium	5.3	1.6	3	3	1.0	nc	nc	NA ^e	NA	No
Sodium	13	8.5	3	3	1.0	nc	nc	NA ^e	NA	No
Vanadium	0.079	0.029	3	3	1.0	0.10	nc	0.26	0.026	No
Zinc	2.5	0.020	4	3	0.75	0.29	nc	11	1.1	Yes
VOCs										
2-Butanone	0.013	0.013	4	1	0.25	nc	nc	22	2.2	No
Acetone	0.028	0.019	4	2	0.50	nc	nc	3.65	0.365	No
Benzene	0.0021	0.0021	5	1	0.20	nc	nc	0.005	0.0005	Yes
SVOCs										
Benzoic acid	0.021	0.021	1	1	1.0	nc	nc	146	14.6	No
Dioxins & Furans										
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin	0.00000023	0.00000023	1	1	1.0	nc	nc	na	na	Yes
Petroleum Hydrocarbons										
Diesel Range Organics (DRO)	0.66	0.39	4	3	0.75	nc	nc	1.5	0.15	Yes

Table E-8 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Subsurface Water Site 7 Northeast Cape, St. Lawrence Island, Alaska

		Shallow Subsuri	face Water	Data				Regulatory	COPC Screening	
	Maximum	Maximum	Numb	er of	Detection	Subsurface Wate	r BUTL (mg/L) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Shallow	Deep	(mg/kg)(mg/L)	(mg/L)	(Yes/No)
Residual Range Organics (RRO)	2.7	1.1	3	3	1.0	nc	nc	1.1	0.11	Yes

BUTL - Background upper tolerance limit.

- COPC Chemcial of Potential Concern.
- mg/L Milligrams per liters.

NA - Not applicable.

na - Not available.

nc - Not calculated.

SVOC - Semivolatile Organic Compounds

VOC - Volatile Organic Compounds

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment, Derivation of Ambient

Concentrations for Abiotic Media Associated with the Northeast Cape, St. Lawrence Island, Alaska (MWH, 2003).

^b Benchmark Criteria is equal to the minimum ADEC Groundwater Cleanup Level proposed by the two most recent guidance documents, below.

ADEC Groundwater Cleanup Levels Table C.

ADEC, 2001. Calculated Cleanup Levels for Compounds without Tabular Values in Site Cleanup Rules - Technical Memorandum 01-007. December 18.

ADEC Groundwater Cleanup Levels Table C.

ADEC, 2002. Oil and Other Hazardous Substances Pollution Control. Public Comment Draft. 18 AAC 75. December 14.

^c Benchmark Criteria is equal to 1/10 the indicated regulatory criteria.

^d Screening Criteria for lead is based on residential cleanup value calculated according to Risk Assessment Procedures Manual guidance (18 AAC 75.340).

e This analyte is excluded as a COPC due to status as an essential nutrient.

Table E-9 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil Site 9 Northeast Cape, St. Lawrence Island, Alaska

		Soil Tun	dra Data			-		Regulatory	COPC Screening	
	Maximum	Minimum	Numb	er of	Detection	BUTL (1	ng/kg) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	- Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
T										
inorganics	0.0000026	0.000000	-		0.00	20.257				
Aluminum	0.000036	0.000036	5	1	0.20	30,357	nc	na	na	Yes
Antimony	14	14	15	1	0.067	nc	nc	3.6	0.36	Yes
Arsenic	20	3.6	15	7	0.47	7.8	11	2	0.2	Yes
Beryllium	3.55	0.70	15	5	0.33	3.8	nc	42	4.2	No
Cadmium	7.0	0.75	15	4	0.27	1.4	3.1	5	0.5	Yes
Calcium	4,940	1,910	5	5	1.0	nc	nc	NA ^e	NA	No
Chromium	60	5.0	15	14	0.93	48	50	26	2.6	Yes
Cobalt	38	4.0	5	4	0.80	49	nc	na	na	Yes
Copper	429	6.0	15	15	1.0	107	44	4,060	406	Yes
Iron	483,000	13,000	5	5	1.0	nc	nc	NA ^e	NA	No
Lead	630	20	15	14	0.93	106	112	400 ^d	40	Yes
Magnesium	3,220	930	5	5	1.0	nc	nc	NA ^e	NA	No
Manganese	970	51	5	5	1.0	1,589	nc	na	na	Yes
Mercury	0.60	0.60	15	1	0.07	0.43	nc	1.4	0.14	Yes
Nickel	110	7.7	15	11	0.73	59	30	87	8.7	Yes
Potassium	1,060	650	5	4	0.80	nc	nc	NA ^e	NA	No
Selenium	1.0	1.0	15	1	0.07	nc	nc	3.5	0.35	Yes
Sodium	280	180	5	5	1.0	nc	nc	NA ^e	NA	No
Thallium	0.28	0.28	2	1	0.50	1.6	0.56	na	na	Yes
Vanadium	44	21	5	4	0.80	73	nc	710	71	No
Zinc	1,790	15	15	15	1.0	615	157	9,100	910	Yes
VOCs										
1,1,1-Trichloroethane	0.20	0.20	8	1	0.13	nc	nc	1	0.1	Yes
1,2,4-Trichlorobenzene	0.00018	0.000040	15	3	0.20	nc	nc	2	0.2	No
1,2-Dibromoethane	0.000010	0.0000097	8	2	0.25	nc	nc	na	na	Yes
1,2-Dichlorobenzene	0.025	0.0000016	15	7	0.47	nc	nc	7	0.7	No

Table E-9 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil Site 9 Northeast Cape, St. Lawrence Island, Alaska

		Soil Tun	dra Data			_		Regulatory	COPC Screening	3
	Maximum	Minimum	Numb	per of	Detection	BUTL (mg/kg) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
1,2-Dichloroethane	0.00079	0.000014	8	5	0.63	nc	nc	0.015	0.0015	No
1,2-Dichloropropane	0.00040	0.0000070	8	4	0.50	nc	nc	0.017	0.0017	No
1,3,5-Trimethylbenzene	0.00018	0.0000013	8	5	0.63	nc	nc	25	2.5	No
1,3-Dichlorobenzene	0.068	0.0000025	15	7	0.47	nc	nc	0.26	0.026	Yes
1,3-Dichloropropane	0.000097	0.00000059	8	5	0.63	nc	nc	na	na	Yes
1,4-Dichlorobenzene	0.025	0.000014	15	3	0.20	nc	nc	0.8	0.08	No
2,2-Dichloropropane	0.00000092	0.00000092	8	1	0.13	nc	nc	na	na	Yes
2-Butanone	0.0000045	0.00000059	8	2	0.25	nc	nc	60	6	No
2-Chloroethyl vinyl ether	0.0000026	0.00000054	5	2	0.40	nc	nc	na	na	Yes
2-Chlorotoluene	0.0000045	0.0000013	8	2	0.25	nc	nc	na	na	Yes
2-Hexanone	0.0000087	0.0000078	5	2	0.40	nc	nc	na	na	Yes
4-Bromophenyl phenyl ether	0.0000024	0.0000012	10	2	0.20	nc	nc	na	na	Yes
4-Chlorophenyl phenyl ether	0.0000029	0.00000064	10	2	0.20	na	na	na	na	Yes
4-Isopropyltoluene	0.0000047	0.00000077	8	3	0.38	nc	nc	na	na	Yes
Acetone	0.000013	0.0000048	8	2	0.25	nc	nc	10	1	No
Bromomethane	0.36	0.36	8	1	0.13	nc	nc	na	na	Yes
Styrene	0.014	0.014	8	1	0.13	nc	nc	1.3	0.13	No
Toluene	6	0.23	16	2	0.13	nc	nc	5.4	0.54	Yes
2,4,5-Trichlorophenol	0.0000032	0.0000032	10	1	0.10	nc	nc	90	9	No
2,4,6-Trichlorophenol	0.0000025	0.0000011	10	2	0.20	nc	nc	0.6	0.06	No
2,4-Dichlorophenol	0.0000015	0.00000034	10	2	0.20	nc	nc	0.45	0.045	No
2,4-Dimethylphenol	0.0000014	0.0000014	10	1	0.10	nc	nc	4	0.4	No
2,4-Dinitrophenol	0.0000016	0.0000016	10	1	0.10	nc	nc	0.2	0.02	No
2,4-Dinitrotoluene	0.0000016	0.0000016	10	1	0.10	nc	nc	0.005	0.0005	No
2,6-Dinitrotoluene	0.0000016	0.0000016	10	1	0.10	nc	nc	0.0044	0.00044	No
2-Methyl-4,6-dinitrophenol	0.0000037	0.00000022	10	3	0.30	nc	nc	na	na	Yes
2-Methylphenol (o-Cresol)	0.00000035	0.00000035	10	1	0.10	nc	nc	7	0.7	No
3,3-Dichlorobenzidine	0.00000068	0.00000068	10	1	0.10	nc	nc	0.02	0.002	No
3-Nitroaniline	0.0000019	0.00000080	10	2	0.20	nc	nc	na	na	Yes

Table E-9 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil Site 9 Northeast Cape, St. Lawrence Island, Alaska

		Soil Tun	dra Data			_		Regulatory	COPC Screening	ning	
	Məyimum	Minimum	Numł	per of	Detection	BUTL (1	ng/kg) ^a	Criteria ^b	Benchmark ^c	COPC?	
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	- Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)	
4-Chloroaniline	0.0000026	0.00000061	10	2	0.20	nc	nc	0.5	0.05	No	
4-Chlorotoluene	0.025	0.00000043	8	4	0.50	nc	nc	na	na	Yes	
4-Nitroaniline	0.000030	0.000030	10	1	0.10	nc	nc	na	na	Yes	
4-Nitrophenol	0.00013	0.000088	10	3	0.30	nc	nc	na	na	Yes	
bis-(2-ethylhexyl)phthalate	1.0	1.0	10	1	0.10	nc	nc	590	59	No	
PCBs											
PCB-1260 (Aroclor 1260)	0.13	0.13	15	1	0.067	nc	nc	10	1	No	
Pesticides											
4,4'-DDD	0.0000019	0.0000019	10	1	0.10	nc	nc	35	3.5	No	
4,4'-DDE	0.0000016	0.0000016	10	1	0.10	nc	nc	24	2.4	No	
4,4'-DDT	0.00000054	0.00000017	10	3	0.30	nc	nc	24	2.4	No	
Dioxins & Furans											
1,2,3,4,6,7,8,9-Octachlorodibenzofuran	0.00012	0.0000038	10	6	0.60	nc	nc	na	na	Yes	
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin	0.0011	0.0000070	10	9	0.90	nc	nc	na	na	Yes	
1,2,3,4,6,7,8-Heptachlorodibenzofuran	0.000030	0.00000025	10	7	0.70	nc	nc	na	na	Yes	
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	0.00012	0.00000059	10	8	0.80	nc	nc	na	na	Yes	
1,2,3,4,7,8,9-Heptachlorodibenzofuran	0.0000023	0.0000023	9	1	0.11	nc	nc	na	na	Yes	
1,2,3,4,7,8-Hexachlorodibenzofuran	0.0000066	0.0000023	10	4	0.40	nc	nc	na	na	Yes	
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	0.0000029	0.0000011	10	4	0.40	nc	nc	na	na	Yes	
1,2,3,6,7,8-Hexachlorodibenzofuran	0.0000016	0.0000014	10	2	0.20	nc	nc	na	na	Yes	
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	0.0000045	0.00000059	9	2	0.22	nc	nc	na	na	Yes	
1,2,3,7,8,9-Hexachlorodibenzofuran	0.0000038	0.0000038	10	1	0.10	nc	nc	na	na	Yes	
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.0000083	0.0000012	10	4	0.40	nc	nc	na	na	Yes	
1,2,3,7,8-Pentachlorodibenzofuran	0.0000021	0.00000022	10	3	0.30	nc	nc	na	na	Yes	
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	0.00000035	0.00000035	9	1	0.11	nc	nc	na	na	Yes	
2,3,4,6,7,8-Hexachlorodibenzofuran	0.0000032	0.00000080	10	4	0.40	nc	nc	na	na	Yes	

Table E-9 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil Site 9 Northeast Cape, St. Lawrence Island, Alaska

		Soil Tun	dra Data			_		Regulatory	COPC Screening	Screening	
	Maximum	Minimum	Numb	er of	Detection	BUTL (1	ng/kg) ^a	Criteria ^b	Benchmark ^c	COPC?	
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)	
2,3,4,7,8-Pentachlorodibenzofuran	0.0000025	0.0000033	10	3	0.30	nc	nc	na	na	Yes	
2,3,7,8-Tetrachlorodibenzofuran	0.0000066	0.00000026	10	7	0.70	nc	nc	na	na	Yes	
2,3,7,8-Tetrachlorodibenzo-p-dioxin	0.0000017	0.0000028	10	3	0.30	nc	nc	na	na	Yes	
Total Heptachlorodibenzofurans (HpCDF)	0.000095	0.000095	3	1	0.33	nc	nc	na	na	Yes	
Total Heptachlorodibenzo-p-dioxins (HpCDD)	0.00018	0.000040	3	2	0.67	nc	nc	na	na	Yes	
Total Tetrachlorodibenzofurans (TCDF)	0.00001	0.0000097	3	2	0.67	nc	nc	na	na	Yes	
PAHs											
2-Methylnaphthalene	0.0000021	0.0000011	16	2	0.13	nc	nc	43	4.3	No	
Acenaphthene	0.000029	0.0000088	16	8	0.50	nc	nc	210	21	No	
Acenaphthylene	0.000055	0.00000099	16	7	0.44	nc	nc	210	21	No	
Anthracene	0.0092	0.0092	16	1	0.063	nc	nc	4,300	430	No	
Benzo(k)fluoranthene	0.057	0.057	16	1	0.063	nc	nc	110	11	No	
Chrysene	0.064	0.064	16	1	0.063	nc	nc	620	62	No	
Fluoranthene	0.023	0.023	16	1	0.063	nc	nc	2,100	210	No	
Indeno(1,2,3-cd)pyrene	0.018	0.018	16	1	0.063	nc	nc	11	1.1	No	
Phenanthrene	0.024	0.024	16	1	0.063	nc	nc	4,300	430	No	
Pyrene	0.041	0.041	16	1	0.063	nc	nc	1,500	150	No	
Petroleum Hydrocarbons											
Diesel Range Organics (DRO)	510	8.9	16	16	1.0	nc	nc	250	25	Yes	
Residual Range Organics (RRO)	2,100	53	6	6	1.0	nc	nc	10,000	1,000	Yes	
TRPH	5,260	169	10	10	1.0	nc	nc	na ^f	na	No	

Notes:

na - Not available.

NA - Not applicable.

nc - Not calculated.

BUTL - Background upper tolerance limit.

mg/kg - Milligram per kilogram.

COPC - Chemical of Potential Concern

Table E-9 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil Site 9 Northeast Cape, St. Lawrence Island, Alaska

		Soil Tunc	lra Data				Regulatory	COPC Screening	
	Maximum	Minimum	Numb	er of	Detection	BUTL (mg/kg) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)

PAH - Polynuclear Aromatic Hydrocarbons

TRPH - Total Residual Petroleum Hydrocarbons

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment, Derivation of Ambient Concentrations for Abiotic Media Associated with the Northeast Cape, St. Lawrence Island, Alaska (MWH, 2003).

^b Regulatory Criteria is equal to the minimum ADEC Soil Cleanup Level proposed by the following hierarchy:

1. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2003. 18 AAC 75 Oil and Hazardous Substances Pollution Control. January 30.

2. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2002. Oil and Other Hazardous Substances Pollution Control. Public Comment Draft. 18 AAC 75. December 14.

3. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2002. Cumulative Risk Guidance. November 7.

4. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2001. Calculated Cleanup Levels for Compounds without Tabular Values in Site Cleanup Rules - Technical Memorandum 01-007. December 18.

^c Benchmark Criteria is equal to 1/10 the indicated regulatory criteria.

^d Screening Criteria for lead is based on residential cleanup value calculated according to Risk Assessment Procedures Manual guidance (18 AAC 75.340).

^e This analyte is excluded as a COPC due to status as an essential nutrient.

^f TRPH is excluded as a COPC due to outdated analysis methods.

Table E-10 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Subsurface Water Site 9 Northeast Cape, St. Lawrence Island, Alaska

		Shallow Subsur	rface Wate	r Data		_		Regulatory	COPC Screening	
	Maximum	Minimum	Numb	ber of	Detection	Subsurface Water	r BUTL (mg/L) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Shallow	Deep	(mg/L)	(mg/L)	(Yes/No)
Inorganics, Total										
Aluminum	164	49	2	2	1.0	nc	nc	na	na	Yes
Antimony	0.12	0.12	5	1	0.20	nc	nc	0.006	0.0006	Yes
Arsenic	0.025	0.0060	5	4	0.80	0.025	nc	0.05	0.005	No
Barium	1.2	0.27	2	2	1.0	nc	nc	2	0.2	Yes
Beryllium	0.014	0.0040	5	2	0.40	0.021	nc	0.004	0.0004	No
Cadmium	0.0040	0.0020	5	2	0.40	0.060	nc	0.005	0.0005	No
Calcium	59	8.0	2	2	1.0	nc	nc	NA ^e	NA	No
Chromium	0.099	0.030	5	4	0.80	1.7	nc	0.1	0.01	No
Cobalt	0.037	0.012	2	2	1.0	0.011	nc	na	na	Yes
Copper	0.068	0.030	5	4	0.80	0.087	nc	1.3	0.13	No
Iron	322	77	2	2	1.0	nc	nc	NA ^e	NA	No
Lead	0.30	0.019	5	5	1.0	0.013	nc	0.015 ^d	0.0015	Yes
Magnesium	39	8.6	2	2	1.0	nc	nc	NA ^e	NA	No
Manganese	2.2	0.33	2	2	1.0	0.20	nc	na	na	Yes
Mercury	0.00040	0.00020	5	2	0.40	0.00041	nc	0.002	0.0002	No
Nickel	0.11	0.080	5	2	0.40	0.056	nc	0.1	0.01	Yes
Potassium	16	3.0	2	2	1.0	nc	nc	NA ^e	NA	No
Sodium	47	9.1	2	2	1.0	nc	nc	NA ^e	NA	No
Vanadium	0.15	0.097	2	2	1.0	0.10	nc	0.26	0.026	Yes
Zinc	0.51	0.090	5	4	0.80	0.29	nc	11	1.1	No
VOCs										
2-Butanone	0.0096	0.0069	5	3	0.60	nc	nc	22	2.2	No
Acetone	0.017	0.011	5	3	0.60	nc	nc	3.65	0.365	No
Benzene	0.0012	0.0012	8	1	0.13	nc	nc	0.005	0.0005	Yes
m,p-Xylene	0.0019	0.0019	5	1	0.20	nc	nc	10	1.0	No
Toluene	0.0014	0.0012	8	2	0.25	nc	nc	1.0	0.1	No

SVOCs

Table E-10 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Subsurface Water Site 9 Northeast Cape, St. Lawrence Island, Alaska

		Shallow Subsur	face Wate	r Data		-		Regulatory	COPC Screening		
	Maximum	Minimum	Numb	oer of	Detection	Subsurface Water	BUTL (mg/L) ^a	Criteria ^b	Benchmark ^c	COPC?	
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Shallow	Deep	(mg/L)	(mg/L)	(Yes/No)	
Benzoic acid	0.18	0.040	3	2	0.67	nc	nc	146	14.6	No	
Dioxins & Furans											
1,2,3,4,6,7,8,9-Octachlorodibenzofuran	0.000000060	0.000000044	2	2	1.0	nc	nc	na	na	Yes	
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin	0.0000010	0.00000033	2	2	1.0	nc	nc	na	na	Yes	
1,2,3,4,6,7,8-Heptachlorodibenzofuran	0.00000037	0.00000037	2	1	0.50	nc	nc	na	na	Yes	
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	0.00000013	0.000000048	2	2	1.0	nc	nc	na	na	Yes	
2,3,7,8-Tetrachlorodibenzofuran	0.00000036	0.00000036	2	1	0.50	nc	nc	na	na	Yes	
Petroleum Hydrocarbons											
Diesel Range Organics (DRO)	7.7	0.51	6	5	0.83	nc	nc	1.5	0.15	Yes	
Gasoline Range Organics (GRO)	4.2	4.2	2	1	0.50	nc	nc	1.1	0.11	Yes	
TRPH	2.2	2.2	3	1	0.33	nc	nc	NA ^f	NA	No	

Notes:

BUTL - Background upper tolerance limit.

COPC - Chemcial of Potential Concern.

mg/L - Milligrams per liter.

NA - Not applicable.

na - Not available.

nc - Not calculated.

SVOC - Semivolatile Organic Compounds

VOC - Volatile Organic Compounds

TRPH - Total Residual Petroleum Hydrocarbons

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment, Derivation of Ambient Concentrations for Abiotic Media Associated with the Northeast Cape, St. Lawrence Island, Alaska (MWH, 2003).

^b Benchmark Criteria is equal to the minimum ADEC Groundwater Cleanup Level proposed by the two most recent guidance documents, below.

ADEC Groundwater Cleanup Levels Table C.

Table E-10 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Subsurface Water Site 9 Northeast Cape, St. Lawrence Island, Alaska

		Shallow Subsur	face Wate	r Data				Regulatory	COPC Screening	
	Maximum	Minimum	Numb	er of	Detection	Subsurface Water	BUTL (mg/L) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Shallow	Deep	(mg/L)	(mg/L)	(Yes/No)
ADEC, 2001. Calculated Cleanup Leve	els for Compound	ls without Tabula	r Values in	Site Clear	up Rules -					
Technical Memorandum 01-007. Decen	mber 18.									
ADEC Groundwater Cleanup Levels Table C ADEC, 2002. Oil and Other Hazardous 75. December 14.	C. s Substances Poll	ution Control. P	ublic Comm	nent Draft.	18 AAC					
^c Benchmark Criteria is equal to 1/10 the ind	dicated regulatory	y criteria.								
^d Screening Criteria for lead is based on resi Procedures Manual guidance (18 AAC 75.34	idential cleanup v 40).	alue calculated a	ccording to	Risk Asse	essment					
e This analyte is excluded as a COPC due to	o status as an esse	ential nutrient.								
(TRANS 1 1 1 GODG 1										

f TRPH is excluded as a COPC due to outdated analysis methods.

Table E-11 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil Site 10 Northeast Cape, St. Lawrence Island, Alaska

		Soil Gra	vel Data			-		Regulatory	COPC Screening	
	Maximum	Minimum	Numb	oer of	Detection	BUTL (1	mg/kg) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
Inorganics										
Cadmium	2.0	1.7	5	3	0.60	1.4	3.1	5	0.5	No
Chromium	18	8.4	5	5	1.0	48	50	26	2.6	No
Copper	35	14	5	5	1.0	107	44	4,060	406	No
Lead	84	30	5	5	1.0	106	112	400 ^d	40	No
Nickel	12	5.1	5	5	1.0	59	30	87	8.7	No
Thallium	0.34	0.34	1	1	1.0	1.6	0.56	na	na	Yes
Zinc	183	47	5	5	1.0	615	157	9,100	910	No
VOCs										
Toluene	0.0032	0.0032	6	1	0.17	na	na	5.4	0.54	No
Petroleum Hydrocarbons										
Diesel Range Organics (DRO)	26,500	59	11	11	1.0	na	na	250	25	Yes
Diesel Range Organics_ Aromatic	38	38	1	1	1.0	na	na	100	10	Yes
Diesel Range Organics_Aliphatic	340	340	1	1	1.0	na	na	7,200	720	No
Residual Range Organics (RRO)	980	980	1	1	1.0	na	na	10,000	1,000	No
Residual Range Organics_Aromatic	160	160	1	1	1.0	na	na	3,000	300	No
TRPH	119,000	130	11	11	1.0	na	na	NA ^e	NA	No

Notes:

na - Not available.

NA - Not applicable.

nc - Not calculated.

BUTL - Background upper tolerance limit.

mg/kg - Milligram per kilogram.

COPC - Chemical of Potential Concern

TRPH - Total Residual Petroleum Hydrocarbons

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment, Derivation of Ambient Concentrations for Abiotic Media Associated with the Northeast Cape, St. Lawrence Island, Alaska (MWH, 2003).

^b Regulatory Criteria is equal to the minimum ADEC Soil Cleanup Level proposed by the following hierarchy:

Table E-11 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil Site 10 Northeast Cape, St. Lawrence Island, Alaska

		Soil Gra	wel Data			-	Regulatory	COPC Screening	
	Maximum	Minimum	Numb	er of	Detection	BUTL (mg/kg) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
1. Minimum of 3 pathways listed in Tables B1	and B2, Under 40	inch zone: ADEC,	2003. 18 AA	AC 75 Oil					
and Hazardous Substances Pollution Control. J	anuary 30.								
2. Minimum of 3 pathways listed in Tables B1	and B2, Under 40	inch zone: ADEC,	2002. Oil an	d Other					
Hazardous Substances Pollution Control. Publ	ic Comment Draft.	18 AAC 75. Dece	mber 14.						
3. Minimum of 3 pathways listed in Tables B1	and B2, Under 40	inch zone: ADEC,	2002. Cumu	lative Risk					
Guidance. November 7.									
4. Minimum of 3 pathways listed in Tables B1	and B2, Under 40	inch zone: ADEC,	2001. Calcu	lated					
Cleanup Levels for Compounds without Tabula	ar Values in Site Cl	eanup Rules - Tech	nical Memor	andum 01-					
007. December 18.									
^c Benchmark Criteria is equal to 1/10 the i	ndicated regulato	ry criteria.							
d									

^d Screening Criteria for lead is based on residential cleanup value calculated according

to Risk Assessment Procedures Manual guidance (18 AAC 75.340).

^e TRPH is excluded as a COPC due to outdated analysis methods.
Table E-12 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil Site 11 Northeast Cape, St. Lawrence Island, Alaska

		Soil Gra	vel Data			_		Regulatory	COPC Screening	
	Maximum	Minimum	Numb	er of	Detection	BUTL (mg/kg) ^a		Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
Inorganics										
Cadmium	2.1	2.1	3	1	0.33	1.4	3.1	5	0.5	No
Chromium	19	18	3	3	1.0	48	50	26	2.6	No
Copper	24	15	3	3	1.0	107	44	4,060	406	No
Lead	67	26	3	3	1.0	106	112	400 ^d	40	No
Nickel	12	10	3	3	1.0	59	30	87	8.7	No
Zinc	61	49	3	3	1.0	615	157	9,100	910	No
VOCs										
Ethylbenzene	0.85	0.85	9	1	0.11	na	na	5.5	0.55	Yes
Xylenes	3.0	3.0	9	1	0.11	na	na	78	7.8	No
PCBs										
PCB-1254 (Aroclor 1254)	0.79	0.32	3	2	0.67	na	na	10	1	No
Petroleum Hydrocarbons										
Diesel Range Organics (DRO)	69,100	11	9	9	1.0	na	na	250	25	Yes
Gasoline Range Organics (GRO)	192	192	9	1	0.11	na	na	300	30	Yes
TRPH	32,100	76	9	9	1.0	na	na	NA ^e	NA	No

Notes:

na - Not available.

NA - Not applicable.

nc - Not calculated.

BUTL - Background upper tolerance limit.

mg/kg - Milligram per kilogram.

COPC - Chemical of Potential Concern

PAH - Polynuclear Aromatic Hydrocarbons

TRPH - Total Residual Petroleum Hydrocarbons

Table E-12 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil Site 11 Northeast Cape, St. Lawrence Island, Alaska

		Soil Gra	vel Data			-	Regulatory	COPC Screening				
Constituent	Maximum Dotoot (mg/kg)	Minimum Dotoct (mg/kg)	Numb	per of	Detection	BUTL (mg/kg) ^a	Criteria ^b	Benchmark ^c	COPC?			
^a Please refer to Technical Memorandum Assessment, Derivation of Ambient Conc the Northeast Cape, St. Lawrence Island, ^b Regulatory Criteria is equal to the minir	Beteet (Ing/Kg) Background Dete centrations for Abia Alaska (MWH, 20 num ADEC Soil C	rmination for Risl otic Media Associ 03). leanup Level prop	ated with	e following	g hierarchy:		(mg/kg)	(ing/kg)	(165/140)			
 Minimum of 3 pathways listed in Tables B AAC 75 Oil and Hazardous Substances Pollut Minimum of 3 pathways listed in Tables B and Other Hazardous Substances Pollution Cc December 14. Minimum of 3 pathways listed in Tables B Cumulative Risk Guidance. November 7. Minimum of 3 pathways listed in Tables B Calculated Cleanup Levels for Compounds wi Technical Memorandum 01-007. December 1 	 the Northeast Cape, St. Lawrence Island, Alaska (MWH, 2003). ^b Regulatory Criteria is equal to the minimum ADEC Soil Cleanup Level proposed by the following hierarchy: 1. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2003. 18 AAC 75 Oil and Hazardous Substances Pollution Control. January 30. 2. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2002. Oil and Other Hazardous Substances Pollution Control. Public Comment Draft. 18 AAC 75. December 14. 3. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2002. Cumulative Risk Guidance. November 7. 4. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2001. Calculated Cleanup Levels for Compounds without Tabular Values in Site Cleanup Rules - 											
^c Benchmark Criteria is equal to 1/10 the	Benchmark Criteria is equal to 1/10 the indicated regulatory criteria.											
 ^d Screening Criteria for lead is based on residential cleanup value calculated according to Risk Assessment Procedures Manual guidance (18 AAC 75.340). ^e TRPH is excluded as a COPC due to outdated analysis methods. 												

^f This analyte is excluded as a COPC due to status as an essential nutrient.

Table E-13 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Subsurface Water Site 11 Northeast Cape, St. Lawrence Island, Alaska

		Shallow Subsur	face Water	Data				Regulatory	COPC Screening	
	Maximum	Maximum	Numb	per of	Detection	Subsurface Wate	r BUTL (mg/L) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Shallow	Deep	(mg/L)	(mg/L)	(Yes/No)
VOCs										
1,3,5-Trimethylbenzene	0.031	0.031	2	1	0.50	nc	nc	1.85	0.185	No
Benzene	0.010	0.010	4	1	0.25	nc	nc	0.005	0.0005	Yes
Ethylbenzene	0.070	0.070	4	1	0.25	nc	nc	0.7	0.07	No
Isopropylbenzene	0.014	0.014	2	1	0.50	nc	nc	3.65	0.365	No
m,p-Xylene	0.060	0.060	2	1	0.50	nc	nc	10	1	No
Methylene chloride	0.011	0.011	2	1	0.50	nc	nc	0.005	0.0005	Yes
n-Propylbenzene	0.016	0.016	2	1	0.50	nc	nc	na	na	Yes
Toluene	0.0065	0.0065	4	1	0.25	nc	nc	1	0.1	No
Xylenes	0.015	0.015	2	1	0.50	nc	nc	10	1	No
PAHs										
Naphthalene	0.39	0.39	2	1	0.50	nc	nc	1.46	0.146	Yes
Petroleum Hydrocarbons										
Diesel Range Organics (DRO)	45	0.34	4	4	1.0	nc	nc	1.5	0.15	Yes
Gasoline Range Organics (GRO)	1.1	1.1	2	1	0.50	nc	nc	1.3	0.13	Yes
TRPH	6.6	6.6	2	1	0.50	nc	nc	NA ^d	NA	No

Notes:

BUTL - Background upper tolerance limit.

COPC - Chemcial of Potential Concern.

mg/L - Milligrams per liter.

- NA Not applicable.
- na Not available.
- nc Not calculated.

PAH - Polynuclear Aromatic Hydrocarbons

VOC - Volatile Organic Compounds

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment, Derivation of Ambient Concentrations for Abiotic Media Associated with the Northeast Cape, St. Lawrence Island, Alaska (MWH, 2003).

Table E-13 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Subsurface Water Site 11 Northeast Cape, St. Lawrence Island, Alaska

		Shallow Subsur	face Water	Data				Regulatory	COPC Screening	
	Maximum	Maximum	ximum <u>Number of</u> Detection				er BUTL (mg/L) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Shallow	Deep	(mg/L)	(mg/L)	(Yes/No)
 ^b Benchmark Criteria is equal to the minir recent guidance documents, below. ADEC Groundwater Cleanup Levels Tabl ADEC, 2001. Calculated Cleanup L Technical Memorandum 01-007. De 	num ADEC Ground le C. evels for Compoun- ecember 18.	lwater Cleanup Le ds without Tabula	evel propose	d by the tw Site Cleanu	vo most up Rules -					
ADEC Groundwater Cleanup Levels Tabl ADEC, 2002. Oil and Other Hazard December 14.	e C. ous Substances Pol	lution Control. Pu	ıblic Comm	ent Draft.	18 AAC 75.					

^c Benchmark Criteria is equal to 1/10 the indicated regulatory criteria.d TRPH is excluded as a COPC due to outdated analysis methods.

Table E-14 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil Site 13 Northeast Cape, St. Lawrence Island, Alaska

		Soil Gra	avel Data			_		Regulatory	COPC Screening	
	Maximum	Minimum	Numb	er of	Detection	BUTL (1	mg/kg) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
Inorganics										
Chromium	42	4.5	14	14	1.00	48	50	26	2.6	No
Lead	62	4.7	24	24	1.0	106	112	400 ^d	40	No
Zinc	93	20	14	14	1.0	615	157	9,100	910	No
VOCs										
Benzene	0.043	0.018	29	3	0.10	nc	nc	0.02	0.002	Yes
Ethylbenzene	1.4	0.11	29	12	0.41	nc	nc	5.5	0.55	Yes
m,p-Xylene	4	0.15	24	13	0.54	nc	nc	na	na	Yes
o-Xylene	1.5	0.010	24	13	0.54	nc	nc	na	na	Yes
Toluene	0.86	0.018	29	7	0.24	nc	nc	5.4	0.54	Yes
Xylenes	2.4	0.037	5	2	0.40	nc	nc	78	7.8	No
PCBs										
PCB-1260 (Aroclor 1260)	115	0.0065	33	23	0.70	nc	nc	10	1.0	Yes
PAHs										
Acenaphthene	0.21	0.00038	24	15	0.63	nc	nc	210	21	No
Acenaphthylene	0.052	0.00055	24	2	0.08	nc	nc	210	21	No
Anthracene	0.0165	0.00030	24	15	0.63	nc	nc	4,300	430	No
Benzo(a)anthracene	0.030	0.00023	24	14	0.58	nc	nc	6	0.6	No
Benzo(a)pyrene	0.028	0.00028	24	6	0.25	nc	nc	1	0.1	No
Benzo(b)fluoranthene	0.039	0.00032	24	18	0.75	nc	nc	11	1.1	No
Benzo(g,h,i)perylene	0.018	0.00015	24	13	0.54	nc	nc	1,500	150	No
Benzo(k)fluoranthene	0.023	0.00017	24	5	0.21	nc	nc	110	11	No
Chrysene	0.087	0.00042	24	18	0.75	nc	nc	620	62	No
Dibenzo(a,h)anthracene	0.0043	0.00029	24	2	0.08	nc	nc	1	0.1	No
Fluoranthene	0.0808	0.00044	24	18	0.75	nc	nc	2,100	210	No

Table E-14 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil Site 13 Northeast Cape, St. Lawrence Island, Alaska

		Soil Gra	avel Data			_		Regulatory	COPC Screening	
	Maximum	Minimum	Numb	er of	Detection	BUTL (1	mg/kg) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
Fluorene	0.69	0.00087	24	14	0.6	nc	nc	270	27	No
Indeno(1,2,3-cd)pyrene	0.016	0.00017	24	7	0.29	nc	nc	11	1.1	No
Naphthalene	15	0.0037	24	19	0.8	nc	nc	21	2.1	Yes
Phenanthrene	0.29	0.00081	24	18	0.8	nc	nc	4,300	430	No
Pyrene	0.090	0.00066	24	20	0.83	nc	nc	1,500	150	No
Petroleum Hydrocarbons										
Diesel Range Organics (DRO)	12,000	21	29	29	1.0	nc	nc	250	25	Yes
Gasoline Range Organics (GRO)	294	3.0	29	20	0.69	nc	nc	300	30	Yes
Residual Range Organics (RRO)	3,400	7.4	24	24	1.0	nc	nc	10,000	1,000	Yes
TRPH	36,300	551	8	8	1.0	nc	nc	NA ^e	NA	No

Notes:

NA - Not applicable.

na - Not available.

nc - Not calculated.

BUTL - Background upper tolerance limit.

mg/kg - Milligram per kilogram.

COPC - Chemical of Potential Concern

PAH - Polynuclear Aromatic Hydrocarbons

TRPH - Total Residual Petroleum Hydrocarbons

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment, Derivation of Ambient Concentrations for Abiotic Media Associated with the Northeast Cape, St. Lawrence Island, Alaska (MWH, 2003).

^b Regulatory Criteria is equal to the minimum ADEC Soil Cleanup Level proposed by the following hierarchy:

1. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2003. 18 AAC 75 Oil and Hazardous Substances Pollution Control. January 30.

2. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2002. Oil and Other Hazardous Substances Pollution Control. Public Comment Draft. 18 AAC 75. December 14.

3. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2002. Cumulative Risk Guidance. November 7.

4. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2001. Calculated Cleanup Levels for Compounds without Tabular Values in Site Cleanup Rules - Technical Memorandum 01-007. December 18.

Table E-14 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil Site 13 Northeast Cape, St. Lawrence Island, Alaska

		Soil Gra	vel Data				Regulatory	COPC Screening	
	Maximum	Minimum	Numb	er of	Detection	BUTL (mg/kg) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)

^c Benchmark Criteria is equal to 1/10 the indicated regulatory criteria.

^d Screening Criteria for lead is based on residential cleanup value calculated according to Risk Assessment Procedures Manual guidance (18 AAC 75.340).

^e TRPH is excluded as a COPC due to outdated analysis methods.

Table E-15 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Subsurface Water Site 13 Northeast Cape, St. Lawrence Island, Alaska

		Shallow Subsurf	face Water	Data				Regulatory	COPC Screening	
	Maximum	Maximum	Numb	er of	Detection	Subsurface Water	BUTL (mg/L) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Shallow	Deep	(mg/L)	(mg/L)	(Yes/No)
Inorganics, Total										
Arsenic	0.073	0.036	2	2	1.0	0.025	nc	0.05	0.005	Yes
Chromium	0.24	0.14	2	2	1.0	1.7	nc	0.1	0.01	No
Copper	0.21	0.14	2	2	1.0	0.087	nc	1.3	0.13	Yes
Lead	0.45	0.33	2	2	1.0	0.013	nc	0.015 ^d	0.0015	Yes
Nickel	0.17	0.12	2	2	1.0	0.056	nc	0.1	0.01	Yes
Zinc	0.66	0.49	2	2	1.0	0.29	nc	11	1.1	No
Inorganics, Dissolved										
Arsenic, Dissolved	0.011	0.011	2	1	0.50	0.015	nc	0.05	0.005	No
Lead, Dissolved	0.015	0.015	2	1	0.50	nc	nc	0.015	0.0015	Yes
VOCs										
Benzene	0.12	0.00012	8	5	0.63	nc	nc	0.005	0.0005	Yes
Ethylbenzene	0.15	0.018	8	8	1.0	nc	nc	0.7	0.07	Yes
m,p-Xylene	0.14	0.016	4	4	1.0	nc	nc	10	1	No
o-Xylene	0.071	0.00064	4	4	1.0	nc	nc	10	1	No
Toluene	0.17	0.00011	8	5	0.63	nc	nc	1	0.1	Yes
Xylenes	0.59	0.056	4	4	1.0	nc	nc	10	1	No
Petroleum Hydrocarbons										
Diesel Range Organics (DRO)	100	6.1	8	8	1.0	nc	nc	1.5	0.15	Yes
Gasoline Range Organics (GRO)	4	0.52	6	6	1.0	nc	nc	1.3	0.13	Yes
Residual Range Organics (RRO)	2.3	0.18	5	4	0.80	nc	nc	1.1	0.11	Yes
TRPH	190	24	2	2	1.0	nc	nc	NA ^e	NA	No

Notes:

BUTL - Background upper tolerance limit.

COPC - Chemcial of Potential Concern.

mg/L - Milligrams per liter.

NA - Not applicable.

Table E-15 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Subsurface Water Site 13 Northeast Cape, St. Lawrence Island, Alaska

Shallow Subsurface Water Data								Regulatory	COPC Screening			
	Maximum	Maximum	Detection	Subsurface Water	BUTL (mg/L) ^a	Criteria ^b	Benchmark ^c	COPC?				
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Shallow	Deep	(mg/L)	(mg/L)	(Yes/No)		
na - Not available.												
nc - Not calculated.												
SVOC - Semivolatile Organic Compounds	5											
VOC - Volatile Organic Compounds												
RPH - Total Residual Petroleum Hydrocarbons												
^a Please refer to Technical Memorandum-	Background Deter	mination for Risk	Assessment	, Derivatio	on of Ambient	Concentrations for Al	biotic Media					
Associated with the Northeast Cape, St. La	awrence Island, Al	aska (MWH, 2003	3).									
^b Benchmark Criteria is equal to the minin	num ADEC Ground	dwater Cleanup Le	evel propose	d by the tv	vo most							
recent guidance documents, below.												
ADEC Groundwater Cleanup Levels Table	e C.											
ADEC, 2001. Calculated Cleanup Lo	evels for Compoun	ds without Tabula	r Values in	Site Clean	up Rules -							
Technical Memorandum 01-007. De	cember 18.											
ADEC Groundwater Cleanup Levels Table	e C.											
ADEC, 2002. Oil and Other Hazard	ous Substances Pol	llution Control. Pr	ublic Comm	ent Draft.	18 AAC 75.							
December 14.												

^c Benchmark Criteria is equal to 1/10 the indicated regulatory criteria.
 ^d Screening Criteria for lead is based on residential cleanup value calculated according to Risk Assessment Procedures Manual guidance (18 AAC 75.340).

e TRPH is excluded as a COPC due to outdated analysis methods.

Table E-16 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil Site 15 Northeast Cape, St. Lawrence Island, Alaska

		Soil Gra	wel Data			_		Regulatory	COPC Screening	
	Maximum	Minimum	Numb	per of	Detection	BUTL (mg/kg) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
Inorganics										
Chromium	16	6.7	2	2	1.0	48	50	26	2.6	No
Lead	30	12	2	2	1.0	106	112	400 ^d	40	No
Zinc	61	47	2	2	1.0	615	157	9100	910	No
VOCs										
Ethylbenzene	1.0	0.025	4	2	0.50	na	na	5.5	0.55	Yes
m,p-Xylene	1.8	0.043	2	2	1.0	na	na	na	na	Yes
o-Xylene	0.015	0.015	2	1	0.50	na	na	na	na	Yes
Toluene	0.032	0.0037	4	2	0.50	na	na	5.4	0.54	No
PAHs										
Acenaphthene	0.85	0.11	2	2	1.0	na	na	210	21	No
Anthracene	0.043	0.011	2	2	1.0	na	na	4,300	430	No
Benzo(a)anthracene	0.0017	0.00037	2	2	1.0	na	na	6	0.6	No
Benzo(a)pyrene	0.00041	0.00041	2	1	0.50	na	na	1	0.1	No
Benzo(b)fluoranthene	0.0017	0.00042	2	2	1.0	na	na	11	1.1	No
Benzo(g,h,i)perylene	0.00045	0.00045	2	1	0.50	na	na	1,500	150	No
Benzo(k)fluoranthene	0.0016	0.0016	2	1	0.50	na	na	110	11	No
Chrysene	0.0038	0.00094	2	2	1.0	na	na	620	62	No
Fluoranthene	0.0058	0.0017	2	2	1.0	na	na	2,100	210	No
Fluorene	2.7	0.47	2	2	1.0	na	na	270	27	No
Indeno(1,2,3-cd)pyrene	0.00019	0.00019	2	1	0.50	na	na	11	1.1	No
Naphthalene	28	0.9	2	2	1.0	na	na	21	2.1	Yes
Phenanthrene	0.95	0.27	2	2	1.0	na	na	4,300	430	No
Pyrene	0.010	0.0035	2	2	1.0	na	na	1,500	150	No

Petroleum Hydrocarbons

Table E-16 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil Site 15 Northeast Cape, St. Lawrence Island, Alaska

	-		Regulatory	COPC Screening						
	Maximum	aximum Minimum <u>Number of</u> Detection		BUTL (1	mg/kg) ^a	Criteria ^b	Benchmark ^c	COPC?		
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
Diesel Range Organics (DRO)	16,000	2,190	4	4	1.0	nc	nc	250	25	Yes
Gasoline Range Organics (GRO)	110	60	4	2	0.50	nc	nc	300	30	Yes
Residual Range Organics (RRO)	33	12	2	2	1.0	nc	nc	10,000	1,000	No
TRPH	20,500	535	2	2	1.0	nc	nc	NA ^e	NA	No

Notes:

NA - Not applicable.

na - Not available.

nc - Not calculated.

BUTL - Background upper tolerance limit.

mg/kg - Milligram per kilogram.

COPC - Chemical of Potential Concern

PAH - Polynuclear Aromatic Hydrocarbons

PCB - Polychlorinated Hydrocarbons

TRPH - Total Residual Petroleum Hydrocarbons

VOC - Volatile Organic Compounds

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment, Derivation of Ambient Concentrations for Abiotic Media Associated with the Northeast Cape, St. Lawrence Island, Alaska (MWH, 2003).

^b Regulatory Criteria is equal to the minimum ADEC Soil Cleanup Level proposed by the following hierarchy:

1. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2003. 18 AAC 75 Oil and Hazardous Substances Pollution Control. January 30.

2. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2002. Oil and Other Hazardous Substances Pollution Control. Public Comment Draft. 18 AAC 75. December 14.

3. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2002. Cumulative Risk Guidance. November 7.

4. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2001. Calculated Cleanup Levels for Compounds without Tabular Values in Site Cleanup Rules - Technical Memorandum 01-007. December 18.

^c Benchmark Criteria is equal to 1/10 the indicated regulatory criteria.

^d Screening Criteria for lead is based on residential cleanup value calculated according to Risk Assessment Procedures Manual guidance (18 AAC 75.340).

^e TRPH is excluded as a COPC due to outdated analysis methods.

Table E-17 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Subsurface Water Site 15 Northeast Cape, St. Lawrence Island, Alaska

Shallow Subsurface Water Data								Regulatory	COPC Screening	
	Maximum	Maximum	Numb	er of	Detection	Subsurface Wate	r BUTL (mg/L) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Shallow	Deep	(mg/L)	(mg/L)	(Yes/No)
Inorganics, Total										
Arsenic	0.11	0.11	1	1	1.0	0.025	nc	0.05	0.005	Yes
Beryllium	0.020	0.020	1	1	1.0	0.021	nc	0.004	0.0004	No
Chromium	0.070	0.070	1	1	1.0	1.7	nc	0.1	0.01	No
Copper	0.060	0.060	1	1	1.0	0.087	nc	1.3	0.13	No
Lead	0.68	0.68	1	1	1.0	0.013	nc	$0.015^{\ d}$	0.0015	Yes
Nickel	0.20	0.20	1	1	1.0	0.056	nc	0.1	0.01	Yes
Zinc	1.0	1.0	1	1	1.0	0.29	nc	11	1.1	No
Inorganics, Dissolved										
Arsenic, Dissolved	0.0060	0.0060	1	1	1.0	nc	nc	0.05	0.005	Yes
VOCs										
Xylenes	0.025	0.025	2	1	0.50	nc	nc	10	1	No
Petroleum Hydrocarbons										
Diesel Range Organics (DRO)	960	9.3	2	2	1.0	nc	nc	1.5	0.15	Yes
Residual Range Organics (RRO)	3.8	3.8	1	1	1.0	nc	nc	1.1	0.11	Yes
TRPH	31	31	1	1	1.0	nc	nc	NA ^e	NA	No

Notes:

BUTL - Background upper tolerance limit.

COPC - Chemcial of Potential Concern.

mg/L - Milligrams per liter.

NA - Not applicable.

na - Not available.

nc - Not calculated.

VOC - Volatile Organic Compounds

TRPH - Total Residual Petroleum Hydrocarbons

Table E-17 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Subsurface Water Site 15 Northeast Cape, St. Lawrence Island, Alaska

		Shallow Subsurf	ace Water	Data				Regulatory	COPC Screening	
	Maximum	Maximum	Numb	er of	Detection	Subsurface Water	BUTL (mg/L) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Shallow	Deep	(mg/L)	(mg/L)	(Yes/No)
^a Please refer to Technical Memorandum-	Background Deterr	mination for Risk	Assessment,	Derivatio	on of Ambient					
Concentrations for Abiotic Media Associa	ted with the Northe	east Cape, St. Law	rence Island	, Alaska (MWH,					
2003).										
^b Benchmark Criteria is equal to the minim	um ADEC Ground	lwater Cleanup Le	vel propose	d by the tv	vo most					
recent guidance documents, below.		Ĩ	1 1							
ADEC Groundwater Cleanup Levels Table	eC.									
ADEC, 2001. Calculated Cleanup Le	evels for Compound	ds without Tabula	r Values in S	Site Clean	up Rules -					
Technical Memorandum 01-007. De	cember 18.									
ADEC Groundwater Cleanup Levels Table	eC.									
ADEC, 2002. Oil and Other Hazardo	ous Substances Pol	lution Control. Pu	blic Comme	ent Draft.	18 AAC 75.					
December 14.										
^c Benchmark Criteria is equal to 1/10 the i	ndicated regulator	y criteria.								
^d Screening Criteria for lead is based on re-	sidential cleanup v	value calculated ac	cording to F	ask Asses	sment					
Procedures Manual guidance (18 AAC 75.	.340).									
e TRPH is excluded as a COPC due to ou	tdated analysis met	thods.								

Table E-18 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil Site 16 Northeast Cape, St. Lawrence Island, Alaska

		Soil Gra	avel Data			_		Regulatory	COPC Screening	
	Maximum	Minimum	Numł	er of	Detection	BUTL (1	mg/kg) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
Inorganics										
Antimony	21	14	13	2	0.15	nc	nc	3.6	0.36	Yes
Arsenic	12	3.3	13	13	1.0	7.8	11	2	0.2	Yes
Beryllium	1.2	1.1	13	2	0.15	3.8	nc	42	4.2	Yes
Cadmium	7.2	1.4	13	4	0.31	1.4	3.1	5	0.5	Yes
Chromium	147	8.9	13	13	1.0	48	50	26	2.6	Yes
Copper	26	6.1	13	13	1.0	107	44	4060	406	No
Lead	822	18	15	15	1.0	106	112	400 ^d	40	Yes
Nickel	23	5.0	13	13	1.0	59	30	87	8.7	No
Thallium	0.26	0.19	13	2	0.15	1.6	0.56	na	na	Yes
Zinc	12,100	41	13	13	1.0	615	157	9100	910	Yes
VOCs										
Acetone	0.018	0.018	4	1	0.25	nc	nc	10	1	No
Methylene chloride	0.0072	0.0061	4	2	0.50	nc	nc	0.015	0.0015	Yes
Toluene	0.015	0.0066	4	2	0.50	nc	nc	5.4	0.54	No
SVOCs										
Benzoic acid	1.3	1.3	13	1	0.077	nc	nc	390	39	No
Di-n-butyl phthalate	2.1	0.47	13	5	0.38	nc	nc	1700	170	No
PCBs										
PCB-1254 (Aroclor 1254)	0.20	0.20	15	1	0.067	nc	nc	10	1	No
PCB-1260 (Aroclor 1260)	1.4	0.019	15	6	0.40	nc	nc	10	1	Yes
Pesticides										
4,4'-DDD	0.0060	0.0060	14	1	0.071	nc	nc	34.6	3.46	No
4,4'-DDE	0.0050	0.0050	14	1	0.071	nc	nc	24	2.4	No

Table E-18 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil Site 16 Northeast Cape, St. Lawrence Island, Alaska

		Soil Gra	vel Data					Regulatory	COPC Screening	
	Maximum	Minimum	Numb	er of	Detection	BUTL (1	ng/kg) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
4,4'-DDT	0.12	0.011	14	2	0.14	nc	nc	24	2.4	No
Endosulfan I	0.0025	0.0025	2	1	0.50	nc	nc	7	0.7	No

Notes:

na - Not applicable.

nc - Not calculated.

BUTL - Background upper tolerance limit.

mg/kg - Milligram per kilogram.

COPC - Chemical of Potential Concern

PCB - Polychlorinated Hydrocarbons

SVOC - Semivolatile Organic Compounds

VOC - Volatile Organic Compounds

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment,

Derivation of Ambient Concentrations for Abiotic Media Associated with the Northeast Cape, St.

Lawrence Island, Alaska (MWH, 2003).

^b Regulatory Criteria is equal to the minimum ADEC Soil Cleanup Level proposed by the following hierarchy:

1. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2003. 18 AAC 75 Oil and Hazardous Substances Pollution Control. January 30.

2. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2002. Oil and Other Hazardous

Substances Pollution Control. Public Comment Draft. 18 AAC 75. December 14.

3. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2002. Cumulative Risk Guidance. November 7.

4. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2001. Calculated Cleanup Levels for Compounds without Tabular Values in Site Cleanup Rules - Technical Memorandum 01-007. December 18.

^c Benchmark Criteria is equal to 1/10 the indicated regulatory criteria.

^d Screening Criteria for lead is based on residential cleanup value calculated according

to Risk Assessment Procedures Manual guidance (18 AAC 75.340).

Table E-19 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Subsurface Water Site 16 Northeast Cape, St. Lawrence Island, Alaska

		Shallow Subsur	face Water	Data				Regulatory	COPC Screening	
	Maximum	Maximum	Numb	per of	Detection	Subsurface Wate	r BUTL (mg/L) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Shallow	Deep	(mg/L)	(mg/L)	(Yes/No)
Inorganics, Total										
Beryllium	0.040	0.020	3	2	0.67	0.021	nc	0.004	0.0004	Yes
Cadmium	0.060	0.060	3	1	0.33	0.060	nc	0.005	0.0005	Yes
Chromium	0.52	0.14	3	3	1.0	1.7	nc	0.1	0.01	No
Copper	0.50	0.16	3	3	1.0	0.087	nc	1.3	0.13	Yes
Lead	0.67	0.0029	5	5	1.0	0.013	nc	0.015	0.0015	Yes
Nickel	0.42	0.11	3	3	1.0	0.056	nc	0.1	0.01	Yes
Zinc	1.5	0.54	3	3	1.0	0.29	nc	11	1.1	Yes
Inorganics, Dissolved										
Lead, Dissolved	0.0040	0.0040	3	1	0.33	nc	nc	0.015	0.0015	Yes
VOCs										
1,2,4-Trimethylbenzene	0.053	0.00080	5	3	0.60	na	na	1.85	0.185	No
1,3,5-Trimethylbenzene	0.016	0.0093	5	2	0.40	na	na	1.85	0.185	No
2-Butanone	0.0048	0.0048	5	1	0.20	na	na	22	2.2	No
4-Isopropyltoluene	0.0066	0.0066	5	1	0.20	na	na	na	na	Yes
Ethylbenzene	0.0047	0.0041	5	2	0.40	na	na	0.7	0.07	No
Isopropylbenzene	0.0047	0.0027	5	2	0.40	na	na	3.65	0.365	No
m,p-Xylene	0.010	0.0035	5	2	0.40	na	na	10	1	No
n-Propylbenzene	0.0049	0.0043	5	2	0.40	na	na	na	na	Yes
sec-Butylbenzene	0.0040	0.0040	5	1	0.20	na	na	na	na	Yes
Toluene	0.0010	0.0010	5	1	0.20	na	na	1	0.1	No
Trichloroethene	0.0033	0.0033	5	1	0.20	na	na	0.005	0.0005	Yes
Xylenes	0.0035	0.0035	2	1	0.50	na	na	10	1	No
SVOCs										
Benzoic acid	0.015	0.015	5	1	0.20	na	na	146	14.6	No
bis-(2-ethylhexyl)phthalate	0.025	0.0014	5	3	0.60	na	na	0.006	0.0006	Yes
PAHs										
Acenaphthene	0.000050	0.000050	6	1	0.17	na	na	2.2	0.22	No

Table E-19 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Subsurface Water Site 16 Northeast Cape, St. Lawrence Island, Alaska

		Shallow Subsuri	face Water	Data				Regulatory	COPC Screening	
	Maximum	Maximum	Numb	er of	Detection	Subsurface Water	r BUTL (mg/L) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Shallow	Deep	(mg/L)	(mg/L)	(Yes/No)
Fluorene	0.000080	0.000080	6	1	0.17	na	na	1.46	0.146	No
Naphthalene	0.088	0.0015	8	3	0.38	na	na	1.46	0.146	No

Notes:

BUTL - Background upper tolerance limit.

COPC - Chemcial of Potential Concern.

mg/L - Milligrams per liter.

NA - Not applicable.

na - Not available.

nc - Not calculated.

PAH - Polynuclear Aromatic Hydrocarbons

SVOC -Semivolatile Organic Compounds

VOC - Volatile Organic Compounds

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment, Derivation of Ambient Concentrations for Abiotic Media Associated with the Northeast Cape, St. Lawrence Island, Alaska (MWH, 2003).

^b Regulatory Criteria is equal to the minimum ADEC Groundwater Cleanup Level proposed by the two most recent guidance documents, below.

ADEC Groundwater Cleanup Levels Table C.

ADEC, 2001. Calculated Cleanup Levels for Compounds without Tabular Values in Site Cleanup Rules - Technical Memorandum 01-007. December 18.

ADEC Groundwater Cleanup Levels Table C.

ADEC, 2002. Oil and Other Hazardous Substances Pollution Control. Public Comment Draft. 18 AAC 75. December 14.

^c Benchmark Criteria is equal to 1/10 the indicated regulatory criteria.

^d This analyte is excluded as a COPC due to status as an essential nutrient.

^e Total PCBs used as a surrogate.

^f Alpha-BHC used as a surrogate.

^g Endrin used as a surrogate.

^h Screening criteria is currently not available for dioxins and furans. These analytes are therefore carried through as COPCs.

ⁱ RRO_aliphatic is non soluable and is therefore excluded as a COPC.

Table E-19 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Subsurface Water Site 16 Northeast Cape, St. Lawrence Island, Alaska

		Shallow Subsur	face Water I	Data				Regulatory	COPC Screening	
	Maximum	Maximum	Numbe	er of	Detection	Subsurface Water	BUTL (mg/L) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/L)	Detect (mg/L)	Samples Detects		Frequency	Shallow	Deep	(mg/L)	(mg/L)	(Yes/No)

^j TRPH is excluded as a COPC due to outdated analysis methods.

Table E-20 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil Site 19 Northeast Cape, St. Lawrence Island, Alaska

		Soil Gra	avel Data			_		Regulatory	COPC Screening	
	Maximum	Minimum	Numb	oer of	Detection	BUTL (1	mg/kg) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
Inorganics										
Arsenic	4.4	3.9	3	3	1.0	7.8	11	2	0.2	No
Cadmium	3.2	2.9	8	2	0.25	1.4	3.1	5	0.5	Yes
Chromium	59	4.4	16	16	1.0	48	50	26	2.6	Yes
Copper	38	13	8	8	1.0	107	44	4,060	406	No
Lead	329	14	16	16	1.0	106	112	400 ^d	40	Yes
Nickel	20	7.8	8	8	1.0	59	30	87	8.7	No
Zinc	282	36	16	16	1.0	615	157	9,100	910	No
VOCs										
Benzene	0.74	0.74	15	1	0.067	nc	nc	0.02	0.002	Yes
Ethylbenzene	3.0	0.22	15	2	0.13	nc	nc	5.5	0.55	Yes
m,p-Xylene	0.20	0.20	8	1	0.13	nc	nc	na	na	Yes
Toluene	3.1	3.1	15	1	0.067	nc	nc	5.4	0.54	Yes
Xylenes	17.3	8.0	7	2	0.29	nc	nc	78	7.8	Yes
PAHs										
Acenaphthene	0.14	0.14	8	1	0.13	nc	nc	210	21	No
Anthracene	0.032	0.032	8	1	0.13	nc	nc	4,300	430	No
Benzo(a)anthracene	0.0011	0.00051	8	2	0.25	nc	nc	6	0.6	No
Benzo(b)fluoranthene	0.0018	0.00023	8	8	1.0	nc	nc	11	1.1	No
Benzo(g,h,i)perylene	0.00065	0.00014	8	3	0.38	nc	nc	1,500	150	No
Chrysene	0.0027	0.00018	8	6	0.75	nc	nc	620	62	No
Dibenzo(a,h)anthracene	0.00048	0.00048	8	1	0.13	nc	nc	1	0.1	No
Fluoranthene	0.0041	0.0041	8	1	0.13	nc	nc	2,100	210	No
Fluorene	0.35	0.00022	8	2	0.25	nc	nc	270	27	No
Indeno(1,2,3-cd)pyrene	0.00048	0.00024	8	2	0.25	nc	nc	11	1.1	No
Naphthalene	1.3	0.00038	8	8	1.0	nc	nc	21	2.1	No

Table E-20 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil Site 19 Northeast Cape, St. Lawrence Island, Alaska

		Soil Gra	wel Data			_		Regulatory	COPC Screening		
	Maximum	Minimum	Numb	oer of	Detection	BUTL (1	mg/kg) ^a	Criteria ^b	Benchmark ^c	COPC?	
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)	
Phenanthrene	0.45	0.00026	8	5	0.63	nc	nc	4,300	430	No	
Pyrene	0.011	0.00014	8	5	0.63	nc	nc	1,500	150	No	
Petroleum Hydrocarbons											
Diesel Range Organics (DRO)	13,300	7.0	16	14	0.88	nc	nc	250	25	Yes	
Gasoline Range Organics (GRO)	6,650	4.9	16	5	0.31	nc	nc	300	30	Yes	
Residual Range Organics (RRO)	120	6.0	8	8	1.0	nc	nc	10,000	1,000	No	
TRPH	28,800	389	8	8	1.0	nc	nc	NA ^e	NA	No	

Notes:

na - Not available.

NA - Not applicable.

nc - Not calculated.

BUTL - Background upper tolerance limit.

mg/kg - Milligram per kilogram.

COPC - Chemical of Potential Concern

PAH - Polynuclear Aromatic Hydrocarbons

TRPH - Total Residual Petroleum Hydrocarbons

VOC - Volatile Organic Compounds

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment, Derivation of Ambient Concentrations for Abiotic Media Associated with the Northeast Cape, St. Lawrence Island, Alaska (MWH, 2003).

^b Regulatory Criteria is equal to the minimum ADEC Soil Cleanup Level proposed by the following hierarchy:

1. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2003. 18 AAC 75 Oil and Hazardous Substances Pollution Control. January 30.

2. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2002. Oil and Other Hazardous

Substances Pollution Control. Public Comment Draft. 18 AAC 75. December 14.

3. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2002. Cumulative Risk Guidance. November 7.

4. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2001. Calculated Cleanup Levels for Compounds without Tabular Values in Site Cleanup Rules - Technical Memorandum 01-007. December 18.

^c Benchmark Criteria is equal to 1/10 the indicated regulatory criteria.

Table E-20 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil Site 19 Northeast Cape, St. Lawrence Island, Alaska

		Soil Gra	vel Data				Regulatory	COPC Screening	
	Maximum	Minimum	Numb	er of	Detection	BUTL (mg/kg) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)

^d Screening Criteria for lead is based on residential cleanup value calculated according to Risk Assessment

Procedures Manual guidance (18 AAC 75.340).

^e TRPH is excluded as a COPC due to outdated analysis methods.

Table E-21 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Subsurface Water Site 19 Northeast Cape, St. Lawrence Island, Alaska

		Shallow Subsurf	face Water	Data				Regulatory	COPC Screening	
	Maximum	Maximum	Numb	er of	Detection	Subsurface Wate	r BUTL (mg/L) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Shallow	Deep	(mg/L)	(mg/L)	(Yes/No)
Inorganics, Total										
Arsenic	0.0060	0.0060	1	1	1.0	0.025	nc	0.05	0.005	No
Chromium	0.080	0.080	2	1	0.50	1.7	nc	0.1	0.01	No
Copper	0.20	0.040	2	2	1.0	0.087	nc	1.3	0.13	Yes
Lead	0.42	0.14	2	2	1.0	0.013	nc	0.015 ^d	0.0015	Yes
Magnesium	9.5	9.5	1	1	1.0	nc	nc	NA ^e	NA	No
Zinc	0.43	0.18	2	2	1.0	0.29	nc	11	1.1	No
VOCs										
Benzene	0.025	0.00057	8	4	0.50	na	na	0.005	0.0005	Yes
Ethane	0.0017	0.0017	4	1	0.25	na	na	na	na	Yes
Ethylbenzene	0.025	0.00034	8	2	0.25	na	na	0.7	0.07	No
m,p-Xylene	0.02	0.00022	4	3	0.75	na	na	10	1	No
o-Xylene	0.00013	0.000080	4	3	0.75	na	na	10	1	No
Toluene	0.026	0.00024	8	4	0.50	na	na	1	0.1	No
Xylenes	0.064	0.00080	4	3	0.75	na	na	10	1	No
Petroleum Hydrocarbons										
Diesel Range Organics (DRO)	34	0.71	8	8	1.0	na	na	1.5	0.15	Yes
Gasoline Range Organics (GRO)	6.1	0.024	6	4	0.67	na	na	1.3	0.13	Yes
Residual Range Organics (RRO)	1.3	0.22	6	3	0.50	na	na	1.1	0.11	Yes
TRPH	9.7	9.7	2	1	0.50	na	na	NA ^f	NA	No

Notes:

BUTL - Background upper tolerance limit.

COPC - Chemcial of Potential Concern.

mg/L - Milligrams per liter.

NA - Not applicable.

na - Not available.

nc - Not calculated.

Table E-21 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Subsurface Water Site 19 Northeast Cape, St. Lawrence Island, Alaska

		Shallow Subsurf	ace Water		Regulatory	COPC Screening				
Constituent	Maximum Dotoot (mg/L)	Maximum	Numb	per of	Detection	Subsurface Water H	BUTL (mg/L) ^a	Criteria ^b	Benchmark ^c	COPC?
^a Please refer to Technical Memorandum	Background Deter	mination for Pisk	Assessment	Derivatio	n of Ambient	Shanow	Deep	(IIIg/L)	(iiig/L)	(165/10)
Concentrations for Abiotic Media Associa 2003).	ted with the North	east Cape, St. Law	rence Island	d, Alaska (MWH,					
guidance documents, below.	um ADEC Ground	water Cleanup Le	vel propose	d by the tw	o most recent					
ADEC Groundwater Cleanup Levels Table ADEC, 2001. Calculated Cleanup Le Technical Memorandum 01-007. Dec	e C. evels for Compoun cember 18.	ds without Tabula	r Values in	Site Clean	up Rules -					
ADEC Groundwater Cleanup Levels Table ADEC, 2002. Oil and Other Hazardo December 14.	e C. ous Substances Pol	lution Control. Pu	blic Comm	ent Draft.	18 AAC 75.					
 ^c Benchmark Criteria is equal to 1/10 the i ^d Screening Criteria for lead is based on re Procedures Manual guidance (18 AAC 75. 	ndicated regulator esidential cleanup 340).	y criteria. value calculated ac	cording to 1	Risk Asses	sment					
e This analyte is excluded as a COPC due	to status as an ess	ential nutrient.								
^f TRPH is excluded as a COPC due to out	dated analysis met	hods.								

Table E-22 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil Site 21 Northeast Cape, St. Lawrence Island, Alaska

		Soil Tun	dra Data			_		Regulatory	COPC Screening	
	Maximum	Minimum	Numb	oer of	Detection	BUTL (1	mg/kg) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
Inorganics										
Aluminum	33,100	3,975	10	10	1.00	30,357	nc	na	na	Yes
Antimony	38	38	19	1	0.053	nc	nc	3.6	0.36	Yes
Arsenic	170	2.8	19	19	1.0	7.8	11	2	0.2	Yes
Barium	193	0.83	10	10	1.0	174	nc	1,100	110	Yes
Beryllium	1.8	0.30	19	9	0.47	3.8	nc	42	4.2	No
Cadmium	69	0.40	19	8	0.42	1.4	3.1	5	0.5	Yes
Calcium	6,910	1,320	10	10	1.0	nc	nc	NA ^e	NA	No
Chromium	93	4.0	19	19	1.0	48	50	26	2.6	Yes
Cobalt	14.2	2.5	10	10	1.0	49	nc	na	na	Yes
Copper	130	4.0	19	19	1.0	107	44	4,060	406	No
Iron	57,400	12,700	10	10	1.0	nc	nc	NA ^e	NA	No
Lead	88	6.1	20	18	0.90	106	112	400 ^d	40	No
Magnesium	8,770	1,320	10	10	1.0	nc	nc	NA ^e	NA	No
Manganese	786	77	10	10	1.0	1,589	nc	na	na	Yes
Mercury	4.8	0.070	19	6	0.32	0.43	nc	1.4	0.14	Yes
Nickel	44	9.8	19	14	0.74	59	30	87	8.7	No
Potassium	3,670	560	10	10	1.0	nc	nc	NA ^e	NA	No
Selenium	2.0	1.0	19	3	0.16	nc	nc	3.5	0.35	Yes
Silver	6.7	0.90	19	3	0.16	nc	nc	21	2.1	Yes
Sodium	580	170	10	10	1.0	nc	nc	NA ^e	NA	No
Thallium	0.53	0.53	19	1	0.1	1.6	0.56	na	na	Yes
Vanadium	81	8.5	10	10	1.0	73	nc	710	71	Yes
Zinc	1,130	24	19	19	1.0	615	157	9,100	910	Yes
VOCs										
1,1,1-Trichloroethane	0.016	0.016	4	1	0.25	nc	nc	1	0.1	No
1,2,4-Trimethylbenzene	0.19	0.032	4	2	0.50	nc	nc	na	na	Yes

Table E-22 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil Site 21 Northeast Cape, St. Lawrence Island, Alaska

		Soil Tun	dra Data			_		Regulatory	COPC Screening	
	Maximum	Minimum	Numb	er of	Detection	BUTL (mg/kg) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
1,3,5-Trimethylbenzene	0.071	0.012	4	2	0.50	nc	nc	25	2.5	No
2-Butanone	0.18	0.043	5	3	0.60	nc	nc	60	6	No
Acetone	0.53	0.036	4	4	1.0	nc	nc	10	1	No
Ethylbenzene	0.0067	0.0067	19	1	0.053	nc	nc	5.5	0.55	No
Isopropylbenzene	0.013	0.013	4	1	0.25	nc	nc	227	22.7	No
m,p-Xylene	0.096	0.0074	14	7	0.50	nc	nc	na	na	Yes
Methylene chloride	0.0060	0.0060	4	1	0.25	nc	nc	0.015	0.0015	Yes
n-Butylbenzene	0.062	0.062	4	1	0.25	nc	nc	na	na	Yes
n-Propylbenzene	0.040	0.040	4	1	0.25	nc	nc	na	na	Yes
o-Xylene	0.0063	0.0063	14	1	0.071	nc	nc	na	na	Yes
sec-Butylbenzene	0.036	0.036	4	1	0.25	nc	nc	na	na	Yes
Toluene	0.14	0.0060	19	13	0.68	nc	nc	5.4	0.54	No
SVOCs										
4-Chloroaniline	5.47	5.47	9	1	0.11	nc	nc	0.5	0.05	Yes
bis-(2-ethylhexyl)phthalate	0.98	0.84	9	2	0.22	nc	nc	590	59	No
Di-n-butyl phthalate	5.69	0.90	9	4	0.44	nc	nc	1,700	170	No
PCBs										
PCB-1254 (Aroclor 1254)	0.14	0.14	19	2	0.11	nc	nc	10	1	No
PCB-1260 (Aroclor 1260)	3.1	0.15	19	4	0.21	nc	nc	10	1	Yes
Petroleum Hydrocarbons										
Diesel Range Organics (DRO)	3,800	46	19	16	0.84	nc	nc	250	25	Yes
Residual Range Organics (RRO)	3,700	25	10	10	1.0	nc	nc	10,000	1,000	Yes
TRPH	15,700	85	9	9	1.0	nc	nc	NA ^f	NA	No

Notes:

Table E-22 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil Site 21 Northeast Cape, St. Lawrence Island, Alaska

		Soil Tun	dra Data			_		Regulatory	COPC Screening	
Constituent	Maximum Detect (mg/kg)	Minimum Detect (mg/kg)	Numb	oer of Detects	Detection	BUTL ((mg/kg) ^a Soil Gravel	Criteria ^b (mg/kg)	Benchmark ^c	COPC? (Ves/No)
na - Not available. NA - Not applicable. nc - Not calculated. BUTL - Background upper tolerance limit mg/kg - Milligram per kilogram. COPC - Chemical of Potential Concern PCB - Polychlorinated Biphenyls SVOC - Semivolatile Organic Compound VOC - Volatile Organic Compounds TRPH - Total Residual Petroleum Hydroc	s arbons	Dettet (ing/kg/	Sampies	butts	Trequency			(mg/kg)	(ing/kg)	
 ^a Please refer to Technical Memorandum- Ambient Concentrations for Abiotic Medi (MWH, 2003). ^b Regulatory Criteria is equal to the minim 	Background Dete a Associated with num ADEC Soil C	ermination for Risl the Northeast Ca Cleanup Level prop	k Assessme pe, St. Law posed by the	nt, Derivat rence Islan e following	ion of d, Alaska g hierarchy:					
 Minimum of 3 pathways listed in Tables B 1 Substances Pollution Control. January 30. Minimum of 3 pathways listed in Tables B 1 Substances Pollution Control. Public Commer 3. Minimum of 3 pathways listed in Tables B 1 November 7. Minimum of 3 pathways listed in Tables B 1 Compounds without Tabular Values in Site Classical Compounds without Tabular Values in Site Classical Compounds without Tabular Values in Site Classical Compounds without Tabular Values in Site Classical Classical	and B2, Under 40 and B2, Under 40 tr Draft. 18 AAC 7 and B2, Under 40 and B2, Under 40 eanup Rules - Techr	inch zone: ADEC, 2 inch zone: ADEC, 2 5. December 14. inch zone: ADEC, 2 inch zone: ADEC, 2 nical Memorandum	2003. 18 AA 2002. Oil an 2002. Cumu 2001. Calcul 01-007. Dec	C 75 Oil ar d Other Haz lative Risk (lated Cleanu cember 18.	d Hazardous zardous Guidance. 1p Levels for					
 ^c Benchmark Criteria is equal to 1/10 the ^d Screening Criteria for lead is based on r Procedures Manual guidance (18 AAC 75 	indicated regulate esidential cleanup .340).	ory criteria. • value calculated	according t	o Risk Ass	essment					

^e This analyte is excluded as a COPC due to status as an essential nutrient.

^f TRPH is excluded as a COPC due to outdated analysis methods.

Table E-23 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Subsurface Water Site 21 Northeast Cape, St. Lawrence Island, Alaska

		Shallow Subsur	face Water	Data				Regulatory	COPC Screening	CODC
	Maximum	Maximum	Numb	oer of	Detection	Subsurface Wate	r BUTL (mg/L) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Shallow	Deep	(mg/L)	(mg/L)	(Yes/No)
Inorganics, Total										
Arsenic	0.072	0.041	2	2	1.0	0.025	nc	0.05	0.005	Yes
Chromium	0.23	0.090	2	2	1.0	1.7	nc	0.1	0.01	No
Copper	0.26	0.10	2	2	1.0	0.087	nc	1.3	0.13	Yes
Lead	0.26	0.10	2	2	1.0	0.013	nc	0.015 ^d	0.0015	Yes
Mercury	0.00060	0.00060	2	1	0.50	0.00041	nc	0.002	0.0002	Yes
Nickel	0.18	0.10	2	2	1.0	0.056	nc	0.1	0.01	Yes
Zinc	5.1	0.65	2	2	1.0	0.29	nc	11	1.1	Yes
Inorganics, Dissolved										
Arsenic, Dissolved	0.010	0.010	2	1	0.50	0.015	nc	0.05	0.005	No
VOCs										
2-Butanone	0.0029	0.0029	2	1	0.50	na	na	22	2.2	No
Acetone	0.0063	0.0063	2	1	0.50	na	na	3.65	0.365	No
n-Propylbenzene	0.0011	0.0011	2	1	0.50	na	na	na	na	Yes
SVOCs										
Benzoic acid	0.029	0.029	2	1	0.50	na	na	146	14.6	No
Petroleum Hydrocarbons										
Diesel Range Organics (DRO)	1.0	0.59	2	2	1.0	na	na	1.5	0.15	Yes

Notes:

BUTL - Background upper tolerance limit.

COPC - Chemcial of Potential Concern.

mg/L - Milligrams per liter.

NA - Not applicable.

na - Not available.

nc - Not calculated.

Table E-23 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Subsurface Water Site 21 Northeast Cape, St. Lawrence Island, Alaska

		Shallow Subsurf	ace Water	Data				Regulatory	COPC Screening	
	Maximum	Maximum	Numb	er of	Detection	Subsurface Water	BUTL (mg/L) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/L)	Detect (mg/L)	Samples Detects		Frequency	Shallow	Deep	(mg/L)	(mg/L)	(Yes/No)

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment, Derivation of Ambient

Concentrations for Abiotic Media Associated with the Northeast Cape, St. Lawrence Island, Alaska (MWH, 2003).

^b Regulatory Criteria is equal to the minimum ADEC Groundwater Cleanup Level proposed by the two most recent guidance documents, below.

ADEC Groundwater Cleanup Levels Table C.

ADEC, 2001. Calculated Cleanup Levels for Compounds without Tabular Values in Site Cleanup Rules - Technical Memorandum 01-007. December 18.

ADEC Groundwater Cleanup Levels Table C.

ADEC, 2002. Oil and Other Hazardous Substances Pollution Control. Public Comment Draft. 18 AAC 75. December 14.

^c Benchmark Criteria is equal to 1/10 the indicated regulatory criteria.

^d Screening Criteria for lead is based on residential cleanup value calculated according to Risk Assessment Procedures Manual guidance (18 AAC 75.340).

Table E-24 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil Site 22 Northeast Cape, St. Lawrence Island, Alaska

		Soil Gra	wel Data			_		Regulatory	COPC Screening	
	Maximum	Minimum	Numb	per of	Detection	BUTL (1	mg/kg) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
Inorganics										
Antimony	34	34	1	1	1.0	nc	nc	3.6	0.36	No
Chromium	16	7.7	5	5	1.0	48	50	26	2.6	No
Copper	22	22	1	1	1.0	107	44	4,060	406	No
Lead	497	5	9	9	1.0	106	112	400 ^d	40	Yes
Nickel	13	13	1	1	1.0	59	30	87	8.7	No
Zinc	169	60	5	5	1.0	615	157	9,100	910	No
VOCs										
o-Xylene	0.3705	0.149	8	3	0.375	nc	nc	na	na	Yes
SVOCs										
Di-n-butyl phthalate	3.5	3.5	1	1	1.0	nc	nc	1,700	170	No
PAHs										
Acenaphthene	0.0861	0.00763	11	4	0.36	nc	nc	210	21	No
Anthracene	0.01180	0.00020	11	3	0.27	nc	nc	4,300	430	No
Benzo(a)anthracene	0.0200	0.0015	11	3	0.27	nc	nc	6	0.6	No
Benzo(a)pyrene	0.35	0.35	11	1	0.09	nc	nc	1	0.1	Yes
Benzo(b)fluoranthene	0.42	0.00035	11	4	0.36	nc	nc	11	1.1	No
Benzo(g,h,i)perylene	0.015	0.00015	11	4	0.36	nc	nc	1,500	150	No
Chrysene	0.77	0.00020	11	7	0.64	nc	nc	620	62	No
Dibenzo(a,h)anthracene	0.00032	0.00032	11	1	0.09	nc	nc	1	0.1	No
Fluoranthene	0.0481	0.00070	11	7	0.64	nc	nc	2,100	210	No
Fluorene	0.03563	0.00020	11	3	0.27	nc	nc	270	27	No
Indeno(1,2,3-cd)pyrene	0.00032	0.00032	11	1	0.09	nc	nc	11	1.1	No
Naphthalene	1.2005	0.00031	11	8	0.73	nc	nc	21	2.1	No
Phenanthrene	0.2090	0.00022	11	8	0.73	nc	nc	4,300	430	No

Table E-24 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil Site 22 Northeast Cape, St. Lawrence Island, Alaska

		Soil Gra	wel Data			_		Regulatory	COPC Screening		
Constituent	Maximum Detect (mg/kg)	Minimum Detect (mg/kg)	Numb	oer of Detects	Detection	BUTL (1 Soil Tundra	mg/kg) ^a Soil Gravel	Criteria ^b	Benchmark ^c	COPC? (Ves/No)	
Phenol	0.74	0 74	1	1	1.0	nc	nc	67	<u> </u>	No	
Pyrene	0.1011	0.00018	11	7	0.64	nc	nc	1,500	150	No	
Petroleum Hydrocarbons											
Diesel Range Organics (DRO)	4,070	284	10	5	0.50	nc	nc	250	25	Yes	
Gasoline Range Organics (GRO)	38.45	24.1	10	3	0.30	nc	nc	300	30	Yes	
Residual Range Organics (RRO)	3,815	5.4	8	7	0.88	nc	nc	10,000	1,000	Yes	
TRPH	5,920	5,920	1	1	1.0	nc	nc	NA ^e	NA	No	

Notes:

na - Not available.

NA - Not applicable.

nc - Not calculated.

BUTL - Background upper tolerance limit.

mg/kg - Milligram per kilogram.

COPC - Chemical of Potential Concern

PAH - Polynuclear Aromatic Hydrocarbons

SVOC - Semivolatile Organic Compounds

TRPH - Total Residual Petroleum Hydrocarbons

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment, Derivation of Ambient Concentrations for Abiotic Media Associated with the Northeast Cape, St. Lawrence Island, Alaska (MWH, 2003).

^b Regulatory Criteria is equal to the minimum ADEC Soil Cleanup Level proposed by the following hierarchy:

1. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2003. 18 AAC 75 Oil and Hazardous Substances Pollution Control. January 30.

2. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2002. Oil and Other Hazardous

Substances Pollution Control. Public Comment Draft. 18 AAC 75. December 14.

3. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2002. Cumulative Risk Guidance. November 7.

4. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2001. Calculated Cleanup Levels for Compounds without Tabular Values in Site Cleanup Rules - Technical Memorandum 01-007. December 18.

Table E-24 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil Site 22 Northeast Cape, St. Lawrence Island, Alaska

		Soil Gra	wel Data				Regulatory	COPC Screening	
	Maximum	Minimum	Numb	er of	Detection	BUTL (mg/kg) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)

^c Benchmark Criteria is equal to 1/10 the indicated regulatory criteria.

^d Screening Criteria for lead is based on residential cleanup value calculated according to Risk Assessment

Procedures Manual guidance (18 AAC 75.340).

^e TRPH is excluded as a COPC due to outdated analysis methods.

Table E-25 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Subsurface Water Site 22 Northeast Cape, St. Lawrence Island, Alaska

	Deep	Subsurface Wate	r Concentra	ation (mg/	L)			Regulatory	COPC Screening	
	Maximum	Maximum	Numb	er of	Detection	Subsurface Wate	r BUTL (mg/L)	Criteria ^a	Benchmark ^b	COPC?
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Shallow	Deep	(mg/L)	(mg/L)	(Yes/No)
Inorganics, Total										
Iron	45	2.8	3	3	1.0	nc	nc	NA ^d	NA	No
Manganese	0.20	0.12	3	3	1.0	0.20	nc	na	na	Yes
Inorganics, Dissolved										
Iron, dissolved	1.8	1.8	3	1	0.33	nc	nc	NA ^d	NA	No
Manganese, dissolved	0.17	0.089	3	3	1.0	nc	nc	na	na	Yes
Petroleum Hydrocarbons										
Diesel Range Organics (DRO)	1.4	0.28	4	2	0.50	na	na	1.5	0.15	Yes
Residual Range Organics (RRO)	2.8	2.8	3	1	0.33	na	na	1.1	0.11	Yes

Notes:

na - Not available.

NA - Not applicable.

nc - Not calculated.

BUTL - Background upper tolerance limit.

mg/L - Milligram per liter.

COPC - Chemical of Potential Concern

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment, Derivation of Ambient Concentrations for Abiotic Media Associated with the Northeast Cape, St. Lawrence Island, Alaska (MWH, 2003).

^b Regulatory Criteria is equal to the minimum ADEC Groundwater Cleanup Level proposed by the two most recent guidance documents, below.

ADEC Groundwater Cleanup Levels Table C.

ADEC, 2001. Calculated Cleanup Levels for Compounds without Tabular Values in Site Cleanup Rules - Technical Memorandum 01-007. December 18.

ADEC Groundwater Cleanup Levels Table C.

ADEC, 2002. Oil and Other Hazardous Substances Pollution Control. Public Comment Draft. 18 AAC 75. December 14.

^c Benchmark Criteria is equal to 1/10 the indicated regulatory criteria.

^d This analyte is excluded as a COPC due to status as an essential nutrient.

Table E-26
Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil
Site 27
Northeast Cape, St. Lawrence Island, Alaska

		Soil Tur	ıdra Data				Soil Gra	avel Data					Regulatory	COPC Screening	
	Maximum	Minimum	Numl	ber of	Detection	Maximum	Minimum	Num	ber of	Detection	BUTL (mg/kg)	Criteriaª	Benchmark ^b	COPC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
Inorganics															
Arsenic						57	2.5	4	4	1.0	78	11	2	0.2	No
Chromium	17	17	1	1	1.0	23.7	3.7	10	10	1.0	48	50	26	2.6	No
Copper	17	17	1	1	1.0	16	16	10	1	1.0	107	44	4 060	406	No
Lead	13	13	1	1	1.0	87	3 53	27	27	1.0	106	112	400 ^d	400	No
Nickel	15	15	1	1	1.0	17	17	2,	1	1.0	59	30	87	87	No
Thallium						0.36	0.36	1	1	1.0	16	0.56	n9	n9	No
Zinc	44	44	1	1	1.0	110	17	10	10	1.0	615	157	9 100	910	No
Ziit			1	1	1.0	110	17	10	10	1.0	015	157	9,100	510	110
VOCs															
Benzene	0.12	0.12	1	1	1.0	0.798	0.0034	29	10	0.34	nc	nc	0.02	0.002	Yes
Ethylbenzene	1.3	1.3	1	1	1.0	8.09	0.011	29	18	0.62	nc	nc	5.5	0.55	Yes
m,p-Xylene	5.1	5.1	1	1	1.0	25.3	0.0678	24	20	0.8	nc	nc	na	na	Yes
o-Xylene	2.7	2.7	1	1	1.0	16.3	0.010	24	20	0.83	nc	nc	na	na	Yes
Toluene	3.2	3.2	1	1	1.0	7.55	0.036	29	10	0.34	nc	nc	5.4	0.54	Yes
Xylenes						4	0.0050	5	4	0.80	nc	nc	78	7.8	No
PCBs															
PCB-1260 (Aroclor 1260)						0.035	0.035	9	1	0.11	nc	nc	10	1	No
1 CB-1200 (Alociol 1200)						0.055	0.055	,	1	0.11	ne	ne	10	1	110
PAHs															
Acenaphthene	0.18	0.18	1	1	1.0	3.09	0.00028	24	15	0.63	nc	nc	210	21	No
Acenaphthylene						0.0727	0.0011	24	2	0.08	nc	nc	210	21	No
Anthracene	0.012	0.012	1	1	1.0	0.90	0.00076	24	13	0.54	nc	nc	4,300	430	No
Benzo(a)anthracene						0.081	0.00027	24	8	0.33	nc	nc	6	0.6	No
Benzo(a)pyrene						0.0774	0.0032	24	2	0.08	nc	nc	1	0.1	No
Benzo(b)fluoranthene	0.0052	0.0052	1	1	1.0	0.114	0.00027	24	10	0.42	nc	nc	11	1.1	No
Benzo(g,h,i)perylene						0.0427	0.00020	24	7	0.29	nc	nc	1500	150	No
Benzo(k)fluoranthene						0.0909	0.0033	24	2	0.08	nc	nc	110	1.14	No
Chrysene						0.148	0.00067	24	13	0.54	nc	nc	620	62	No
Dibenzo(a,h)anthracene						0.0151	0.0151	24	1	0.04	nc	nc	1	0.1	No
Fluoranthene	0.0029	0.0029	1	1	1.0	0.331	0.00019	24	15	0.6	nc	nc	2,100	210	No
Fluorene	0.33	0.33	1	1	1.0	7.44	0.00051	24	20	0.8	nc	nc	270	27	No
Indeno(1,2,3-cd)pyrene						0.0505	0.0018	24	2	0.1	nc	nc	11	1.1	No
Naphthalene	12	12	1	1	1.0	191	0.0011	24	22	0.9	nc	nc	43	4.3	Yes
Phenanthrene	0.21	0.21	1	1	1.0	5.5	0.00084	24	22	0.9	nc	nc	4,300	430	No
Pyrene	0.0059	0.0059	1	1	1.0	0.391	0.00017	24	18	0.8	nc	nc	1,500	150	No
Petroleum Hydrocarbons															
Diesel Range Organics (DRO)	13,000	13,000	1	1	1.0	51,000	11	34	34	1.0	nc	nc	250	25	Yes
Gasoline Range Organics (GRO)	70	70	1	1	1.0	491	2.3	29	22	0.76	nc	nc	300	30	Yes
Residual Range Organics (RRO)	5,100	5,100	1	1	1.0	9,100	16	24	22	0.9	nc	nc	10,000	1,000	Yes
TRPH	,					66,400	170	10	10	1.0	nc	nc	NA ^e	NA	No

Table E-26 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil Site 27 Northeast Cape, St. Lawrence Island, Alaska

	Soil Tundra Data						Soil Gra	wel Data				Regulatory	COPC Screening	
	Maximum	Minimum	Numb	per of	Detection	Maximum	Minimum	Numb	er of	Detection	BUTL (mg/kg)	Criteria ^a	Benchmark ^b	COPC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
Notes:														
na - Not available.														
NA - Not applicable.														
nc - Not calculated.														
BUTL - Background upper tolerance limit	t.													
mg/kg - Milligram per kilogram.														
COPC - Chemical of Potential Concern														
PAH - Polynuclear Aromatic Hydrocarbo	ns													
PCB - Polychlorinated Biphenyls														
TRPH - Total Residual Petroleum Hydrod	carbons													
VOC - Volatile Organic Compounds														
 ^a Please refer to Technical Memorandum Ambient Concentrations for Abiotic Medi (MWH, 2003). ^b Regulatory Criteria is equal to the minin 1. Minimum of 3 pathways listed in Tabl Substances Pollution Control. January 30. 2. Minimum of 3 pathways listed in Tabl Pollution Control. Public Comment Draff 3. Minimum of 3 pathways listed in Tabl November 7. 4. Minimum of 3 pathways listed in Tabl Compounds without Tabular Values in Si ^c Benchmark Criteria is equal to 1/10 the ^d Screening Criteria for lead is based on r Procedures Manual guidance (18 AAC 75 ^e TRPH is excluded as a COPC due to ou 	Background Dete a Associated with num ADEC Soil C es B1 and B2, Un es B1 and B2, Un t. 18 AAC 75. D es B1 and B2, Un es B1 and B2, Un te Cleanup Rules indicated regulate esidential cleanup .340). ttdated analysis m	ermination for Ris a the Northeast Ca Cleanup Level proj der 40 inch zone: ecember 14. der 40 inch zone: der 40 inch zone: - Technical Memo ory criteria. o value calculated ethods.	k Assessme pe, St. Law 2005ed by the ADEC, 200 ADEC, 200 ADEC, 200 ADEC, 200 randum 01 according to	nt, Derivat rence Islan e followiną 33. 18 AA 92. Oil and 92. Cumul 91. Calcul -007. Dec o Risk Ass	ion of d, Alaska g hierarchy: C 75 Oil and l Other Hazar ative Risk Gu ated Cleanup ember 18. essment	Hazardous rdous Substances iidance. Levels for								

Table E-27 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Subsurface Water Site 27 Northeast Cape, St. Lawrence Island, Alaska

		Shallow Subsur	face Water	Data				Regulatory	COPC Screening	
	Maximum	Maximum	Numb	er of	Detection	Subsurface Wate	er BUTL (mg/L)	Criteria ^a	Benchmark ^b	COPC?
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Shallow	Deep	(mg/L)	(mg/L)	(Yes/No)
Inorganics, Total										
Arsenic	0.024	0.024	1	1	1.0	0.025	nc	0.05	0.005	No
Chromium	0.050	0.050	1	1	1.0	1.7	nc	0.1	0.01	No
Copper	0.065	0.065	1	1	1.0	0.087	nc	1.3	0.13	No
Lead	0.19	0.19	1	1	1.0	0.013	nc	0.015 ^d	0.0015	Yes
Manganese	0.20	0.20	1	1	1.0	0.20	nc	na	na	Yes
Nickel	0.043	0.043	1	1	1.0	0.056	nc	0.1	0.01	No
Zinc	0.24	0.24	1	1	1.0	0.29	nc	11	1.1	No
Inorganics, Dissolved										
Lead, Dissolved	0.0020	0.0020	1	1	1.0	nc	nc	0.015	0.0015	Yes
VOCs										
Benzene	0.030	0.0046	3	2	0.67	nc	nc	0.005	0.0005	Yes
Ethylbenzene	0.12	0.014	3	2	0.67	nc	nc	0.7	0.07	Yes
m,p-Xylene	0.084	0.084	1	1	1.0	nc	nc	10	1	No
o-Xylene	0.0073	0.0073	1	1	1.0	nc	nc	10	1	No
Toluene	0.12	0.0033	3	2	0.67	nc	nc	10	1	No
Xylenes	0.080	0.080	2	1	0.50	nc	nc	10	1	No
Petroleum Hydrocarbons										
Diesel Range Organics (DRO)	64	1.4	3	3	1.0	nc	nc	1.5	0.15	Yes
Gasoline Range Organics (GRO)	1.7	1.2	3	2	0.67	nc	nc	1.3	0.13	Yes
Residual Range Organics (RRO)	1.6	1.6	1	1	1.0	nc	nc	1.1	0.11	Yes
TRPH	2.4	2.4	1	1	1.0	nc	nc	NA ^e	NA	No

Notes:

BUTL - Background upper tolerance limit.

COPC - Chemcial of Potential Concern.

mg/L - Milligrams per liter.

NA - Not applicable.

na - Not available.

nc - Not calculated.

TRPH - Total Residual Petroleum Hydrocarbons

VOC - Volatile Organic Compounds

Table E-27 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Subsurface Water Site 27 Northeast Cape, St. Lawrence Island, Alaska

	Shallow Subsurface Water Data						Regul		COPC Screening	
	Maximum	Maximum	Numb	er of	Detection	Subsurface Water	r BUTL (mg/L)	Criteria ^a	Benchmark ^b	COPC?
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Shallow	Deep	(mg/L)	(mg/L)	(Yes/No)
^a Please refer to Technical Memorandum-E	Background Deteri	mination for Risk	Assessment,	Derivatio	n of Ambient					_
Concentrations for Abiotic Media Associated with the Northeast Cape, St. Lawrence Island, Alaska (MWH,										
2003).										
^b Regulatory Criteria is equal to the minimu	um ADEC Ground	water Cleanup Le	vel proposed	by the tw	o most recent					
guidance documents, below.		1								
ADEC Groundwater Cleanup Levels Table ADEC, 2001. Calculated Cleanup Le Technical Memorandum 01-007. Dec	C. vels for Compound cember 18.	ds without Tabula	r Values in S	Site Cleam	up Rules -					
ADEC Groundwater Cleanup Levels Table ADEC, 2002. Oil and Other Hazardo December 14.	C. Substances Pol	lution Control. Pu	blic Comme	ent Draft.	18 AAC 75.					
^c Benchmark Criteria is equal to 1/10 the in	ndicated regulator	y criteria.								
^d Screening Criteria for lead is based on re-	sidential cleanup v	value calculated ac	cording to R	lisk Asses	sment					
Procedures Manual guidance (18 AAC 75.2	340).		U							
^e TRPH is excluded as a COPC due to outo	dated analysis met	hods.								
Table E-28										
--										
Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil										
Site 28										
Northeast Cape, St. Lawrence Island, Alaska										

		Soil Tur		Soil Gra	avel Data					Regulatory	COPC Screening				
	Maximum	Minimum	Numb	per of	Detection	Maximum	Minimum	Numb	er of	Detection	BUTL	(mg/kg) ^a	Criteria ^b	Benchmark °	COPC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	a Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
Inorganics															
Beryllium	na	na	na	na	na	1.8	1.8	11	1	0.091	3.8	nc	42	42	Yes
Cadmium	na	na	na	na	na	2.6	2.4	11	2	0.18	1.4	3.1	5	0.5	No
Chromium	31	14	6	6	1.0	41	7.3	11	11	1.0	48	50	26	2.6	No
Copper	na	na	na	na	na	34	8.8	11	11	1.0	107	44	4.060	406	No
Lead	42	24	6	6	1.0	100	7.1	11	11	1.0	106	112	400 ^d	40	No
Nickel	na	na	na	na	na	25	7.8	11	8	0.73	59	30	87	8.7	No
Thallium	na	na	na	na	na	0.26	0.26	11	1	0.091	1.6	0.56	na	na	Yes
Zinc	124	49	6	6	1.0	140	12	11	11	1.0	615	157	9,100	910	No
VOCs															
Acetone	na	na	na	na	na	0.19	0.032	5	3	0.60	nc	nc	10	1	No
Ethylbenzene	na	na	na	na	na	1.1	1.1	10	1	0.10	nc	nc	5.5	0.55	Yes
Methylene chloride	na	na	na	na	na	0.16	0.0071	5	4	0.80	nc	nc	0.015	0.0015	Yes
PCBs															
PCB-1254 (Aroclor 1254)	0.20	0.20	9	1	0.11	1.5	0.24	10	3	0.30	nc	nc	10	1	Yes
PAHs															
2-Methylnaphthalene	0.031	0.031	8	1	0.13	na	na	na	na	na	nc	nc	43	4.3	No
Anthracene	1.9	0.016	8	2	0.25	na	na	na	na	na	nc	nc	4,300	430	No
Benzo(a)anthracene	4.4	4.4	8	1	0.13	na	na	na	na	na	nc	nc	6	0.6	Yes
Benzo(a)pyrene	2.3	2.3	8	1	0.13	na	na	na	na	na	nc	nc	1	0.1	Yes
Benzo(b)fluoranthene	2.6	2.6	8	1	0.13	na	na	na	na	na	nc	nc	11	1.1	Yes
Benzo(g,h,i)perylene	0.056	0.056	8	1	0.13	na	na	na	na	na	nc	nc	1,500	150	No
Benzo(k)fluoranthene	2.7	2.7	8	1	0.13	na	na	na	na	na	nc	nc	110	11	No
Chrysene	5.5	5.5	8	1	0.13	na	na	na	na	na	nc	nc	620	62	No
Fluoranthene	9.3	0.035	8	2	0.25	na	na	na	na	na	nc	nc	2,100	210	No
Phenanthrene	4.1	0.016	8	2	0.25	na	na	na	na	na	nc	nc	4,300	430	No
Pyrene	7.5	0.025	8	2	0.25	na	na	na	na	na	nc	nc	1,500	150	No
Petroleum Hydrocarbons															
Diesel Range Organics (DRO)	83,000	95	10	10	1.0	92,650	7.9	11	10	0.91	nc	nc	250	25	Yes
Diesel Range Organics_Aromatic	59	59	2	1	0.50	na	na	na	na	na	nc	nc	100	10	Yes
Diesel Range Organics_Aliphatic	490	50	2	2	1.0	na	na	na	na	na	nc	nc	7,200	720	No
Gasoline Range Organics (GRO)	na	na	na	na	na	120	3.7	10	4	0.40	nc	nc	300	30	Yes
Residual Range Organics (RRO)	2,200	1,200	6	6	1.0	na	na	na	na	na	nc	nc	10,000	1,000	Yes
Residual Range Organics_Aromatic	360	230	2	2	1.0	na	na	na	na	na	nc	nc	3,000	300	Yes
TRPH	110,000	47,000	2	2	1.0	104,000	12	10	10	1.0	nc	nc	NA ^e	NA	No

Notes: na - Not available. NA- Not applicable. nc - Not calculated.

Table E-28
Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil
Site 28
Northeast Cape, St. Lawrence Island, Alaska

		Soil Tur	dra Data				Soil Gra	wel Data			_	Regulatory	COPC Screening	
	Maximum	Minimum	Numb	er of	Detection	Maximum	Minimum	Numb	er of	Detection	BUTL (mg/kg) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
BUTL - Background upper tolerance limi	t.													
mg/kg - Milligram per kilogram.														
COPC - Chemical of Potential Concern														
PAH - Polynuclear Aromatic Hydrocarbo	ns													
PCB - Polychlorinated Biphenyls														
TRPH - Total Residual Petroleum Hydrod	arbons													
VOC - Volatile Organic Compounds														
 ^a Please refer to Technical Memorandum Ambient Concentrations for Abiotic Medi (MWH, 2003). ^b Regulatory Criteria is equal to the minin 	Background Dete a Associated with num ADEC Soil C	ermination for Ris the Northeast Ca leanup Level prop	k Assessmen pe, St. Lawn posed by the	nt, Derivat rence Islar e following	tion of 1d, Alaska g hierarchy:									
 Minimum of 3 pathways listed in Tables B Memorandum 01-007. December 18. 	1 and B2, Under 40 1 and B2, Under 40 1 and B2, Under 40 1 and B2, Under 40	inch zone: ADEC, inch zone: ADEC, inch zone: ADEC, inch zone: ADEC,	2003. 18 AA 2002. Oil an 2002. Cumu 2001. Calcu	AC 75 Oil a Id Other Ha Ilative Risk lated Clean	nd Hazardous Substa izardous Substa Guidance. No iup Levels for O	Substances Pollutio ances Pollution Cor wember 7. Compounds withou	n Control. January 3 atrol. Public Comm t Tabular Values in	0. ent Draft. 18 Site Cleanup	AAC 75. 1 Rules - Teo	December 14. chnical				

^c Benchmark Criteria is equal to 1/10 the indicated regulatory criteria.

^d Screening Criteria for lead is based on residential cleanup value calculated according to Risk Assessment Procedures Manual guidance (18 AAC 75.340).

^e TRPH is excluded as a COPC due to outdated analysis methods.

Table E-29

Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Freshwater Sediment

Site 28

Northeast Cape, St. Lawrence Island, Alaska

	Sediment Conco	ntration (mg/kg)	Numl	or of	Detection	BUTI (mg/kg) ^a	Regulatory Criteria ^b	COPC Screening Benchmark ^c	COPC?
Constituent	Maximum Detect	Minimum Result	Samples	Detects	Frequency	Sediment	(mg/kg)	(mg/kg)	(Yes/No)
Inorganics									
Chromium	649	4.4	68	67	0.99	34	26	2.6	Yes
Copper	20	16	3	3	1.0	40	4,060	406	No
Lead	4,590	4.0	68	55	0.81	78	400 ^d	40	Yes
Nickel	13	13	3	1	0.33	126	87	8.7	No
Zinc	4,810	12	68	68	1.0	148	9,100	910	Yes
VOCs									
Benzene	0.050	0.050	8	1	0.13	na	0.02	0.002	Yes
Ethylbenzene	1.8	0.027	8	2	0.25	na	5.5	0.55	Yes
Toluene	0.37	0.0038	8	3	0.38	na	5.4	0.54	No
Xylenes	0.78	0.048	8	3	0.38	na	78	7.8	No
PCBs									
PCB-1242 (Aroclor 1242)	0.12	0.12	79	1	0.013	na	10 ^e	1	No
PCB-1254 (Aroclor 1254)	2.8	0.038	79	14	0.18	na	10 ^e	1	Yes
PCB-1260 (Aroclor 1260)	5.4	0.063	79	27	0.34	na	10 ^e	1	Yes
Pesticides									
4,4'-DDD	1.2	0.0072	13	6	0.46	na	35	3.5	No
beta-BHC	0.012	0.0036	10	2	0.20	na	0.009	0.0009	Yes
Endosulfan sulfate	0.0086	0.0086	10	1	0.10	na	7 ^f	0.7	No
gamma-BHC (Lindane)	0.0065	0.0029	13	2	0.15	na	0.003	0.0003	Yes
Heptachlor	0.0046	0.0044	13	2	0.15	na	0.8	0.08	No
Dioxins & Furans									
Dibenzofuran	5.6	0.026	68	26	0.38	na	na ^g	na	Yes
PAHs									
2-Methylnaphthalene	500	0.022	71	58	0.82	na	43	4.3	Yes
Acenaphthene	14	0.016	70	40	0.57	na	210	21	No

Table E-29

Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Freshwater Sediment

Site 28

Northeast Cape, St. Lawrence Island, Alaska

	Sediment Conce	ntration (mg/kg)	Numł	er of	Detection	BUTL (mg/kg) ^a	Regulatory Criteria ^b	COPC Screening Benchmark ^c	COPC?
Constituent	Maximum Detect	Minimum Result	Samples	Detects	Frequency	Sediment	(mg/kg)	(mg/kg)	(Yes/No)
Acenaphthylene	0.047	0.047	71	1	0.014	na	210	21	No
Anthracene	1.8	0.0092	71	7	0.10	na	4,300	430	No
Benzo(a)anthracene	1.9	0.10	71	5	0.070	na	6	0.6	Yes
Benzo(a)pyrene	1.4	0.13	71	4	0.056	na	1	0.1	Yes
Benzo(b)fluoranthene	1.6	0.10	71	5	0.070	na	11	1.1	Yes
Benzo(g,h,i)perylene	0.91	0.037	71	2	0.028	na	1,500	150	No
Benzo(k)fluoranthene	1.9	0.19	71	4	0.056	na	110	11	No
Chrysene	2.6	0.031	71	7	0.10	na	620	62	No
Dibenzo(a,h)anthracene	0.015	0.015	71	1	0.014	na	1	0.1	No
Fluoranthene	14	0.0084	71	12	0.17	na	2,100	210	No
Fluorene	20	0.011	71	47	0.66	na	270	27	No
Indeno(1,2,3-cd)pyrene	1.2	0.046	71	3	0.042	na	11	1.1	Yes
Naphthalene	220	0.024	71	55	0.77	na	21	2.1	Yes
Phenanthrene	21	0.015	71	42	0.59	na	4,300	430	No
Pyrene	9.5	0.010	71	11	0.15	na	1,500	150	No
Petroleum Hydrocarbons									
Diesel Range Organics (DRO)	150,000	22	83	83	1.0	na	250	25	Yes
Diesel Range Organics_ Aromatic	60	60	3	1	0.33	na	100	10	Yes
Diesel Range Organics_Aliphatic	150,000	26	5	5	1.0	na	7,200	720	Yes
Gasoline Range Organics (GRO)	220	4.0	5	2	0.40	na	300	30	Yes
Residual Range Organics (RRO)	14,000	69	69	66	0.96	na	10,000	1,000	Yes
Residual Range Organics_ Aliphatic	11,000	58	5	4	0.80	na	20,000	2,000	Yes
Residual Range Organics_Aromatic	500	64	5	5	1.0	na	3,000	300	Yes
TRPH	127,000	21,500	5	5	1.0	na	NA ^h	NA	No

Notes:

na - Not available.

NA - Not applicable.

BUTL - Background upper tolerance limit.

Table E-29

Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Freshwater Sediment

Site 28

Northeast Cape, St. Lawrence Island, Alaska

	Sediment Concentration (mg/kg)				Detection	BUTL (mg/kg) ^a	Regulatory Criteria ^b	COPC Screening Benchmark ^c	COPC?
Constituent	Maximum Detect	Minimum Result	Samples	Detects	Frequency	Sediment	(mg/kg)	(mg/kg)	(Yes/No)
mg/kg - milligrams per kilogram.			•						<u></u>
COPC - Chemical of Potential Concern.									
PAH - Polynuclear Aromatic Hydrocarbox	ns								
PCB - Polychlorinated Hydrocarbons									
TRPH - Total Residual Petroleum Hydroc	carbons								
VOC - Volatile Organic Compounds									
 ^a Please refer to Technical Memorandum Ambient Concentrations for Abiotic Medi (MWH, 2003). ^b Regulatory Criteria is equal to the minin 1. Minimum of 3 pathways listed in Table Control. January 30. 2. Minimum of 3 pathways listed in Table Public Comment Draft. 18 AAC 75. Dec 3. Minimum of 3 pathways listed in Table 4. Minimum of 3 pathways listed in Table Tabular Values in Site Cleanup Rules - Te ^c COPC Screening Benchmark is equal to ^d Screening Criteria for lead is based on r Assessment Procedures Manual guidance ^e Total PCBs used as a surrogate. ^g Screening criteria is currently not availa carried through as COPCs. ^h TRPH is excluded as a COPC due to out 	-Background Determini ia Associated with the N num ADEC Soil Cleanu es B1 and B2, Under 40 es B1 and B2, Under 40 es B1 and B2, Under 40 es B1 and B2, Under 40 echnical Memorandum o 1/10 the applicable reg esidential cleanup value (18 AAC 75.340).	ation for Risk Assessme Northeast Cape, St. Law p Level proposed by the 0 inch zone: ADEC, 200 0 inch zone: ADEC, 200 0 inch zone: ADEC, 200 0 inch zone: ADEC, 200 0 1-007. December 18. gulatory critieria. e calculated according t ans. These analytes are s.	ent, Derivati vrence Island 03. 18 AAC 02. Oil and 02. Cumula 01. Calcula o Risk therefore	ion of d, Alaska hierarchy: C 75 Oil and Other Haz tive Risk C ted Cleanu	d Hazardous S ardous Substa Guidance. No p Levels for C	Substances Pollution ances Pollution Con vember 7. Compounds without	n trol.		

Table E-30 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Surface Water Site 28 Northeast Cape, St. Lawrence Island, Alaska

	_	Fresh Surfac	e Water D	ata		BUTL	(mg/L) ^a	Regulatory	COPC Screening	
Constituent	Maximum Detect (mg/L)	Maximum Detect (mg/L)	Numb Samples	oer of Detects	Detection Frequency	Fresh Surface Water	Ephemeral Surface Water	Criteria ^b (mg/L)	Benchmark ^c (mg/L)	COPC? (Yes/No)
Inorganics, Total										
Chromium	0.015	0.015	3	1	0.33	nc	nc	0.1	0.01	Yes
Copper	0.040	0.040	3	1	0.33	nc	0.083	0.0031	0.00031	Yes
Lead	0.086	0.086	3	1	0.33	nc	0.014	0.0081 ^d	0.00081	Yes
Zinc	0.62	0.62	3	1	0.33	nc	0.90	0.081	0.0081	Yes
Inorganics, Dissolved										
Lead, Dissolved	0.011	0.011	3	1	0.33	nc	nc	0.015	0.0015	Yes
Zinc, Dissolved	0.23	0.23	3	1	0.33	nc	0.093	11	1.1	Yes
VOCs										
Ethylbenzene	0.0016	0.0016	5	1	0.20	na	na	0.7	0.07	No
PCBs										
PCB-1260 (Aroclor 1260)	0.0019	0.0015	15	2	0.13	na	na	1.4E-05 ^e	0.0000014	Yes
Petroleum Hydrocarbons										
Diesel Range Organics (DRO)	326	0.39	17	17	1.0	na	na	1.5	0.15	Yes
Gasoline Range Organics (GRO)	0.57	0.57	5	1	0.20	na	na	1.3	0.13	Yes
TRPH	19	2.3	5	2	0.40	na	na	NA ^f	NA	No

Notes:

BUTL - Background upper tolerance limit.

mg/L - Milligrams per liter.

NA - Not applicable.

na - Not available.

nc - Not calculated.

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment, Derivation of Ambient Concentrations for Abiotic Media Associated with the Northeast Cape, St. Lawrence Island, Alaska (MWH, 2003).

Table E-30 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Surface Water Site 28 Northeast Cape, St. Lawrence Island, Alaska

		Fresh Surfac	e Water Da	nta		BUTL	(mg/L) ^a	Regulatory	COPC Screening	
	Maximum	Maximum	Numb	er of	Detection	Fresh Surface	Ephemeral	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Water	Surface Water	(mg/L)	(mg/L)	(Yes/No)

^b Benchmark Criteria is equal to the minimum ADEC Groundwater Cleanup Level proposed by the two most recent guidance documents, below.

ADEC Groundwater Cleanup Levels Table C.

ADEC, 2001. Calculated Cleanup Levels for Compounds without Tabular Values in Site Cleanup Rules - Technical Memorandum 01-007. December 18.

ADEC Groundwater Cleanup Levels Table C.

ADEC, 2002. Oil and Other Hazardous Substances Pollution Control. Public Comment Draft. 18 AAC 75. December 14.

^c Benchmark Criteria is equal to 1/10 the indicated regulatory criteria.

^d Screening Criteria for lead is based on residential cleanup value calculated according to Risk Assessment

Procedures Manual guidance (18 AAC 75.340).

^e Total PCBs used as a surrogate.

^f TRPH is excluded as a COPC due to outdated analysis methods.

Table E-31 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Subsurface Water Site 28 Northeast Cape, St. Lawrence Island, Alaska

		Shallow Subsur	face Water	Data				Regulatory	COPC Screening	
	Maximum	Maximum	Numb	per of	Detection	Subsurface Water BUTL (mg/L) ^a		Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Shallow	Shallow Deep		(mg/L)	(Yes/No)
Inorganics, Total										
Arsenic	0.039	0.039	1	1	1.0	0.025	nc	0.05	0.005	Yes
Chromium	0.25	0.25	2	1	0.50	1.7	nc	0.1	0.01	No
Copper	0.18	0.18	2	1	0.50	0.087	nc	1.3	0.13	Yes
Lead	0.20	0.0080	2	2	1.0	0.013	nc	0.015	0.0015	Yes
Nickel	0.16	0.16	2	1	0.50	0.056	nc	0.1	0.01	Yes
Zinc	0.59	0.59	2	1	0.50	0.29	nc	11	1.1	No
Petroleum Hydrocarbons										
Diesel Range Organics (DRO)	3.2	0.49	2	2	1.0	na	na	1.5	0.15	Yes

Notes:

BUTL - Background upper tolerance limit.

COPC - Chemcial of Potential Concern.

mg/L - Milligrams per liter.

NA - Not applicable.

na - Not available.

nc - Not calculated.

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment, Derivation of Ambient Concentrations for Abiotic Media Associated with the Northeast Cape, St. Lawrence Island, Alaska (MWH, 2003).

^b Regulatory Criteria is equal to the minimum ADEC Groundwater Cleanup Level proposed by the two most recent guidance documents, below.

ADEC Groundwater Cleanup Levels Table C.

ADEC, 2001. Calculated Cleanup Levels for Compounds without Tabular Values in Site Cleanup Rules - Technical Memorandum 01-007. December 18.

ADEC Groundwater Cleanup Levels Table C.

ADEC, 2002. Oil and Other Hazardous Substances Pollution Control. Public Comment Draft. 18 AAC 75. December 14.

Table E-32 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Plant Tissue Site 28 Northeast Cape, St. Lawrence Island, Alaska

	Plant Tissue Cond	Number of De			BUTL (mg/kg) ^a	Regulatory Criteria ^b	COPC Screening Benchmark ^c	COPC?	
Constituent	Maximum Detect	Minimum Result	Samples	Detects	Frequency	Plant Tissue	(mg/kg)	(mg/kg)	(Yes/No)
Inorganics									
Antimony	0.0020	0.0020	1	1	1.0	***		20	Vac
Arconic	0.0050	<0.06	1	1	0.20	nc	na	na	Vas
Barium	40	< 0.00	5	5	1.0	nc	na	na	Ves
Cadmium	40	0.45	5	5	1.0	nc	na	na	Ves
Chromium	1.1	<0.06	5	1	0.80	nc	na	112	Ves
Copper	3.4	0.58	5	5	1.0	nc	na	na	Ves
Lead	5.0	0.065	5	5	1.0	nc	na	na	Ves
Mercury	0.027	<0.005	5	4	0.80	nc	na	na	Yes
Nickel	3.7	0.060	5	5	1.0	nc	na	na	Yes
Selenium	0.050	<0.000	5	1	0.20	nc	na	na	Yes
Silver	0.023	<0.023	5	2	0.20	nc	na	na	Yes
Vanadium	3.1	0.016	5	5	1.0	nc	na	na	Yes
Zinc	76	1.3	5	5	1.0	nc	na	na	Yes
DAUg									
7 Mathylpaphthalana	0.014	<0.005	5	3	0.60	na	n 0	n 0	Vos
A consultant	0.014	<0.005	5	3 1	0.00	nc	na	na	Ves
Acenaphthene	0.052	<0.0058	5	4	0.80	nc	na	na	Ves
Benzo(a)anthracene	0.010	0.0045	5	4	0.80	nc	na	na	Ves
Benzo(a)pyrene	0.17	<0.0045	5	2	0.80	nc	na	na	Ves
Benzo(b)fluoranthene	0.15	0.0037	5	4	0.40	nc	na	na	Ves
Benzo(g h i)pervlene	0.099	0.0031	5	3	0.60	nc	na	na	Ves
Benzo(k)fluoranthene	0.055	<0.005	5	2	0.00	nc	na	na	Yes
Chrysene	0.10	0.005	5	4	0.40	nc	na	na	Yes
Dibenz(a,h)anthracene	0.033	0.0035	5	3	0.60	nc	na	na	Yes
Fluoranthene	0.50	< 0.005	5	4	0.80	nc	na	na	Yes
Fluorene	0.041	< 0.005	5	4	0.80	nc	na	na	Yes
Indeno(1.2.3-cd)pyrene	0.19	0.0027	5	4	0.80	nc	na	na	Yes
Naphthalene	0.022	0.0043	5	4	0.80	nc	na	na	Yes
Phenanthrene	0.56	0.0027	5	5	1.0	nc	na	na	Yes
Pyrene	0.48	<0.005	5	4	0.80	nc	na	na	Yes
PCBs									
PCB-1254 (Aroclor 1254)	0.22	0.0049	5	5	1.0	nc	na	na	Yes
PCB-1260 (Aroclor 1260)	0.099	0.0049	5	5	1.00	nc	na	na	Yes

Table E-32 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Plant Tissue Site 28 Northeast Cape, St. Lawrence Island, Alaska

							Regulatory	COPC Screening	
	Plant Tissue Conce	entration (mg/kg)	Numb	er of	Detection	BUTL (mg/kg) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Maximum Detect	Minimum Result	Samples	Detects	Frequency	Plant Tissue	(mg/kg)	(mg/kg)	(Yes/No)

Notes:

BUTL - Background upper tolerance limit.

COPC - Chemical of Potential Concern.

mg/kg - Milligrams per kilogram.

NA - Not applicable.

na - Not available.

nc - Not calculated.

PAH - Polynuclear Aromatic Hydrocarbons

PCB - Polychlorinated Biphenyls

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment, Derivation of Ambient Concentrations for Abiotic Media Associated with the Northeast Cape, St. Lawrence Island, Alaska (MWH, 2003).

^b Regulatory Benchmark Criterion is not currently available for this media.

Table E-33 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Freshwater Sediment Site 29 Northeast Cape, St. Lawrence Island, Alaska

	Sodimont Conco	Sediment Concentration (mg/kg)		on of	Detection	BUTL (mg/kg) ^a	Regulatory Criteria ^b	7 COPC Screening Benchmark ^c	COPC?
Constituent	Maximum Detect	Minimum Result	Samples	Detects	Frequency	Sediment	(mg/kg)	(mg/kg)	(Yes/No)
Inorganics									
Aluminum	15.900	4.820	4	4	1.0	nc	na	na	Yes
Arsenic	57	2.8	4	4	1.0	nc	2	0.2	Yes
Barium	115	40	4	4	1.0	nc	1.100	110	Yes
Bervllium	1.3	0.20	5	4	0.8	9.8	42	4.2	No
Calcium	3.270	1,580	4	4	1.0	nc	NA ^d	NA	No
Chromium	27	2.6	17	17	1.0	34	26	2.6	No
Cobalt	7.0	2.0	4	4	1.0	nc	na	na	Yes
Copper	11	1.8	5	5	1.0	40	4,060	406	No
Iron	14,900	8,720	4	4	1.0	nc	NA ^d	NA	No
Lead	24	3.2	17	17	1.0	78	400 ^e	40	No
Magnesium	3,770	2,030	4	4	1.0	nc	NA ^d	NA	No
Manganese	114	80	4	4	1.0	nc	na	na	Yes
Mercury	0.050	0.050	4	1	0.3	nc	1.4	0.14	Yes
Nickel	14	5.0	5	4	0.8	126	87	8.7	No
Potassium	1,360	930	4	4	1.0	nc	NA ^d	NA	No
Sodium	713	416	4	4	1.0	nc	NA ^d	NA	No
Vanadium	35	17	4	4	1.0	nc	710	71	Yes
Zinc	69	14	17	17	1.0	148	9,100	910	No
VOCs									
m,p-Xylene	0.0032	0.0032	4	1	0.25	na	na	na	Yes
Toluene	0.0097	0.0047	9	4	0.44	na	5.4	0.54	No
Dioxins & Furans									
Dibenzofuran	0.0086	0.0086	16	1	0.063	na	na ^f	na	Yes
PAHs									
2-Methylnaphthalene	0.23	0.012	21	4	0.19	na	43	4.3	No
Acenaphthene	0.014	0.014	21	1	0.048	na	210	21	No
Acenaphthylene	0.010	0.010	21	1	0.048	na	210	21	No

Table E-33 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Freshwater Sediment Site 29

Northeast Cape, St. Lawrence Island, Alaska

	Sediment Conce	ntration (mg/kg)	Numł	ver of	Detection	BUTL (mø/kø) ^a	Regulatory Criteria ^b	COPC Screening Benchmark ^c	COPC?
Constituent	Maximum Detect	Minimum Result	Samples	Detects	Frequency	Sediment	(mg/kg)	(mg/kg)	(Yes/No)
Anthracene	0.023	0.023	21	1	0.048	na	4,300	430	No
Benzo(b)fluoranthene	0.0042	0.0042	21	1	0.048	na	11	1.1	No
Benzo(k)fluoranthene	0.0042	0.0042	21	1	0.048	na	110	11	No
Chrysene	0.0048	0.0048	21	1	0.048	na	620	62	No
Fluoranthene	0.022	0.010	21	3	0.14	na	2,100	210	No
Fluorene	0.022	0.013	21	3	0.14	na	270	27	No
Naphthalene	0.11	0.0098	21	3	0.14	na	21	2.1	No
Phenanthrene	0.037	0.010	21	4	0.19	na	4,300	430	No
Pyrene	0.02	0.0106	21	2	0.10	na	1,500	150	No
Petroleum Hydrocarbons									
Diesel Range Organics (DRO)	25,000	9.3	26	24	0.92	na	250	25	Yes
Residual Range Organics (RRO)	1,000	10	18	17	0.94	na	10,000	1,000	No
Residual Range Organics_Aromatic	137	53	6	6	1.0	na	3,000	300	No
TRPH	67	67	1	1	1.0	na	NA ^g	NA	No

Notes:

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment, Derivation of Ambient Concentrations for Abiotic

Media Associated with the Northeast Cape, St. Lawrence Island, Alaska (MWH, 2003).

^b Regulatory Criteria is equal to the minimum ADEC Soil Cleanup Level proposed by the following hierarchy:

1. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2003. 18 AAC 75 Oil and Hazardous Substances Pollution Control. January 30.

2. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2002. Oil and Other Hazardous Substances Pollution Control. Public Comment Draft. 18 AAC 75. December 14.

Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2002. Cumulative Risk Guidance. November 7.
 Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2001. Calculated Cleanup Levels for Compounds

without Tabular Values in Site Cleanup Rules - Technical Memorandum 01-007. December 18.

^b COPC Screening Benchmark is equal to 1/10 the applicable regulatory critieria.

^c Benchmark Criteria is equal to 1/10 the indicated regulatory criteria.

^d This analyte is excluded as a COPC due to status as an essential nutrient.

^e Screening Criteria for lead is based on residential cleanup value calculated according to Risk Assessment Procedures Manual guidance (18 AAC 75.340).

^f Screening criteria is currently not available for dioxins and furans. These analytes are therefore carried through as COPCs.

Table E-33 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Freshwater Sediment Site 29 Northeast Cape, St. Lawrence Island, Alaska

							Regulatory	COPC Screening	
	Sediment Concer	ediment Concentration (mg/kg)			Detection	BUTL (mg/kg) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Maximum Detect	Minimum Result	Samples	Detects	Frequency	Sediment	(mg/kg)	(mg/kg)	(Yes/No)
^g TRPH is excluded as a COPC due to out	tdated analysis method	s.							

NA - Not applicable.

na - Not available.

nc - Not calculated.

BUTL - Background upper tolerance limit.

mg/kg - milligrams per kilogram.

COPC - Chemical of Potential Concern.

Table E-34 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Surface Water Site 29 Northeast Cape, St. Lawrence Island, Alaska

		Fresh Surfac	e Water D	ata		BUTL	(mg/L) ^a	Regulatory	COPC Screening	
	Maximum	Maximum	Numb	oer of	Detection	Fresh Surface	Ephemeral	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Water	Surface Water	(mg/L)	(mg/L)	(Yes/No)
Inorganics, Total										
Aluminum	0.040	0.040	4	4	1.0	nc	2.2	0.087	0.0087	Yes
Barium	0.0050	0.0050	4	4	1.0	nc	0.034	2	0.2	Yes
Calcium	7.6	6.9	4	4	1.0	nc	nc	NA ^d	NA	No
Iron	0.38	0.31	4	4	1.0	nc	nc	NA ^d	NA	No
Magnesium	2.6	2.0	4	4	1.0	nc	nc	NA ^d	NA	No
Manganese	0.027	0.017	4	4	1.0	nc	0.12	na	na	Yes
Potassium	1.0	0.68	4	3	0.75	nc	nc	NA ^d	NA	No
Sodium	29	14	4	4	1.0	nc	nc	NA ^d	NA	No
Zinc	0.0080	0.0080	5	1	0.20	nc	0.90	11	1.1	Yes
Inorganics, Dissolved										
Silver, Dissolved	0.020	0.020	1	1	1.0	nc	nc	0.18	0.018	Yes
Petroleum Hydrocarbons										
Diesel Range Organics (DRO)	0.33	0.33	13	1	0.077	nc	nc	1.5	0.15	Yes
Diesel Range Organics_ Aliphatic	0.33	0.33	1	1	1.0	nc	nc	0.1	0.01	Yes
Gasoline Range Organics (GRO)	0.41	0.33	11	2	0.18	nc	nc	1.3	0.13	Yes

Notes:

BUTL - Background upper tolerance limit.

mg/L - Milligrams per liter.

NA - Not applicable.

na - Not available.

nc - Not calculated.

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment, Derivation of Ambient Concentrations for Abiotic Media Associated with the Northeast Cape, St. Lawrence Island, Alaska (MWH, 2003).

^b Benchmark Criteria is equal to the minimum ADEC Groundwater Cleanup Level proposed by the two most recent guidance documents, below.

ADEC Groundwater Cleanup Levels Table C.

Table E-34 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Surface Water Site 29 Northeast Cape, St. Lawrence Island, Alaska

		Fresh Surfac	e Water Da	nta		BUTL (mg/L) ^a			COPC Screening	
	Maximum	Maximum	Numb	Number of		Fresh Surface	Ephemeral	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Water	Surface Water	(mg/L)	(mg/L)	(Yes/No)

ADEC, 2001. Calculated Cleanup Levels for Compounds without Tabular Values in Site Cleanup Rules -Technical Memorandum 01-007. December 18.

ADEC Groundwater Cleanup Levels Table C. ADEC, 2002. Oil and Other Hazardous Substances Pollution Control. Public Comment Draft. 18 AAC 75. December 14.

^c Benchmark Criteria is equal to 1/10 the indicated regulatory criteria.

^d This analyte is excluded as a COPC due to status as an essential nutrient.

Table E-35 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Fish Tissue Site 29 Northeast Cape, St. Lawrence Island, Alaska

	Fish Tissue Conc	entration (mg/kg)	Number of		Detection	BUTL (mg/kg) ^a	Regulatory Criteria ^b	COPC Screening Benchmark ^c	COPC?
Constituent	Maximum Detect	Minimum Result	Samples	Detects	Frequency	Fish Tissue	(mg/kg)	(mg/kg)	(Yes/No)
Inorganics									
Arsenic	0.78	0.50	8	8	1.0	nc	na	na	Yes
Barium	0.049	0.015	8	8	1.0	nc	na	na	Yes
Cadmium	0.009	0.0060	8	4	0.50	nc	na	na	Yes
Copper	0.98	0.55	8	8	1.0	nc	na	na	Yes
Lead	0.012	0.0030	8	5	0.63	nc	na	na	Yes
Mercury	0.022	0.014	8	8	1.0	nc	na	na	Yes
Nickel	0.10	0.030	8	3	0.38	nc	na	na	Yes
Selenium	0.17	0.12	8	8	1.0	nc	na	na	Yes
Vanadium	0.060	0.017	8	8	1.0	nc	na	na	Yes
Zinc	7.1	5.6	8	8	1.0	nc	na	na	Yes
PAHs									
2-Methylnaphthalene	0.0065	< 0.005	8	1	0.13	nc	na	na	Yes
Acenaphthene	0.0067	0.0013	8	2	0.25	nc	na	na	Yes
Anthracene	0.0072	0.0017	8	2	0.25	nc	na	na	Yes
Benzo(a)anthracene	0.0082	0.0014	8	2	0.25	nc	na	na	Yes
Benzo(a)pyrene	0.0059	0.0021	8	2	0.25	nc	na	na	Yes
Benzo(b)fluoranthene	0.004	0.0012	8	2	0.25	nc	na	na	Yes
Benzo(g.h.i)pervlene	0.0064	0.0034	8	3	0.38	nc	na	na	Yes
Benzo(k)fluoranthene	0.012	0.0024	8	3	0.38	nc	na	na	Yes
Chrysene	0.0084	0.0025	8	2	0.25	nc	na	na	Yes
Dibenz(a,h)anthracene	0.0041	0.0041	8	1	0.13	nc	na	na	Yes
Fluoranthene	0.0093	0.0017	8	3	0.38	nc	na	na	Yes
Fluorene	0.0076	0.0012	8	3	0.38	nc	na	na	Yes
Indeno(1,2,3-cd)pyrene	0.0027	0.00074	8	3	0.38	nc	na	na	Yes
Naphthalene	0.0047	0.0018	8	3	0.38	nc	na	na	Yes
Phenanthrene	0.0086	0.0015	8	4	0.50	nc	na	na	Yes
Pyrene	0.010	0.0026	8	3	0.38	nc	na	na	Yes
PCBs									
PCB-1254 (Aroclor 1254)	0.016	0.0061	8	8	1.0	nc	na	na	Yes
PCB-1260 (Aroclor 1260)	0.0045	< 0.002	8	1	0.13	nc	na	na	Yes

Table E-35 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Fish Tissue Site 29 Northeast Cape, St. Lawrence Island, Alaska

	Fish Tissue Conce	entration (mg/kg)	Numt	oer of	Detection	BUTL (mg/kg) ^a	Regulatory Criteria ^b	COPC Screening Benchmark ^c	COPC?
Constituent	Maximum Detect	Minimum Result	Samples	Detects	Frequency	Fish Tissue	(mg/kg)	(mg/kg)	(Yes/No)
BUTL - Background upper tolerance limit.									
COPC - Chemical of Potential Concern.									
mg/kg - Milligrams per kilogram.									
NA - Not applicable.									
na - Not available.									
nc - Not calculated.									
PAH - Polynuclear Aromatic Hydrocarbon	s								
PCB - Polychlorinated Biphenyls									
3				2					

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment, Derivation of Ambient Concentrations for Abiotic Media Associated with the Northeast Cape, St. Lawrence Island, Alaska (MWH, 2003).

^b Regulatory Benchmark Criterion is not currently available for this media.

Table E-36 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Fish Tissue (Fillet Data Only) Site 30 Northeast Cape, St. Lawrence Island, Alaska

	Fish Tissue Conc	Number of		Detection <u>BUTL (mg/kg)</u> ^a		Regulatory Criteria ^b	COPC Screening Benchmark ^c	COPC?	
Constituent	Maximum Detect	Minimum Result	Samples	Detects	Frequency	Fish Tissue	(mg/kg)	(mg/kg)	(Yes/No)
Inorganics									
Arsenic	0.94	0.33	5	5	1.0	nc	na	na	Yes
Barium	0.061	0.024	5	5	1.0	nc	na	na	Yes
Cadmium	0.0080	0.0070	5	3	0.60	nc	na	na	Yes
Copper	1.2	0.59	5	5	1.0	nc	na	na	Yes
Lead	0.0040	0.0020	5	5	1.0	nc	na	na	Yes
Mercury	0.034	0.0090	5	5	1.0	nc	na	na	Yes
Nickel	0.050	0.030	5	4	0.80	nc	na	na	Yes
Selenium	0.19	0.13	5	5	1.0	nc	na	na	Yes
Vanadium	0.080	0.046	5	5	1.0	nc	na	na	Yes
Zinc	14	5.9	5	5	1.0	nc	na	na	Yes
PAHs									
Fluoranthene	0.0015	0.0015	5	1	0.200	nc	na	na	Yes
PCBs									
PCB-1254 (Aroclor 1254)	0.011	0.0062	5	5	1.00	nc	na	na	Yes

Notes:

BUTL - Background upper tolerance limit.

COPC - Chemical of Potential Concern.

mg/kg - Milligrams per kilogram.

NA - Not applicable.

na - Not available.

nc - Not calculated.

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment, Derivation of Ambient Concentrations for Abiotic Media Associated with the Northeast Cape, St. Lawrence Island, Alaska (MWH, 2003).

^b Regulatory Benchmark Criterion is not currently available for this media.

Table E-37 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Plant Tissue Site 30 Northeast Cape, St. Lawrence Island, Alaska

	Plant Tissue Conc	centration (mg/kg)	Numb	per of	Detection	BUTL (mg/kg) ^a	Regulatory Criteria ^b	COPC Screening Benchmark ^c	COPC?
Constituent	Maximum Detect	Minimum Result	Samples	Detects	Frequency	Plant Tissue	(mg/kg)	(mg/kg)	(Yes/No)
Inorganics									
Arsenic	0.56	<0.21	2	1	0.50	nc	na	na	Ves
Barium	21	12	2	2	1.0	nc	na	na	Ves
Cadmium	0.88	0.18	2	2	1.0	nc	na	na	Yes
Chromium	9.0	1.0	2	2	1.0	nc	na	na	Yes
Copper	2.8	2.2	2	2	1.0	nc	na	na	Yes
Lead	3.5	0.68	2	2	1.0	nc	na	na	Yes
Mercury	0.021	0.0080	2	2	1.0	nc	na	na	Yes
Nickel	4.2	1.1	2	2	1.0	nc	na	na	Yes
Selenium	0.050	0.050	2	1	0.50	nc	na	na	Yes
Silver	0.019	0.011	2	2	1.0	nc	na	na	Yes
Vanadium	3.6	0.36	2	2	1.0	nc	na	na	Yes
Zinc	57	28	2	2	1.0	nc	na	na	Yes
PAHs									
2-Methylnaphthalene	0.0076	< 0.005	2	1	0.50	nc	na	na	Yes
Acenaphthene	0.013	0.0037	2	2	1.0	nc	na	na	Yes
Anthracene	0.049	< 0.005	2	1	0.50	nc	na	na	Yes
Benzo(a)anthracene	0.075	0.0025	2	2	1.00	nc	na	na	Yes
Benzo(a)pyrene	0.021	0.0027	2	2	1.00	nc	na	na	Yes
Benzo(b)fluoranthene	0.053	0.0045	2	2	1.0	nc	na	na	Yes
Benzo(g.h.i)pervlene	0.013	0.0019	2	2	1.00	nc	na	na	Yes
Benzo(k)fluoranthene	0.046	0.0045	2	2	1.0	nc	na	na	Yes
Chrysene	0.087	0.0037	2	2	1.0	nc	na	na	Yes
Dibenz(a,h)anthracene	0.013	0.0019	2	2	1.00	nc	na	na	Yes
Fluoranthene	0.38	0.0083	2	2	1.0	nc	na	na	Yes
Fluorene	0.022	0.0025	2	2	1.0	nc	na	na	Yes
Indeno(1,2,3-cd)pyrene	0.024	0.0041	2	2	1.00	nc	na	na	Yes
Naphthalene	0.0078	0.0019	2	2	1.0	nc	na	na	Yes
Phenanthrene	0.29	0.013	2	2	1.0	nc	na	na	Yes
Pyrene	0.28	0.0073	2	2	1.0	nc	na	na	Yes
PCBs									
PCB-1254 (Aroclor 1254)	0.011	0.0097	2	2	1.0	nc	na	na	Yes
PCB-1260 (Aroclor 1260)	0.0095	0.0050	2	2	1.0	nc	na	na	Yes

Table E-37 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Plant Tissue Site 30 Northeast Cape, St. Lawrence Island, Alaska

							Regulatory	COPC Screening	
	Plant Tissue Conc	entration (mg/kg)	Numb	er of	Detection	BUTL (mg/kg) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Maximum Detect	Minimum Result	Samples	Detects	Frequency	Plant Tissue	(mg/kg)	(mg/kg)	(Yes/No)

Notes:

BUTL - Background upper tolerance limit.

COPC - Chemical of Potential Concern.

mg/kg - Milligrams per kilogram.

na - Not available.

nc - Not calculated.

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment, Derivation of

Ambient Concentrations for Abiotic Media Associated with the Northeast Cape, St. Lawrence Island, Alaska (MWH, 2003).

^b Regulatory Benchmark Criterion is not currently available for this media.

Table E-38 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil Site 31 Northeast Cape, St. Lawrence Island, Alaska

	_	Soil Tun	dra Data					Regulatory	COPC Screening	
	Maximum	Minimum	Numb	oer of	Detection	BUTL (1	ng/kg) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra Soil Gravel		(mg/kg)	(mg/kg)	(Yes/No)
VOCs										
m,p-Xylene	0.017	0.0066	4	2	0.50	nc	nc	na	na	Yes
o-Xylene	0.0053	0.0053	4	1	0.25	nc	nc	na	na	Yes
Toluene	0.024	0.0073	4	3	0.75	nc	nc	5.4	0.54	No
PCBs										
PCB-1260 (Aroclor 1260)	22	0.36	8	6	0.75	nc	nc	10	1	Yes
Petroleum Hydrocarbons										
Diesel Range Organics (DRO)	11,000	11	24	24	1.0	nc	nc	250	25	Yes
Residual Range Organics (RRO)	9,600	12	24	12	0.50	nc	nc	10,000	1,000	Yes

Notes:

na - Not applicable.

nc - Not calculated.

BUTL - Background upper tolerance limit.

mg/kg - Milligram per kilogram.

COPC - Chemical of Potential Concern

PCB - Polychlorinated Biphenyls

VOC - Volatile Organic Compounds

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment, Derivation of Ambient Concentrations for Abiotic Media Associated with the Northeast Cape, St. Lawrence Island, Alaska (MWH, 2003).

^b Regulatory Criteria is equal to the minimum ADEC Soil Cleanup Level proposed by the following hierarchy:

1. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2003. 18 AAC 75 Oil and Hazardous Substances Pollution Control. January 30.

2. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2002. Oil and Other Hazardous Substances Pollution Control. Public Comment Draft. 18 AAC 75. December 14.

3. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2002. Cumulative Risk Guidance. November 7.

4. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2001. Calculated Cleanup Levels for Compounds without Tabular Values in Site Cleanup Rules - Technical Memorandum 01-007. December 18.

Table E-38 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil Site 31 Northeast Cape, St. Lawrence Island, Alaska

		Soil Tun	dra Data				Regulatory	COPC Screening	
	Maximum	Minimum Number of		er of	Detection	BUTL (mg/kg) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)

Table E-39 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil Site 32 Northeast Cape, St. Lawrence Island, Alaska

		Soil Gra	wel Data			_		Regulatory	COPC Screening	
	Maximum	Minimum <u>Number of</u> De		Detection	BUTL (BUTL (mg/kg) ^a		Benchmark ^c	COPC?	
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
PCBs										
PCB-1260 (Aroclor 1260)	0.89	0.16	3	2	0.67	nc	nc	10	1	No
Petroleum Hydrocarbons										
Diesel Range Organics (DRO)	13,000	230	5	5	1.0	nc	nc	250	25	Yes
Residual Range Organics (RRO)	3,600	1,100	5	3	0.60	nc	nc	10,000	1,000	Yes

Notes:

na - Not applicable.

nc - Not calculated.

BUTL - Background upper tolerance limit.

mg/kg - Milligram per kilogram.

COPC - Chemical of Potential Concern

PCB - Polychlorinated Biphenyls

^a Please refer to Technical Memorandum-Background Determination for Risk

Assessment, Derivation of Ambient Concentrations for Abiotic Media Associated with

the Northeast Cape, St. Lawrence Island, Alaska (MWH, 2003).

^b Regulatory Criteria is equal to the minimum ADEC Soil Cleanup Level proposed by the following hierarchy:

1. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2003. 18 AAC 75 Oil and Hazardous Substances Pollution Control. January 30.

2. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2002. Oil and Other Hazardous Substances Pollution Control. Public Comment Draft. 18 AAC 75. December 14.

3. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2002. Cumulative Risk Guidance. November 7.

4. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2001. Calculated Cleanup Levels for Compounds without Tabular Values in Site Cleanup Rules - Technical Memorandum 01-007. December 18.

Table E-40 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil Site 33 Northeast Cape, St. Lawrence Island, Alaska

		Soil Gra	vel Data					Regulatory	COPC Screening	
Constituent	Maximum	Minimum	Minimum Number of		Detection	BUTL (1	ng/kg) ^a	Criteria ^b	Benchmark ^c	COPC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Son Tunura	Soli Gravei	(mg/kg)	(mg/kg)	(1 es/Ino)
Petroleum Hydrocarbons										
Diesel Range Organics (DRO)	660	150	3	3	1.0	na	na	250	25	Yes
Residual Range Organics (RRO)	2,100	270	3	3	1.0	na	na	10,000	1,000	Yes

Notes:

na - Not applicable.

nc - Not calculated.

BUTL - Background upper tolerance limit.

mg/kg - Milligram per kilogram.

COPC - Chemical of Potential Concern

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment, Derivation of Ambient Concentrations for Abiotic Media Associated with the Northeast

Cape, St. Lawrence Island, Alaska (MWH, 2003).

^b Regulatory Criteria is equal to the minimum ADEC Soil Cleanup Level proposed by the following hierarchy:

1. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2003. 18 AAC 75 Oil and Hazardous Substances Pollution Control. January 30.

2. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2002. Oil and Other Hazardous

Substances Pollution Control. Public Comment Draft. 18 AAC 75. December 14.

3. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2002. Cumulative Risk Guidance. November 7.

4. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2001. Calculated Cleanup Levels for Compounds without Tabular Values in Site Cleanup Rules - Technical Memorandum 01-007. December 18.

Table E-41 Selection of Chemicals of Potential Concern for the Tier I Human Health Screening - Soil Site 34 Northeast Cape, St. Lawrence Island, Alaska

		Soil Gra	wel Data			_		Regulatory	COPC Screening	
Constituent	Maximum Detect (mg/kg)	Minimum Detect (mg/kg)	Numb Samples	oer of Detects	Detection Frequency	BUTL Soil Tundra	(mg/kg) a Soil Gravel	Criteria ^a (mg/kg)	Benchmark ^b (mg/kg)	COPC? (Yes/No)
DOD			*							· · · · · ·
PCBs										
PCB-1254 (Aroclor 1254)	0.59	0.050	8	5	0.63	nc	nc	10	1	No
PCB-1260 (Aroclor 1260)	0.47	0.063	8	4	0.50	nc	nc	10	1	No
Petroleum Hydrocarbons										
Diesel Range Organics (DRO)	1,100	13	9	9	1.0	nc	nc	250	25	Yes
Residual Range Organics (RRO)	1,200	58	9	8	0.89	nc	nc	10,000	1,000	Yes

Notes:

na - Not applicable.

nc - Not calculated.

BUTL - Background upper tolerance limit.

mg/kg - Milligram per kilogram.

COPC - Chemical of Potential Concern

PCB - Polychlorinated Biphenyls

^a Please refer to Technical Memorandum-Background Determination for Risk

Assessment, Derivation of Ambient Concentrations for Abiotic Media Associated with

the Northeast Cape, St. Lawrence Island, Alaska (MWH, 2003).

^b Regulatory Criteria is equal to the minimum ADEC Soil Cleanup Level proposed by the following hierarchy:

1. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2003. 18 AAC 75 Oil and Hazardous Substances Pollution Control. January 30.

2. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2002. Oil and Other Hazardous Substances Pollution Control. Public Comment Draft. 18 AAC 75. December 14.

3. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2002. Cumulative Risk Guidance. November 7.

4. Minimum of 3 pathways listed in Tables B1 and B2, Under 40 inch zone: ADEC, 2001. Calculated Cleanup Levels for Compounds

without Tabular Values in Site Cleanup Rules - Technical Memorandum 01-007. December 18.

APPENDIX F

Human Health Tier 2 Baseline Risk Calculations

CANCER RISK CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 3 - Fuel Line Corridor and Pumphouse - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Soil Dermal	Dust Inhalation				Pathway-	Specific Ca	ncer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer Sl	ope Factor	(mg/kg-d) ⁻¹	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
VOLATILE ORGANIC COMPOUNDS Methylene chloride	0.0093	3.7E-09	0.0E+00	2.7E-13	7.5E-03	7.5E-03	1.6E-03	2.8E-11	0.0E+00	4.5E-16	2.8E-11
Notes:										Her	01 11
 ^a Based on the maximum or 95 percent upper confidence 1) Doses and cancer risks shown only for carcinogenic che 2) Based on the maximum or 95 percent upper confidence Doses and cancer risks shown only for carcinogenic che 		ILCR Inc mg/kg mg/kg-d	Incrementa Incomplete Milligrama Milligrama	al lifetime canc e pathway. s per kilogram. s per kilogram	er risk. per day.						
 Absorbed doses were calculated for dermal contact with of a medium Cancer risks are unitless values which represent the pro- 	the medium, and intal bability of incurring an	kes were calcu n adverse heal	ulated for ing	estion or inha	lation						

effect. They are calculated using the following formula: Cancer Risk = Exposure Dose x Cancer Slope Factor.

CANCER RISK CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 3 - Fule Line Corridor and Pumphouse - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Soil Dermal	Dust Inhalation				Pathwa	y-Specific C	ancer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer Slo	ope Factor	(mg/kg-d) ⁻¹	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
VOLATILE ORGANIC COMPOUNDS Methylene chloride	0.0093	1.1E-08	0.0E+00	8.2E-13	7.5E-03	7.5E-03	1.6E-03	8.4E-11	0.0E+00	1.4E-15	8.4E-11
										ILCR	8E-11
Notes:											
 ^a Based on the maximum or 95 percent upper conf and soil gravel at the site. 1) Doses and cancer risks shown only for carcinoge 2) Absorbed doses were calculated for dermal conta of a medium. 	idence limit (95% U nic chemicals with av act with the medium,	CL) on the me vailable toxicit and intakes we	an concentrat y values. ere calculated	ion detected i	n soil tundra or inhalation			ILCR Inc mg/kg mg/kg-d	Incremental Incomplete Milligrams Milligrams	lifetime cancer r pathway. per kilogram. per kilogram per	isk. day.

 Cancer risks are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Cancer Risk = Exposure Dose x Cancer Slope Factor.

CANCER RISK CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 3 - Fuel Line Corridor and Pumphouse - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Soil Dermal	Dust Inhalation				Pathway	-Specific Ca	ancer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer S	lope Factor	$(mg/kg-d)^{-1}$	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
VOCs Methylene chloride	0.0093	9.1E-11	0.0E+00	2.8E-14	7.5E-03	7.5E-03	1.6E-03	6.8E-13	0.0E+00	4.6E-17	6.8E-13
										ILCR	7E-13
Notes:											
 ^a Based on the maximum or 95 percent upper confit 1) Doses and cancer risks shown only for carcinogen 2) Absorbed doses were calculated for dermal contact of a medium 3) Cancer risks are unitless values which represent the statement of the	dence limit (95% UC ic chemicals with av ct with the medium, a ne probability of incu	CL) on the me ailable toxicit and intakes w rring an adve	ean concentra y values. ere calculated rse health	tion detected a	at the site. or inhalatio	n		ILCR Inc mg/kg mg/kg-d	Incrementa Incomplete Milligrams Milligrams	l lifetime cancer pathway. per kilogram. per kilogram pe	r risk. er day.

effect. They are calculated using the following formula: Cancer Risk = Exposure Dose x Cancer Slope Factor.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 3 - Fuel Line Corridor - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhalation				Pathw	ay-Specific	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (n	ng/kg-d)	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
INORGANICS											
Lead	119	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
VOLATILE ORGANIC COMPOUNDS											
Methylene chloride	0.0093	3.4E-08	0.0E+00	1.7E-12	6.0E-02	6.0E-02	8.6E-01	5.6E-07	0.0E+00	2.0E-12	0.00000056
POLYNUCLEAR AROMATIC HYDROCARBONS											
Naphthalene	51	1.8E-04	7.6E-05	9.2E-09	2.0E-02	2.0E-02	8.6E-04	9.2E-03	3.8E-03	1.1E-05	0.013
										HI	0.013
PETROLEUM HYDROCARBONS ^e											
Diesel Range Organics	2,587	na ^a	na ^a	na ^a	na ^a	naª	naª	na ^a	naª	na ^a	na ^a
Diesel Range Organics, Aliphatic	2,070	7.5E-03	Inc	3.7E-07	1.0E-01	na	2.9E-01	7.5E-02	Inc	1.3E-06	0.08
Diesel Range Organics, Aromatic	1,035	3.8E-03	Inc	1.9E-07	4.0E-02	na	5.7E-01	9.4E-02	Inc	3.3E-07	0.1
										HI	0.17
Notes:											
^a Based on the maximum or 95 percent upper confidence li	mit (95% UCL) or	n the mean						HI	Hazard inde	ex.	
concentration detected at the site.								HQ	Hazard quo	tient.	
^b Consistent with EPA policy, lead is not evaluated in the c	umulative HI estin	nate.						Inc	Incomplete	pathway.	
c Risks associated with indicator compounds are included in	n cumulative risk a	and hazard						mg/kg	Milligrams	per kilogram.	
estimates for each site. However, the health hazards asso	ciated with petrole	um mixtures						mg/kd-d	Milligrams	per kilogram	per day.
will be evaluated and reported separately.								na	not availabl	e	
^d Exposure dose and noncancer hazards were calculated for	r petroleum hydrod	carbons measu	ired as DRO (method 8100)							
by segregating total DRO concentrations into aliphatic ar	nd aromatic fractio	ons, assuming	80% aliphatic								
hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2	000c).										
1) Doses and noncancer hazards shown only for noncarcinog	genic chemicals wi	ith available to	oxicity values.								
2) Absorbed doses were calculated for dermal contact with t	he medium, and in	takes were ca	lculated for in	gestion or inhal	ation						
of a medium.											

 Noncancer hazards are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 3 - Fuel Line Corridor and Pumphouse - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhalation				Pathwa	ay-Specific	Hazard	Chemical-
Constituent	Concentration ^a (mg/kg)	Dose (mg/kg-d)	Dose (mg/kg-d)	Dose (mg/kg-d)	Refere Oral	nce Dose Dermal	(mg/kg-d) Inhalation	Soil Ingestion	Dermal	Dust Inhalation	Specific HQ
INORGANICS											
Lead	119	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
VOCs											
Methylene chloride	0.0093	1.0E-07	0.0E+00	5.0E-12	6.0E-02	6.0E-02	8.6E-01	1.7E-06	0.0E+00	5.9E-12	0.0000017
PAHs											
Naphthalene	51	5.6E-04	2.3E-04	2.8E-08	2.0E-02	2.0E-02	8.6E-04	2.8E-02	1.1E-02	3.2E-05	0.039
										HI	0.039
PETROLEUM HYDROCARBONS ^c									I		
Diesel Range Organics	2,587	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	2,070	2.3E-02	Inc	1.1E-06	1.0E-01	na	2.9E-01	2.3E-01	Inc	3.9E-06	0.2
Diesel Range Organics, Aromatic	1,035	1.1E-02	Inc	5.6E-07	4.0E-02	na	5.7E-01	2.8E-01	Inc	9.8E-07	0.3
									1	HI	0.51
Notes:											
^a Based on the maximum or 95 percent upper confi	idence limit (95% UC	L) on the mea	n					HI	Hazard inc	dex.	
concentration detected at the site.								HQ	Hazard qu	otient.	
^b Consistent with EPA policy, lead is not evaluated	l in the cumulative HI	estimate.						Inc	Incomplet	e pathway.	
° Risks associated with indicator compounds are in	cluded in cumulative	risk and haza	rd					mg/kg	Milligram	s per kilogran	1.
estimates for each site. However, the health haza	ards associated with pe	troleum mixt	ures					mg/kd-d	Milligram	s per kilogran	n per day.
will be evaluated and reported separately.								na	not availal	ole	
^d Exposure dose and noncancer hazards were calcu	lated for petroleum hy	drocarbons n	neasured as D	RO (method	8100)						
by segregating total DRO concentrations into ali	phatic and aromatic fr	actions, assur	ning 80% alip	ohatic							
hydrocarbons and 40% aromatic hydrocarbons (A	ADEC, 2000c).										
 Doses and noncancer hazards shown only for nor Absorbed doses were calculated for dermal conta 	ncarcinogenic chemica	lls with availa nd intakes we	ble toxicity v re calculated	alues. for ingestion	or inhalati	on					

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

of a medium

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 3 - Fuel Line Corridor and Pumphouse - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhalation				Path	way-Specific 1	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (r	ng/kg_d)	Soil	wuy opeenie i	Dust	Snecific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
INORGANICS											
Lead	119	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
VOLATILE ORGANIC COMPOUNDS Methylene chloride	0.0093	2.7E-10	0.0E+00	8.2E-14	6.0E-02	6.0E-02	8.6E-01	4.4E-09	0.0E+00	9.5E-14	0.000000004
DOI VNUCI FAD ADOMATIC HVDDOCAD	RONG										
Naphthalene	51	1.5E-06	2.5E-06	4.5E-10	2.0E-02	2.0E-02	8.6E-04	7.3E-05	1.2E-04	5.2E-07	0.0002
										HI	0.00020
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	2,587	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	2,070	5.9E-05	Inc	1.8E-08	1.0E-01	na	2.9E-01	5.9E-04	Inc	6.3E-08	0.0006
Diesel Range Organics, Aromatic	1,035	3.0E-05	Inc	9.1E-09	4.0E-02	na	5.7E-01	7.4E-04	Inc	1.6E-08	0.0007
										HI	0.0013
Notes:											
^a Based on the maximum or 95 percent upper confi	dence limit (95% U	CL) on the m	ean					HI	Hazard index	κ.	
concentration detected at the site.								HQ	Hazard quoti	ent.	
^b Consistent with EPA policy, lead is not evaluated	in the cumulative H	II estimate.						Inc	Incomplete p	athway.	
^c Risks associated with indicator compounds are in	cluded in cumulativ	e risk and ha	zard					mg/kg	Milligrams p	er kilogram.	
estimates for each site. However, the health haza	rds associated with	petroleum mi	xtures					mg/kd-d	Milligrams p	er kilogram pe	er day.
will be evaluated and reported separately.								na	not available		
^d Exposure dose and noncancer hazards were calcu	lated for petroleum	hydrocarbons	measured as	DRO (metho	d 8100)						
by segregating total DRO concentrations into ali	phatic and aromatic	fractions, ass	uming 80% a	liphatic							
hydrocarbons and 40% aromatic hydrocarbons (A	DEC, 2000c).										
 Doses and noncancer hazards shown only for non Absorbed doses were calculated for dermal contat of a medium 	carcinogenic chemic ct with the medium,	cals with avai and intakes v	lable toxicity were calculate	v values. ed for ingestio	n or inhalati	on					

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health

effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 3 - Fuel Line Corridor and Pumphouse - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Pathy	vay-Specific 1	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose ((mg/kg-d)	_		VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	14	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	11	9.5E-02	Inc	6.3E-02	1.0E-01	na	2.9E-01	9.5E-01	Inc	2.2E-01	1.2
Diesel Range Organics, Aromatic	5.6	4.7E-02	Inc	3.2E-02	4.0E-02	na	5.7E-01	1.2E+00	Inc	5.5E-02	1.2
Residual Range Organics	8.1	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Residual Range Organics, Aliphatic	7.3	6.2E-02	Inc	4.3E-05	2.0E+00	na	na	3.1E-02	Inc	Inc	0.031
Residual Range Organics, Aromatic	2.4	2.1E-02	Inc	1.4E-05	3.0E-02	na	na	6.8E-01	Inc	Inc	0.68
										ні	3.1
Notes:											012
 ^a Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected at the site. ^b Consistent with EPA policy, lead is not evaluated in the cumulative HI estimate. ^c Risks associated with indicator compounds are included in cumulative risk and hazard estimates for each site. However, the health hazards associated with petroleum mixtures will be evaluated and reported separately. 								HI HQ Inc mg/L mg/kd-d na VOC	Hazard inde. Hazard quot Incomplete p Milligrams p Milligrams p not available Volatile orga	x. ient. oathway. oer liter. oer kilogram p e anic compound	er day. 1
by segregating total DRO concentrations into	aliphatic and arom	atic fractions,	assuming 80	% aliphatic					, one or Br	une compound	
hydrocarbons and 40% aromatic hydrocarbon	s (ADEC, 2000c).										
^e Exposure dose and noncancer hazards were c	alculated for petrole	um hydrocarł	ons measure	d as RRO (m	ethod)						
by segregating total RRO concentrations into	aliphatic and aroma	atic fractions,	assuming 90	% aliphatic							
hydrocarbons and 30% aromatic hydrocarbon	s (ADEC, 2000c).										
 Doses and noncancer hazards shown only for Absorbed doses were calculated for dermal co of a medium Noncancer hazards are unitless values which 	noncarcinogenic ch ontact with the medi represent the probab	emicals with um, and intak pility of incur	available tox ces were calcurring an adver	icity values. ulated for ing se health	estion or in	halation					
effect. They are calculated using the following	ng formula: Noncar	ncer HI = Exp	osure Dose/I	Reference dos	e.						

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 3 - Fuel Line Corridor and Pumphouse - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	VOC Surface Water Ingestion Dermal Inhalation							Pathway-Specif		Hazard	_ Chemical-
Constituent	Concentration ^a (mg/L)	Dose (mg/kg-d)	Dose (mg/kg-d)	Dose (mg/kg-d)	Refere Oral	nce Dose (Dermal	mg/kg-d) Inhalation	Ingestion	Dermal	VOC Inhalation	Specific HQ
PETROLEUM HYDROCARBONS ^c Diesel Range Organics Diesel Range Organics, Aliphatic Diesel Range Organics, Aromatic Residual Range Organics Residual Range Organics Residual Range Organics	14 11 5.6 8.1 7.3 2.4	na ^d 3.7E-01 1.8E-01 na ^e 2.4E-01 8.0E 02	na ^d Inc Inc Inc Inc	na ^d 2.5E-01 1.2E-01 na ^c 1.7E-04 5 5E 05	na ^d 1.0E-01 4.0E-02 na ^e 2.0E+00	na ^d na na na ^c na	na ^d 2.9E-01 5.7E-01 na ^e na	na ^d 3.7E+00 4.6E+00 na ^e 1.2E-01 2.7E+00	na ^d Inc Inc Inc	na ^d 8.5E-01 2.2E-01 na ^c na	na ^d 4.5 4.8 na ^e 0.12 2.7
Residual Range Organics, Afomatic	2.4	6.0E-02	IIIC	J.JE-0J	5.0E-02	lla	lla	2.7E+00	me	lla	2.7
 Notes: ^a Based on the maximum or 95 percent upper concentration detected at the site. ^b Consistent with EPA policy, lead is not evace reaction of the second sec	r confidence limit (95 iluated in the cumula are included in cum h hazards associated calculated for petrol nto aliphatic and aror ons (ADEC, 2000c). calculated for petrol nto aliphatic and aror ons (ADEC, 2000c). for noncarcinogenic c contact with the med	5% UCL) on t tive HI estima alative risk ar with petroleur eum hydrocan natic fractions eum hydrocan natic fractions hemicals with lium, and inta	the mean ate. ad hazard m mixtures rbons measur s, assuming 8 rbons measur s, assuming 9 n available to akes were cal	red as DRO (r 30% aliphatic red as RRO (n 10% aliphatic xicity values. culated for in	nethod 810 nethod) gestion or in	0) nhalation		HI HQ Inc mg/L mg/kd-d na VOC	Hazard inde Hazard quot Incomplete p Milligrams p Milligrams p not available Volatile orga	x. ient. pathway. per liter. per kilogram p anic compound	er day. 1.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE INCIDENTAL VISITOR SITE 3 - Fuel Line Corridor and Pumphouse - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Pathy	vay-Specific	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Referen	nce Dose (mg/kg-d)			VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	14	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	11.2	1.3E-02	Inc	3.1E-03	1.0E-01	na	2.9E-01	1.3E-01	Inc	1.1E-02	0.14
Diesel Range Organics, Aromatic	5.6	6.4E-03	Inc	1.5E-03	4.0E-02	na	5.7E-01	1.6E-01	Inc	2.7E-03	0.16
Residual Range Organics	8.1	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Residual Range Organics, Aliphatic	7.3	8.3E-03	Inc	2.1E-06	2.0E+00	na	na	4.2E-03	Inc	Inc	0.0042
Residual Range Organics, Aromatic	2.4	2.8E-03	Inc	6.9E-07	3.0E-02	na	na	9.2E-02	Inc	Inc	0.092
										TT	0.40
Notos:										HI	0.40
^a Based on the maximum or 95 percent upper co	onfidence limit (95%	6 UCL) on the	e mean					HI	Hazard inde	х.	
concentration detected at the site.								HQ	Hazard quot	ient.	
^b Consistent with EPA policy, lead is not evalua	ted in the cumulativ	ve HI estimate	2.					Inc	Incomplete r	athway.	
^c Risks associated with indicator compounds are	e included in cumul	ative risk and	hazard					mg/L	Milligrams r	er liter.	
estimates for each site. However, the health ha	azards associated w	ith petroleum	mixtures					mø/kd-d	Milligrams r	er kilogram n	er dav.
will be evaluated and reported separately.								na	not available	, and an a second provide the second s	u duji
^d Exposure dose and noncancer hazards were ca	lculated for petrole	um hvdrocarb	ons measured	l as DRO (me	thod 8100)			NOC	Volotilo orga	, nia aomnoun	1
by segregating total DRO concentrations into	aliphatic and aroma	tic fractions.	assuming 809	% aliphatic	,			VUC	volatile orga	une compound	1.
hydrocarbons and 40% aromatic hydrocarbons	(ADEC 2000c)		ussunning oo	o unpilatio							
^c Exposure dose and noncancer hazards were ca	lculated for petrole	um hydrocarb	ons measured	as RRO (me	thod)						
by sogragating total PBO concentrations into	aliphatic and aroma	un nyurocaro	occuming 000	aliphotic	lilou)						
by segregating total KKO concentrations into an phate and atomate fractions, assuming 50% an phate											
hydrocarbons and 30% aromatic hydrocarbons	(ADEC, 2000c).										
 Doses and noncancer hazards shown only for 1 Absorbed doses were calculated for dermal co 	noncarcinogenic che ntact with the medi	emicals with a um and intak	available toxi es were calcu	city values. lated for inge	stion or inh	alation					
of a medium	inder with the mour	and muk	es incre culcu	initia for flige	stron or min	andron					
3) Noncancer hazards are unitless values which r	epresent the probab	ility of incurr	ing an advers	e health							
effect. They are calculated using the following	g formula: Noncar	icer HI = Exp	osure Dose/R	eference dose							

NONCANCER HAZARD CALCULATIONS FOR A CURRENT SEASONAL RESIDENT SITE 4 - Subsistence Fish and Hunting Camp - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion Dose	Dermal	Dust Inhalation Dose				Pathw	vay-Specific Hazard		Chemical-
	Concentration ^a				Reference Dose (mg/kg-d)			Soil		Duct	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	НО
								8			L L
INORGANICS											
Lead	160	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
											-
										HI	0
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	5,300	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	4,240	1.5E-02	Inc	7.7E-07	1.0E-01	na	2.9E-01	1.5E-01	Inc	2.6E-06	0.15
Diesel Range Organics, Aromatic	2,120	7.7E-03	Inc	3.8E-07	4.0E-02	na	5.7E-01	1.9E-01	Inc	6.7E-07	0.19
Residual Range Organics	3,420	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Residual Range Organics, Aliphatic	3,078	1.1E-02	Inc	5.6E-07	2.0E+00	na	na	5.6E-03	Inc	Inc	0.006
Residual Range Organics, Aromatic	1,026	3.7E-03	Inc	1.9E-07	3.0E-02	na	na	1.2E-01	Inc	Inc	0.12
										ш	0.48
Notes:										m	0.40
^a Based on the maximum or 95 percent upper confidence limit (95% LICI) on the mean								ні	Hazard ind	ye	
concentration detected at the site									Hozord and	tiont	
^b Consistent with EDA with a limit of the day way being HL activate								пұ			
Consistent with ErA poincy, lead is not evaluated in the cumulative HI estimate.								Inc	incomplete pathway.		
· Kisks associated with indicator compounds are included in cumulative risk and nazard							mg/kg	Milligrams per kilogram.			
estimates for each site. However, the health hazards associated with petroleum mixtures							mg/kd-d	I-d Milligrams per kilogram per day.			
will be evaluated and reported separately.								na	not available		
^d Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as DRO (method 8100)											
by segregating total DRO concentrations into aliph	natic and aromatic f	ractions, assu	uming 80% ali	phatic							
hydrocarbons and 40% aromatic hydrocarbons (AE	DEC, 2000c).										
e Exposure dose and noncancer hazards were calcula	ted for petroleum h	ydrocarbons	measured as I	RRO (method)							
by segregating total RRO concentrations into aliph	natic and aromatic f	ractions, assu	uming 90% ali	phatic							
hydrocarbons and 30% aromatic hydrocarbons (AE	DEC. 2000c).		U								
1) Doses and noncancer bazards shown only for nonc	arcinogenic chemic	als with avail	able toxicity	values							
2) Absorbed doses were calculated for dermal contact	with the medium	and intakes w	vere calculated	l for ingestion of	or inhalation						
of a medium.			carcaiatet								
3) Noncancer hazards are unitless values which repres	sent the probability	of incurring	an adverse he	alth							

effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.
NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 4 - Subsistence Fish and Hunting Camp - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhalation				Pathw	av-Specific	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (n	ng/kg-d)	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
INORGANICS											
Lead	160	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
										HI	0
PETROLEUM HYDROCARBONS ^c											Ū
Diesel Range Organics	5,300	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	4,240	1.5E-02	Inc	7.7E-07	1.0E-01	na	2.9E-01	1.5E-01	Inc	2.6E-06	0.15
Diesel Range Organics, Aromatic	2,120	7.7E-03	Inc	3.8E-07	4.0E-02	na	5.7E-01	1.9E-01	Inc	6.7E-07	0.19
Residual Range Organics	3,420	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Residual Range Organics, Aliphatic	3,078	1.1E-02	Inc	5.6E-07	2.0E+00	na	na	5.6E-03	Inc	Inc	0.0056
Residual Range Organics, Aromatic	1,026	3.7E-03	Inc	1.9E-07	3.0E-02	na	na	1.2E-01	Inc	Inc	0.12
										HI	0.48
Notes:											
^a Based on the maximum or 95 percent upper confi	dence limit (95% U	CL) on the me	ean					HI	Hazard ind	ex.	
concentration detected at the site.								HQ	Hazard quo	otient.	
^b Consistent with EPA policy, lead is not evaluated	in the cumulative H	I estimate.						Inc	Incomplete	pathway.	
° Risks associated with indicator compounds are in	cluded in cumulative	e risk and haz	ard					mg/kg	Milligrams	per kilogram.	
estimates for each site. However, the health haza	rds associated with p	etroleum mix	ctures					mg/kd-d	Milliorams	ner kilogram	per dav
will be evaluated and reported separately.								na	not availab	le	per day.
^d Exposure dose and noncancer hazards were calcu	lated for petroleum h	ydrocarbons	measured as I	ORO (method 8	(100)						
by segregating total DRO concentrations into alip	phatic and aromatic f	ractions, assu	uming 80% ali	phatic							
hydrocarbons and 40% aromatic hydrocarbons (A	DEC, 2000c).										
e Exposure dose and noncancer hazards were calcu	lated for petroleum h	ydrocarbons	measured as I	RRO (method)							
by segregating total RRO concentrations into alig	hatic and aromatic f	ractions, assu	uming 90% ali	phatic							
hydrocarbons and 30% aromatic hydrocarbons (A	DEC, 2000c).										
1) Doses and noncancer hazards shown only for non	carcinogenic chemic	als with avail	lable toxicity	values.							
2) Absorbed doses were calculated for dermal contact	ct with the medium,	and intakes w	vere calculated	l for ingestion of	or inhalation						
of a medium.											

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 4 - Subsistence Fishing and Hunting Camp - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhalation				Pathws	w-Specific	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose	(mø/kø-d)	Soil	ij opeeme	Dust	Snecific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
INORGANICS		ь	h	ь	h	ь	h	ь	ь	ь	h
Lead	160	na	na	na	na	na	na	na	na	na	na
										HI	0
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	5.300	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	4,240	4.6E-02	Inc	2.3E-06	1.0E-01	na	2.9E-01	4.6E-01	Inc	7.9E-06	0.5
Diesel Range Organics, Aromatic	2,120	2.3E-02	Inc	1.1E-06	4.0E-02	na	5.7E-01	5.8E-01	Inc	2.0E-06	0.6
Residual Range Organics	3,420	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Residual Range Organics, Aliphatic	3,078	3.4E-02	Inc	1.7E-06	2.0E+00	na	na	1.7E-02	Inc	Inc	0.017
Residual Range Organics, Aromatic	1,026	1.1E-02	Inc	5.6E-07	3.0E-02	na	na	3.7E-01	Inc	Inc	0.37
										ні	14
Notes:											1.4
^a Based on the maximum or 95 percent upper confid	ence limit (95% UC	CL) on the me	an					HI	Hazard in	dex.	
concentration detected at the site.								HQ	Hazard qu	otient.	
^b Consistent with EPA policy, lead is not evaluated i	n the cumulative H	estimate.						Inc	Incomplet	e pathway.	
^c Risks associated with indicator compounds are inc	luded in cumulative	risk and haza	ard					mø/kø	Millioram	s per kilogram	1
estimates for each site. However, the health hazard	is associated with p	etroleum mix	tures					mg/kd_d	Milligram	s per kilogram	n ner dav
will be evaluated and reported separately.	Ĩ							na	not availa	ble	r per day.
^d Exposure dose and noncancer hazards were calcula	ated for petroleum h	ydrocarbons i	measured as 1	DRO (method	d 8100)			nu	not uvunu		
by segregating total DRO concentrations into aliph	natic and aromatic f	ractions, assu	ming 80% al	iphatic							
hydrocarbons and 40% aromatic hydrocarbons (AI	DEC, 2000c).		C	•							
e Exposure dose and noncancer hazards were calcula	ated for petroleum h	ydrocarbons i	measured as 1	RRO (method	1)						
by segregating total RRO concentrations into aliph	natic and aromatic f	ractions, assu	ming 90% ali	iphatic							
hydrocarbons and 30% aromatic hydrocarbons (AI	DEC, 2000c).		-	<u>^</u>							
1) Doses and noncancer hazards shown only for nonc	arcinogenic chemic	als with avail	able toxicity	values.							
2) Absorbed doses were calculated for dermal contact	with the medium,	and intakes w	ere calculated	1 for ingestion	n or inhala	tion					
of a medium.				-							
3) Noncancer hazards are unitless values which repre-	sent the probability	of incurring a	in adverse he	alth							
effect. They are calculated using the following for	mula: Noncancer H	II = Exposure	Dose/Refere	ence dose.							

NONCANCER HAZARD CALCULATIONS FOR A FUTURE INCIDENTAL VISITOR SITE 4 - Subsistence Fishing and Hunting Camp - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhalation				Path	wav-Specific 1	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (n	ng/kg-d)	Soil	aug specific i	Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
INORGANICS											
Lead	160	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Loui	100	nu	nu	nu	nu	nu	nu	nu	nu	nu	nu
										HI	0
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	5,300	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	4,240	1.2E-04	Inc	3.7E-08	1.0E-01	na	2.9E-01	1.2E-03	Inc	1.3E-07	0.0012
Diesel Range Organics, Aromatic	2,120	6.1E-05	Inc	1.9E-08	4.0E-02	na	5.7E-01	1.5E-03	Inc	3.3E-08	0.0015
Residual Range Organics	3,420	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Residual Range Organics, Aliphatic	3,078	8.8E-05	Inc	2.7E-08	2.0E+00	na	na	4.4E-05	Inc	Inc	4.4E-05
Residual Range Organics, Aromatic	1,026	2.9E-05	Inc	9.0E-09	3.0E-02	na	na	9.8E-04	Inc	Inc	0.00098
										HI	0.0037
Notes:											
^a Based on the maximum or 95 percent upper cont	fidence limit (95% U	JCL) on the r	nean					HI	Hazard index	τ.	
concentration detected at the site.								HQ	Hazard quoti	ent.	
^b Consistent with EPA policy, lead is not evaluate	d in the cumulative	HI estimate.						Inc	Incomplete p	athway.	
^c Risks associated with indicator compounds are i	ncluded in cumulativ	ve risk and ha	azard					mg/kg	Milligrams p	er kilogram.	
estimates for each site. However, the health haz	ards associated with	petroleum m	ixtures					mg/kd-d	Milligrams n	er kilogram ne	r dav
will be evaluated and reported separately.		-						na	not available	er miogram pe	aug.
^d Exposure dose and noncancer hazards were calcu	ulated for petroleum	hydrocarbon	s measured a	s DRO (meth	od 8100)			nu	not uvunuoie		
by segregating total DRO concentrations into al	iphatic and aromatic	fractions, as	suming 80%	aliphatic							
hydrocarbons and 40% aromatic hydrocarbons (A	ADEC, 2000c).		C								
^e Exposure dose and noncancer hazards were calcu	ulated for petroleum	hydrocarbon	s measured a	s RRO (meth	(bc						
by segregating total RRO concentrations into ali	phatic and aromatic	fractions, as	suming 90%	aliphatic	,						
hydrocarbons and 30% aromatic hydrocarbons (A	ADEC. 2000c).		U								
1) Doses and noncancer hazards shown only for no	ncarcinogenic chemi	icals with ava	uilable toxicit	v values							
 2) Absorbed doses were calculated for dermal conta of a medium 	act with the medium	, and intakes	were calcula	ted for ingesti	on or inhala	tion					
 Noncancer hazards are unitless values which rep effect. They are calculated using the following f 	resent the probabilit ormula: Noncancer	y of incurring HI = Exposi	g an adverse l ire Dose/Refe	health erence dose.							

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 4 - Subsistence Fishing and Hunting Camp - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Pathy	vay-Specific I	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (mg/kg-d)			VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	3.7	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	3.0	2.5E-02	Inc	1.7E-02	1.0E-01	na	2.9E-01	2.5E-01	Inc	5.8E-02	0.31
Diesel Range Organics, Aromatic	1.5	1.3E-02	Inc	8.3E-03	4.0E-02	na	5.7E-01	3.1E-01	Inc	1.5E-02	0.33
Residual Range Organics	6.5	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Residual Range Organics, Aliphatic	5.9	4.9E-02	Inc	3.4E-05	2.0E+00	na	na	2.5E-02	Inc	na	0.025
Residual Range Organics, Aromatic	2.0	1.6E-02	Inc	1.1E-05	3.0E-02	na	na	5.5E-01	Inc	na	0.55
										HI	1.2
Notes:										<u>.</u>	
^a Based on the maximum or 95 percent upper	confidence limit (95%	6 UCL) on th	e mean					HI	Hazard index	ζ.	
concentration detected at the site.								HQ	Hazard quoti	ent.	
^b Consistent with EPA policy, lead is not evalu	ated in the cumulativ	ve HI estimate	е.					Inc	Incomplete p	athway.	
^c Risks associated with indicator compounds a	re included in cumul	ative risk and	l hazard					mg/L	Milligrams p	er liter.	
estimates for each site. However, the health	hazards associated w	ith petroleum	n mixtures					mg/kd-d	Milligrams p	er kilogram pe	er dav.
will be evaluated and reported separately.								na	not available		
^d Exposure dose and noncancer hazards were	calculated for petrole	um hydrocart	oons measure	d as DRO (m	ethod 8100)		VOC	Volatile orga	nic compound	1.
by segregating total DRO concentrations int	o aliphatic and aroma	atic fractions,	assuming 80	% aliphatic					8	I	
hydrocarbons and 40% aromatic hydrocarbo	ns (ADEC, 2000c).										
^e Exposure dose and noncancer hazards were	calculated for petrole	um hydrocart	oons measure	d as RRO (me	ethod)						
by segregating total RRO concentrations int	o aliphatic and aroma	tic fractions,	assuming 90	% aliphatic							
hydrocarbons and 30% aromatic hydrocarbo	ns (ADEC, 2000c).										
1) Doses and noncancer hazards shown only for	r noncarcinogenic ch	emicals with	available toxi	icity values.							
 Absorbed doses were calculated for dermal c of a medium 	ontact with the medi	um, and intak	tes were calcu	ulated for inge	estion or inl	nalation					
2) Nonconcer horondo ano uniticos volves which	nonnocont the nuch of	liter of in our	in a an advian	a haalth							

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 4 - Subsistence Fish and Hunting Camp - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Pathy	vay-Specific 1	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (mg/kg-d)			VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	3.7	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	3.0	9.7E-02	Inc	6.5E-02	1.0E-01	na	2.9E-01	9.7E-01	Inc	2.2E-01	1.2
Diesel Range Organics, Aromatic	1.5	4.9E-02	Inc	3.2E-02	4.0E-02	na	5.7E-01	1.2E+00	Inc	5.7E-02	1.3
Residual Range Organics	6.5	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Residual Range Organics, Aliphatic	4.6	1.5E-01	Inc	1.0E-04	5.0E+00	na	na	3.0E-02	Inc	na	0.030
Residual Range Organics, Aromatic	3.3	1.1E-01	Inc	7.4E-05	2.0E-01	na	na	5.3E-01	Inc	na	0.53
										ні	3.0
Notes:											5.0
^a Based on the maximum or 95 percent upper	confidence limit (9	5% UCL) on	the mean					பா	Hazard inde	7	
based on the maximum of 95 percent upper	confidence mint (9	570 UCL) 011	the mean							.	
b a second detected at the site.								HQ -	Hazard quot	ent.	
Consistent with EPA policy, lead is not eval	uated in the cumula	tive HI estim	ate.					Inc	Incomplete p	athway.	
^c Risks associated with indicator compounds	are included in cum	ulative risk a	nd hazard					mg/L	Milligrams p	er liter.	
estimates for each site. However, the health	hazards associated	with petroleu	ım mixtures					mg/kd-d	Milligrams p	er kilogram p	er day.
will be evaluated and reported separately.								na	not available	:	
^d Exposure dose and noncancer hazards were	calculated for petro	leum hydroca	urbons measu	red as DRO (method 810)0)		VOC	Volatile orga	nic compound	d.
by segregating total DRO concentrations in	to aliphatic and aro	matic fractior	ns, assuming	80% aliphatic	;					1	
hydrocarbons and 40% aromatic hydrocarbo	ons (ADEC, 2000c).		-	-							
^e Exposure dose and noncancer hazards were	calculated for petro	leum hydroca	urbons measu	red as RRO (1	method)						
by segregating total RRO concentrations in	to aliphatic and aro	matic fractior	ns, assuming	90% aliphatic	;						
hydrocarbons and 30% aromatic hydrocarbo	ons (ADEC, 2000c).										
1) Doses and noncancer hazards shown only for	or noncarcinogenic	hemicals wit	h available to	oxicity values							
2) Absorbed doses were calculated for dermal	contact with the me	dium, and int	akes were cal	culated for in	gestion or i	nhalation					
of a medium											

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE INCIDENTAL VISITOR SITE 4 - Subsistence Fish and Hunting Camp - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Pathy	vay-Specific 1	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose ((mg/kg-d)		· ·	VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	нq
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	3.7	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	3.0	3.4E-03	Inc	8.1E-04	1.0E-01	na	2.9E-01	3.4E-02	Inc	1.2E-02	0.045
Diesel Range Organics, Aromatic	1.5	1.7E-03	Inc	4.1E-04	4.0E-02	na	5.7E-01	4.2E-02	Inc	3.0E-03	0.045
Residual Range Organics	6.5	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Residual Range Organics, Aliphatic	5.9	6.7E-03	Inc	1.7E-06	2.0E+00	na	na	3.3E-03	Inc	na	0.0033
Residual Range Organics, Aromatic	2.0	2.2E-03	Inc	5.6E-07	3.0E-02	na	na	7.4E-02	Inc	Inc	0.074
										HI	0.17
Notes:										-	
^a Based on the maximum or 95 percent upper of	confidence limit (959	% UCL) on th	ie mean					HI	Hazard inde	х.	
concentration detected at the site.								HQ	Hazard quot	ient.	
^b Consistent with EPA policy, lead is not evalu	ated in the cumulati	ve HI estimat	e.					Inc	Incomplete r	athway.	
^c Risks associated with indicator compounds a	re included in cumu	lative risk and	l hazard					mg/L	Milligrams r	er liter	
estimates for each site. However, the health h	nazards associated w	vith petroleum	mixtures					mg/kd_d	Milliorams r	er kilogram n	er dav
will be evaluated and reported separately.								ng/ku u	not available	, knogram p	er duy.
^d Exposure dose and noncancer hazards were c	alculated for petrole	um hvdrocart	ons measured	l as DRO (me	thod 8100))		VOC	Volatile org	nic compound	4
by segregating total DRO concentrations into	aliphatic and arom	atic fractions.	assuming 80	% aliphatic	,			VOC	volatile orga	une compound	J.
hydrocarbons and 40% aromatic hydrocarbor	ns (ADEC, 2000c).			···· 1							
^e Exposure dose and noncancer hazards were c	alculated for petrole	um hydrocarł	ons measure	1 as RRO (me	thod)						
by segregating total RRO concentrations into	aliphatic and arom	atic fractions	assuming 90	% aliphatic	,						
by segregating total KKO concentrations into	$\sim (ADEC 2000c)$	atte fractions,	ussunning 90	70 amphatic							
1) D	is (ADEC, 2000C).	. 1 . 1		•. 1							
 Doses and noncancer hazards shown only for Absorbed doses were calculated for dermal co of a medium 	ontact with the medi	um, and intak	available toxi	city values. lated for inge	stion or inh	nalation					
3) Noncancer hazards are unitless values which	represent the probab	oility of incur	ring an advers	se health							

effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

CANCER RISK CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 6 - Cargo Beach Road Drumfield - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Soil Dermal	Dust Inhalation				Pathway-	Specific Ca	ncer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer Sl	ope Factor	(mg/kg-d) ⁻¹	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
INORGANICS											
Beryllium	1.3	5.2E-07	0.0E+00	3.8E-11	na	na	8.4E+00	na	na	3.2E-10	3.2E-10
Cobalt	5.1	2.1E-06	0.0E+00	1.5E-10	na	na	9.8E+00	na	na	1.5E-09	1.5E-09
VOLATILE ORGANIC COMPOUNDS Methylene chloride	0.0079	3.2E-09	0.0E+00	2.3E-13	7.5E-03	7.5E-03	1.6E-03	2.4E-11	0.0E+00	3.8E-16	2.4E-11
										ILCR	2E-09
Notes:										-	
 ^a Based on the maximum or 95 percent upper confidence 1) Doses and cancer risks shown only for carcinogenic c 2) Based on the maximum or 95 percent upper confidence Doses and cancer risks shown only for carcinogenic c 3) Absorbed doses were calculated for dermal contact we of a medium 	ce limit (95% UCL) on hemicals with available ce limit (95% UCL) on hemicals with available ith the medium, and int	the mean con toxicity valu the mean con toxicity valu akes were cal	centration de les. centration de les. culated for ir	etected at the s etected at the s ngestion or inh	ite. ite. alation			ILCR Inc mg/kg mg/kg-d na	Increment Incomplete Milligram Milligram Not availa	al lifetime cand e pathway. s per kilogram. s per kilogram ble.	cer risk. per day.

Cancer risks are unitless values which represent the probability of incurring an adverse health

CANCER RISK CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 6 - Cargo Beach Road Drumfield - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

Constituent	Soil Concentration ^a	Soil Ingestion Dose (mg/lig.d)	Soil Dermal Dose (mg/kg d)	Dust Inhalation Dose (mg/kg d)	Cancer Sl	ope Factor	(mg/kg-d) ⁻¹	Pathwa Soil	ny-Specific (Cancer Risk Dust	Chemical- Specific Bisk
Constituent	(IIIg/Kg)	(Ing/kg-u)	(Ing/kg-u)	(Ing/kg-u)	Ulai	Dermai		ingestion	Dermai	malation	RISK
INORGANICS											
Beryllium	1.3	1.6E-06	0.0E+00	1.1E-10	na	na	8.4E+00	na	na	9.6E-10	9.6E-10
Cobalt	5.1	6.2E-06	0.0E+00	4.5E-10	na	na	9.8E+00	na	na	4.4E-09	4.4E-09
VOLATILE ORGANIC COMPOUNDS Methylene chloride	0.0079	9.5E-09	0.0E+00	7.0E-13	7.5E-03	7.5E-03	1.6E-03	7.2E-11	0.0E+00	1.1E-15	7.2E-11
										ILCR	5E-09
Notes:											
^a Based on the maximum or 95 percent upper cor and soil gravel at the site.	nfidence limit (95% U	ICL) on the me	ean concentra	tion detected	in soil tundra	a		ILCR Inc	Incremental Incomplete	l lifetime cancer pathway.	risk.
1) Doses and cancer risks shown only for carcinog	enic chemicals with a	vailable toxic	ty values.					mg/kg	Milligrams	per kilogram.	
 Absorbed doses were calculated for dermal cont of a medium. 	tact with the medium,	and intakes w	ere calculated	l for ingestion	ı or inhalatio	n		mg/kg-d na	Milligrams Not availab	per kilogram per le.	day.
3) Cancer risks are unitless values which represent	the probability of inc	curring an adv	erse health								

CANCER RISK CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 6 - Cargo Beach Road Drumfield - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

Concentration ^a	Dawa						r aufway-	-specific Ca	Incer KISK	Chemical-
	Dose	Dose	Dose	Cancer Sl	ope Factor	(mg/kg-d) ⁻¹	Soil		Dust	Specific
(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
1.3	1.3E-08	0.0E+00	3.9E-12	na	na	8.4E+00	na	na	3.3E-11	3.3E-11
5.1	5.0E-08	0.0E+00	1.5E-11	na	na	9.8E+00	na	na	1.5E-10	1.5E-10
0.0079	7.7E-11	0.0E+00	2.4E-14	7.5E-03	7.5E-03	1.6E-03	5.8E-13	0.0E+00	3.9E-17	5.8E-13
									ILCR	2E-10
idence limit (95% UC	CL) on the me	an concentra	tion detected	at the site.			ILCR	Incrementa	l lifetime cancer	risk.
1	1.3 5.1 0.0079 dence limit (95% UC	1.3 1.3E-08 5.1 5.0E-08 0.0079 7.7E-11 idence limit (95% UCL) on the menic chemicals with available toxici	1.3 1.3E-08 0.0E+00 5.1 5.0E-08 0.0E+00 0.0079 7.7E-11 0.0E+00	1.3 1.3E-08 0.0E+00 3.9E-12 5.1 5.0E-08 0.0E+00 1.5E-11 0.0079 7.7E-11 0.0E+00 2.4E-14	1.3 1.3E-08 0.0E+00 3.9E-12 na 5.1 5.0E-08 0.0E+00 1.5E-11 na 0.0079 7.7E-11 0.0E+00 2.4E-14 7.5E-03	1.3 1.3E-08 0.0E+00 3.9E-12 na na 5.1 5.0E-08 0.0E+00 1.5E-11 na na 0.0079 7.7E-11 0.0E+00 2.4E-14 7.5E-03 7.5E-03 dence limit (95% UCL) on the mean concentration detected at the site. nic chemicals with available toxicity values.	1.3 1.3E-08 0.0E+00 3.9E-12 na na 8.4E+00 5.1 5.0E-08 0.0E+00 1.5E-11 na na 9.8E+00 0.0079 7.7E-11 0.0E+00 2.4E-14 7.5E-03 7.5E-03 1.6E-03	1.3 1.3E-08 0.0E+00 3.9E-12 na na 8.4E+00 na 5.1 5.0E-08 0.0E+00 1.5E-11 na na 9.8E+00 na 0.0079 7.7E-11 0.0E+00 2.4E-14 7.5E-03 7.5E-03 1.6E-03 5.8E-13	1.3 1.3E-08 0.0E+00 3.9E-12 na na 8.4E+00 na na 5.1 5.0E-08 0.0E+00 1.5E-11 na na 9.8E+00 na na 0.0079 7.7E-11 0.0E+00 2.4E-14 7.5E-03 7.5E-03 1.6E-03 5.8E-13 0.0E+00 dence limit (95% UCL) on the mean concentration detected at the site. ILCR Incrementa nic chemicals with available toxicity values. Inc Incomplete	1.3 1.3E-08 0.0E+00 3.9E-12 na na 8.4E+00 na na 3.3E-11 5.1 5.0E-08 0.0E+00 1.5E-11 na na 9.8E+00 na na 1.5E-10 0.0079 7.7E-11 0.0E+00 2.4E-14 7.5E-03 7.5E-03 1.6E-03 5.8E-13 0.0E+00 3.9E-17 ILCR dence limit (95% UCL) on the mean concentration detected at the site. nic chemicals with available toxicity values. ILCR Incremental lifetime cancer

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

 Cancer risks are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Cancer Risk = Exposure Dose x Cancer Slope Factor. ILCRIncremental iffetime cancer risk.IncIncomplete pathway.mg/kgMilligrams per kilogram.mg/kg-dMilligrams per kilogram per day.naNot available.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 6 - Cargo Beach Drum Field - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhalation				Pathw	vav-Specific	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (n	ng/kg-d)	Soil	J	Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
DIODGANICG											
INORGANICS	0.050	2 (E 02	0.05.00	1.05.04	1.05.00	1.01.00	1 45 02	2 (5 02	0.05.00	1 25 02	0.027
Aluminum	9,850	3.6E-02	0.0E+00	1.8E-06	1.0E+00	1.0E+00	1.4E-03	3.6E-02	0.0E+00	1.3E-03	0.037
Beryllium	1.5	4./E-06	0.0E+00	2.3E-10	2.0E-03	2.0E-03	5.7E-06	2.4E-03	0.0E+00	4.1E-05	0.0024
Cobait	5.1	1.9E-05	0.0E+00	9.2E-10	2.0E-02	2.0E-02	5./E-06	9.3E-04	0.0E+00	1.6E-04	0.0011
Manganese	164	6.0E-04	0.0E+00	3.0E-08	1.4E-01	1.4E-01	1.4E-05	4.3E-03	0.0E+00	2.1E-03	0.0064
VOLATILE ORGANIC COMPOUNDS											
m,p-Xylene	0.044	1.6E-07	0.0E+00	7.9E-12	2.0E-01	2.0E-01	2.9E-02	8.0E-07	0.0E+00	2.7E-10	0.000008
Methylene chloride	0.0079	2.9E-08	0.0E+00	1.4E-12	6.0E-02	6.0E-02	8.6E-01	4.8E-07	0.0E+00	1.7E-12	0.00000048
o-Xylene	0.014	5.1E-08	0.0E+00	2.5E-12	2.0E-01	2.0E-01	2.9E-02	2.5E-07	0.0E+00	8.7E-11	0.00000025
										ні	0.047
PETROLEUM HYDROCARBONS ^c											0.047
Diesel Range Organics	102.000	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	81,600	3.0E-01	Inc	1.5E-05	1.0E-01	na	2.9E-01	3.0E+00	Inc	5.1E-05	3.0
Diesel Range Organics, Aromatic	40,800	1.5E-01	Inc	7.4E-06	4.0E-02	na	5.7E-01	3.7E+00	Inc	1.3E-05	3.7
Residual Range Organics	8.500	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Residual Range Organics, Aliphatic	7.650	2.8E-02	Inc	1.4E-06	2.0E+00	na	na	1.4E-02	Inc	Inc	0.014
Residual Range Organics, Aromatic	2550	9.3E-03	Inc	4.6E-07	3.0E-02	na	na	3.1E-01	Inc	Inc	0.31
										HI	7.0
Notes:	C. 1 1:								TT		
concentration detected at the site.	confidence mint (95% O	CL) on the m	ean					НО	Hazard duo	ex. otient.	
^b Consistent with EPA policy, lead is not evalu	ated in the cumulative H	II estimate.						Inc	Incomplete	pathway.	
^c Risks associated with indicator compounds a	re included in cumulativ	e risk and haz	vard					mø/kø	Milligrams	per kilogram	
estimates for each site. However, the health h	nazards associated with i	petroleum mi	xtures					mg/kd-d	Milligrams	per kilogram	ner dav
will be evaluated and reported separately								na	not availab	le	per day.
^d Exposure dose and noncancer hazards were c	alculated for netroleum l	hydrocarbons	measured as]	DRO (method 8	8100)			iiu	not uvunuo		
by segregating total DRO concentrations into	aliphatic and aromatic	fractions assi	uming 80% al	inhatic	5100)						
hydrocarbons and 40% aromatic hydrocarbon	s (ADEC 2000c)	indetions, uss	anning 0070 ui	ipilatie							
^e Exposure dose and noncancer bazards were c	alculated for netroleum l	hydrocarbons	measured as]	RRO (method)							
by segregating total RBO concentrations into	aliphatic and aromatic	fractions assi	iming 90% ali	inhatic	·						
hydrocarbons and 30% aromatic hydrocarbon	(ADEC 2000c)	1140110115, d550	anning 7070 all	ipilatie							
1) Doses and nonconcor beyonds shown anti-far	noncorcinoconic chemi	ole with and	labla toriaite	values							
2) Absorbed doses were calculated for dermal of	ontact with the medium	and intakes v	vere calculate	for ingestion	or inhalation						

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium.

 Noncancer hazards are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 6 - Cargo Beach Road Drumfield - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dormal	Dust Inhalation				Pathwe	v-Specific	Hazard	Chemical
	Concentration ^a	Doco	Derma	Dogo	Dofono	nao Dogo	(mallea d)	Coil	ty-specific	Dust	Encoific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	(ing/kg-u) Inhalation	Ingestion	Dermal	Inhalation	HO
	(8/8/	(88)	(88)	(8,8,)				8			
INORGANICS											
Aluminum	9,850	1.1E-01	0.0E+00	5.3E-06	1.0E+00	1.0E+00	1.4E-03	1.1E-01	0.0E+00	3.8E-03	0.11
Beryllium	1.3	1.4E-05	0.0E+00	7.0E-10	2.0E-03	2.0E-03	5.7E-06	7.1E-03	0.0E+00	1.2E-04	0.0072
Cobalt	5.1	5.6E-05	0.0E+00	2.8E-09	2.0E-02	2.0E-02	5.7E-06	2.8E-03	0.0E+00	4.8E-04	0.0033
Manganese	164	1.8E-03	0.0E+00	8.9E-08	1.4E-01	1.4E-01	1.4E-05	1.3E-02	0.0E+00	6.3E-03	0.019
VOLATILE ORGANIC COMPOUNDS											
m,p-Xylene	0.044	4.8E-07	0.0E+00	2.4E-11	2.0E-01	2.0E-01	2.9E-02	2.4E-06	0.0E+00	8.2E-10	0.0000024
Methylene chloride	0.0079	8.6E-08	0.0E+00	4.3E-12	6.0E-02	6.0E-02	8.6E-01	1.4E-06	0.0E+00	5.0E-12	0.0000014
o-Xylene	0.014	1.5E-07	0.0E+00	7.6E-12	2.0E-01	2.0E-01	2.9E-02	7.6E-07	0.0E+00	2.6E-10	0.00000076
										HI	0.14
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	102,000	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	81,600	8.9E-01	Inc	4.4E-05	1.0E-01	na	2.9E-01	8.9E+00	Inc	1.5E-04	8.9
Diesel Range Organics, Aromatic	40,800	4.5E-01	Inc	2.2E-05	4.0E-02	na	5.7E-01	1.1E+01	Inc	3.9E-05	11
Residual Range Organics	8,500	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Residual Range Organics, Aliphatic	7,650	8.4E-02	Inc	4.1E-06	2.0E+00	na	na	4.2E-02	Inc	Inc	0.042
Residual Range Organics, Aromatic	2,550	2.8E-02	Inc	1.4E-06	3.0E-02	na	na	9.3E-01	Inc	Inc	0.93
Notos										HI	21
^a Based on the maximum or 95 percent upper con concentration detected at the site.	fidence limit (95% UC	CL) on the me	an					HI HQ	Hazard in Hazard qu	dex. otient.	
^b Consistent with EPA policy, lead is not evaluate	d in the cumulative HI	estimate.						Inc	Incomplet	e pathway.	
^c Risks associated with indicator compounds are i	ncluded in cumulative	risk and haza	ırd					mg/kg	Milligram	s per kilograr	n.
estimates for each site. However, the health haz	ards associated with p	etroleum mixt	ures					mg/kd-d	Milligram	s per kilograr	n per day.
will be evaluated and reported separately.								na	not availa'	ble	1 2
^d Exposure dose and noncancer hazards were calc	ulated for petroleum h	ydrocarbons r	neasured as I	ORO (method	8100)						
by segregating total DRO concentrations into al	iphatic and aromatic f	ractions, assu	ming 80% ali	iphatic							
hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c).										
^e Exposure dose and noncancer hazards were calc	ulated for petroleum h	ydrocarbons r	neasured as F	RRO (method)						
by segregating total RRO concentrations into al	iphatic and aromatic fi	ractions, assu	ming 90% ali	iphatic							
hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).	,	0								
,	- , , .										

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 6 - Cargo Beach Road Drumfield - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

		Soil		Dust				
	Soil	Ingestion	Dermal	Inhalation	_	Pathway-Spee	ific Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Reference Dose (mg/kg-d)	Soil	Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral Dermal Inhalation	Ingestion Deri	nal Inhalation	HQ

of a medium.

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 6 - Cargo Beach Road Drumfield - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dormal	Dust Inhelation				Path	way-Specific I	Hazard	Chamical
	Concentration ^a	Doco	Doso	Doco	Doforo	nco Doso (n	adka d)	Soil	way-specific 1	Duct	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
INORGANICS											
Aluminum	9,850	2.8E-04	0.0E+00	8.6E-08	1.0E+00	1.0E+00	1.4E-03	2.8E-04	0.0E+00	6.2E-05	0.00034
Beryllium	1.3	3.7E-08	0.0E+00	1.1E-11	2.0E-03	2.0E-03	5.7E-06	1.9E-05	0.0E+00	2.0E-06	0.000021
Cobalt	5.1	1.5E-07	0.0E+00	4.5E-11	2.0E-02	2.0E-02	5.7E-06	7.3E-06	0.0E+00	7.9E-06	0.000015
Manganese	164	4.7E-06	0.0E+00	1.4E-09	1.4E-01	1.4E-01	1.4E-05	3.3E-05	0.0E+00	1.0E-04	0.00014
VOLATILE ORGANIC COMPOUNDS											
m,p-Xylene	0.044	1.3E-09	0.0E+00	3.9E-13	2.0E-01	2.0E-01	2.9E-02	6.3E-09	0.0E+00	1.3E-11	0.000000063
Methylene chloride	0.0079	2.3E-10	0.0E+00	6.9E-14	6.0E-02	6.0E-02	8.6E-01	3.8E-09	0.0E+00	8.1E-14	0.000000038
o-Xylene	0.014	4.0E-10	0.0E+00	1.2E-13	2.0E-01	2.0E-01	2.9E-02	2.0E-09	0.0E+00	4.2E-12	0.0000000020
										HI	0.00051
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	102,000	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	81,600	2.3E-03	Inc	7.2E-07	1.0E-01	na	2.9E-01	2.3E-02	Inc	2.5E-06	0.023
Diesel Range Organics, Aromatic	40,800	1.2E-03	Inc	3.6E-07	4.0E-02	na	5.7E-01	2.9E-02	Inc	6.3E-07	0.029
Residual Range Organics	8 500	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Residual Range Organics Aliphatic	7,650	2 2E-04	Inc	6 7E-08	2 0E+00	na	na	1 1E-04	Inc	Inc	0.00011
Residual Range Organics, Aromatic	2,550	7.3E-05	Inc	2.2E-08	3.0E-02	na	na	2.4E-03	Inc	Inc	0.0024
										ш	0.055
Notes:											0.055
^a Based on the maximum or 95 percent upper con	nfidence limit (95% U	CL) on the m	ean					HI	Hazard index	κ.	
concentration detected at the site.								HQ	Hazard quoti	ent.	
^b Consistent with EPA policy, lead is not evaluate	ed in the cumulative H	II estimate.						Inc	Incomplete p	athway.	
^c Risks associated with indicator compounds are	included in cumulativ	e risk and ha	zard					mg/kg	Milligrams p	er kilogram.	
estimates for each site. However, the health ha	zards associated with	petroleum mi	xtures					mg/kd-d	Milligrams p	er kilogram pe	r day.
will be evaluated and reported separately.								na	not available		
^d Exposure dose and noncancer hazards were cal	culated for petroleum	hydrocarbons	s measured as	DRO (metho	d 8100)						
by segregating total DRO concentrations into a	liphatic and aromatic	fractions, ass	uming 80% a	liphatic							
hydrocarbons and 40% aromatic hydrocarbons	(ADEC, 2000c).										
^e Exposure dose and noncancer hazards were cal	culated for petroleum	hydrocarbons	measured as	RRO (metho	(b						

^e Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as RRO (method) by segregating total RRO concentrations into aliphatic and aromatic fractions, assuming 90% aliphatic hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 6 - Cargo Beach Road Drumfield - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

		Soil		Dust							
	Soil	Ingestion	Dermal	Inhalation	-			Pathwa	ay-Specific H	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (n	ng/kg-d)	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ

effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

CANCER RISK CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 7 - Cargo Beach Road Landfill - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Soil Dermal	Dust Inhalation			-	Pathway-	Specific Ca	ncer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer Sl	ope Factor	(mg/kg-d) ⁻¹	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
INORGANICS											
Arsenic	15	6.0E-06	7.1E-07	4.4E-10	1.5E+00	1.5E+00	1.5E+01	9.1E-06	1.1E-06	6.6E-09	1.0E-05
Cadmium	3.4	1.4E-06	5.4E-09	1.0E-10	na	na	6.3E+00	na	na	6.3E-10	6.3E-10
Cobalt	19	7.6E-06	0.0E+00	5.6E-10	na	na	9.8E+00	na	na	5.5E-09	5.5E-09
VOLATILE ORGANIC COMPOUNDS											
Bromoethane	0.18	7.2E-08	0.0E+00	5.3E-12	2.9E-03	2.9E-03	2.9E-03	2.1E-10	0.0E+00	1.5E-14	2.1E-10
Methylene chloride	0.13	5.2E-08	0.0E+00	3.8E-12	7.5E-03	7.5E-03	1.6E-03	3.9E-10	0.0E+00	6.3E-15	3.9E-10
POLYCHLORINATED BIPHENYLS											
PCB-1260 (Aroclor 1260)	1.6	6.4E-07	3.6E-07	4.7E-11	2.0E+00	2.0E+00	2.0E+00	1.3E-06	7.1E-07	9.4E-11	2.0E-06
DIOXINS/FURANS											
2,3,7,8-Tetrachlorodibenzo-p-dioxins (TCDD) Toxicity Equivalents (TEQ)	0.000043	1.7E-11	2.0E-12	1.3E-15	1.5E+05	1.5E+05	1.5E+05	2.6E-06	3.1E-07	1.9E-10	2.9E-06

			ILCR	2E-05
Notes:				
^a Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected at the site.	ILCR	Incrementa	al lifetime can	cer risk.
1) Doses and cancer risks shown only for carcinogenic chemicals with available toxicity values.	Inc	Incomplete	e pathway.	
2) Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected at the site.	mg/kg	Milligram	s per kilogram	l.
Doses and cancer risks shown only for carcinogenic chemicals with available toxicity values.	mg/kg-d	Milligram	s per kilogram	ı per day.
3) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation	na	Not availa	ble.	
of a medium				

Cancer risks are unitless values which represent the probability of incurring an adverse health

CANCER RISK CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 7 - Cargo Beach Road Landfill - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil Concentration ^a	Soil Ingestion Dose	Soil Dermal Dose	Dust Inhalation Dose	Cancer Sl	one Factor	(mg/kg-d) ⁻¹	Pathwa Soil	y-Specific C	Cancer Risk	Chemical-
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
	15	1.8E-05	2 1E-06	1 3E-09	1 5E±00	1 5E±00	1 5E±01	2 7E-05	3.2E-06	2 0E-08	3 0E-05
Cadmium	3.4	4 1E-06	2.1E-00 1.6E-08	3.0E-10	na	na	6.3E+00	2.7E-05	5.2L-00 na	1.9E-09	1.9E-09
Cobalt	19	2.3E-05	0.0E+00	1.7E-09	na	na	9.8E+00	na	na	1.6E-08	1.6E-08
POLYCHLORINATED BIPHENYLS											
PCB-1260 (Aroclor 1260)	1.6	1.9E-06	1.1E-06	1.4E-10	2.0E+00	2.0E+00	2.0E+00	3.9E-06	2.1E-06	2.8E-10	6.0E-06
VOLATILE ORGANIC COMPOUNDS											
Bromoethane	0.18	2.2E-07	0.0E+00	1.6E-11	2.9E-03	2.9E-03	2.9E-03	6.4E-10	0.0E+00	4.7E-14	6.4E-10
Methylene chloride	0.13	1.6E-07	0.0E+00	1.1E-11	7.5E-03	7.5E-03	1.6E-03	1.2E-09	0.0E+00	1.8E-14	1.2E-09
DIOXINS/FURANS											
2,3,7,8-Tetrachlorodibenzo-p-dioxins (TCDD) Toxicity Equivalents (TEQ)	0.000043	5.2E-11	6.1E-12	3.8E-15	1.5E+05	1.5E+05	1.5E+05	7.8E-06	9.2E-07	5.7E-10	8.7E-06

			ILCR	5E-05
Notes:				
^a Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected in soil tundra	ILCR	Incremental	lifetime cancer ris	sk.
and soil gravel at the site.	Inc	Incomplete	pathway.	
1) Doses and cancer risks shown only for carcinogenic chemicals with available toxicity values.	mg/kg	Milligrams	per kilogram.	
2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation	mg/kg-d	Milligrams	per kilogram per d	ay.
of a medium.	na	Not availab	le.	
3) Cancer risks are unitless values which represent the probability of incurring an adverse health				

CANCER RISK CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 7 - Cargo Beach Road Landfill - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Soil Dermal	Dust Inhalation				Pathway	-Specific Ca	ancer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer Sl	ope Factor	(mg/kg-d) ⁻¹	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
INORGANICS											
Arsenic	15	1.5E-07	5.8E-08	4.5E-11	1.5E+00	1.5E+00	1.5E+01	2.2E-07	8.7E-08	6.8E-10	3.1E-07
Cadmium	3.4	3.3E-08	4.4E-10	1.0E-11	na	na	6.3E+00	na	na	6.4E-11	6.4E-11
Cobalt	19	1.9E-07	0.0E+00	5.7E-11	na	na	9.8E+00	na	na	5.6E-10	5.6E-10
VOLATILE ORGANIC COMPOUNDS											
Bromoethane	0.18	1.8E-09	0.0E+00	5.4E-13	2.9E-03	2.9E-03	2.9E-03	5.1E-12	0.0E+00	1.6E-15	5.1E-12
Methylene chloride	0.13	1.3E-09	0.0E+00	3.9E-13	7.5E-03	7.5E-03	1.6E-03	9.5E-12	0.0E+00	6.4E-16	9.5E-12
POLYCHLORINATED BIPHENYLS											
PCB-1260 (Aroclor 1260)	1.6	1.6E-08	2.9E-08	4.8E-12	2.0E+00	2.0E+00	2.0E+00	3.1E-08	5.8E-08	9.6E-12	8.9E-08
DIOXINS/FURANS											
2,3,7,8-Tetrachlorodibenzo-p-dioxins (TCDD) Toxicity Equivalents (TEQ)	0.000043	4.2E-13	1.7E-13	1.3E-16	1.5E+05	1.5E+05	1.5E+05	6.3E-08	2.5E-08	1.9E-11	8.8E-08
										ILCR	5E-07

		ILCK 5E-07
Notes:		
^a Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected at the site.	ILCR	Incremental lifetime cancer risk.
1) Doses and cancer risks shown only for carcinogenic chemicals with available toxicity values.	Inc	Incomplete pathway.
2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation	mg/kg	Milligrams per kilogram.
of a medium	mg/kg-d	Milligrams per kilogram per day.
3) Cancer risks are unitless values which represent the probability of incurring an adverse health	na	Not available.
effect. They are calculated using the following formula: Cancer Risk = Exposure Dose x Cancer Slope Factor.		

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 7 - Cargo Beach Road Landfill - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhalation				Pathw	av-Specific	Hazard	Chemical
	Concentration ^a	Dose	Dora	Dose	Roforo	nco Doso (n	ng/kg_d)	Soil	uj opeeme	Duct	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
INORGANICS											
Aluminum	12,000	4.4E-02	0.0E+00	2.2E-06	1.0E+00	1.0E+00	1.4E-03	4.4E-02	0.0E+00	1.5E-03	0.045
Arsenic	15	5.3E-05	5.1E-06	2.7E-09	3.0E-04	3.0E-04	3.0E-04	1.8E-01	1.7E-02	8.8E-06	0.19
Cadmium	3.4	1.2E-05	3.9E-08	6.1E-10	5.0E-04	5.0E-04	5.0E-04	2.5E-02	7.8E-05	1.2E-06	0.025
Chromium	43	1.6E-04	0.0E+00	7.8E-09	1.5E+00	1.5E+00	1.5E+00	1.0E-04	0.0E+00	5.2E-09	0.00010
Cobalt	19	6.9E-05	0.0E+00	3.4E-09	2.0E-02	2.0E-02	5.7E-06	3.5E-03	0.0E+00	6.0E-04	0.0041
Lead	196	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Manganese	662	2.4E-03	0.0E+00	1.2E-07	1.4E-01	1.4E-01	1.4E-05	1.7E-02	0.0E+00	8.5E-03	0.026
Mercury	0.31	1.1E-06	0.0E+00	5.6E-11	3.0E-04	3.0E-04	3.0E-04	3.8E-03	0.0E+00	1.9E-07	0.0038
Nickel	50	1.8E-04	0.0E+00	9.0E-09	2.0E-02	2.0E-02	2.0E-02	9.0E-03	0.0E+00	4.5E-07	0.0090
Thallium	1.2	4.4E-06	0.0E+00	2.2E-10	7.0E-05	7.0E-05	7.0E-06	6.2E-02	0.0E+00	3.1E-05	0.062
VOLATILE ORGANIC COMPOUNDS											
1,1,1-Trichloroethane	0.28	1.0E-06	0.0E+00	5.1E-11	2.8E-01	2.8E-01	6.3E-01	3.6E-06	0.0E+00	8.0E-11	0.000003
Acetone	1.4	5.1E-06	0.0E+00	2.5E-10	9.0E-01	9.0E-01	9.0E-01	5.7E-06	0.0E+00	2.8E-10	0.000005
Bromoethane	0.18	6.6E-07	0.0E+00	3.3E-11	4.0E-01	4.0E-01	2.9E+00	1.6E-06	0.0E+00	1.1E-11	0.000001
m,p-Xylene	0.066	2.4E-07	0.0E+00	1.2E-11	2.0E-01	2.0E-01	2.9E-01	1.2E-06	0.0E+00	4.1E-11	0.000001
Methylene chloride	0.13	4.7E-07	0.0E+00	2.3E-11	6.0E-02	6.0E-02	8.6E-01	7.9E-06	0.0E+00	2.7E-11	0.000008
SEMIVOLATILE ORGANIC COMPOUNDS											
4-Methylphenol (p-Cresol)	4	1.4E-05	4.5E-06	7.0E-10	5.0E-03	5.0E-03	5.0E-03	2.8E-03	9.0E-04	1.4E-07	0.0037
POLYCHLORINATED BIPHENYLS											
PCB-1260 (Aroclor 1260)	1.6	5.8E-06	2.6E-06	2.9E-10	2.0E-05	2.0E-05	2.0E-05	2.9E-01	1.3E-01	1.4E-05	0.42
PETROLEUM HYDROCARBONS ^e										HI	0.79
Diagol Bongo Organico	22,000	no ^d	no ^d	no ^d	no ^d	no ^d	no ^d	no ^d	no ^d	nod	nod
Diesel Range Organics Aliphotic	32,000	0.3E.02	Inc	11a 4 6E 06	1 0E 01	na	11a 2 OE 01	0.2E 01	Ind	1 6E 05	0.03
Diesel Range Organics, Aromatic	12 800	9.3E-02	Inc	4.0E-00	1.0E-01 4.0E-02	na	2.9E-01	9.5E-01 1 2E+00	Inc	1.0E-05	1.2
	12,000	4.7E-02	e	2.5L-00	4.0L-02 e	e	9.7L-01 e	1.2L+00 e	e	4.112-00 e	1.2 e
Residual Range Organics	3,448		na	na 5 CE 07	na 2 or oc	na	na	na 5 CE 02	na	na	na
Residual Range Organics, Aliphatic	3,104	1.1E-02	Inc	5.6E-07	2.0E+00	na	na	5.6E-03	Inc	Inc	0.0056
Residual Range Organics, Aromatic	1,035	3.8E-03	Inc	1.9E-07	3.0E-02	na	na	1.3E-01	Inc	Inc	0.13
										HI	2.2
es:	1	T A							** 1		
Based on the maximum or 95 percent upper confid	lence limit (95% UC	L) on the mea	an					HI	Hazard ind	ex.	
concentration detected at the site.								HQ	Hazard quo	tient.	

^b Consistent with EPA policy, lead is not evaluated in the cumulative HI estimate.

Inc

Incomplete pathway.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 7 - Cargo Beach Road Landfill - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhalation				Pathw	av-Specific	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	ence Dose (m	g/kg-d)	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
^c Risks associated with indicator compounds are incl	luded in cumulative	risk and haza	urd					mg/kg	Milligrams	per kilogram	
estimates for each site. However, the health hazard	ls associated with pe	etroleum mix	tures					mg/kg	M:11: anoma	per kilografii.	do
will be evolveded and remented emerately	is associated with p		luies					mg/ka-a	Milligrams	per kilogram	per day.
will be evaluated and reported separately.								na	not availabl	e	
^d Exposure dose and noncancer hazards were calcula	ted for petroleum h	drocarbons r	neasured as D	RO (method 8100))						
by segregating total DRO concentrations into aliph	natic and aromatic fr	actions, assu	ming 80% alip	phatic							
hydrocarbons and 40% aromatic hydrocarbons (AD	DEC, 2000c).										
^e Exposure dose and noncancer hazards were calcula	ted for petroleum h	drocarbons r	neasured as R	RO (method)							
by segregating total RRO concentrations into aliph	atic and aromatic fr	actions, assur	ning 90% alip	ohatic							
hydrocarbons and 30% aromatic hydrocarbons (AD	DEC, 2000c).										
1) Doses and noncancer hazards shown only for nonca	arcinogenic chemica	ls with availa	ble toxicity v	alues.							
2) Absorbed doses were calculated for dermal contact	with the medium, a	nd intakes we	ere calculated	for ingestion or inl	halation						
of a medium.											
3) Noncancer hazards are unitless values which repres	sent the probability	of incurring a	n adverse hea	lth							

effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 7 - Cargo Beach Road Landfill - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Co:1	Soil Incostion	Dormal	Dust Inholotion				Dathwa		Hagand	Chamical
	Soli Curranti a	ngesuon	Dermai	Innaiation	D	D	(raulwa	ly-specific	nazaru D	Chemical-
Comoditation of	Concentration	Dose	Dose	Dose	Refere	nce Dose	(mg/kg-d)	Soll Taxaatiaa	Dermal	Dust	Specific
Constituent	(mg/kg)	(mg/kg-a)	(mg/kg-a)	(mg/kg-a)	Oral	Dermai	Innalation	Ingestion	Dermai	Innalation	нų
INORGANICS											
Aluminum	12,000	1.3E-01	0.0E+00	6.5E-06	1.0E+00	1.0E+00	1.4E-03	1.3E-01	0.0E+00	4.6E-03	0.14
Arsenic	15	1.6E-04	1.6E-05	8.1E-09	3.0E-04	3.0E-04	3.0E-04	5.5E-01	5.2E-02	2.7E-05	0.60
Cadmium	3.4	3.7E-05	1.2E-07	1.8E-09	5.0E-04	5.0E-04	5.0E-04	7.4E-02	2.4E-04	3.7E-06	0.074
Chromium	43	4.7E-04	0.0E+00	2.3E-08	1.5E+00	1.5E+00	1.5E+00	3.1E-04	0.0E+00	1.6E-08	0.00031
Cobalt	19	2.1E-04	0.0E+00	1.0E-08	2.0E-02	2.0E-02	5.7E-06	1.0E-02	0.0E+00	1.8E-03	0.012
Lead	196	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Manganese	662	7.2E-03	0.0E+00	3.6E-07	1.4E-01	1.4E-01	1.4E-05	5.2E-02	0.0E+00	2.6E-02	0.077
Mercury	0.31	3.4E-06	0.0E+00	1.7E-10	3.0E-04	3.0E-04	3.0E-04	1.1E-02	0.0E+00	5.6E-07	0.011
Nickel	50	5.5E-04	0.0E+00	2.7E-08	2.0E-02	2.0E-02	2.0E-02	2.7E-02	0.0E+00	1.4E-06	0.027
Thallium	1.2	1.3E-05	0.0E+00	6.5E-10	7.0E-05	7.0E-05	7.0E-05	1.9E-01	0.0E+00	9.3E-06	0.19
VOLATILE ORGANIC COMPOUNDS											
1,1,1-Trichloroethane	0.28	3.1E-06	0.0E+00	1.5E-10	2.8E-01	2.8E-01	6.3E-01	1.1E-05	0.0E+00	2.4E-10	0.000011
Acetone	1.4	1.5E-05	0.0E+00	7.6E-10	9.0E-01	9.0E-01	9.0E-01	1.7E-05	0.0E+00	8.4E-10	0.000017
Bromoethane	0.18	2.0E-06	0.0E+00	9.8E-11	4.0E-01	4.0E-01	2.9E+00	4.9E-06	0.0E+00	3.4E-11	0.0000049
m,p-Xylene	0.066	7.2E-07	0.0E+00	3.6E-11	2.0E-01	2.0E-01	2.9E-02	3.6E-06	0.0E+00	1.2E-09	0.0000036
Methylene chloride	0.13	1.4E-06	0.0E+00	7.0E-11	6.0E-02	6.0E-02	8.6E-01	2.4E-05	0.0E+00	8.2E-11	0.000024
SEMIVOLATILE ORGANIC COMPOUN	DS										
4-Methylphenol (p-Cresol)	3.9	4.3E-05	1.3E-05	2.1E-09	5.0E-03	5.0E-03	5.0E-03	8.5E-03	2.7E-03	4.2E-07	0.011
POLYCHLORINATED BIPHENYLS											
PCB-1260 (Aroclor 1260)	1.6	1.7E-05	7.7E-06	8.7E-10	2.0E-05	2.0E-05	2.0E-05	8.7E-01	3.9E-01	4.3E-05	1.3
										HI	2.4
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	32,000	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	25,600	2.8E-01	Inc	1.4E-05	1.0E-01	na	2.9E-01	2.8E+00	Inc	4.8E-05	2.8
Diesel Range Organics, Aromatic	12,800	1.4E-01	Inc	6.9E-06	4.0E-02	na	5.7E-01	3.5E+00	Inc	1.2E-05	3.5
Residual Range Organics	3,448	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Residual Range Organics, Aliphatic	3,103	3.4E-02	Inc	1.7E-06	2.0E+00	na	na	1.7E-02	Inc	Inc	0.017
Residual Range Organics, Aromatic	1,034	1.1E-02	Inc	5.6E-07	3.0E-02	na	na	3.8E-01	Inc	Inc	0.38
										HI	6.7

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 7 - Cargo Beach Road Landfill - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil Concentration ^a	Soil Ingestion Dose	Dermal	Dust Inhalation Dose	Refer	ence Dose (1	mg/kg-d)	Pathwa Soil	y-Specific	Hazard Dust	Chemical-
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
 ^a Based on the maximum or 95 percent upper conficoncentration detected at the site. ^b Consistent with EPA policy, lead is not evaluatee ^c Risks associated with indicator compounds are in estimates for each site. However, the health haza will be evaluated and reported separately. ^d Exposure dose and noncancer hazards were calculated by segregating total DRO concentrations into all hydrocarbons and 40% aromatic hydrocarbons (a Exposure dose and noncancer hazards were calculated by segregating total RRO concentrations into all hydrocarbons and 30% aromatic hydrocarbons (a concentrations) 	fidence limit (95%) d in the cumulative ncluded in cumulati ards associated with alated for petroleum iphatic and aromatic ADEC, 2000c). alated for petroleum iphatic and aromatic ADEC, 2000c).	UCL) on the r HI estimate. ve risk and h petroleum m hydrocarbor c fractions, as hydrocarbor c fractions, as	mean azard nixtures ns measured a ssuming 80% ns measured a ssuming 90%	as DRO (meth a aliphatic as RRO (meth aliphatic	od 8100) od)			HI HQ Inc mg/kg mg/kd-d na	Hazard ind Hazard qu Incomplet Milligram Milligram not availad	dex. otient. e pathway. s per kilogran s per kilogran ble	n. n per day.
 Doses and noncancer hazards shown only for nor Absorbed doses were calculated for dermal conta of a medium. 	ncarcinogenic chem act with the medium	icals with av	ailable toxici were calcula	ty values. ited for ingesti	on or inh	alation					

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 7 - Cargo Beach Road Landfill - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

ConstituentConcentConstituent(mg/.INORGANICS12,0Aluminum12,0Arsenic15Cadmium3,4Chromium43Cobalt19Lead19Manganese662Mercury0,3Nickel50Thallium1,2VOLATILE ORGANIC COMPOUNDS1,1,1-Trichloroethane1,1,1-Trichloroethane0,2Acetone1,4Bromoethane0,11m,p-Xylene0,006Methylene chloride0,11SEMIVOLATILE ORGANIC COMPOUNDS3,54-Methylphenol (p-Cresol)3,5POLYCHLORINATED BIPHENYLS50	ration ^a D (mg, (mg, 00 3.4 0.0 3.4 0.0 3.4 0.0 3.4 0.0 3.4 0.0 3.4 0.0 3.4 0.0 3.4 0.0 3.4 0.0 3.7	Acceleration Acceleration 4E-04 3E-07 7E-08 2E-06 4E-07 na ^b 9E-05 8E-09 4E-06 4E-06 4E-08 0E-08 0E-09 0E-08 1E-09 9E-09 7E-08 7E-09	Dose (mg/kg-d) 0.0E+00 1.7E-07 1.3E-09 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00	Dose (mg/kg-d) 1.1E-07 1.3E-10 3.0E-11 3.8E-10 1.7E-10 na ^b 5.8E-09 2.7E-12 4.4E-10 1.1E-11 2.5E-12 1.2E-11 1.6E-12 5.8E-13 1.1E-12	Referent Oral 1.0E+00 3.0E-04 5.0E-04 1.5E+00 2.0E-02 na ^b 1.4E-01 3.0E-04 2.0E-02 7.0E-05 2.8E-01 9.0E-01 4.0E-01 2.0E-02	Ince Dose (m Dermal 1.0E+00 3.0E-04 5.0E-04 1.5E+00 2.0E-02 na ^b 1.4E-01 3.0E-04 2.0E-02 na ^b 1.4E-01 3.0E-04 2.0E-02 7.0E-05 2.8E-01 9.0E-01 4.0E-01 2.0E-01	g/kg-d) Inhalation 1.4E-03 3.0E-04 5.0E-04 1.5E+00 2.0E-02 na ^b 1.4E-05 3.0E-04 2.0E-02 7.0E-05 6.3E-01 9.0E-01 2.9E+00 2.0E-02	Soil Ingestion 3.4E-04 1.4E-03 1.9E-04 8.2E-07 2.7E-05 na ^b 1.3E-04 2.9E-05 7.1E-05 4.9E-04 2.9E-08 4.4E-08 1.3E-08 9.4E-08	Dermal 0.0E+00 5.7E-04 2.6E-06 0.0E+00	Dust Inhalation 7.5E-05 4.4E-07 6.0E-08 2.5E-10 8.3E-09 na ^b 4.2E-04 9.1E-09 2.2E-08 1.5E-07 3.9E-12 1.4E-11 5.5E-13 2.0F-11	Specific HQ 0.00042 0.0020 0.0000082 0.000027 na ^b 0.00055 0.000029 0.000071 0.00049 0.00000044 0.00000042 0.00000043 0.00000044 0.00000045 0.00000044
Constituent(mg/INORGANICSAluminumArsenic15Cadmium3.4Chromium43Cobalt19LeadManganese66Mercury0.3Nickel50Thallium1.2VOLATILE ORGANIC COMPOUNDS1,1,1-Trichloroethane0.1m.p-Xylene0.06Methylene chloride4-Methylphenol (p-Cresol)3.5POLYCHLORINATED BIPHENYLS	kmini D kg) (mg, 00 3.4 4.3 9.7 1.2 5.4 5 r 2 1.9 1 8.8 1.4 3.4 8 8.0 4.0 5.1 16 1.9 3 3.7	4E-04 3E-07 7E-08 2E-06 4E-07 na ^b 9E-05 8E-09 4E-06 4E-06 4E-08 0E-09 0E-08 1E-09 9E-09 7E-09 9E-09 7E-09	Dose (mg/kg-d) 0.0E+00 1.7E-07 1.3E-09 0.0E+00 0.0E+00	(mg/kg-d) 1.1E-07 1.3E-10 3.0E-11 3.8E-10 1.7E-10 na ^b 5.8E-09 2.7E-12 4.4E-10 1.1E-11 2.5E-12 1.2E-11 1.6E-12 5.8E-13 1.1E-12	I.0E+00 3.0E-04 5.0E-04 1.5E+00 2.0E-02 na ^b 1.4E-01 3.0E-04 2.0E-02 7.0E-05 2.8E-01 9.0E-01 4.0E-01 2.0E-02	I.0E+00 3.0E-04 5.0E-04 1.5E+00 2.0E-02 na ^b 1.4E-01 3.0E-04 2.0E-02 na ^b 1.4E-01 3.0E-04 2.0E-02 7.0E-05 2.8E-01 9.0E-01 4.0E-01 2.0E-01	Inhalation 1.4E-03 3.0E-04 5.0E-04 1.5E+00 2.0E-02 na ^b 1.4E-05 3.0E-04 2.0E-02 na ^b 1.4E-05 3.0E-04 2.0E-02 7.0E-05 6.3E-01 9.0E-01 2.9E+00 2.0E-02	Jugestion 3.4E-04 1.4E-03 1.9E-04 8.2E-07 2.7E-05 na ^b 1.3E-04 2.9E-05 7.1E-05 4.9E-04 2.9E-08 4.4E-08 1.3E-08 9.4E-08	Dermal 0.0E+00 5.7E-04 2.6E-06 0.0E+00 na ^b 0.0E+00 0.0E+00	Inhalation 7.5E-05 4.4E-07 6.0E-08 2.5E-10 8.3E-09 na ^b 4.2E-04 9.1E-09 2.2E-08 1.5E-07 3.9E-12 1.4E-11 5.5E-13 2.0F-11	HQ 0.00042 0.0020 0.0000082 0.000027 na ^b 0.00055 0.000029 0.000071 0.00049 0.00000022 0.0000004 0.00000004 0.00000004
INORGANICSAluminum12,0Arsenic15Cadmium3,4Chromium43Cobalt19Lead19Manganese662Mercury0,3Nickel50Thallium1,2VOLATILE ORGANIC COMPOUNDS1,1,1-Trichloroethane0,22Acetone1,4Bromoethane0,12Methylene chloride0,12SEMIVOLATILE ORGANIC COMPOUNDS4-Methylphenol (p-Cresol)3,5POLYCHLORINATED BIPHENYLS	00 3.4 4.3 9.7 1.2 5.4 5 r 5 1.9 1 8.8 1.4 3.4 8 8.0 - 4.0 8 5.1 16 1.9 3 3.7	4E-04 3E-07 7E-08 2E-06 4E-07 na ^b 9E-05 8E-09 4E-06 4E-08 0E-09 0E-09 0E-09 9E-09 9E-09 7E-09 9E-09 7E-09	0.0E+00 1.7E-07 1.3E-09 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00	1.1E-07 1.3E-10 3.0E-11 3.8E-10 1.7E-10 na ^b 5.8E-09 2.7E-12 4.4E-10 1.1E-11 2.5E-12 1.2E-11 1.6E-12 5.8E-13	1.0E+00 3.0E-04 5.0E-04 1.5E+00 2.0E-02 na ^b 1.4E-01 3.0E-04 2.0E-02 7.0E-05 2.8E-01 9.0E-01 4.0E-01 2.0E-01	1.0E+00 3.0E-04 5.0E-04 1.5E+00 2.0E-02 na ^b 1.4E-01 3.0E-04 2.0E-02 7.0E-05 2.8E-01 9.0E-01 4.0E-01 2.0E-01	1.4E-03 3.0E-04 5.0E-04 1.5E+00 2.0E-02 na ^b 1.4E-05 3.0E-04 2.0E-02 7.0E-05 6.3E-01 9.0E-01 2.9E+00 2.0E-02	3.4E-04 1.4E-03 1.9E-04 8.2E-07 2.7E-05 na ^b 1.3E-04 2.9E-05 7.1E-05 4.9E-04 2.9E-08 4.4E-08 1.3E-08 9.4E.09	0.0E+00 5.7E-04 2.6E-06 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00	7.5E-05 4.4E-07 6.0E-08 2.5E-10 8.3E-09 na ^b 4.2E-04 9.1E-09 2.2E-08 1.5E-07 3.9E-12 1.4E-11 5.5E-13 2.0F-11	$\begin{array}{c} 0.00042\\ 0.0020\\ 0.00020\\ 0.0000082\\ 0.000027\\ na^b\\ 0.00055\\ 0.000029\\ 0.000071\\ 0.000071\\ 0.00049\\ \end{array}$
Aluminum12,0Arsenic15Cadmium3,4Chromium43Cobalt19Lead194Manganese667Mercury0,3Nickel50Thallium1,2VOLATILE ORGANIC COMPOUNDS1,1,1-Trichloroethane0,2Acetone1,4Bromoethane0,17m,p-Xylene0,06Methylene chloride0,17SEMIVOLATILE ORGANIC COMPOUNDS4-Methylphenol (p-Cresol)3,5POLYCHLORINATED BIPHENYLS	00 3.4 4.3 9.7 1.2 5.4 5 r 2 1.9 1 8.8 2 3.4 8 8.0 4.0 8 8 5.1 16 1.9 3 3.7	4E-04 3E-07 7E-08 2E-06 4E-07 na ^b 9E-05 8E-09 4E-06 4E-08 0E-09 0E-09 0E-08 1E-09 9E-09 7E-09 7E-09	0.0E+00 1.7E-07 1.3E-09 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00	1.1E-07 1.3E-10 3.0E-11 3.8E-10 1.7E-10 na ^b 5.8E-09 2.7E-12 4.4E-10 1.1E-11 2.5E-12 1.2E-11 1.6E-12 5.8E-13	1.0E+00 3.0E-04 5.0E-04 1.5E+00 2.0E-02 na ^b 1.4E-01 3.0E-04 2.0E-02 7.0E-05 2.8E-01 9.0E-01 4.0E-01 2.0E-01	1.0E+00 3.0E-04 5.0E-04 1.5E+00 2.0E-02 na ^b 1.4E-01 3.0E-04 2.0E-02 7.0E-05 2.8E-01 9.0E-01 4.0E-01 2.0E-01	1.4E-03 3.0E-04 5.0E-04 1.5E+00 2.0E-02 na ^b 1.4E-05 3.0E-04 2.0E-02 7.0E-05 6.3E-01 9.0E-01 2.9E+00 2.0E-02	3.4E-04 1.4E-03 1.9E-04 8.2E-07 2.7E-05 na ^b 1.3E-04 2.9E-05 7.1E-05 4.9E-04 2.9E-08 4.4E-08 1.3E-08 9.4E-09	0.0E+00 5.7E-04 2.6E-06 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00	7.5E-05 4.4E-07 6.0E-08 2.5E-10 8.3E-09 na ^b 4.2E-04 9.1E-09 2.2E-08 1.5E-07 3.9E-12 1.4E-11 5.5E-13 2.0F-11	0.00042 0.0020 0.0000082 0.000027 na ^b 0.00055 0.000029 0.000071 0.00049
Arsenic15Cadmium3.4Chromium43Cobalt19Lead194Manganese665Mercury0.3Nickel50Thallium1.2VOLATILE ORGANIC COMPOUNDS1,1,1-Trichloroethane0.2Acetone1.4Bromoethane0.11m,p-Xylene0.06Methylene chloride0.11SEMIVOLATILE ORGANIC COMPOUNDS4-Methylphenol (p-Cresol)3.5POLYCHLORINATED BIPHENYLS	4.3 9.7 1.2 5.4 5 1.9 1 8.8 8.4 8.4 8.4 8.4 8.4 8.5 9.7 1.4 8.8 8.0 9.7 1.4 9.7 1.4 9.7 1.4 9.7 1.4 9.7 1.4 9.7 1.4 9.7 1.4 9.7 1.4 9.7 1.4 9.7 1.4 9.7 1.4 9.7 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 <tr td=""></tr>	3E-07 7E-08 2E-06 4E-07 na ^b 9E-05 8E-09 4E-06 4E-08 0E-09 0E-09 0E-08 1E-09 9E-09 7E-09	1.7E-07 1.3E-09 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00	1.3E-10 3.0E-11 3.8E-10 1.7E-10 na ^b 5.8E-09 2.7E-12 4.4E-10 1.1E-11 2.5E-12 1.2E-11 1.6E-12 5.8E-13	3.0E-04 5.0E-04 1.5E+00 2.0E-02 na ^b 1.4E-01 3.0E-04 2.0E-02 7.0E-05 2.8E-01 9.0E-01 4.0E-01 2.0E-01	3.0E-04 5.0E-04 1.5E+00 2.0E-02 na ^b 1.4E-01 3.0E-04 2.0E-02 7.0E-05 2.8E-01 9.0E-01 4.0E-01 2.0E-01	3.0E-04 5.0E-04 1.5E+00 2.0E-02 na ^b 1.4E-05 3.0E-04 2.0E-02 7.0E-05 6.3E-01 9.0E-01 2.9E+00 2.0E 02	1.4E-03 1.9E-04 8.2E-07 2.7E-05 na ^b 1.3E-04 2.9E-05 7.1E-05 4.9E-04 2.9E-08 4.4E-08 1.3E-08 9.4E-09	5.7E-04 2.6E-06 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00	4.4E-07 6.0E-08 2.5E-10 8.3E-09 na ^b 4.2E-04 9.1E-09 2.2E-08 1.5E-07 3.9E-12 1.4E-11 5.5E-13 2.0E-11	0.0020 0.0000082 0.000027 na ^b 0.00055 0.000029 0.000071 0.00049 0.00000002 0.00000004 0.00000004 0.00000004
Cadmium3.4Chromium43Cobalt19Lead190Manganese66Mercury0.3Nickel50Thallium1.2VOLATILE ORGANIC COMPOUNDS1,1,1-Trichloroethane0.2Acetone1.4Bromoethane0.1m.p-Xylene0.06Methylene chloride0.1SEMIVOLATILE ORGANIC COMPOUNDS3.5POLYCHLORINATED BIPHENYLS	9.7 1.2 5.4 5 r 2 1.9 1 8.8 1.4 3.4 8 8.0 4 3.4 8 5.1 16 1.9 3 3.7	7E-08 2E-06 4E-07 na ^b 9E-05 8E-09 4E-06 4E-08 0E-09 0E-08 1E-09 9E-09 7E-09	1.3E-09 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00	3.0E-11 3.8E-10 1.7E-10 na ^b 5.8E-09 2.7E-12 4.4E-10 1.1E-11 2.5E-12 1.2E-11 1.6E-12 5.8E-13	5.0E-04 1.5E+00 2.0E-02 na ^b 1.4E-01 3.0E-04 2.0E-02 7.0E-05 2.8E-01 9.0E-01 4.0E-01 2.0E-01	5.0E-04 1.5E+00 2.0E-02 na ^b 1.4E-01 3.0E-04 2.0E-02 7.0E-05 2.8E-01 9.0E-01 4.0E-01 2.0E-01	5.0E-04 1.5E+00 2.0E-02 na ^b 1.4E-05 3.0E-04 2.0E-02 7.0E-05 6.3E-01 9.0E-01 2.9E+00 2.0E-02	1.9E-04 8.2E-07 2.7E-05 na ^b 1.3E-04 2.9E-05 7.1E-05 4.9E-04 2.9E-08 4.4E-08 1.3E-08 9.4E-09	2.6E-06 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00	6.0E-08 2.5E-10 8.3E-09 na ^b 4.2E-04 9.1E-09 2.2E-08 1.5E-07 3.9E-12 1.4E-11 5.5E-13 2.0E-11	0.00020 0.0000082 0.000027 na ^b 0.00055 0.000029 0.000071 0.00049 0.00000002 0.00000004 0.00000004
Chromium43Cobalt19Lead19Manganese66Mercury0.3Nickel50Thallium1.2VOLATILE ORGANIC COMPOUNDS1,1,1-Trichloroethane0.2Acetone1.4Bromoethane0.1m.p-Xylene0.06Methylene chloride0.1SEMIVOLATILE ORGANIC COMPOUNDS4-Methylphenol (p-Cresol)3.5POLYCHLORINATED BIPHENYLS	1.2 5.4 5 r 2 1.9 1 8.8 1.4 3.4 8 8.0 4 3.4 8 5.1 16 1.9 3 3.7	2E-06 4E-07 na ^b 9E-05 8E-09 4E-06 4E-08 0E-09 0E-08 1E-09 9E-09 7E-09	0.0E+00 0.0E+00 na ^b 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00	3.8E-10 1.7E-10 na ^b 5.8E-09 2.7E-12 4.4E-10 1.1E-11 2.5E-12 1.2E-11 1.6E-12 5.8E-13 1.1E-12	1.5E+00 2.0E-02 na ^b 1.4E-01 3.0E-04 2.0E-02 7.0E-05 2.8E-01 9.0E-01 4.0E-01 2.0E-01	1.5E+00 2.0E-02 na ^b 1.4E-01 3.0E-04 2.0E-02 7.0E-05 2.8E-01 9.0E-01 4.0E-01 2.0E-01	1.5E+00 2.0E-02 na ^b 1.4E-05 3.0E-04 2.0E-02 7.0E-05 6.3E-01 9.0E-01 2.9E+00 2.9E+00	8.2E-07 2.7E-05 na ^b 1.3E-04 2.9E-05 7.1E-05 4.9E-04 2.9E-08 4.4E-08 1.3E-08 9.4E-09	0.0E+00 0.0E+00 na ^b 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00	2.5E-10 8.3E-09 na ^b 4.2E-04 9.1E-09 2.2E-08 1.5E-07 3.9E-12 1.4E-11 5.5E-13 2.0E-11	0.00000082 0.000027 na ^b 0.00055 0.000029 0.000071 0.00049 0.00000002 0.00000004 0.00000004 0.00000004
Cobalt19Lead19Manganese66Mercury0.3Nickel50Thallium1.2VOLATILE ORGANIC COMPOUNDS1,1,1-Trichloroethane0.2Acetone1.4Bromoethane0.1m.p-Xylene0.06Methylene chloride0.1SEMIVOLATILE ORGANIC COMPOUNDS4-Methylphenol (p-Cresol)3.5POLYCHLORINATED BIPHENYLS	5.4 5 r 2 1.9 1 8.8 1.4 2 3.4 8 8.0 4.0 8 5.1 16 1.9 3 3.7	4E-07 na ^b 9E-05 8E-09 4E-06 4E-08 0E-09 0E-09 0E-08 1E-09 9E-09 7E-09	0.0E+00 na ^b 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00	1.7E-10 na ^b 5.8E-09 2.7E-12 4.4E-10 1.1E-11 2.5E-12 1.2E-11 1.6E-12 5.8E-13	2.0E-02 na ^b 1.4E-01 3.0E-04 2.0E-02 7.0E-05 2.8E-01 9.0E-01 4.0E-01 2.0E-01	2.0E-02 na ^b 1.4E-01 3.0E-04 2.0E-02 7.0E-05 2.8E-01 9.0E-01 4.0E-01 2.0E-01	2.0E-02 na ^b 1.4E-05 3.0E-04 2.0E-02 7.0E-05 6.3E-01 9.0E-01 2.9E+00 2.0E-02	2.7E-05 na ^b 1.3E-04 2.9E-05 7.1E-05 4.9E-04 2.9E-08 4.4E-08 1.3E-08 9.4E.09	0.0E+00 na ^b 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00	8.3E-09 na ^b 4.2E-04 9.1E-09 2.2E-08 1.5E-07 3.9E-12 1.4E-11 5.5E-13 2.0E-11	0.000027 na ^b 0.00055 0.000029 0.000071 0.00049 0.00000002 0.00000004 0.00000004
Lead19Manganese66Mercury0.3Nickel50Thallium1.2VOLATILE ORGANIC COMPOUNDS1,1,1-Trichloroethane0.2Acetone1.4Bromoethane0.1m,p-Xylene0.06Methylene chloride0.1SEMIVOLATILE ORGANIC COMPOUNDS4-Methylphenol (p-Cresol)3.5POLYCHLORINATED BIPHENYLS	5 r 2 1.9 1 8.8 1.4 2 3.4 8 8.0 4.0 8 5.1 16 1.9 3 3.7	na ^b 9E-05 8E-09 4E-06 4E-08 0E-09 0E-09 9E-09 9E-09 7E-09	na ^b 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00	na ^b 5.8E-09 2.7E-12 4.4E-10 1.1E-11 2.5E-12 1.2E-11 1.6E-12 5.8E-13	na ^b 1.4E-01 3.0E-04 2.0E-02 7.0E-05 2.8E-01 9.0E-01 4.0E-01 2.0E-01	na ^b 1.4E-01 3.0E-04 2.0E-02 7.0E-05 2.8E-01 9.0E-01 4.0E-01 2.0E-01	na ^b 1.4E-05 3.0E-04 2.0E-02 7.0E-05 6.3E-01 9.0E-01 2.9E+00 2.9E+00	na ^b 1.3E-04 2.9E-05 7.1E-05 4.9E-04 2.9E-08 4.4E-08 1.3E-08 9.4E.09	na ^b 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00	na ^b 4.2E-04 9.1E-09 2.2E-08 1.5E-07 3.9E-12 1.4E-11 5.5E-13 2.0E-11	na ^b 0.00055 0.000029 0.000071 0.00049 0.00000002 0.00000004 0.00000001 0.00000001
Manganese 66. Mercury 0.3 Nickel 50 Thallium 1.2 VOLATILE ORGANIC COMPOUNDS 1.4 I,1,1-Trichloroethane 0.2 Acetone 1.4 Bromoethane 0.1 m,p-Xylene 0.06 Methylene chloride 0.1 SEMIVOLATILE ORGANIC COMPOUNDS 3.9 POLYCHLORINATED BIPHENYLS 3.9	2 1.9 1 8.8 1.4 3.4 8 8.0 8 8.0 8 4.0 8 5.1 16 1.9 3 3.7	0E-09 4E-06 4E-08 0E-09 0E-08 1E-09 9E-09 7E-09	0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00	5.8E-09 2.7E-12 4.4E-10 1.1E-11 2.5E-12 1.2E-11 1.6E-12 5.8E-13	1.4E-01 3.0E-04 2.0E-02 7.0E-05 2.8E-01 9.0E-01 4.0E-01 2.0E-01	1.4E-01 3.0E-04 2.0E-02 7.0E-05 2.8E-01 9.0E-01 4.0E-01 2.0E-01	1.4E-05 3.0E-04 2.0E-02 7.0E-05 6.3E-01 9.0E-01 2.9E+00 2.9E+00	1.3E-04 2.9E-05 7.1E-05 4.9E-04 2.9E-04 2.9E-08 4.4E-08 1.3E-08 9.4E.09	0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00	4.2E-04 9.1E-09 2.2E-08 1.5E-07 3.9E-12 1.4E-11 5.5E-13 2.0E-11	0.000055 0.000029 0.000071 0.00049 0.00000002 0.00000004 0.00000004 0.00000001
Mercury 0.3 Nickel 50 Thallium 1.2 VOLATILE ORGANIC COMPOUNDS 1.4 I,1,1-Trichloroethane 0.2 Acetone 1.4 Bromoethane 0.1 m,p-Xylene 0.06 Methylene chloride 0.1 SEMIVOLATILE ORGANIC COMPOUNDS 3.9 POLYCHLORINATED BIPHENYLS 3.9	1 8.8 1.4 3.4 8 8.0 - 4.0 8 5.1 16 1.9 3 3.7	8E-09 4E-06 4E-08 0E-09 0E-08 1E-09 9E-09 7E-09	0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00	2.7E-12 4.4E-10 1.1E-11 2.5E-12 1.2E-11 1.6E-12 5.8E-13	3.0E-04 2.0E-02 7.0E-05 2.8E-01 9.0E-01 4.0E-01 2.0E-01	3.0E-04 2.0E-02 7.0E-05 2.8E-01 9.0E-01 4.0E-01 2.0E-01	3.0E-04 2.0E-02 7.0E-05 6.3E-01 9.0E-01 2.9E+00 2.9E-02	2.9E-05 7.1E-05 4.9E-04 2.9E-08 4.4E-08 1.3E-08 9.4E-09	0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00	9.1E-09 2.2E-08 1.5E-07 3.9E-12 1.4E-11 5.5E-13 2.0E-11	0.000029 0.000071 0.00049 0.00000002 0.00000004 0.00000001 0.00000000
Nickel 50 Thallium 1.2 VOLATILE ORGANIC COMPOUNDS 1.4 1,1-Trichloroethane 0.2 Acetone 1.4 Bromoethane 0.1 m,p-Xylene 0.06 Methylene chloride 0.1 SEMIVOLATILE ORGANIC COMPOUNDS 3.5 POLYCHLORINATED BIPHENYLS 3.5	1.4 3.4 8 8.0 - 4.0 8 5.1 16 1.9 3 3.7	4E-06 4E-08 0E-09 0E-08 1E-09 9E-09 7E-09	0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00	4.4E-10 1.1E-11 2.5E-12 1.2E-11 1.6E-12 5.8E-13	2.0E-02 7.0E-05 2.8E-01 9.0E-01 4.0E-01 2.0E-01	2.0E-02 7.0E-05 2.8E-01 9.0E-01 4.0E-01 2.0E-01	2.0E-02 7.0E-05 6.3E-01 9.0E-01 2.9E+00 2.9E-02	7.1E-05 4.9E-04 2.9E-08 4.4E-08 1.3E-08 9.4E-09	0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00	2.2E-08 1.5E-07 3.9E-12 1.4E-11 5.5E-13 2.0E-11	0.000071 0.00049 0.00000002 0.00000004 0.00000004 0.00000001
Thallium 1.2 VOLATILE ORGANIC COMPOUNDS 1,1,1-Trichloroethane 1,1,1-Trichloroethane 0.2 Acetone 1.4 Bromoethane 0.1 m,p-Xylene 0.06 Methylene chloride 0.1 SEMIVOLATILE ORGANIC COMPOUNDS 3.5 POLYCHLORINATED BIPHENYLS 3.5	8 8.0 8 8.0 8 4.0 8 5.1 66 1.9 3 3.7	4E-08 0E-09 0E-08 1E-09 9E-09 7E-09	0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00	1.1E-11 2.5E-12 1.2E-11 1.6E-12 5.8E-13	7.0E-05 2.8E-01 9.0E-01 4.0E-01 2.0E-01	7.0E-05 2.8E-01 9.0E-01 4.0E-01 2.0E-01	7.0E-05 6.3E-01 9.0E-01 2.9E+00 2.9E 02	4.9E-04 2.9E-08 4.4E-08 1.3E-08 9.4E-09	0.0E+00 0.0E+00 0.0E+00 0.0E+00 0.0E+00	1.5E-07 3.9E-12 1.4E-11 5.5E-13 2.0E-11	0.00049 0.00000002 0.00000004 0.00000001 0.00000000
VOLATILE ORGANIC COMPOUNDS 1,1,1-Trichloroethane 0.2 Acetone 1.4 Bromoethane 0.1 m,p-Xylene 0.06 Methylene chloride 0.1 SEMIVOLATILE ORGANIC COMPOUNDS 4-Methylphenol (p-Cresol) 4-Methylphenol (p-Cresol) 3.5 POLYCHLORINATED BIPHENYLS 3.5	8 8.0 4.0 8 5.1 66 1.9 3 3.7	0E-09 0E-08 1E-09 9E-09 7E-09	0.0E+00 0.0E+00 0.0E+00 0.0E+00	2.5E-12 1.2E-11 1.6E-12 5.8E-13	2.8E-01 9.0E-01 4.0E-01 2.0E-01	2.8E-01 9.0E-01 4.0E-01 2.0E-01	6.3E-01 9.0E-01 2.9E+00 2.9E 02	2.9E-08 4.4E-08 1.3E-08 9.4E-09	0.0E+00 0.0E+00 0.0E+00 0.0E+00	3.9E-12 1.4E-11 5.5E-13 2.0F-11	0.00000002 0.00000004 0.00000001 0.000000009
1,1,1-Trichloroethane0.2Acetone1.4Bromoethane0.1m,p-Xylene0.06Methylene chloride0.1SEMIVOLATILE ORGANIC COMPOUNDS4-Methylphenol (p-Cresol)3.9POLYCHLORINATED BIPHENYLS	8 8.0 4.0 4.0 8 5.1 56 1.9 3 3.7	0E-09 0E-08 1E-09 9E-09 7E-09	0.0E+00 0.0E+00 0.0E+00 0.0E+00	2.5E-12 1.2E-11 1.6E-12 5.8E-13	2.8E-01 9.0E-01 4.0E-01 2.0E-01	2.8E-01 9.0E-01 4.0E-01 2.0E-01	6.3E-01 9.0E-01 2.9E+00	2.9E-08 4.4E-08 1.3E-08 9.4E-09	0.0E+00 0.0E+00 0.0E+00	3.9E-12 1.4E-11 5.5E-13 2.0E-11	0.0000002 0.00000004 0.00000001 0.000000009
Acetone 1.4 Bromoethane 0.1 m,p-Xylene 0.06 Methylene chloride 0.1 SEMIVOLATILE ORGANIC COMPOUNDS 4-Methylphenol (p-Cresol) 4-Methylphenol (p-Cresol) 3.9 POLYCHLORINATED BIPHENYLS 3.9	4.0 8 5.1 66 1.9 3 3.7	0E-08 1E-09 9E-09 7E-09	0.0E+00 0.0E+00 0.0E+00	1.2E-11 1.6E-12 5.8E-13	9.0E-01 4.0E-01 2.0E-01	9.0E-01 4.0E-01 2.0E-01	9.0E-01 2.9E+00	4.4E-08 1.3E-08 9.4E-09	0.0E+00 0.0E+00 0.0E+00	1.4E-11 5.5E-13 2.0E-11	0.00000004 0.00000001 0.000000000
Bromoethane 0.1 m,p-Xylene 0.06 Methylene chloride 0.1 SEMIVOLATILE ORGANIC COMPOUNDS 4-Methylphenol (p-Cresol) 4-Methylphenol (p-Cresol) 3.9 POLYCHLORINATED BIPHENYLS 3.9	8 5.1 66 1.9 3 3.7	1E-09 9E-09 7E-09	0.0E+00 0.0E+00	1.6E-12 5.8E-13	4.0E-01 2.0E-01	4.0E-01 2.0E-01	2.9E+00	1.3E-08 9.4E-09	0.0E+00 0.0E+00	5.5E-13 2.0E-11	0.00000001
m.p-Xylene 0.06 Methylene chloride 0.1 SEMIVOLATILE ORGANIC COMPOUNDS 4-Methylphenol (p-Cresol) 3.9 POLYCHLORINATED BIPHENYLS	6 1.9 3 3.7	9E-09 7E-09	0.0E+00	5.8E-13	2.0E-01	2.0E-01	2 OF 02	9.4F-00	$0.0E \pm 00$	2.0E-11	0.00000000
Methylene chloride 0.1 SEMIVOLATILE ORGANIC COMPOUNDS 4-Methylphenol (p-Cresol) 3.9 3.9 POLYCHLORINATED BIPHENYLS 3.9	3 3.7	7E-09	0.00.00	1 1E 10			2.912-02	7.70707	0.01100	2.01-11	
SEMIVOLATILE ORGANIC COMPOUNDS 4-Methylphenol (p-Cresol) 3.5 POLYCHLORINATED BIPHENYLS			0.0E+00	1.1E-12	6.0E-02	6.0E-02	8.6E-01	6.2E-08	0.0E+00	1.3E-12	0.0000006
4-Methylphenol (p-Cresol) 3.5 POLYCHLORINATED BIPHENYLS											
POLYCHLORINATED BIPHENYLS	1.1	1E-07	1.5E-07	3.4E-11	5.0E-03	5.0E-03	5.0E-03	2.2E-05	2.9E-05	6.8E-09	0.000052
PCB-1260 (Aroclor 1260) 1.6	4.6	6E-08	8.4E-08	1.4E-11	2.0E-05	2.0E-05	2.0E-05	2.3E-03	4.2E-03	7.0E-07	0.0065
										HI	0.010
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics 32,0	00 n	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic 25,64	00 7.3	3E-04	Inc	2.2E-07	1.0E-01	na	2.9E-01	7.3E-03	Inc	7.8E-07	0.0073
Diesel Range Organics, Aromatic 12,8	00 3.7	7E-04	Inc	1.1E-07	4.0E-02	na	5.7E-01	9.1E-03	Inc	2.0E-07	0.0091
Residual Range Organics 3,44	-8 r	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Residual Range Organics, Aliphatic 3,10	3 8.9	9E-05	Inc	2.7E-08	2.0E+00	na	na	4.4E-05	Inc	Inc	0.000044
Residual Range Organics, Aromatic 1,03	4 3.0	0E-05	Inc	9.1E-09	3.0E-02	na	na	9.8E-04	Inc	Inc	0.00098
										HI	0.017

concentration detected at the site.

^b Consistent with EPA policy, lead is not evaluated in the cumulative HI estimate.

- Hazard quotient.
- Inc Incomplete pathway.

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 7 - Cargo Beach Road Landfill - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhalation				Path	Hazard	Chemical-	
	Concentration ^a	Dose	Dose	Dose	Refere	ence Dose (1	ng/kg-d)	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
^c Risks associated with indicator compounds a	are included in cumulative	e risk and ha	zard					mg/kg	Milligrams p	er kilogram.	
estimates for each site. However, the health	hazards associated with J	petroleum mi	xtures					mg/kd-d	Milligrams p	er kilogram per	day.
will be evaluated and reported separately.								na	not available		
^d Exposure dose and noncancer hazards were c	calculated for petroleum l	nydrocarbons	measured as	DRO (method	8100)						
by segregating total DRO concentrations into	to aliphatic and aromatic	fractions, ass	uming 80% a	liphatic							
hydrocarbons and 40% aromatic hydrocarbon	ns (ADEC, 2000c).										
^e Exposure dose and noncancer hazards were of	calculated for petroleum l	nydrocarbons	measured as	RRO (method)						
by segregating total RRO concentrations into	to aliphatic and aromatic f	fractions, ass	uming 90% a	liphatic							
hydrocarbons and 30% aromatic hydrocarbon	ns (ADEC, 2000c).		-	*							
1) Doses and noncancer hazards shown only for	r noncarcinogenic chemic	cals with avai	lable toxicity	values.							
 Absorbed doses were calculated for dermal c of a medium 	contact with the medium,	and intakes v	were calculate	ed for ingestior	ı or inhalati	on					
3) Noncancer hazards are unitless values which	n represent the probability	of incurring	an adverse h	ealth							
effect. They are calculated using the following	ing formula: Noncancer	HI = Exposur	re Dose/Refer	rence dose.							

CANCER RISK CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 7 - Cargo Beach Road Landfill - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Groundwater	Ingestion	Dermal	VOC Inhalation				Pathway	-Specific Ca	ancer Risk	Chemical-
Constituent	Concentration ^a (mg/L)	Dose (mg/kg-d)	Dose (mg/kg-d)	Dose (mg/kg-d)	Cancer Sl Oral	lope Factor Dermal	(mg/kg-d) ⁻¹ Inhalation	Ingestion	Dermal	VOC Inhalation	Specific Risk
INORGANICS Cobalt	0.064	2.4E-04	1.3E-06	Inc	na	na	9.8E+00	na	na	Inc	0.0E+00
VOLATILE ORGANIC COMPOUNDS Benzene	0.0021	8.0E-06	2.3E-06	2.4E-05	5.5E-02	5.5E-02	2.7E-02	4.4E-07	1.3E-07	6.5E-07	1.2E-06
DIOXINS/FURANS 2,3,7,8-Tetrachlorodibenzo-p-dioxins (TCDD) Toxicity Equivalents (TEQ)	0.00000000023	8.8E-14	9.7E-13	Inc	1.5E+05	1.5E+05	1.5E+05	1.3E-08	1.5E-07	Inc	1.6E-07
										ILCR	1E-06
Notes:											
^a Based on the maximum or 95 percent upper conf	fidence limit (95% U	JCL) on the n	nean					ILCR	Incrementa	l lifetime canc	er risk.
 concentration detected at the site. Doses and cancer risks shown only for carcinoge Absorbed doses were calculated for dermal conta calculated for ingestion or inhalation of a mediu Cancer risks are unitless values which represent 	enic chemicals with a act with the medium m. the probability of ind	available toxic , and intakes curring an adv	city values. were verse health					Inc mg/L mg/kg-d VOC na	Incomplete Milligrams Milligrams Volatile org Not availab	pathway. per liter. per kilogram j ganic compour le.	per day. nd.

CANCER RISK CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 7 - Cargo Beach Road Landfill - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Pathwa	y-Specific Ca	ncer Risk	Chemical-
Constituent	Concentration ^a (mg/L)	Dose (mg/kg-d)	Dose (mg/kg-d)	Dose (mg/kg-d)	Cancer Sl Oral	lope Factor Dermal	(mg/kg-d) ⁻¹ Inhalation	Ingestion	Dermal	VOC Inhalation	Specific Risk
INORGANICS Cobalt	0.064	9 5E 04	2 7E 04	Inc	na	na	9 8E ± 00	na	na	Inc	0.0E+00
VOLATILE ORGANIC COMPOUNDS	0.004). <u>5</u> L-0 4	2.72-04	inc	na	na	9.8E100	na	na	inc	0.0E+00
Benzene	0.0021	3.1E-05	8.8E-06	9.4E-05	5.5E-02	5.5E-02	2.7E-02	1.7E-06	4.9E-07	2.5E-06	4.7E-06
DIOXINS/FURANS 2,3,7,8-Tetrachlorodibenzo-p-dioxins (TCDD) Toxicity Equivalents (TEQ)	0.00000000023	3.4E-13	3.8E-12	Inc	1.5E+05	1.5E+05	1.5E+05	5.1E-08	5.7E-07	Inc	6.2E-07
										ILCR	5E-06
Notes:											
^a Based on the maximum or 95 percent upper confi	dence limit (95% UC	CL) on the me	ean					ILCR	Incremental	lifetime cancer	risk.
concentration detected at the site.								Inc	Incomplete p	athway.	
1) Doses and cancer risks shown only for carcinoger	nic chemicals with av	ailable toxici	ty values.					mg/L	Milligrams p	er liter.	
 Absorbed doses were calculated for dermal contac calculated for ingestion or inhalation of a mediur 	ct with the medium, a n.	and intakes w	ere					mg/kg-d VOC	Milligrams p Volatile orga	er kilogram per nic compound.	day.
3) Cancer risks are unitless values which represent the	he probability of incu	urring an advo	erse health					na	Not available	e.	

CANCER RISK CALCULATIONS FOR A FUTURE INCIDENTAL VISITOR SITE 7 - Cargo Beach Road Landfill - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Pathway	-Specific Ca	ncer Risk	Chemical-
Constituent	Concentration ^a (mg/L)	Dose (mg/kg-d)	Dose (mg/kg-d)	Dose (mg/kg-d)	Cancer Sl Oral	lope Factor Dermal	(mg/kg-d) ⁻¹ Inhalation	Ingestion	Dermal	VOC Inhalation	Specific Risk
INODCANICS											
Cobalt	0.064	2.5E-05	5.2E-06	Inc	na	na	9.8E+00	na	na	Inc	0.0E+00
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.0021	8.2E-07	1.7E-07	9.4E-05	5.5E-02	5.5E-02	2.7E-02	4.5E-08	9.4E-09	2.5E-06	2.6E-06
DIOXINS/FURANS 2,3,7,8-Tetrachlorodibenzo-p-dioxins (TCDD) Toxicity Equivalents (TEQ)	0.00000000023	9.0E-15	7.3E-14	Inc	1.5E+05	1.5E+05	1.5E+05	1.3E-09	1.1E-08	Inc	1.2E-08
										ILCR	3E-06
Notes:											
^a Based on the maximum or 95 percent upper con	fidence limit (95%)	UCL) on the 1	nean					ILCR	Incremental	l lifetime cance	er risk.
concentration detected at the site.								Inc	Incomplete	pathway.	
1) Doses and cancer risks shown only for carcinog	enic chemicals with	available tox	icity values.					mg/L	Milligrams	per liter.	
 Absorbed doses were calculated for dermal con calculated for ingestion or inhalation of a medi 	tact with the mediun um.	n, and intakes	were					mg/kg-d VOC	Milligrams Volatile org	per kilogram p ganic compoun	er day. d.
3) Cancer risks are unitless values which represent	the probability of in	ncurring an ac	lverse health					na	Not availab	le.	

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 7 - Cargo Beach Road Landfill - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Pathy	way-Specific	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (mg/kg-d)			VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	ĤQ
INORGANICS											
Aluminum	26	2.2E-01	1.0E-02	Inc	1.0E+00	1.0E+00	1.4E-03	2.2E-01	1.0E-02	Inc	0.23
Barium	0.13	1.1E-03	5.2E-05	Inc	7.0E-04	7.0E-04	1.4E-04	1.6E+00	7.4E-02	Inc	1.6
Cobalt	0.064	5.4E-04	1.0E-05	Inc	2.0E-02	2.0E-02	5.7E-06	2.7E-02	5.1E-04	Inc	0.028
Lead, Dissolved	0.040	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Manganese	0.59	5.0E-03	2.4E-04	Inc	1.4E-01	1.4E-01	1.4E-05	3.6E-02	1.7E-03	Inc	0.037
Nickel	3.5	3.0E-02	2.8E-04	Inc	2.0E-02	2.0E-02	2.0E-02	1.5E+00	1.4E-02	Inc	1.5
Zinc	2.5	2.1E-02	1.0E-03	Inc	3.0E-01	3.0E-01	3.0E-01	7.0E-02	3.3E-03	Inc	0.074
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.0021	1.8E-05	1.7E-05	1.5E-04	4.0E-03	4.0E-03	8.6E-03	4.4E-03	4.3E-03	1.7E-02	0.026
										HI	3.5
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	0.66	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	0.53	4.5E-03	Inc	3.0E-03	1.0E-01	na	2.9E-01	4.5E-02	Inc	1.0E-02	0.055
Diesel Range Organics, Aromatic	0.26	2.2E-03	Inc	1.5E-03	4.0E-02	na	5.7E-01	5.6E-02	Inc	2.6E-03	0.058
Residual Range Organics	2.7	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Residual Range Organics, Aliphatic	2.4	2.1E-02	Inc	1.4E-05	2.0E+00	na	na	1.0E-02	Inc	Inc	0.010
Residual Range Organics, Aromatic	0.8	6.8E-03	Inc	4.8E-06	3.0E-02	na	na	2.3E-01	Inc	Inc	0.23
										HI	0.35
otes:										-	
^a Based on the maximum or 95 percent upper c	onfidence limit (959	% UCL) on th	ie mean					HI	Hazard inde	x.	
concentration detected at the site.								HQ	Hazard quot	ient.	
^b Consistent with EPA policy, lead is not evalu	ated in the cumulati	ve HI estimat	e.					Inc	Incomplete 1	pathway.	
^c Risks associated with indicator compounds an	re included in cumu	lative risk and	l hazard					mø/L	Milliorams	ner liter	
estimates for each site. However, the health h	nazards associated w	vith petroleum	n mixtures					mg/kd d	Milligrams	por kilogram n	or day
will be evaluated and reported separately.		F						na	not available	s knograni p	ei uay.
^d Exposure dose and noncancer hazards were c	alculated for petrole	um hydrocarl	oons measure	d as DRO (m	ethod 8100)		VOC	Volotile		4
by segregating total DRO concentrations into	aliphatic and arom	atic fractions.	, assuming 80	% aliphatic		/		VUC	v olatile org	ame compoun	u.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 7 - Cargo Beach Road Landfill - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

				VOC							
	Surface Water	Ingestion	Dermal	Inhalation			_	Pathwa	y-Specific l	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	ence Dose (mg	g/kg-d)			VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal I	nhalation	Ingestion	Dermal	Inhalation	HQ

hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c).

e Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as RRO (method)

by segregating total RRO concentrations into aliphatic and aromatic fractions, assuming 90% aliphatic

hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 7 - Cargo Beach Road Landfill - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Path	way-Specific	Hazard	Chemical-
Constituent	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (mg/kg-d)	- Ingostion	Downal	VOC Inhelation	Specific
Constituent	(mg/L)	(mg/kg-u)	(mg/kg-a)	(mg/kg-u)	Urai	Dermai	Innalation	Ingestion	Dermai	Innalation	пŲ
INORGANICS											
Aluminum	26	8.5E-01	4.0E-02	Inc	1.0E+00	1.0E+00	1.4E-03	8.5E-01	4.0E-02	Inc	0.89
Barium	0.13	4.3E-03	2.0E-04	Inc	7.0E-04	7.0E-04	1.4E-04	6.1E+00	2.9E-01	Inc	6.4
Cobalt	0.064	2.1E-03	4.0E-05	Inc	2.0E-02	2.0E-02	5.7E-06	1.1E-01	2.0E-03	Inc	0.11
Lead, Dissolved	0.040	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Manganese	0.59	1.9E-02	9.2E-04	Inc	1.4E-01	1.4E-01	1.4E-05	1.4E-01	6.6E-03	Inc	0.15
Nickel	3.5	1.2E-01	1.1E-03	Inc	2.0E-02	2.0E-02	2.0E-02	5.8E+00	5.4E-02	Inc	5.8
Zinc	2.5	8.2E-02	3.9E-03	Inc	3.0E-01	3.0E-01	3.0E-01	2.7E-01	1.3E-02	Inc	0.29
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.0021	6.9E-05	6.7E-05	9.4E-05	4.0E-03	4.0E-03	8.6E-03	1.7E-02	1.7E-02	1.1E-02	0.045
										HI	14
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	0.66	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	0.53	1.7E-02	Inc	1.2E-02	1.0E-01	na	2.9E-01	1.7E-01	Inc	4.0E-02	0.21
Diesel Range Organics, Aromatic	0.26	8.7E-03	Inc	5.8E-03	4.0E-02	na	5.7E-01	2.2E-01	Inc	1.0E-02	0.23
Residual Range Organics	2.7	nae	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Residual Range Organics, Aliphatic	2.4	8.0E-02	Inc	5.5E-05	2.0E+00	na	na	4.0E-02	Inc	Inc	0.040
Residual Range Organics, Aromatic	0.81	2.7E-02	Inc	1.8E-05	3.0E-02	na	na	8.9E-01	Inc	Inc	0.89
										HI	1.4
Notes:											
^a Based on the maximum or 95 percent upper	confidence limit (9	5% UCL) on	the mean					HI	Hazard inde	х.	
concentration detected at the site.								HQ	Hazard quot	ient.	
^b Consistent with EPA policy, lead is not evaluate	uated in the cumula	tive HI estim	ate.					Inc	Incomplete 1	oathway.	
^c Risks associated with indicator compounds a	are included in cum	ulative risk a	nd hazard					mø/L	Milligrams r	per liter.	
estimates for each site. However, the health	hazards associated	with petroleu	m mixtures					mg/kd-d	Milligrams r	oer kilogram p	er day.
will be evaluated and reported separately.								na	not available	e	5
^d Exposure dose and noncancer hazards were	calculated for petro	leum hydroca	rbons measu	red as DRO (1	method 810	0)		VOC	Volatile orga	anic compoun	d.
by segregating total DRO concentrations int	to aliphatic and arou	matic fraction	s, assuming 8	30% aliphatic					0		

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 7 - Cargo Beach Road Landfill - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

				VOC							
	Surface Water	Ingestion	Dermal	Inhalation				Pathwa	y-Specific	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	ence Dose (mg/kg-d)			VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ

hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c).

^e Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as RRO (method)

by segregating total RRO concentrations into aliphatic and aromatic fractions, assuming 90% aliphatic

hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE INCIDENTAL VISITOR SITE 7 - Cargo Beach Road Landfill - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Path	way-Specific	Hazard	Chemical-
Constituent	Concentration ^a (mg/L)	Dose (mg/kg-d)	Dose (mg/kg-d)	Dose (mg/kg-d)	Refere Oral	nce Dose (Dermal	mg/kg-d) Inhalation	_ Ingestion	Dermal	VOC Inhalation	Specific HQ
BYOD CANACO								0			
	26	2.05.02	2.05.04	T	1.00	1.00	1 4E 02	2.05.02	2.05.04	T	0.020
Aluminum	20	2.9E-02	2.9E-04	Inc	1.0E+00 7.0E-04	1.0E+00	1.4E-03	2.9E-02	2.9E-04	Inc	0.030
Cobalt	0.13	7.3E-04	2.9E-00	Inc	7.0E-04 2.0E-02	7.0E-04 2.0E-02	5.7E-04	2.1E-01 3.7E-03	2.1E-05	Inc	0.01
Load Dissolved	0.004	7.5L-05	2.7L=07	ne ^b	2.0L-02	2.0L-02	5.7L-00	5.7L-05	1.5L-05	ne ^b	0.0057
Manganese	0.04	11a 6 8E-04	6 8E-06	Ind	1 4E-01	1 4E-01	1 4E-05	11a 4 8E-03	11a 4 8E-05	Inc	0 0049
Nickel	3 5	4.0E-04	8.0E-06	Inc	2 0E-02	2 0E-02	2 0E-02	2 0E-01	4.0E-05	Inc	0.0049
Zinc	2.5	2.9E-03	2.9E-05	Inc	3.0E-01	3.0E-01	3.0E-01	9.5E-03	9.5E-05	Inc	0.0096
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.0021	2.4E-06	5.0E-07	7.2E-06	4.0E-03	4.0E-03	8.6E-03	6.0E-04	1.2E-04	8.4E-04	0.0016
										HI	0.46
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	0.66	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	0.53	6.0E-04	Inc	1.4E-04	1.0E-01	na	2.9E-01	6.0E-03	Inc	5.0E-04	0.0065
Diesel Range Organics, Aromatic	0.26	3.0E-04	Inc	7.2E-05	4.0E-02	na	5.7E-01	7.5E-03	Inc	1.3E-04	0.0077
Residual Range Organics	2.7	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Residual Range Organics, Aliphatic	2.4	2.8E-03	Inc	6.9E-07	2.0E+00	na	na	1.4E-03	Inc	Inc	0.0014
Residual Range Organics, Aromatic	0.8	9.2E-04	Inc	2.3E-07	3.0E-02	na	na	3.1E-02	Inc	Inc	0.031
										HI	0.046
Notes:											
^a Based on the maximum or 95 percent upper c	onfidence limit (95%	% UCL) on th	e mean					HI	Hazard inde	х.	
concentration detected at the site.								HQ	Hazard quot	ient.	
^b Consistent with EPA policy, lead is not evaluate	ated in the cumulativ	ve HI estimat	e.					Inc	Incomplete p	oathway.	
^c Risks associated with indicator compounds an	e included in cumul	ative risk and	l hazard					mg/L	Milligrams r	per liter.	
estimates for each site. However, the health h	azards associated w	ith petroleum	mixtures					mø/kd-d	Milliorams r	ner kilooram n	er dav
will be evaluated and reported separately.		-						ng na a	not available	s anograni p	er aug:
^d Exposure dose and noncancer hazards were early	alculated for petrole	um hydrocarł	ons measured	l as DRO (me	thod 8100)			na VOC	Valatila	:	1
Exposure dose and noncaneer nazards were of		ann nyarooart	· · · · ·		(110 u 0100)			VUC	v olatile orga	anie compoun	u.

by segregating total DRO concentrations into aliphatic and aromatic fractions, assuming 80% aliphatic

NONCANCER HAZARD CALCULATIONS FOR A FUTURE INCIDENTAL VISITOR SITE 7 - Cargo Beach Road Landfill - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

				VOC							
	Surface Water	Ingestion	Dermal	Inhalation				Pathwa	ay-Specific l	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	ence Dose (mg/kg-d)			VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ

hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c).

^e Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as RRO (method)

by segregating total RRO concentrations into aliphatic and aromatic fractions, assuming 90% aliphatic

hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

CANCER RISK CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 9 - Housing and Operations Landfill - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Soil Dermal	Dust Inhalation				Pathway-	Specific Ca	ncer Risk	Chemical-
Constituent	Concentration ^a (mg/kg)	Dose (mg/kg-d)	Dose (mg/kg-d)	Dose (mg/kg-d)	Cancer Sl Oral	ope Factor Dermal	(mg/kg-d) ⁻¹ Inhalation	Soil Ingestion	Dermal	Dust Inhalation	Specific Risk
Construction	((((2000		ingestion	20011111		
INORGANICS											
Arsenic	17	6.7E-06	7.9E-07	4.9E-10	1.5E+00	1.5E+00	1.5E+01	1.0E-05	1.2E-06	7.3E-09	1.1E-05
Cadmium	4.1	1.6E-06	6.5E-09	1.2E-10	na	na	6.3E+00	na	na	7.6E-10	7.6E-10
Cobalt	38	1.5E-05	0.0E+00	1.1E-09	na	na	9.8E+00	na	na	1.1E-08	1.1E-08
VOLATILE ORGANIC COMPOUNDS											
1,2-Dibromoethane	0.000010	4.0E-12	0.0E+00	2.9E-16	8.5E-01	8.5E-01	7.7E-01	3.4E-12	0.0E+00	2.3E-16	3.4E-12
1,3-Dichloropropane	0.000097	3.9E-11	0.0E+00	2.9E-15	6.8E-02	6.8E-02	6.8E-02	2.7E-12	0.0E+00	1.9E-16	2.7E-12
2,2-Dichloropropane	0.00000092	3.7E-13	0.0E+00	2.7E-17	6.8E-02	6.8E-02	6.8E-02	2.5E-14	0.0E+00	1.8E-18	2.5E-14
DIOXINS/FURANS											
2,3,7,8-Tetrachlorodibenzo-p-dioxins (TCDD)											
Toxicity Equivalents (TEQ)	0.0000085	3.4E-12	4.0E-13	2.5E-16	1.5E+05	1.5E+05	1.5E+05	5.1E-07	6.1E-08	3.7E-11	5.7E-07
										ILCR	1E-05
Notes:											
^a Based on the maximum or 95 percent upper confid 1) Does and cancer risks shown only for carcinogen	^a Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected at the site. 1) Doses and cancer risks shown only for carcinogenic chemicals with available toxicity values.								Increment	al lifetime canc	er risk.
2) Based on the maximum or 95 percent upper confid	dence limit (95% UC	CL) on the me	an concentra	tion detected a	at the site.			mg/kg	Milligram	s per kilogram.	

2) Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected at the site. Doses and cancer risks shown only for carcinogenic chemicals with available toxicity values.

Milligrams per kilogram. Milligrams per kilogram per day. mg/kg-d

3) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

Cancer risks are unitless values which represent the probability of incurring an adverse health

CANCER RISK CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 9 - Housing and Operations Landfill - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil Commutantian ^a	Soil Ingestion	Soil Dermal	Dust Inhalation	Como en Sl	F 4	(// 1)-1	Pathwa	y-Specific C	ancer Risk	Chemical-
Constituent	(mg/kg)	Dose (mg/kg-d)	Dose (mg/kg-d)	Dose (mg/kg-d)	Oral	Dermal	(mg/kg-a) Inhalation	Soll	Dermal	Dust Inhalation	Risk
	(88/	(88/	(88/	(88/	0			8			
INORGANICS											
Arsenic	17	2.0E-05	2.4E-06	1.5E-09	1.5E+00	1.5E+00	1.5E+01	3.0E-05	3.6E-06	2.2E-08	3.4E-05
Cadmium	4.1	4.9E-06	1.9E-08	3.6E-10	na	na	6.3E+00	na	na	2.3E-09	2.3E-09
Cobalt	38	4.6E-05	0.0E+00	3.4E-09	na	na	9.8E+00	na	na	3.3E-08	3.3E-08
VOLATILE ORGANIC COMPOUNDS											
1,2-Dibromoethane	0.000010	1.2E-11	0.0E+00	8.8E-16	8.5E-01	8.5E-01	7.7E-01	1.0E-11	0.0E+00	6.8E-16	1.0E-11
1,3-Dichloropropane	0.00010	1.2E-10	0.0E+00	8.6E-15	6.8E-02	6.8E-02	6.8E-02	8.0E-12	0.0E+00	5.8E-16	8.0E-12
2,2-Dichloropropane	0.00000092	1.1E-12	0.0E+00	8.1E-17	6.8E-02	6.8E-02	6.8E-02	7.5E-14	0.0E+00	5.5E-18	7.5E-14
DIOXINS/FURANS 2,3,7,8-Tetrachlorodibenzo-p-dioxins (TCDD)	0.0000085	105 11	1.25.12	750 16	1.50-05	1.50.05	1.50.05	1500	1 95 07	1.15.10	1.75.06
Toxicity Equivalents (TEQ)	0.000085	1.0E-11	1.2E-12	/.5E-16	1.5E+05	1.5E+05	1.5E+05	1.5E-06	1.8E-07	1.1E-10	1./E-06

			ILCR	4E-05
Notes:				
^a Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected in soil tundra	ILCR	Incremental	lifetime cancer risk	
and soil gravel at the site.	Inc	Incomplete	pathway.	
1) Doses and cancer risks shown only for carcinogenic chemicals with available toxicity values.	mg/kg	Milligrams	per kilogram.	
2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation	mg/kg-d	Milligrams	per kilogram per day	/.
of a medium.				
3) Cancer risks are unitless values which represent the probability of incurring an adverse health				

 Cancer risks are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Cancer Risk = Exposure Dose x Cancer Slope Factor.

CANCER RISK CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 9 - Housing and Operations Landfill - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Soil Dermal	Dust Inhalation				Pathway	-Specific Ca	ancer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer Sl	lope Factor	(mg/kg-d) ⁻¹	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
INORGANICS											
Arsenic	17	1.6E-07	6.4E-08	5.0E-11	1.5E+00	1.5E+00	1.5E+01	2.4E-07	9.6E-08	7.5E-10	3.4E-07
Cadmium	4.1	4.0E-08	5.3E-10	1.2E-11	na	na	6.3E+00	na	na	7.7E-11	7.7E-11
Cobalt	38	3.7E-07	0.0E+00	1.1E-10	na	na	9.8E+00	na	na	1.1E-09	1.1E-09
VOLATILE ORGANIC COMPOUNDS											
1,2-Dibromoethane	0.000010	9.8E-14	0.0E+00	3.0E-17	8.5E-01	8.5E-01	7.7E-01	8.3E-14	0.0E+00	2.3E-17	8.3E-14
1,3-Dichloropropane	0.000097	9.5E-13	0.0E+00	2.9E-16	6.8E-02	6.8E-02	6.8E-02	6.5E-14	0.0E+00	2.0E-17	6.5E-14
2,2-Dichloropropane	0.00000092	9.0E-15	0.0E+00	2.8E-18	6.8E-02	6.8E-02	6.8E-02	6.1E-16	0.0E+00	1.9E-19	6.1E-16
DIOXINS/FURANS											
2,3,7,8-Tetrachlorodibenzo-p-dioxins (TCDD)											
Toxicity Equivalents (TEQ)	0.0000085	8.3E-14	3.3E-14	2.6E-17	1.5E+05	1.5E+05	1.5E+05	1.2E-08	4.9E-09	3.8E-12	1.7E-08
										ILCR	4E-07
ites:										-	
Based on the maximum or 95 percent upper confid	dence limit (95% UC	L) on the mea	an concentrat	ion detected a	t the site.			ILCR	Incrementa	l lifetime cancer	risk.
Doses and cancer risks shown only for carcinogen	ic chemicals with av	ailable toxicit	y values.					Inc	Incomplete	pathway.	

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

mg/kg Milligrams per kilogram. mg/kg-d Milligrams per kilogram per day.

3) Cancer risks are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Cancer Risk = Exposure Dose x Cancer Slope Factor.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 9 - Housing and Operations Landfill - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dormal	Dust Inhelation				Pathw	av-Specific	Hazard	Chemical
	Companya di Soli	ngestion	Dermai	D	D.C	D (<i>(</i> 1 1)	I attiw	ay-specific		chemical-
Constituent	(mg/kg)	Dose (mg/kg-d)	Dose (mg/kg-d)	Dose (mg/kg-d)	Oral	Dermal	g/kg-d) Inhalation	Soll Ingestion	Dermal	Dust Inhalation	Specific HQ
								0			
INORGANICS											
Aluminum	0.0000036	1.3E-11	0.0E+00	6.5E-16	1.0E+00	1.0E+00	1.4E-03	1.3E-11	0.0E+00	4.6E-13	0.00000000014
Antimony	14	4.9E-05	0.0E+00	2.4E-09	4.0E-04	4.0E-04	4.0E-04	1.2E-01	0.0E+00	6.1E-06	0.12
Arsenic	17	6.0E-05	5.7E-06	3.0E-09	3.0E-04	3.0E-04	3.0E-04	2.0E-01	1.9E-02	1.0E-05	0.22
Cadmium	4.1	1.5E-05	4.7E-08	7.4E-10	5.0E-04	5.0E-04	5.0E-04	3.0E-02	9.4E-05	1.5E-06	0.030
Chromium	29	1.1E-04	0.0E+00	5.3E-09	1.5E+00	1.5E+00	1.5E+00	7.1E-05	0.0E+00	3.5E-09	0.000071
Cobalt	38	1.4E-04	0.0E+00	6.9E-09	2.0E-02	2.0E-02	5.7E-06	6.9E-03	0.0E+00	1.2E-03	0.0081
Copper	98	3.6E-04	0.0E+00	1.8E-08	3.7E-02	3.7E-02	3.7E-02	9.7E-03	0.0E+00	4.8E-07	0.010
Lead	276	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Manganese	970	3.5E-03	0.0E+00	1.8E-07	1.4E-01	1.4E-01	1.4E-05	2.5E-02	0.0E+00	1.3E-02	0.038
Mercury	0.21	7.7E-07	0.0E+00	3.8E-11	3.0E-04	3.0E-04	3.0E-04	2.6E-03	0.0E+00	1.3E-07	0.0026
Nickel	27	9.9E-05	0.0E+00	4.9E-09	2.0E-02	2.0E-02	2.0E-02	4.9E-03	0.0E+00	2.4E-07	0.0049
Selenium	1.0	3.6E-06	0.0E+00	1.8E-10	5.0E-03	5.0E-03	5.0E-03	7.3E-04	0.0E+00	3.6E-08	0.00073
Thallium	0.28	1.0E-06	0.0E+00	5.1E-11	7.0E-05	7.0E-05	7.0E-05	1.5E-02	0.0E+00	7.2E-07	0.015
Zinc	459	1.7E-03	0.0E+00	8.3E-08	3.0E-01	3.0E-01	3.0E-01	5.6E-03	0.0E+00	2.8E-07	0.0056
VOLATILE ORGANIC COMPOUNDS											
1,1,1-Trichloroethane	0.14	5.2E-07	0.0E+00	2.6E-11	2.8E-01	2.8E-01	6.3E-01	1.9E-06	0.0E+00	4.1E-11	0.0000019
1,2-Dibromoethane	0.000010	3.6E-11	0.0E+00	1.8E-15	5.7E-05	5.7E-05	5.7E-05	6.4E-07	0.0E+00	3.2E-11	0.00000064
1,3-Dichlorobenzene	0.062	2.3E-07	0.0E+00	1.1E-11	9.0E-04	9.0E-04	9.0E-04	2.5E-04	0.0E+00	1.2E-08	0.00025
1,3-Dichloropropane	0.000097	3.5E-10	0.0E+00	1.8E-14	1.1E-03	1.1E-03	1.1E-03	3.2E-07	0.0E+00	1.6E-11	0.00000032
2,2-Dichloropropane	0.00000092	3.3E-12	0.0E+00	1.7E-16	1.1E-03	1.1E-03	1.1E-03	3.0E-09	0.0E+00	1.5E-13	0.0000000030
2-Chlorotoluene	0.0000045	1.6E-11	0.0E+00	8.1E-16	2.0E-02	2.0E-02	2.0E-02	8.2E-10	0.0E+00	4.1E-14	0.0000000082
2-Chloroethyl vinyl ether	0.0000026	9.5E-12	0.0E+00	4.7E-16	na	na	na	na	na	na	0
2-Hexanone	0.0000087	3.2E-11	0.0E+00	1.6E-15	8.0E-02	8.0E-02	2.3E-02	4.0E-10	0.0E+00	6.8E-14	0.00000000040
4-Bromophenyl phenyl ether	0.0000024	8.7E-12	0.0E+00	4.3E-16	na	na	na	na	na	na	0
4-Chlorophenyl phenyl ether	0.0000029	1.1E-11	0.0E+00	5.2E-16	na	na	na	na	na	na	0
4-Isopropyltoluene	0.0000047	1.7E-11	0.0E+00	8.5E-16	1.0E-01	1.0E-01	1.0E-01	1.7E-10	0.0E+00	8.5E-15	0.00000000017
Bromomethane	0.36	1.3E-06	0.0E+00	6.5E-11	1.4E-03	1.4E-03	1.4E-03	9.4E-04	0.0E+00	4.6E-08	0.00094
Toluene	1.1	4.0E-06	0.0E+00	2.0E-10	2.0E-01	2.0E-01	1.1E-01	2.0E-05	0.0E+00	1.8E-09	0.000020
SEMIVOLATILE ORGANIC COMPOUNDS	:										
3-Nitroaniline	0.0000019	6.9E-12	2.2E-12	3.4E-16	2.9E-05	2.9E-05	2.9E-05	2.4E-07	7.6E-08	1.2E-11	0.00000031
4-Chlorotoluene	0.025	8.9E-08	2.8E-08	4.4E-12	2.0E-02	2.0E-02	2.0E-02	4.5E-06	1.4E-06	2.2E-10	0.0000059
4-Nitroaniline	0.000030	1.1E-10	3.4E-11	5.4E-15	2.9E-05	2.9E-05	2.9E-05	3.7E-06	1.2E-06	1.9E-10	0.0000049
4-Nitrophenol	0.00013	4.8E-10	1.5E-10	2.4E-14	5.0E-04	5.0E-04	5.7E-04	9.7E-07	3.1E-07	4.2E-11	0.0000013
2-Methyl-4,6-dinitrophenol	0.0000037	1.3E-11	4.3E-12	6.7E-16	5.0E-04	5.0E-04	5.7E-04	2.7E-08	8.5E-09	1.2E-12	0.00000035

0.46
NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 9 - Housing and Operations Landfill - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhalation				Pathy	vav-Specific	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (n	ng/kg-d)	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	462	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	370	1.3E-03	Inc	6.7E-08	1.0E-01	na	2.9E-01	1.3E-02	Inc	2.3E-07	0.013
Diesel Range Organics, Aromatic	185	6.7E-04	Inc	3.3E-08	4.0E-02	na	5.7E-01	1.7E-02	Inc	5.9E-08	0.017
Residual Range Organics	1,539	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Residual Range Organics, Aliphatic	1,385	5.0E-03	Inc	2.5E-07	2.0E+00	na	na	2.5E-03	Inc	Inc	0.0025
Residual Range Organics, Aromatic	462	1.7E-03	Inc	8.3E-08	3.0E-02	na	na	5.6E-02	Inc	Inc	0.056
										н	0.089
Notes:											0.007
^a Based on the maximum or 95 percent upper confi	dence limit (95% UC	L) on the mea	an					ні	Hazard ind	ex.	
concentration detected at the site		_,						НО	Hazard que	tient	
^b Consistent with EDA policy load is not evoluated	in the cumulative U	actimata						Inc	Incomplete	pothwow	
 c Risks associated with indicator compounds are in 	cluded in cumulative	risk and haza	rd					mg/kd-d	Milligrams	patriway. per kilogram pe	er day.
estimates for each site. However, the health haza	rds associated with pe	etroleum mixt	ures					na	not availab	le	•
will be evaluated and reported separately.											
^d Exposure dose and noncancer hazards were calcu	lated for petroleum h	ydrocarbons r	neasured as D	RO (method 81	00)						
by segregating total DRO concentrations into alig	phatic and aromatic fr	actions, assur	ning 80% alip	hatic							
hydrocarbons and 40% aromatic hydrocarbons (A	DEC. 2000c)	·	0 1								
^e Exposure dose and noncancer hazards were calcu	lated for petroleum h	vdrocarbons r	neasured as R	RO (method)							
by segregating total RRO concentrations into alig	phatic and aromatic fr	actions assur	ning 90% alin	hatic							
hydrocarbons and 30% aromatic hydrocarbons (A	DEC 2000a)	uotions, ussui	ining 90% unp	liutie							
1) Desses and non-son begande shown only for non	IDEC, 2000C).	la mith anaile	hla tonicity y	huas							
 Doses and noncancer nazards snown only for non Absorbed doses were calculated for dermal contain of a medium 	ct with the medium, a	nd intakes we	ere calculated	for ingestion or	inhalation						
3) Noncancer hazards are unitless values which repr effect. They are calculated using the following for	resent the probability or mula: Noncancer H	of incurring a II = Exposure	n adverse heal Dose/Referen	th ce dose.							

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 9 - Housing and Operations Landfill - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil	Dormal	Dust Inhelation				Dothwa	v Specifie	Uozord	Chomical
	Concentration ^a	Design	Dermai	D	Defer		(f autwa	iy-specific	Dent	- Chennical-
Constituent	(mg/kg)	Dose (mg/kg-d)	Dose (mg/kg-d)	Dose (mg/kg-d)	Oral	Dermal	(mg/kg-a) Inhalation	5011 Ingestion	Dermal	Dust Inhalation	HO
Construction	((((1119/119 11)	0141	2011111		ingestion	201111		
INORGANICS											
Aluminum	0.0000036	3.9E-11	0.0E+00	2.0E-15	1.0E+00	1.0E+00	1.4E-03	3.9E-11	0.0E+00	1.4E-12	0.000000000041
Antimony	14	1.5E-04	0.0E+00	7.3E-09	4.0E-04	4.0E-04	4.0E-04	3.7E-01	0.0E+00	1.8E-05	0.37
Arsenic	17	1.8E-04	1.7E-05	9.0E-09	3.0E-04	3.0E-04	3.0E-04	6.0E-01	5.7E-02	3.0E-05	0.66
Cadmium	4.1	4.5E-05	1.4E-07	2.2E-09	5.0E-04	5.0E-04	5.0E-04	8.9E-02	2.8E-04	4.4E-06	0.089
Chromium	29	3.2E-04	0.0E+00	1.6E-08	1.5E+00	1.5E+00	1.5E+00	2.1E-04	0.0E+00	1.1E-08	0.00021
Cobalt	38	4.1E-04	0.0E+00	2.1E-08	2.0E-02	2.0E-02	5.7E-06	2.1E-02	0.0E+00	3.6E-03	0.024
Copper	98	1.1E-03	0.0E+00	5.3E-08	3.7E-02	3.7E-02	3.7E-02	2.9E-02	0.0E+00	1.4E-06	0.029
Lead	276	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Manganese	970	1.1E-02	0.0E+00	5.3E-07	1.4E-01	1.4E-01	1.4E-05	7.6E-02	0.0E+00	3.8E-02	0.113
Mercury	0.21	2.3E-06	0.0E+00	1.1E-10	3.0E-04	3.0E-04	3.0E-04	7.7E-03	0.0E+00	3.8E-07	0.0077
Nickel	27	3.0E-04	0.0E+00	1.5E-08	2.0E-02	2.0E-02	2.0E-02	1.5E-02	0.0E+00	7.3E-07	0.015
Selenium	1.0	1.1E-05	0.0E+00	5.4E-10	5.0E-03	5.0E-03	5.0E-03	2.2E-03	0.0E+00	1.1E-07	0.0022
Thallium	0.28	3.1E-06	0.0E+00	1.5E-10	7.0E-05	7.0E-05	7.0E-05	4.4E-02	0.0E+00	2.2E-06	0.044
Zinc	459	5.0E-03	0.0E+00	2.5E-07	3.0E-01	3.0E-01	3.0E-01	1.7E-02	0.0E+00	8.3E-07	0.017
VOLATILE ORGANIC COMPOUNDS											
1.1.1-Trichloroethane	0.14	1.6E-06	0.0E+00	7.7E-11	2.8E-01	2.8E-01	6.3E-01	5.6E-06	0.0E+00	1.2E-10	0.0000056
1.2-Dibromoethane	0.00001	1.1E-10	0.0E+00	5.4E-15	5.7E-05	5.7E-05	5.7E-05	1.9E-06	0.0E+00	9.5E-11	0.0000019
1.3-Dichlorobenzene	0.068	7.4E-07	0.0E+00	3.7E-11	9.0E-04	9.0E-04	9.0E-04	8.3E-04	0.0E+00	4.1E-08	0.00083
1.3-Dichloropropane	0.000097	1.1E-09	0.0E+00	5.3E-14	1.1E-03	1.1E-03	1.1E-03	9.6E-07	0.0E+00	4.8E-11	0.00000096
2 2-Dichloropropane	0.00000092	1.0E-11	0.0E+00	5.0E-16	1.1E-03	1.1E-03	1.1E-03	9.1E-09	0.0E+00	4 5E-13	0.000000091
2-Chlorotoluene	0.0000045	4 9E-11	0.0E+00	2.6E-16	2.0E-02	2 0E-02	2.0E-02	2 5E-09	0.0E+00	1.2E-13	0.0000000000000000000000000000000000000
2-Chloroethyl vinyl ether	0.0000045	2.9E-11	0.0E+00	1.4E-15	2.01 02 na	2.0E 02	2.0E 02	2.5E 07	na	na	0.000000025
2-Hexanone	0.0000020	9.5E-11	0.0E+00	4.7E-15	8 0F-02	8 0F-02	2 3E-02	1 2E-09	0.0E+00	2 0E-13	0.000000012
4-Bromophenyl phenyl ether	0.00000007	2.6E-11	0.0E+00	1.7E-15	0.01 02	0.01 02	2.5E 02	na	na	2.0E 15	0.000000012
4-Chlorophenyl phenyl ether	0.0000024	2.0E-11 3.2E-11	0.0E+00	1.5E-15	na	na	na	na	na	na	0
4 Isopropyltolyapa	0.0000027	5.1E-11	0.0E+00	2.5E 15	1 OF 01	1 OF 01	1 OF 01	5 1E 10	$0.0E \pm 0.0$	2 5E 14	0 0000000051
Promomethane	0.0000047	3.1E-11 3.0E-06	0.0E+00	2.5E-15 2.0E 10	1.0E-01	1.0E-01	1.0E-01	3.1E-10 2.8E-02	0.0E+00	2.3E-14	0.0000000000000000000000000000000000000
Toluono	0.30	3.9E-00	0.0E+00	2.0E-10	1.4E-05	1.4E-03	1.4E-03	2.6E-05	0.0E+00	1.4E-07	0.0028
Toluene	1.1	1.2E-05	0.0E+00	0.0E-10	2.0E-01	2.0E-01	1.1E-01	0.0E-05	0.0E+00	5.4E-09	0.000060
SEMIVOLATILE ORGANIC COMPOUNDS											
3-Nitroaniline	0.0000019	2.1E-11	6.6E-12	1.0E-15	2.9E-05	2.9E-05	2.9E-05	7.2E-07	2.3E-07	3.6E-11	0.00000094
4-Chlorotoluene	0.025	2.7E-07	8.5E-08	1.3E-11	2.0E-02	2.0E-02	2.0E-02	1.3E-05	4.2E-06	6.6E-10	0.000018
4-Nitroaniline	0.000030	3.2E-10	1.0E-10	1.6E-14	2.9E-05	2.9E-05	2.9E-05	1.1E-05	3.5E-06	5.6E-10	0.000015
4-Nitrophenol	0.00013	1.5E-09	4.6E-10	7.2E-14	5.0E-04	5.0E-04	5.7E-04	2.9E-06	9.2E-07	1.3E-10	0.0000038

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 9 - Housing and Operations Landfill - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhalation				Pathwa	y-Specific	Hazard	Chemical-
Constituent	Concentration ^a (mg/kg)	Dose (mg/kg-d)	Dose (mg/kg-d)	Dose (mg/kg-d)	Refere Oral	nce Dose Dermal	(mg/kg-d) Inhalation	Soil Ingestion	Dermal	Dust Inhalation	Specific HQ
2-Methyl-4,6-dinitrophenol	0.0000037	4.0E-11	1.3E-11	2.0E-15	5.0E-04	5.0E-04	5.7E-04	8.1E-08	2.6E-08	3.5E-12	0.00000011
										HI	1.4
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	462	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	370	4.0E-03	Inc	2.0E-07	1.0E-01	na	2.9E-01	4.0E-02	Inc	6.9E-07	0.040
Diesel Range Organics, Aromatic	185	2.0E-03	Inc	1.0E-07	4.0E-02	na	5.7E-01	5.0E-02	Inc	1.8E-07	0.050
Residual Range Organics	1,539	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Residual Range Organics, Aliphatic	1,385	1.5E-02	Inc	7.5E-07	2.0E+00	na	na	7.6E-03	Inc	Inc	0.0076
Residual Range Organics, Aromatic	462	5.0E-03	Inc	2.5E-07	3.0E-02	na	na	1.7E-01	Inc	Inc	0.17

			HI	0.27
Notes:				
^a Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean	HI	Hazard inc	lex.	
concentration detected at the site.	HQ	Hazard qu	otient.	
^b Consistent with EPA policy, lead is not evaluated in the cumulative HI estimate.	Inc	Incomplete	e pathway.	
^c Risks associated with indicator compounds are included in cumulative risk and hazard	mg/kg	Milligrams	s per kilogram.	
estimates for each site. However, the health hazards associated with petroleum mixtures	mg/kd-d	Milligrams	s per kilogram p	er day.
will be evaluated and reported separately.	na	not availab	ole	
^d Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as DRO (method 8100)				

by segregating total DRO concentrations into aliphatic and aromatic fractions, assuming 80% aliphatic

hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c).

 $^{\rm c}$ Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as RRO (method)

by segregating total RRO concentrations into aliphatic and aromatic fractions, assuming 90% aliphatic

hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium.

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 9 - Housing and Operations Landfill - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	CT 13		- ·						a .a .		~
	Soil	Ingestion	Dermal	Inhalation			-	Pathw	ay-Specific I	lazard	Chemical-
Cor	ncentration [*]	Dose	Dose	Dose	Referen	nce Dose (n	ng/kg-d)	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
INORGANICS											
Aluminum	0.0000036	1.0E-13	0.0E+00	3.2E-17	1.0E+00	1.0E+00	1.4E-03	1.0E-13	0.0E+00	2.3E-14	0.0000000000013
Antimony	14	3.9E-07	0.0E+00	1.2E-10	4.0E-04	4.0E-04	4.0E-04	9.6E-04	0.0E+00	3.0E-07	0.0010
Arsenic	17	4.7E-07	1.9E-07	1.5E-10	3.0E-04	3.0E-04	3.0E-04	1.6E-03	6.3E-04	4.9E-07	0.0022
Cadmium	4.1	1.2E-07	1.5E-09	3.6E-11	5.0E-04	5.0E-04	5.0E-04	2.3E-04	3.1E-06	7.2E-08	0.00024
Chromium	29	8.4E-07	0.0E+00	2.6E-10	1.5E+00	1.5E+00	1.5E+00	5.6E-07	0.0E+00	1.7E-10	0.00000056
Cobalt	38	1.1E-06	0.0E+00	3.3E-10	2.0E-02	2.0E-02	5.7E-06	5.4E-05	0.0E+00	5.9E-05	0.00011
Copper	98	2.8E-06	0.0E+00	8.6E-10	3.7E-02	3.7E-02	3.7E-02	7.6E-05	0.0E+00	2.3E-08	0.000076
Lead	276	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Manganese	970	2 8E-05	0.0E+00	8 5E-09	1 4E-01	1 4E-01	1 4E-05	2 0E-04	0.0E+00	6 1E-04	0.00081
Mercury	0.21	6.0E-09	0.0E+00	1.9E-12	3 0F-04	3 0F-04	3 0F-04	2.0E-01	0.0E+00	6.2E-09	0.000020
Nickel	27	7.7E-07	0.0E+00	2 4E-10	2.0E-02	2.0E-02	2.0E-02	3.9E-05	0.0E+00	1.2E-08	0.000020
Selenium	10	2.9E-08	0.0E+00	2.4E 10 8.8E-12	5.0E-02	5.0E-02	5.0E-02	5.7E-06	0.0E+00	1.2E 00	0.0000057
Thallium	0.28	2.9E 00 8.0E-09	0.0E+00	2.5E-12	7.0E-05	7.0E-05	7.0E-05	1 1E-04	0.0E+00	3.5E-08	0.00011
Zinc	459	1.3E-05	0.0E+00	4.0E-09	3.0E-01	3.0E-01	3.0E-01	4.4E-05	0.0E+00	1.3E-08	0.000044
VOLATILE ORGANIC COMPOUNDS											
1,1,1-Trichloroethane	0.14	4.1E-09	0.0E+00	1.3E-12	2.8E-01	2.8E-01	6.3E-01	1.5E-08	0.0E+00	2.0E-12	0.00000015
1,2-Dibromoethane	0.000010	2.9E-13	0.0E+00	8.8E-17	5.7E-05	5.7E-05	5.7E-05	5.0E-09	0.0E+00	1.5E-12	0.0000000050
1,3-Dichlorobenzene	0.068	1.9E-09	0.0E+00	6.0E-13	9.0E-04	9.0E-04	9.0E-04	2.2E-06	0.0E+00	6.6E-10	0.0000022
1,3-Dichloropropane	0.000097	2.8E-12	0.0E+00	8.5E-16	1.1E-03	1.1E-03	1.1E-03	2.5E-09	0.0E+00	7.7E-13	0.000000025
2,2-Dichloropropane 0	0.00000092	2.6E-14	0.0E+00	8.0E-18	1.1E-03	1.1E-03	1.1E-03	2.4E-11	0.0E+00	7.3E-15	0.00000000024
2-Chlorotoluene 0	0.0000045	1.3E-13	0.0E+00	4.0E-17	2.0E-02	2.0E-02	2.0E-02	6.4E-12	0.0E+00	2.0E-15	0.000000000064
2-Chloroethyl vinyl ether 0	0.0000026	7.4E-14	0.0E+00	2.3E-17	na	na	na	na	na	na	0
2-Hexanone 0	0.0000087	2.5E-13	0.0E+00	7.6E-17	8.0E-02	8.0E-02	2.3E-02	3.1E-12	0.0E+00	3.3E-15	0.000000000031
4-Bromophenyl phenyl ether 0	0.0000024	6.8E-14	0.0E+00	2.1E-17	na	na	na	na	na	na	0.0
4-Chlorophenyl phenyl ether 0	0.0000029	8.3E-14	0.0E+00	2.5E-17	na	na	na	na	na	na	0.0
4-Isopropyltoluene 0	0.0000047	1.3E-13	0.0E+00	4.1E-17	1.0E-01	1.0E-01	1.0E-01	1.3E-12	0.0E+00	4.1E-16	0.000000000013
Bromomethane	0.36	1.0E-08	0.0E+00	3.2E-12	1.4E-03	1.4E-03	1.4E-03	7.3E-06	0.0E+00	2.3E-09	0.0000073
Toluene	1.1	3.1E-08	0.0E+00	9.7E-12	2.0E-01	2.0E-01	1.1E-01	1.6E-07	0.0E+00	8.8E-11	0.00000016
SEMIVOLATILE ORGANIC COMPOUNDS											
3-Nitroaniline	0.0000019	5.4E-14	7.2E-14	1.7E-17	2.9E-05	2.9E-05	2.9E-05	1.9E-09	2.5E-09	5.8E-13	0.000000043
4-Chlorotoluene	0.025	7.0E-10	9.2E-10	2.2E-13	2.0E-02	2.0E-02	2.0E-02	3.5E-08	4.6E-08	1.1E-11	0.000000081
4-Nitroaniline	0.000030	8.5E-13	1.1E-12	2.6E-16	2.9E-05	2.9E-05	2.9E-05	2.9E-08	3.9E-08	9.0E-12	0.000000068
4-Nitrophenol	0.00013	3.8E-12	5.0E-12	1.2E-15	5.0E-04	5.0E-04	5.7E-04	7.6E-09	1.0E-08	2.0E-12	0.00000018
2-Methyl-4.6-dinitrophenol	0.0000037	1.1E-13	1.4E-13	3.2E-17	5.0E-04	5.0E-04	5.7E-04	2.1E-10	2.8E-10	5.7E-14	0.00000000049

HI	0.0046

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 9 - Housing and Operations Landfill - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhalation				Path	way-Specific 1	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (n	ng/kg-d)	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	462	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	370	1.1E-05	Inc	3.2E-09	1.0E-01	na	2.9E-01	1.1E-04	Inc	1.1E-08	0.00011
Diesel Range Organics, Aromatic	185	5.3E-06	Inc	1.6E-09	4.0E-02	na	5.7E-01	1.3E-04	Inc	2.8E-09	0.00013
Residual Range Organics	1,539	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Residual Range Organics, Aliphatic	1,385	4.0E-05	Inc	1.2E-08	2.0E+00	na	na	2.0E-05	Inc	Inc	0.000020
Residual Range Organics, Aromatic	462	1.3E-05	Inc	4.1E-09	3.0E-02	na	na	4.4E-04	Inc	Inc	0.00044
										HI	0.00070
Notes:											
^a Based on the maximum or 95 percent upper of	confidence limit (95% U	CL) on the m	ean					HI	Hazard index	x.	
concentration detected at the site.								HQ	Hazard quoti	ient.	
^b Consistent with EPA policy, lead is not evalu	ated in the cumulative H	I estimate.						Inc	Incomplete p	athway.	
^c Risks associated with indicator compounds a	re included in cumulativ	e risk and haz	zard					mø/kø	Milligrams n	er kilogram	
estimates for each site. However, the health	hazards associated with	petroleum mi	xtures					mg/kd_d	Milligrams p	er kilogram per d	av
will be evaluated and reported separately.	,							ng/Ku u	not available	er knogrann per u	ay.
^d Exposure dose and noncancer hazards were	calculated for petroleum i	hydrocarbons	measured as	DRO (metho	d 8100)			IIa	not available		
by segregating total DRO concentrations int	o aliphatic and aromatic	fractions ass	uming 80% a	linhatic	a 0100)						
hydrocarbons and 40% aromatic hydrocarbon	ns (ADEC 2000c)	1140110113, 4335	unning 0070 u	iipiiatie							
⁶ Experime dass and non-compare housed ware	alculated for notroloum	hruduo oonh on o	manage and an	DDO (matha	4)						
Exposure dose and honcancer hazards were a	calculated for petroleum	nyurocarbons	measured as	KKO (method	1)						
by segregating total RRO concentrations into	o aliphatic and aromatic	tractions, assi	1ming 90% a	liphatic							
hydrocarbons and 30% aromatic hydrocarbon	ns (ADEC, 2000c).										
1) Doses and noncancer hazards shown only for	r noncarcinogenic chemi	cals with avai	lable toxicity	values.							
2) Absorbed doses were calculated for dermal c	contact with the medium,	and intakes v	vere calculate	ed for ingestio	n or inhalati	on					
3) Noncancer hazards are unitless values which	represent the probability	of incurring	an adverse h	ealth							
effect. They are calculated using the following	ng formula: Noncancer	HI = Exposu	re Dose/Refe	rence dose.							

CANCER RISK CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 9 - Housing and Operations Landfill - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Groundwater	Ingestion	Dermal	VOC Inhalation				Pathway	-Specific Ca	ancer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer S	lope Factor	(mg/kg-d) ⁻¹			VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
Cobalt	0.037	1 4E 04	77E07	Inc	na	na	9.8E+00	na	na	Inc	0.0E+00
Cobait	0.057	1.42-04	7.7E-07	IIIC	na	па	9.0L+00	na	na	inc	0.02+00
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.00075	2.9E-06	8 1E-07	8 6E-05	5 5E-02	5 5E-02	2.7E-02	1 6E-07	4 4E-08	2 3E-06	2 5E-06
Deniene	0.00075	2.72 00	0.12 07	0.02 05	5.51 02	0.00 02	2.72 02	1.02 07	1.12.00	2.52 00	2.52 00
DIOXINS/FURANS											
2,3,7,8-Tetrachlorodibenzo-p-dioxins (TCDD)	0.000000054	2.1E-11	3.9E-10	Inc	1.5E+05	1.5E+05	1.5E+05	3.1E-06	5.9E-05	Inc	6.2E-05
Toxicity Equivalents (TEO)											
										ILCR	6E-05
Notes:											
^a Based on the maximum or 95 percent upper con	fidence limit (95%	UCL) on the	mean					ILCR	Incrementa	l lifetime canc	er risk.
concentration detected at the site.								Inc	Incomplete	pathway.	
1) Doses and cancer risks shown only for carcinoge	enic chemicals with	available tox	icity values.					mg/L	Milligrams	per liter.	
2) Absorbed doses were calculated for dermal conta	act with the mediur	n, and intakes	were					mg/kg-d	Milligrams	per kilogram	per day.
calculated for ingestion or inhalation of a mediu	ım.							VOC	Volatile org	ganic compour	nd.
3) Cancer risks are unitless values which represent	the probability of it	ncurring an ac	lverse health					na	Not availab	ole	

CANCER RISK CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 9 - Housing and Operations Landfill - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

Constituent	Surface Water Concentration ^a	Ingestion Dose (mg/kg-d)	Dermal Dose (mg/kg-d)	VOC Inhalation Dose (mg/kg-d)	Cancer S	lope Factor	(mg/kg-d) ⁻¹	Pathwa	y-Specific Ca	ncer Risk VOC Inhelation	Chemical- Specific Bisk
Constituent	(IIIg/L)	(Ing/kg-u)	(Ing/kg-u)	(Ing/kg-u)	Ulai	Dermai	IIIIaiation	ingestion	Dermai	maiation	NISK
INORGANICS Cobalt	0.037	5.5E-04	3.0E-06	Inc	na	na	9.8E+00	na	na	Inc	0.0E+00
VOLATILE ORGANIC COMPOUNDS Benzene	0.00075	1.1E-05	3.1E-06	3.3E-05	5.5E-02	5.5E-02	2.7E-02	6.1E-07	1.7E-07	9.0E-07	1.7E-06
DIOXINS/FURANS 2,3,7,8-Tetrachlorodibenzo-p-dioxins (TCDD) Toxicity Equivalents (TEQ)	0.0000000054	8.0E-11	1.5E-09	Inc	1.5E+05	1.5E+05	1.5E+05	1.2E-05	2.3E-04	Inc	2.4E-04
										ILCR	2E-04
Notes:											
 ^a Based on the maximum or 95 percent upper conficence concentration detected at the site. 1) Doses and cancer risks shown only for carcinoger 2) Absorbed doses were calculated for dermal contact 	Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected at the site. Doses and cancer risks shown only for carcinogenic chemicals with available toxicity values. Absorbed doses were calculated for dermal contact with the medium, and intakes were										risk. • day.
calculated for ingestion or inhalation of a mediur3) Cancer risks are unitless values which represent the	n. he probability of inc	urring an adv	verse health					VOC na	Volatile orga Not available	unic compound. e.	

CANCER RISK CALCULATIONS FOR A FUTURE INCIDENTAL VISITOR SITE 9 - Housing and Operations Landfill - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Pathway	-Specific Ca	ancer Risk	Chemical-
Constituent	Concentration ^a (mg/L)	Dose (mg/kg-d)	Dose (mg/kg-d)	Dose (mg/kg-d)	Cancer S Oral	lope Factor Dermal	(mg/kg-d) ⁻¹ Inhalation	Ingestion	Dermal	VOC Inhalation	Specific Risk
INORGANICS Cobalt	0.037	1.4E-05	5.8E-08	Inc	na	na	9.8E+00	na	na	Inc	0.0E+00
VOLATILE ORGANIC COMPOUNDS Benzene	0.00075	2.9E-07	6.0E-08	8.8E-07	5.5E-02	5.5E-02	2.7E-02	1.6E-08	3.3E-09	3.2E-05	3.2E-05
DIOXINS/FURANS 2,3,7,8-Tetrachlorodibenzo-p-dioxins (TCDD) Toxicity Equivalents (TEQ)	0.0000000054	2.1E-12	2.9E-11	Inc	1.5E+05	1.5E+05	1.5E+05	3.2E-07	4.4E-06	Inc	4.7E-06
										ILCR	4E-05
Notes:										_	
 ^a Based on the maximum or 95 percent upper conconcentration detected at the site. 1) Doses and cancer risks shown only for carcinog 2) Absorbed doses were calculated for dermal cont calculated for ingestion or inhalation of a media 3) Cancer risks are unitless values which represent 	fidence limit (95% enic chemicals with act with the mediur im. the probability of i	UCL) on the r n available toxi m, and intakes ncurring an ad	nean icity values. were lverse health					ILCR Inc mg/L mg/kg-d VOC na	Incrementa Incomplete Milligrams Milligrams Volatile org Not availab	l lifetime cance pathway. per liter. per kilogram p ganic compoun ole.	er risk. ver day. d.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 9 - Housing and Operations Landfill - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Path	wav-Snecific 1	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (ma/ka-d)	I util	way-opeenie	VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
INORGANICS											
Aluminum	164	1.4E+00	6.5E-02	Inc	1.0E+00	1.0E+00	1.4E-03	1.4E+00	6.5E-02	Inc	1.5
Antimony	0.12	1.0E-03	4.8E-05	Inc	4.0E-04	4.0E-04	4.0E-04	2.5E+00	1.2E-01	Inc	2.7
Barium	1.2	9.8E-03	4.6E-04	Inc	7.0E-02	7.0E-02	1.4E-04	1.4E-01	6.6E-03	Inc	0.15
Cobalt	0.037	3.1E-04	5.9E-06	Inc	2.0E-02	2.0E-02	5.7E-06	1.6E-02	3.0E-04	Inc	0.016
Lead, Dissolved	0.30	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Manganese	2.2	1.9E-02	8.9E-04	Inc	1.4E-01	1.4E-01	1.4E-05	1.4E-01	6.4E-03	Inc	0.14
Nickel	0.091	7.7E-04	7.3E-06	Inc	2.0E-02	2.0E-02	2.0E-02	3.8E-02	3.6E-04	Inc	0.039
Vanadium	0.15	1.3E-03	5.9E-05	Inc	7.0E-03	7.0E-03	7.0E-03	1.8E-01	8.5E-03	Inc	0.19
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.00075	6.3E-06	6.2E-06	5.3E-05	4.0E-03	4.0E-03	8.6E-03	1.6E-03	1.5E-03	6.1E-03	0.0092
										HI	4.6
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	7.7	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	6.2	5.2E-02	Inc	3.5E-02	1.0E-01	na	2.9E-01	5.2E-01	Inc	1.2E-01	0.64
Diesel Range Organics, Aromatic	3.1	2.6E-02	Inc	1.7E-02	4.0E-02	na	5.7E-01	6.5E-01	Inc	3.0E-02	0.68
Gasoline Range Organics	4.2	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Gasoline Range Organics, Aliphatic	2.9	2.5E-02	Inc	1.7E-05	5.0E+00	na	5.3E+00	5.0E-03	Inc	3.3E-06	0.0050
Gasoline Range Organics, Aromatic	2.1	1.8E-02	Inc	1.2E-05	2.0E-01	na	1.1E-01	8.9E-02	Inc	1.1E-04	0.089
										HI	1.4
Notes:											
^a Based on the maximum or 95 percent upper co	onfidence limit (95%	UCL) on the	e mean					HI	Hazard inde	x.	
concentration detected at the site.								HQ	Hazard quot	ient.	
^b Consistent with EPA policy, lead is not evalua	ted in the cumulative	e HI estimate						Inc	Incomplete j	oathway.	
^c Risks associated with indicator compounds are	e included in cumula	tive risk and	hazard					mg/L	Milligrams 1	ber liter.	
estimates for each site. However, the health ha	azards associated wi	th petroleum	mixtures					mg/kd-d	Milligrams	er kilogram r	er dav
will be evaluated and reported separately.								na	not available	y with the second se	.c. auy.
^d Exposure dose and noncancer hazards were ca	lculated for petroleu	m hydrocarbo	ons measured	l as DRO (me	thod 8100)			VOC	Volatila orga	nic compour	đ
by segregating total DRO concentrations into	aliphatic and aroma	tic fractions,	assuming 809	% aliphatic				v UC	v oranie orga	ane compoun	u.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 9 - Housing and Operations Landfill - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

				VOC							
	Surface Water	Ingestion	Dermal	Inhalation	-			Pathwa	ay-Specific l	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refer	ence Dose ((mg/kg-d)			VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ

hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c).

^e Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as GRO (method 8015)

by segregating total GRO concentrations into aliphatic and aromatic fractions, assuming 70% aliphatic

hydrocarbons and 50% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 9 - Housing and Operations Landfill - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation	D	D. (Pathy	way-Specific	Hazard	Chemical-
Constituent	(mg/L)	Dose (mg/kg-d)	Dose (mg/kg-d)	Dose (mg/kg-d)	Oral	nce Dose (Dermal	mg/kg-d) Inhalation	Ingestion	Dermal	VOC Inhalation	Specific
Aluminum	164	5.4E+00	2 5E-01	Inc	1.0F+00	1.0F+00	1 4F-03	54F+00	2 5E-01	Inc	56
Antimony	0.12	3.9E-03	1.9E-04	Inc	4.0E-04	4.0E-04	4.0E-04	9.9E+00	4.7E-01	Inc	10
Barium	1.2	3.8E-02	1.8E-03	Inc	7.0E-02	7.0E-02	1.4E-04	5.4E-01	2.6E-02	Inc	0.57
Cobalt	0.037	1.2E-03	2.3E-05	Inc	2.0E-02	2.0E-02	5.7E-06	6.1E-02	1.1E-03	Inc	0.062
Lead. Dissolved	0.30	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Manganese	2.2	7.4E-02	3.5E-03	Inc	1.4E-01	1.4E-01	1.4E-05	5.3E-01	2.5E-02	Inc	0.55
Nickel	0.091	3.0E-03	2.8E-05	Inc	2.0E-02	2.0E-02	2.0E-02	1.5E-01	1.4E-03	Inc	0.15
Vanadium	0.15	4.9E-03	2.3E-04	Inc	7.0E-03	7.0E-03	7.0E-03	7.0E-01	3.3E-02	Inc	0.73
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.00075	2.5E-05	2.4E-05	3.3E-05	4.0E-03	4.0E-03	8.6E-03	6.1E-03	6.0E-03	3.9E-03	0.016
										HI	18
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	7.7	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	6.2	2.0E-01	Inc	1.4E-01	1.0E-01	na	2.9E-01	2.0E+00	Inc	4.7E-01	2.5
Diesel Range Organics, Aromatic	3.1	1.0E-01	Inc	6.8E-02	4.0E-02	na	5.7E-01	2.5E+00	Inc	1.2E-01	2.6
Gasoline Range Organics	4.2	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	nae
Gasoline Range Organics, Aliphatic	2.9	9.7E-02	Inc	6.7E-05	5.0E+00	na	5.3E+00	1.9E-02	Inc	1.3E-05	0.019
Gasoline Range Organics, Aromatic	2.1	6.9E-02	Inc	4.8E-05	2.0E-01	na	1.1E-01	3.5E-01	Inc	4.4E-04	0.35
										HI	5.5
Notes:											
^a Based on the maximum or 95 percent upper of	confidence limit (95	5% UCL) on	the mean					HI	Hazard inde	х.	
concentration detected at the site.								HQ	Hazard quot	ient.	
^b Consistent with EPA policy, lead is not evalu	uated in the cumula	tive HI estim	ate.					Inc	Incomplete r	oathway.	
^c Risks associated with indicator compounds a	are included in cum	ulative risk ar	nd hazard					mg/L	Milligrams r	ber liter.	
estimates for each site. However, the health	hazards associated	with petroleu	m mixtures					mg/kd-d Milligrams per kilogram per day.			er dav.
will be evaluated and reported separately.		_						na	not available	e	
^d Exposure dose and noncancer hazards were a	calculated for petrol	leum hydroca	rbons measur	red as DRO (r	method 810	0)		VOC Volatile organic compound.			

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 9 - Housing and Operations Landfill - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

				VOC							
	Surface Water	Ingestion	Dermal	Inhalation	l			Pathwa	y-Specific	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Reference Dose (mg/kg-d)				VOC	Specific	
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ

by segregating total DRO concentrations into aliphatic and aromatic fractions, assuming 80% aliphatic

hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c).

^e Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as RRO (method)

by segregating total RRO concentrations into aliphatic and aromatic fractions, assuming 90% aliphatic

hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE INCIDENTAL VISITOR SITE 9 - Housing and Operations Landfill - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Path	way-Specific	Hazard	Chemical-
Constituent	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (mg/kg-d)	Ingestion	Dormal	VOC Inhelation	Specific
Constituent	(iiig/L)	(ing/kg-u)	(IIIg/Kg-u)	(IIIg/Kg-u)	Orai	Dermai	Innalation	Ingestion	Dermai	Innalation	nų
INORGANICS											
Aluminum	164	1.9E-01	1.9E-03	Inc	1.0E+00	1.0E+00	1.4E-03	1.9E-01	1.9E-03	Inc	0.19
Antimony	0.12	1.4E-04	1.4E-06	Inc	4.0E-04	4.0E-04	4.0E-04	3.4E-01	3.4E-03	Inc	0.35
Barium	1.2	1.3E-03	1.3E-05	Inc	7.0E-02	7.0E-02	1.4E-04	1.9E-02	1.9E-04	Inc	0.019
Cobalt	0.037	4.2E-05	1.7E-07	Inc	2.0E-02	2.0E-02	5.7E-06	2.1E-03	8.4E-06	Inc	0.0021
Lead, Dissolved	0.30	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Manganese	2.2	2.6E-03	2.6E-05	Inc	1.4E-01	1.4E-01	1.4E-05	1.8E-02	1.8E-04	Inc	0.018
Nickel	0.091	1.0E-04	2.1E-07	Inc	2.0E-02	2.0E-02	2.0E-02	5.2E-03	1.0E-05	Inc	0.0052004
Vanadium	0.15	1.7E-04	1.7E-06	Inc	7.0E-03	7.0E-03	7.0E-03	2.4E-02	2.4E-04	Inc	0.025
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.00075	8.5E-07	1.8E-07	2.6E-09	4.0E-03	4.0E-03	8.6E-03	2.1E-04	4.4E-05	3.0E-07	0.00026
										HI	0.60
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	7.7	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	6.2	7.0E-03	Inc	1.7E-06	1.0E-01	na	2.9E-01	7.0E-02	Inc	5.8E-06	0.07
Diesel Range Organics, Aromatic	3.1	3.5E-03	Inc	8.4E-07	4.0E-02	na	5.7E-01	8.8E-02	Inc	1.5E-06	0.088
Gasoline Range Organics	4.2	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	nae	na ^e
Gasoline Range Organics, Aliphatic	2.9	3.4E-03	Inc	8.4E-10	2.0E+00	na	na	1.7E-03	Inc	na	0.0017
Gasoline Range Organics, Aromatic	2.1	2.4E-03	Inc	6.0E-10	3.0E-02	na	na	8.0E-02	Inc	na	0.080
										HI	0.24
Notes:											
^a Based on the maximum or 95 percent upper co	onfidence limit (95%	6 UCL) on th	e mean					HI	Hazard inde	х.	
concentration detected at the site.								HQ	Hazard quot	ient.	
^b Consistent with EPA policy, lead is not evaluate	ated in the cumulativ	ve HI estimat	e.					Inc	Incomplete p	oathway.	
° Risks associated with indicator compounds ar	e included in cumul	ative risk and	l hazard					mg/L	Milligrams r	per liter.	
estimates for each site. However, the health h	azards associated w	ith petroleum	mixtures					mg/kd_d	Milliorams	per kilogram n	er dav
will be evaluated and reported separately.		1						ng/Ku-u	not available	oci kilograni p	ci day.
^d Exposure dose and noncancer bazards were or	alculated for netrole	um hydrocarb	ons measure	l as DRO (me	thod 8100)			na			1
by segregating total DRO concentrations into	aliphatic and aroma	atic fractions,	assuming 80	% aliphatic				VUC	volatile orga	anic compound	u.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE INCIDENTAL VISITOR SITE 9 - Housing and Operations Landfill - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

				VOC							
	Surface Water	Ingestion	Dermal	Inhalation	l			Pathwa	ay-Specific 1	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Reference Dose (mg/kg-d)				VOC	Specific	
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ

hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c).

e Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as RRO (method)

by segregating total RRO concentrations into aliphatic and aromatic fractions, assuming 90% aliphatic

hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 10 - Buried Drum Field - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhalation				Pathw	vay-Specific	Hazard	Chemical-	
Constituent	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (n	ng/kg-d)	Soil	D	Dust	Specific	
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	НQ	
INORGANICS												
Thallium	0.34	1.2E-06	0.0E+00	6.1E-11	6.6E-05	6.6E-05	6.6E-05	1.9E-02	0.0E+00	9.3E-07	0.019	
										HI	0.019	
PETROLEUM HYDROCARBONS ^C			,		,		,		,	,	,	
Diesel Range Organics	26,500	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	nad	na ^d	na ^d	na ^d	
Diesel Range Organics, Aliphatic	21,200	7.7E-02	Inc	3.8E-06	1.0E-01	na	2.9E-01	7.7E-01	Inc	1.3E-05	0.77	
Diesel Range Organics, Aromatic	10,600	3.9E-02	Inc	1.9E-06	4.0E-02	na	5./E-01	9.6E-01	Inc	3.4E-06	0.96	
										HI	1.7	
Notes:												
^a Based on the maximum or 95 percent upper confid-	ence limit (95% UC	L) on the mea	an					HI	Hazard ind	ex.		
concentration detected at the site.								HQ	Hazard quo	otient.		
^b Consistent with EPA policy, lead is not evaluated it	n the cumulative HI	estimate.						Inc	Incomplete	ncomplete pathway.		
^c Risks associated with indicator compounds are incl	uded in cumulative	risk and haza	ırd					mg/kg	Milligrams	per kilogram.		
estimates for each site. However, the health hazard	s associated with p	etroleum mixt	ures					mg/kd-d	Milligrams	ner kilogram	per dav.	
will be evaluated and reported separately.	-							na	not availabl	le	per duji	
^d Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as DRO (method 8100)									not u tunuo.			
by segregating total DRO concentrations into aliph	atic and aromatic f	ractions, assur	ming 80% alip	ohatic								
hydrocarbons and 40% aromatic hydrocarbons (AI	DEC, 2000c).		•									
1) Doses and noncancer hazards shown only for nonc	arcinogenic chemic	als with availa	able toxicity v	alues.								
2) Absorbed doses were calculated for dermal contact	with the medium, a	nd intakes we	ere calculated	for ingestion or	inhalation							
of a medium.				-								
3) Noncancer hazards are unitless values which represent	sent the probability	of incurring a	n adverse heal	lth								

effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 10 - Buried Drum Field - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil Concentration ^a	Soil Ingestion Dose	Dermal Dose	Dust Inhalation Dose	Refere	ence Dose	(mg/kg-d)	Pathwa Soil	ay-Specific	Hazard Dust	Chemical- Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
INODCANICS											
Thallium	0.34	3.7E-06	0.0E+00	1.8E-10	7.0E-05	7.0E-05	7.0E-05	5.3E-02	0.0E+00	2.6E-06	0.053
	0101	0112 00	0102100	1102 10	1102 00	1102 00	1102 00	0.02 02	0102100	2102 00	0.000
										HI	0.053
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	26,500	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	21,200	2.3E-01	Inc	1.1E-05	1.0E-01	na	2.9E-01	2.3E+00	Inc	4.0E-05	2.3
Diesel Range Organics, Aromatic	10,600	1.2E-01	Inc	5.7E-06	4.0E-02	na	5.7E-01	2.9E+00	Inc	1.0E-05	2.9
										HI	5.2
Notes:											
^a Based on the maximum or 95 percent upper conconcentration detected at the site.	nfidence limit (95% UCI	L) on the mea	n					HI HQ	Hazard in Hazard qu	lex. otient.	
^b Consistent with EPA policy, lead is not evaluat	ed in the cumulative HI	estimate.						Inc	Incomplet	e pathway.	
^c Risks associated with indicator compounds are	included in cumulative i	risk and hazar	ď					mg/kg	Milligram	s per kilogram	1.
estimates for each site. However, the health ha	zards associated with pe	troleum mixtu	ires					mg/kd-d	Milligram	s per kilogram	n per dav.
will be evaluated and reported separately.	will be evaluated and reported separately.								not availal	ole.	I · · · · · ·
^d Exposure dose and noncancer hazards were cal	culated for petroleum hy	drocarbons m	easured as D	RO (method 8	8100)			nu	not u vunu		
by segregating total DRO concentrations into a	aliphatic and aromatic fra	actions, assum	ning 80% alip	hatic							
hydrocarbons and 40% aromatic hydrocarbons	(ADEC, 2000c).		0 1								
1) Doses and noncancer hazards shown only for n	oncarcinogenic chemica	ls with availal	ble toxicity va	alues.							
2) Absorbed doses were calculated for dermal con	ntact with the medium, and	nd intakes we	re calculated	for ingestion (or inhalatio	on					
of a medium.				-							

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 10 - Buried Drum Field - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhalation				Path	way-Specific I	Hazard	Chemical-			
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (r	ng/kg-d)	Soil		Dust	Specific			
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ			
Thallium	0.34	07E 00	0.0E+00	3 OF 12	7.0F.05	7.0F.05	7 0E 05	1.4E-04	$0.0E \pm 0.0$	4 3E 08	0.00014			
Thamum	0.54	9.712-09	0.01700	5.0E-12	7.0E-05	7.012-05	7.012-05	1.4L-04	0.02+00	4.3E-08	0.00014			
PETROLEUM HYDROCARBONS ^c											0100011			
Diesel Range Organics	26,500	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d			
Diesel Range Organics, Aliphatic	21,200	6.1E-04	Inc	1.9E-07	1.0E-01	na	2.9E-01	6.1E-03	Inc	6.4E-07	0.0061			
Diesel Range Organics, Aromatic	10,600	3.0E-04	Inc	9.3E-08	4.0E-02	na	5.7E-01	7.6E-03	Inc	1.6E-07	0.0076			
										HI	0.014			
Notes:														
^a Based on the maximum or 95 percent upper confi	dence limit (95% U	CL) on the m	ean					HI	Hazard index					
concentration detected at the site.								HQ	Hazard quoti	ent.				
^b Consistent with EPA policy, lead is not evaluated	in the cumulative H	II estimate.						Inc	Incomplete p	athway.				
^c Risks associated with indicator compounds are in	cluded in cumulativ	e risk and ha	zard					mg/kg	Milligrams p	er kilogram.				
estimates for each site. However, the health hazar	rds associated with	petroleum mi	xtures					mg/kd-d	Milligrams p	er kilogram pe	r dav.			
will be evaluated and reported separately.								na	not available	er mogrum per	. cuj i			
^d Exposure dose and noncancer hazards were calcul	lated for petroleum	hydrocarbons	measured as	DRO (metho	d 8100)			na						
by segregating total DRO concentrations into alig	phatic and aromatic	fractions ass	uming 80% a	linhatic										
by segregating total Dice concentrations into an	DEC 2000a)	1140110113, 435	uning 0070 a	inpliane										
1) D 1 1 1 1 1 1 1 1 1 1 1 1	DEC, 2000C).	1 11		1										
1) Doses and noncancer nazards shown only for non 2) Absorbed doses were calculated for dormal control	carcinogenic chemi	cals with avai	liable toxicity	values.	n on inholoti									
of a medium	t with the meanuin,	and makes v	vere calculate	a for ingestio	II OI IIIIaiau	UII								
3) Noncancer hazards are unitless values which repr	esent the probability	v of incurring	an adverse h	ealth										
	i i i		D D											

effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

CANCER RISK CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 11- Fuel Storage Tank Area - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Soil Dermal	Dust Inhalation				Pathway-S	Specific Ca	ncer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer Slo	ope Factor	(mg/kg-d) ⁻¹	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
VOLATILE ORGANIC COMPOUNDS	0.05	2 17 05	0.07.00	0.55.44	0.07.00			1.05.00	0.07.00	0.07.44	1.25.00
Ethylbenzene	0.85	3.4E-07	0.0E+00	2.5E-11	3.9E-03	3.9E-03	3.9E-03	1.3E-09	0.0E+00	9.8E-14	1.3E-09
										ILCR	1E-09
Notes:											
^a Based on the maximum or 95 percent upper confident	ence limit (95% UC	CL) on the me	an concentra	tion detected	at the site.			ILCR	Increment	al lifetime cano	er risk.
1) Doses and cancer risks shown only for carcinogenia	c chemicals with av	ailable toxici	ty values.					Inc	Incomplet	e pathway.	
2) Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected at the site.								mg/kg	Milligram	s per kilogram.	
Doses and cancer risks shown only for carcinogenic chemicals with available toxicity values. mg/kg-d								mg/kg-d	Milligram	s per kilogram	per day.
3) Absorbed doses were calculated for dermal contact of a medium	with the medium, a	and intakes w	ere calculate	d for ingestior	or inhalation	n			-	-	

Cancer risks are unitless values which represent the probability of incurring an adverse health

CANCER RISK CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 11 - Fuel Storage Tank Area - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Soil Dermal	Dust Inhalation				Pathwa	y-Specific C	ancer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer Slo	pe Factor	(mg/kg-d) ⁻¹	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
VOLATILE ORGANIC COMPOUNDS Ethylbenzene	0.85	1.0E-06	0.0E+00	7.5E-11	3.9E-03	3.9E-03	3.9E-03	4.0E-09	0.0E+00	2.9E-13	4.0E-09
										ILCR	4E-09
Notes:									-		
^a Based on the maximum or 95 percent upper confidence limit	(95% UCL) on the n	nean concentra	ation detected	l in soil tundr	a			ILCR	Incremental	lifetime cancer	risk.
and soil gravel at the site.1) Doses and cancer risks shown only for carcinogenic chemicals with available toxicity values.2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium.								Inc mg/kg mg/kg-d	Incomplete Milligrams Milligrams	pathway. per kilogram. per kilogram per	· day.

3) Cancer risks are unitless values which represent the probability of incurring an adverse health

CANCER RISK CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 11 - Fuel Storage Tank Area - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Soil Dermal	Dust Inhalation				Pathway	-Specific Ca	ncer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer Sl	ope Factor	(mg/kg-d) ⁻¹	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
VOLATILE ORGANIC COMPOUNDS Ethylbenzene	0.85	8.3E-09	0.0E+00	2.6E-12	3.9E-03	3.9E-03	3.9E-03	3.3E-11	0.0E+00	1.0E-14	3.3E-11
										ILCR	3E-11
Notes:											
^a Based on the maximum or 95 percent upper confid	lence limit (95% UG	CL) on the me	ean concentra	tion detected	at the site.			ILCR	Incrementa	l lifetime cance	r risk.
1) Doses and cancer risks shown only for carcinogenic chemicals with available toxicity values.									Incomplete	pathway.	
2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation									Milligrams	per kilogram.	
of a medium									Milligrams	per kilogram p	er day.
3) Cancer risks are unitless values which represent the	e probability of incu	urring an advo	erse health								

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 11 - Fuel Storage Tank Area - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

Constituent	Soil Concentration ^a (mg/kg)	Soil Ingestion Dose (mg/kg-d)	Dermal Dose (mg/kg-d)	Dust Inhalation Dose (mg/kg-d)	Refere Oral	nce Dose (n Dermal	ng/kg-d) Inhalation	Pathw Soil Ingestion	ay-Specific] Dermal	Hazard Dust Inhalation	Chemical- Specific HQ
Ethylbenzene	0.85	3.1E-06	0.0E+00	1.5E-10	1.0E-01	1.0E-01	2.9E-01	3.1E-05	0.0E+00	5.3E-10	0.000031
										HI	0.000031
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	69,100	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	55,280	2.0E-01	Inc	1.0E-05	1.0E-01	na	2.9E-01	2.0E+00	Inc	3.4E-05	2.0
Diesel Range Organics, Aromatic	27,640	1.0E-01	Inc	5.0E-06	4.0E-02	na	5.7E-01	2.5E+00	Inc	8.8E-06	2.5
Gasoline Range Organics	192	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Gasoline Range Organics, Aliphatic	134	4.9E-04	Inc	2.4E-08	2.0E+00	na	na	2.4E-04	Inc	Inc	0.00024
Gasoline Range Organics, Aromatic	96	3.5E-04	Inc	1.7E-08	3.0E-02	na	na	1.2E-02	Inc	Inc	0.012
										HI	4.5
Notes:											
^a Based on the maximum or 95 percent upper conf	idence limit (95% UC	L) on the mea	an					HI	Hazard inde	ex.	
concentration detected at the site.								HQ	Hazard quo	tient.	
^b Consistent with EPA policy, lead is not evaluated in the cumulative HI estimate.									Incomplete	pathway.	
° Risks associated with indicator compounds are in	cluded in cumulative	risk and haza	rd					mg/kg	Milligrams	per kilogram.	
estimates for each site. However, the health haza	ards associated with pe	etroleum mixt	ures					mg/kd-d Milligrams per kilogram per day.			
will be evaluated and reported separately.								na	not availabl	e	-
^d Exposure dose and noncancer hazards were calcu	lated for petroleum hy	drocarbons n	neasured as D	RO (method 81	00)						
by segregating total DRO concentrations into ali	phatic and aromatic fr	actions, assur	ning 80% alip	hatic							

hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c).

^e Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as RRO (method) by segregating total RRO concentrations into aliphatic and aromatic fractions, assuming 90% aliphatic hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium.

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 11 - Fuel Storage Tank - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhalation				Pathwa	ay-Specific	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose	(mg/kg-d)	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
VOLATILE ORGANIC COMPOUNDS Ethylbenzene	0.85	9.3E-06	0.0E+00	4.6E-10	1.0E-01	1.0E-01	2.9E-01	9.3E-05	0.0E+00	1.6E-09	0.000093
										HI	0.000093
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	69,100	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	55,280	6.0E-01	Inc	3.0E-05	1.0E-01	na	2.9E-01	6.0E+00	Inc	1.0E-04	6.0
Diesei Range Organics, Aromatic	27,640	3.0E-01 e	e	1.5E-05 e	4.0E-02 e	na e	5./E-01 e	7.5E+00 e	inc e	2.6E-05 e	7.5 e
Gasoline Range Organics Gasoline Range Organics Aliphatic	192	na 1 5E 03	na	na 7 3E 08	na°	na	na	na 7 3E 04	na Inc	na Inc	na
Gasoline Range Organics, Anomatic	96	1.0E-03	Inc	5.2E-08	2.0E+00 3.0E-02	na	na	7.5E-04 3.5E-02	Inc	Inc	0.00073
										HI	14
 Notes: ^a Based on the maximum or 95 percent upper confider concentration detected at the site. 	nce limit (95% UCI	L) on the mea	n					HI HQ	Hazard ind Hazard qu	dex. otient.	
^b Consistent with EPA policy, lead is not evaluated in ^c Risks associated with indicator compounds are inclu	the cumulative HI ded in cumulative i	estimate. risk and hazar	d					Inc Incomplete pathway.			1
estimates for each site. However, the health hazards	associated with pe	troleum mixtu	ires					mg/kd-d	Milligram	s ner kilogram	ner dav
will be evaluated and reported separately.	-							na	not availab	ble	per duj.
^d Exposure dose and noncancer hazards were calculate	ed for petroleum hy	drocarbons m	easured as D	RO (method 8	3100)			nu	not u vunu		
by segregating total DRO concentrations into alipha	tic and aromatic fra	actions, assum	ning 80% alip	hatic							
hydrocarbons and 40% aromatic hydrocarbons (ADI	EC, 2000c).		• •								
^e Exposure dose and noncancer hazards were calculate	ed for petroleum hy	drocarbons m	easured as RI	RO (method)							
by segregating total RRO concentrations into alipha	tic and aromatic fra	ctions, assum	ing 90% alip	hatic							
hydrocarbons and 30% aromatic hydrocarbons (ADI	EC, 2000c).		0 1								
1) Doses and noncancer hazards shown only for noncar	cinogenic chemica	ls with availal	ole toxicity va	dues.							
 Absorbed doses were calculated for dermal contact v of a medium 	with the medium, and	nd intakes we	re calculated f	for ingestion of	or inhalatio	n					
3) Noncancer hazards are unitless values which represe	ent the probability o	f incurring an	adverse healt	th							
effect. They are calculated using the following form	ula: Noncancer H	I = Exposure	Dose/Referen	ice dose.							

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 11 - Fuel Storage Tank - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhalation				Pathway-Specific Ha Soil		Hazard	Chemical-
Constituent	Concentration"	Dose (mg/kg-d)	Dose (mg/kg-d)	Dose (mg/kg-d)	Refere Oral	nce Dose (1 Dermal	ng/kg-d) Inhalation	Soil Ingestion	Dormal	Dust Inhelation	Specific HO
Constituent	(IIIg/Kg)	(IIIg/Kg-U)	(Ing/kg-u)	(ing/kg-u)	Ulai	Derma	IIIIalation	ingestion	Dermai	IIIIaiatioii	nų
VOLATILE ORGANIC COMPOUNDS Ethylbenzene	0.85	2.4E-08	0.0E+00	7.5E-12	1.0E-01	1.0E-01	2.9E-01	2.4E-07	0.0E+00	2.6E-11	0.00000024
										ні	0.00000024
PETROLEUM HYDROCARBONS ^c											0.0000021
Diesel Range Organics Diesel Range Organics, Aliphatic Diesel Range Organics, Aromatic	69,100 55,280 27,640	na ^d 1.6E-03 7.9E-04	na ^d Inc Inc	na ^d 4.9E-07 2.4E-07	na ^d 1.0E-01 4.0E-02	na ^d na na	na ^d 2.9E-01 5.7E-01	na ^d 1.6E-02 2.0E-02	na ^d Inc Inc	na ^d 1.7E-06 4.3E-07	na ^d 0.016 0.020
Gasoline Range Organics Gasoline Range Organics, Aliphatic Gasoline Range Organics, Aromatic	192 134 96	na ^e 3.8E-06 2.7E-06	na ^e Inc Inc	na ^e 1.2E-09 8.4E-10	na ^e 2.0E+00 3.0E-02	na ^e na na	na ^e na na	na ^e 1.9E-06 9.1E-05	na ^e Inc Inc	na ^e Inc Inc	na ^e 0.0000019 0.000091
										HI	0.036
Notes:										=	
^a Based on the maximum or 95 percent upper con concentration detected at the site.	fidence limit (95% U	CL) on the m	iean					HI HO	Hazard index Hazard quoti	c. ent.	
^b Consistent with EPA policy, lead is not evaluate	ed in the cumulative H	II estimate.						Inc	Incomplete p	athway.	
° Risks associated with indicator compounds are	included in cumulativ	e risk and ha	zard					mg/kg	Milligrams p	er kilogram.	
estimates for each site. However, the health haz	ards associated with	petroleum mi	xtures					mg/kd-d	Milligrams p	er kilogram pe	r day.
will be evaluated and reported separately.								na	not available	0 1	2
^d Exposure dose and noncancer hazards were calc	ulated for petroleum	hydrocarbons	s measured as	DRO (metho	d 8100)						
by segregating total DRO concentrations into a	liphatic and aromatic	fractions, ass	suming 80% a	liphatic							
hydrocarbons and 40% aromatic hydrocarbons	(ADEC, 2000c).										
e Exposure dose and noncancer hazards were calc	culated for petroleum	hydrocarbons	s measured as	RRO (metho	d)						
by segregating total RRO concentrations into a	liphatic and aromatic	fractions, ass	uming 90% a	liphatic							

hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

CANCER RISK CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 11 - Fuel Storage Tank Area - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Groundwater	Ingestion	Dermal	VOC Inhalation				Pathway	-Specific Ca	ancer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer S	lope Factor	$(mg/kg-d)^{-1}$	_		VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.010	3.8E-05	1.1E-05	1.1E-04	5.5E-02	5.5E-02	2.7E-02	2.1E-06	6.0E-07	3.1E-06	5.8E-06
Methylene chloride	0.011	4.2E-05	2.6E-06	5.0E-05	7.5E-03	7.5E-03	1.6E-03	3.2E-07	1.9E-08	8.1E-08	4.2E-07
										ILCR	6E-06
Notes:											
^a Based on the maximum or 95 percent upper co	onfidence limit (95%	UCL) on the	e mean					ILCR	Incrementa	l lifetime can	cer risk.
concentration detected at the site.								Inc	Incomplete	pathway.	
1) Doses and cancer risks shown only for carcinogenic chemicals with available toxicity values.								mg/L	Milligrams	per liter.	
2) Absorbed doses were calculated for dermal con- calculated for ingestion or inhalation of a med	ntact with the mediu	ım, and intak	es were					mg/kg-d VOC	Milligrams Volatile org	per kilogram ganic compou	per day. nd.
3) Cancer risks are unitless values which represent	nt the probability of	incurring an	adverse healt	th							

CANCER RISK CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 11 - Fuel Storage Tank Area - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Pathwa	y-Specific Ca	ncer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer S	ope Factor	$(mg/kg-d)^{-1}$			VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.010	1.5E-04	4.2E-05	4.5E-04	5.5E-02	5.5E-02	2.7E-02	8.2E-06	2.3E-06	1.2E-05	2.3E-05
Methylene chloride	0.011	1.6E-04	1.0E-05	2.0E-04	7.5E-03	7.5E-03	1.6E-03	1.2E-06	7.5E-08	3.1E-07	1.6E-06
										ILCR	2E-05
Notes:											
^a Based on the maximum or 95 percent upper co	onfidence limit (95%	UCL) on the	mean					ILCR	Incremental	lifetime cancer	risk.
concentration detected at the site.								Inc	Incomplete p	athway.	
1) Doses and cancer risks shown only for carcino	genic chemicals wit	h available to	xicity values	3.				mg/L	Milligrams p	er liter.	
2) Absorbed doses were calculated for dermal con calculated for ingestion or inhalation of a med	ntact with the mediu lium.	ım, and intako	es were					mg/kg-d Milligrams per kilogram per day. VOC Volatile organic compound.			
3) Cancer risks are unitless values which represent	nt the probability of	incurring an	adverse healt	th							

CANCER RISK CALCULATIONS FOR A FUTURE INCIDENTAL VISITOR SITE 11 - Fuel Storage Tank Area - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Pathway	-Specific Ca	ancer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer Sl	lope Factor	$(mg/kg-d)^{-1}$	_		VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.010	3.9E-06	8.1E-07	1.2E-05	5.5E-02	5.5E-02	2.7E-02	2.2E-07	4.5E-08	3.2E-07	5.8E-07
Methylene chloride	0.011	4.3E-06	1.9E-07	5.2E-06	7.5E-03	7.5E-03	1.6E-03	3.2E-08	1.4E-09	8.3E-09	4.2E-08
										ILCR	6E-07
Notes:											
^a Based on the maximum or 95 percent upper con	nfidence limit (95%	UCL) on the	mean					ILCR	Incrementa	l lifetime cance	er risk.
concentration detected at the site.								Inc	Incomplete	pathway.	
1) Doses and cancer risks shown only for carcinogenic chemicals with available toxicity values.							mg/L	Milligrams	per liter.		
 Absorbed doses were calculated for dermal con calculated for ingestion or inhalation of a media 	tact with the mediu	ım, and intake	es were					mg/kg-d Milligrams per kilogram per day. VOC Volatile organic compound.			
3) Cancer risks are unitless values which represen	t the probability of	incurring an a	dverse healt	h							

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 11 - Fuel Storage Tank Area - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

		•	D	VOC				D. d	G	m ,	
	Surface water	Ingestion	Dermai	Innalation	Dofono	nao Dogo ((ma/lea d)	Pathy	way-Specific	Hazard	Cnemical-
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	 Ingestion	Dermal	Inhalation	HO
Constituent	(ing/12)	(ing/ing u)	(ing/ng u)	(ing/ing u)	0141	Dermar	Innulution	ingestion	Dermar	Innulation	112
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.010	8.5E-05	8.3E-05	7.0E-04	4.0E-03	4.0E-03	8.6E-03	2.1E-02	2.1E-02	8.2E-02	0.12
Methylene chloride	0.011	9.3E-05	2.0E-05	3.1E-04	6.0E-02	6.0E-02	8.6E-01	1.5E-03	3.3E-04	3.6E-04	0.0022
n-Propylbenzene	0.016	1.4E-04	1.9E-03	2.7E-03	4.0E-02	4.0E-02	4.0E-02	3.4E-03	4.9E-02	0.8E-02	0.12
POLYNUCLEAR AROMATIC HYDROCARBONS											
Naphthalene	0.39	3.3E-03	1.1E-02	Inc	2.0E-02	2.0E-02	8.6E-04	1.6E-01	5.4E-01	Inc	0.71
										HI	0.95
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	45	na ^d	na ^d								
Diesel Range Organics, Aliphatic	36	3.0E-01	Inc	2.0E-01	1.0E-01	na	2.9E-01	3.0E+00	Inc	7.0E-01	3.7
Diesel Range Organics, Aromatic	18	1.5E-01	Inc	1.0E-01	4.0E-02	na	5.7E-01	3.8E+00	Inc	1.8E-01	4.0
Gasoline Range Organics	1.1	na ^e	na ^e								
Gasoline Range Organics, Aliphatic	0.77	6.5E-03	Inc	8.6E-02	5.0E+00	na	5.3E+00	1.3E-03	Inc	1.6E-02	0.018
Gasoline Range Organics, Aromatic	0.55	4.6E-03	Inc	6.1E-02	2.0E-01	na	1.1E-01	2.3E-02	Inc	5.6E-01	0.58
											0.2
Notes:										HI	8.3
^a Pasad on the maximum or 05 percent upper confidence limit	(05% UCL) on the	maan						ய	Hozord indo	v	
accompany tration datastad at the site	(95% OCL) on the	mean							Hazard quot	A.	
^b Consistent with EDA action load is not evaluated in the sum								IIQ	Trazaru quoi	41	
 consistent with EPA policy, lead is not evaluated in the cum c Risks associated with indicator compounds are included in cu 	unative HI estimate. umulative risk and I	hazard						Inc mg/L	Milligrams	pathway. per liter.	
estimates for each site. However, the health hazards associat	ed with petroleum 1	nixtures						mg/kd-d	Milligrams p	ber kilogram p	er day.
will be evaluated and reported separately.								na	not available		•
^d Exposure dose and noncancer hazards were calculated for per	troleum hydrocarbo	ns measured	as DRO (met	hod 8100)				VOC	Volatile orga	anic compoun	d.
by segregating total DRO concentrations into aliphatic and a	romatic fractions, a	ussuming 80%	6 aliphatic						0	I I I	
hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000	c).										
^e Exposure dose and noncancer hazards were calculated for per	roleum hydrocarbo	ns measured	as GRO (met	hod 8015)							
by segregating total GRO concentrations into aliphatic and a	romatic fractions, a	ussuming 70%	6 aliphatic								
hydrocarbons and 50% aromatic hydrocarbons (ADEC. 2000	c).		-								
1) Doses and noncancer hazards shown only for noncarcinogeni	c chemicals with a	vailable toxic	ity values.								

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 11 - Fuel Storage Tank Area - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

				VOC							
	Surface Water	Ingestion	Dermal	Inhalation	n		-	Pathwa	y-Specific	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Reference Dose (mg/kg-d)		(mg/kg-d)			VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health

effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 11 - Fuel Tank Storage Area - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

ConstituentConcentration* (mg/L)Dose (mg/Rg-d)Dose (mg/Rg-d)Dose (mg/Rg-d)Dose (mg/Rg-d)Dose (mg/Rg-d)Dormal (mg/Rg-d)Inhalation (mg/Rg-d)Dose (mg/Rg-d)Dose (mg/Rg-d)Dose (mg/Rg-d)Dose (mg/Rg-d)Dose (mg/Rg-d)Dose (mg/Rg-d)Dose (mg/Rg-d)Dose (mg/Rg-d)Dose (mg/Rg-d)Dormal (mg/Rg-d)Dose (mg/Rg-d)Dose (mg/Rg-d)Dose (mg/Rg-d)Dose (mg/Rg-d)Dose (mg/Rg-d)Dose (mg/Rg-d)Dose (mg/Rg-d)Dose (mg/Rg-d)Dormal (mg/Rg-d)Dose (mg/Rg-d)Dose (mg/Rg-d)Dose (Mg/Rg-d) </th <th></th> <th>Surface Water</th> <th>Ingestion</th> <th>Dermal</th> <th>VOC Inhalation</th> <th></th> <th></th> <th></th> <th>Pathy</th> <th>way-Specific</th> <th>Hazard</th> <th>Chemical-</th>		Surface Water	Ingestion	Dermal	VOC Inhalation				Pathy	way-Specific	Hazard	Chemical-
Constituent (mg/kg-d) (mg/kg-d) (mg/kg-d) (mg/kg-d) Oral Dermal Inhalation HQ VOLATILE ORGANIC COMPOUNDS Benzene 0.010 3.3E-04 3.2E-04 2.7E-03 4.0E-03 8.6E-03 8.2E-02 8.0E-02 3.2E-01 0.48 Methylene chloride 0.011 3.6E-04 7.6E-03 1.1E-02 4.0E-02 8.6E-01 6.0E-02 8.0E-02 1.9E-01 1.4E-03 0.0087 n-Propylbenzene 0.016 5.3E-04 7.6E-03 1.1E-02 4.0E-02 8.6E-04 6.4E-01 2.1E+00 Inc 2.7 POLYNUCLEAR AROMATIC HYDROCARBONS 1.3E-02 4.2E-02 Inc 2.0E-02 8.6E-04 6.4E-01 2.1E+00 Inc 2.7 PETROLEUM HYDROCARBONS' Inc 7.9E-01 1.0E-01 na 2.9E-01 1.2E+00 Inc 2.7E+00 1.5E-03 1.6E-01 1.5E-03 1.6E-01 1.5E-03 1.6E-01 1.5E-03 1.6E-01 1.5E-00 1.5E-01 1.5E-01 1.5E-01 1.5E-01 1.		Concentration ^a	Dose	Dose	Dose	Refere	nce Dose ((mg/kg-d)			VOC	Specific
VOLATILE ORGANIC COMPOUNDS Beargune methods 0.010 3.3E-04 3.2E-04 7.6E-05 1.2E-03 6.0E-03 8.6E-03 8.2E-02 8.0E-03 1.3E-03 1.4E-03 0.0087 m-Propylbenzme 0.011 3.6E-04 7.6E-03 1.1E-02 4.0E-02 4.0E-02 4.0E-02 1.3E-02 1.2E-01 0.47 POLYNUCLEAR AROMATIC HYDROCARBONS Naphthalene 0.39 1.3E-02 4.2E-02 Inc 2.0E-02 8.6E-01 6.4E-01 2.1E-00 Inc 2.7 HTOLEUM HYDROCARBONS' Diesel Range Organics 45 na ^d na	Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
VOLATILE OKNING COMPOSITE 0.010 3.3E-04 3.2E-04 2.7E-03 4.0E-03 4.0E-03 8.6E-03 8.2E-02 8.0E-02 3.2E-01 0.48 Methylene chloride 0.011 3.6E-04 7.6E-05 1.2E-03 6.0E-02 6.0E-02 8.6E-01 6.0E-02 1.3E-03 1.4E-03 0.0087 n-Propylbenzene 0.016 5.3E-04 7.6E-03 1.1E-02 4.0E-02 4.0E-02 1.3E-02 1.9E-01 2.6E-01 0.47 POLYNUCLEAR AROMATIC HYDROCARBONS' Maphulalene 0.39 1.3E-02 4.2E-02 Inc 2.0E-02 8.6E-04 6.4E-01 2.1E+00 Inc 2.7 HI 3.7 Disel Range Organics: Aliphatic 36 1.2E+00 Inc 2.9E-01 1.2E+01 Inc 2.7E+01 1.2E+01 Inc 2.7E+01 1.5E Dises Range Organics, Aliphatic 36 1.2E+00 Inc 3.9E-01 1.0E-01 na 2.9E+01 1.5E Inc 2.7E+01 Inc	VOLATH E ODCANIC COMPOUND	2										
Methylene chloride0.0113.6E-047.6E-051.2E-036.0E-026.0E-026.0E-031.3E-031.4E-030.0087n-Propylbenzene0.0165.3E-047.6E-031.1E-024.0E-024.0E-021.3E-021.9E-012.6E-010.47POLYNUCLEAR AROMATIC HYDROCARBONSNaphthalene0.391.3E-024.2E-02Inc2.0E-022.0E-028.6E-046.4E-012.1E+00Inc2.7 PETROLEUM HYDROCARBONS *Diesel Range Organics45na ^d na ^d <	Benzene	0.010	3 3E-04	3 2E-04	2 7E-03	4 0E-03	4 0E-03	8 6E-03	8 2E-02	8 0E-02	3 2E-01	0.48
n-Propylbenzene 0.016 5.3E-04 7.6E-03 1.1E-02 4.0E-02 4.0E-02 1.3E-02 1.9E-01 2.6E-01 0.47 POLYNUCLEAR AROMATIC HYDROCARBONS Naphthalene 0.39 1.3E-02 4.2E-02 Inc 2.0E-02 2.0E-02 8.6E-04 6.4E-01 2.1E+00 Inc 2.7 HI 3.7 PETROLEUM HYDROCARBONS ^C Diesel Range Organics, Aliphatic 45 na ^d n	Methylene chloride	0.010	3.6E-04	7.6E-05	1.2E-03	6.0E-02	6.0E-02	8.6E-01	6.0E-03	1.3E-03	1.4E-03	0.0087
POLYNUCLEAR AROMATIC HYDROCARBONS Naphthalene 0.39 1.3E-02 4.2E-02 Inc 2.0E-02 8.6E-04 6.4E-01 2.1E+00 Inc 2.7 HI 3.7 PETROLEUM HYDROCARBONS ^C Diesel Range Organics, Aliphatic 45 nd ^d <td>n-Propylbenzene</td> <td>0.016</td> <td>5.3E-04</td> <td>7.6E-03</td> <td>1.1E-02</td> <td>4.0E-02</td> <td>4.0E-02</td> <td>4.0E-02</td> <td>1.3E-02</td> <td>1.9E-01</td> <td>2.6E-01</td> <td>0.47</td>	n-Propylbenzene	0.016	5.3E-04	7.6E-03	1.1E-02	4.0E-02	4.0E-02	4.0E-02	1.3E-02	1.9E-01	2.6E-01	0.47
Naphhalene 0.39 1.3E-02 4.2E-02 Inc 2.0E-02 2.0E-02 8.6E-04 6.4E-01 2.1E+00 Inc 2.7 HI 3.7 PETROLEUM HYDROCARBONS ⁶ Image organics, Aliphatic 36 1.2E+00 Inc 7.9E-01 1.0E-01 na na ^d	POLYNUCLEAR AROMATIC HYDR	OCARBONS										
HI 3.7 Diesel Range Organics 45 na ^d	Naphthalene	0.39	1.3E-02	4.2E-02	Inc	2.0E-02	2.0E-02	8.6E-04	6.4E-01	2.1E+00	Inc	2.7
PETROLEUM HYDROCARBONS ^e Diesel Range Organics 45 na ^d											HI	3.7
Diesel Range Organics 45 na ^d </td <td>PETROLEUM HYDROCARBONS^c</td> <td></td>	PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics, Aliphatic 36 1.2E+00 Inc 7.9E-01 1.0E-01 na 2.9E-01 1.2E+01 Inc 2.7E+00 15 Diesel Range Organics, Aromatic 18 5.9E-01 Inc 3.9E-01 4.0E-02 na 5.7E-01 1.5E+01 Inc 6.9E-01 15 Gasoline Range Organics, Aliphatic 0.77 2.5E-02 Inc 3.3E-01 5.0E+00 na 5.3E+00 5.1E-03 Inc 6.3E-02 0.068 Gasoline Range Organics, Aromatic 0.55 1.8E-02 Inc 2.4E-01 2.0E-01 na 1.1E-01 9.0E-02 Inc 2.2E+00 2.3 Notes: ^a Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected at the site. ^b Consistent with EPA policy, lead is not evaluated in the cumulative HI estimate. ^c Risks associated with indicator compounds are included in cumulative risk and hazard estimates for each site. However, the health hazards associated with petroleum mixtures will be evaluated and reported separately. ^d Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as DRO (method 8100) by segregating total DRO concentrations into aliphatic and aromatic fractions, assuming 80% aliphatic hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c).	Diesel Range Organics	45	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aromatic 18 5.9E-01 Inc 3.9E-01 4.0E-02 na 5.7E-01 1.5E+01 Inc 6.9E-01 15 Gasoline Range Organics, Aliphatic 0.77 2.5E-02 Inc 3.3E-01 5.0E+00 na 5.3E+00 5.1E-03 Inc 6.3E-02 0.068 Gasoline Range Organics, Aromatic 0.55 1.8E-02 Inc 2.4E-01 2.0E-01 na 1.1E-01 9.0E-02 Inc 6.3E-02 0.068 Gasoline Range Organics, Aromatic 0.55 1.8E-02 Inc 2.4E-01 2.0E-01 na 1.1E-01 9.0E-02 Inc 6.3E-02 0.068 Motes: HI Hazard index. * Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected at the site. HQ Hazard quotient. Inc Incomplete pathway. * Casistent with EPA policy, lead is not evaluated in the cumulative HI estimate. Inc Incomplete pathway. mg/L Milligrams per liter. * Risk associated with indicator compounds are included in cumulative risk and hazard ma not available VO	Diesel Range Organics, Aliphatic	36	1.2E+00	Inc	7.9E-01	1.0E-01	na	2.9E-01	1.2E+01	Inc	2.7E+00	15
Gasoline Range Organics 1.1 na ^c	Diesel Range Organics, Aromatic	18	5.9E-01	Inc	3.9E-01	4.0E-02	na	5.7E-01	1.5E+01	Inc	6.9E-01	15
Gasoline Range Organics, Aliphatic 0.77 2.5E-02 Inc 3.3E-01 5.0E+00 na 5.1E-03 Inc 6.3E-02 0.068 Gasoline Range Organics, Aromatic 0.55 1.8E-02 Inc 2.4E-01 2.0E-01 na 5.1E-03 Inc 6.3E-02 0.068 Motes: Image: Concentration detected at the site. Image: Consistent with EPA policy, lead is not evaluated in the cumulative HI estimate. Image: Consistent with ePA policy, lead is not evaluated in cumulative risk and hazard Image: Consistent with exacts associated with petroleum mixtures Image: Consistent with exacts associated with petroleum mixtures Image: Constraint in the computed separately.	Gasoline Range Organics	1.1	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Gasoline Range Organics, Aromatic 0.55 1.8E-02 Inc 2.4E-01 2.0E-01 na 1.1E-01 9.0E-02 Inc 2.2E+00 2.3 HI 32 Notes: ^a Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected at the site. HI Hazard index. HQ Hazard quotient. ^b Consistent with EPA policy, lead is not evaluated in the cumulative HI estimate. Inc Inc Inc members/mail Inc Milligrams per liter. ^c Risks associated with indicator compounds are included in cumulative risk and hazard estimates for each site. However, the health hazards associated with petroleum mixtures mg/L Milligrams per liter. will be evaluated and reported separately. na not available VOC Volatile organic compound. ^d Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as DRO (method 8100) VOC Volatile organic compound. ^b Segregating total DRO concentrations into aliphatic and aromatic fractions, assuming 80% aliphatic hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c). ^c Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as GRO (method 8015) Voc Volatile organic compound. Volatile organic compound.	Gasoline Range Organics, Aliphatic	0.77	2.5E-02	Inc	3.3E-01	5.0E+00	na	5.3E+00	5.1E-03	Inc	6.3E-02	0.068
HI 32 Notes: a Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean HI Hazard index. concentration detected at the site. HQ Hazard quotient. b Consistent with EPA policy, lead is not evaluated in the cumulative HI estimate. Inc Incomplete pathway. c Risks associated with indicator compounds are included in cumulative risk and hazard mg/L Milligrams per liter. estimates for each site. However, the health hazards associated with petroleum mixtures mg/kd-d Milligrams per kilogram per day. will be evaluated and reported separately. na not available d Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as DRO (method 8100) VOC Volatile organic compound. by segregating total DRO concentrations into aliphatic and aromatic fractions, assuming 80% aliphatic hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c). t c Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as GRO (method 8015) t t by segregating total DRO concentrations into aliphatic and aromatic fractions, assuming 70% alighatic hydrocarbons (ADEC, 2000c). t c Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as GRO (method 8015) t t by	Gasoline Range Organics, Aromatic	0.55	1.8E-02	Inc	2.4E-01	2.0E-01	na	1.1E-01	9.0E-02	Inc	2.2E+00	2.3
Notes: Image: High and the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected at the site. HI Hazard index. a Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected at the site. HQ Hazard quotient. b Consistent with EPA policy, lead is not evaluated in the cumulative HI estimate. Inc Incomplete pathway. c Risks associated with indicator compounds are included in cumulative risk and hazard mg/L Milligrams per liter. estimates for each site. However, the health hazards associated with petroleum mixtures mg/kd-d Milligrams per kilogram per day. will be evaluated and reported separately. na not available d Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as DRO (method 8100) VOC Volatile organic compound. by segregating total DRO concentrations into aliphatic and aromatic fractions, assuming 80% aliphatic Hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c). Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as GRO (method 8015) Ho Hazard index. by segregating total DRO concentrations into aliphatic and aromatic fractions, assuming 70% aliphatic. Hydrocarbons Hydrocarbons by segregating total GRO concentrations into aliphatic and aromatic fractions, assuming 70% aliphatic. Hydrocarbons											HI	32
a Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean HI Hazard index. concentration detected at the site. HQ Hazard quotient. b Consistent with EPA policy, lead is not evaluated in the cumulative HI estimate. Inc Incomplete pathway. c Risks associated with indicator compounds are included in cumulative risk and hazard mg/L Milligrams per liter. estimates for each site. However, the health hazards associated with petroleum mixtures mg/kd-d Milligrams per kilogram per day. will be evaluated and reported separately. na not available d Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as DRO (method 8100) VOC Volatile organic compound. by segregating total DRO concentrations into aliphatic and aromatic fractions, assuming 80% aliphatic hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c). Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as GRO (method 8015) VOC Volatile organic compound. by segregating total GRO concentrations into aliphatic and aromatic fractions assuming 70% aliphatic. Hit is the secret se	Notes:											
concentration detected at the site.HQHazard quotient.bConsistent with EPA policy, lead is not evaluated in the cumulative HI estimate.IncIncomplete pathway.cRisks associated with indicator compounds are included in cumulative risk and hazardmg/LMilligrams per liter.estimates for each site. However, the health hazards associated with petroleum mixturesmg/kd-dMilligrams per kilogram per day.will be evaluated and reported separately.nanot availabledExposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as DRO (method 8100)VOCVolatile organic compound.by segregating total DRO concentrations into aliphatic and aromatic fractions, assuming 80% aliphaticHydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c).tute the sequence of the sequenc	^a Based on the maximum or 95 percent upper	er confidence limit (93	5% UCL) on	the mean					HI	Hazard inde	х.	
b Consistent with EPA policy, lead is not evaluated in the cumulative HI estimate. Inc Incomplete pathway. c Risks associated with indicator compounds are included in cumulative risk and hazard mg/L Milligrams per liter. estimates for each site. However, the health hazards associated with petroleum mixtures mg/kd-d Milligrams per kilogram per day. will be evaluated and reported separately. na not available d Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as DRO (method 8100) VOC Volatile organic compound. by segregating total DRO concentrations into aliphatic and aromatic fractions, assuming 80% aliphatic VOC Volatile organic compound. e Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as GRO (method 8105) VOC Volatile organic compound. by segregating total DRO concentrations into aliphatic and aromatic fractions, assuming 70% aliphatic. VOC Volatile organic compound. by segregating total GRO concentrations into aliphatic and aromatic fractions, assuming 70% aliphatic. VOC Volatile organic compound. by segregating total GRO concentrations into aliphatic and aromatic fractions, assuming 70% aliphatic. VOC Volatile organic compound. by segregating total GRO concentrations into aliphatic and aromatic fractions, assumin	concentration detected at the site.								HQ	Hazard quot	tient.	
 ^c Risks associated with indicator compounds are included in cumulative risk and hazard mg/L Milligrams per liter. mg/kd-d Milligrams per kilogram per day. ma mates for each site. However, the health hazards associated with petroleum mixtures ma <lima< li=""> <lima< li=""> ma<!--</td--><td>^b Consistent with EPA policy, lead is not ev</td><td>aluated in the cumula</td><td>tive HI estim</td><td>ate.</td><td></td><td></td><td></td><td></td><td>Inc</td><td>Incomplete j</td><td>pathway.</td><td></td></lima<></lima<>	^b Consistent with EPA policy, lead is not ev	aluated in the cumula	tive HI estim	ate.					Inc	Incomplete j	pathway.	
estimates for each site. However, the health hazards associated with petroleum mixtures mg/kd-d Milligrams per kilogram per day. will be evaluated and reported separately. na not available ^d Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as DRO (method 8100) VOC Volatile organic compound. by segregating total DRO concentrations into aliphatic and aromatic fractions, assuming 80% aliphatic hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c). ^e Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as GRO (method 8015) by segregating total GRO concentrations into aliphatic and aromatic fractions, assuming 70% aliphatic	^c Risks associated with indicator compound	s are included in cum	ulative risk a	nd hazard					mg/L	Milligrams p	per liter.	
will be evaluated and reported separately. and not available d Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as DRO (method 8100) by segregating total DRO concentrations into aliphatic and aromatic fractions, assuming 80% aliphatic hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c). c Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as GRO (method 8015) by segregating total GRO concentrations into aliphatic and aromatic fractions, assuming 70% aliphatic	estimates for each site. However, the healt	th hazards associated	with petroleu	m mixtures					mg/kd-d	Milligrams 1	oer kilogram p	er dav.
^d Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as DRO (method 8100) VOC Volatile organic compound. ^b by segregating total DRO concentrations into aliphatic and aromatic fractions, assuming 80% aliphatic WOC Volatile organic compound. ^b by segregating total DRO concentrations into aliphatic and aromatic fractions, assuming 80% aliphatic WOC Volatile organic compound. ^e Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as GRO (method 8015) WOC Wolatile organic compound. ^b by segregating total GRO concentrations into aliphatic and aromatic fractions, assuming 70% aliphatic Wolatile organic compound.	will be evaluated and reported separately.								na	not available		· · · · · · ·
by segregating total DRO concentrations into aliphatic and aromatic fractions, assuming 80% aliphatic hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c). ^e Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as GRO (method 8015) by segregating total GRO concentrations into aliphatic and aromatic fractions, assuming 70% aliphatic	^d Exposure dose and noncancer hazards wer	e calculated for petro	leum hydroca	rbons measur	red as DRO (1	nethod 810	0)		VOC	Volatile org	anic compound	h
hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c). • Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as GRO (method 8015) by segregating total GRO concentrations into aliphatic and aromatic fractions, assuming 70% aliphatic	by segregating total DRO concentrations i	into aliphatic and arou	natic fraction	s, assuming 8	30% aliphatic		,		võe	volutile org	une compour	u.
 ^e Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as GRO (method 8015) ^{by segregating total GRO concentrations into alighbric and aromatic fractions, assuming 70% alighbric} 	hydrocarbons and 40% aromatic hydrocarb	bons (ADEC, 2000c)		, 0	1							
by segregating total GRO concentrations into alighbric and aromatic fractions, assuming 70% alighbric	^e Exposure dose and noncancer bazards wer	re calculated for petro	leum hydroca	rbons measu	red as GRO (r	nethod 801	5)					
	hy segregating total GRO concentrations i	into aliphatic and arou	natic fraction	s assuming 7	70% alinhatic		- /					

hydrocarbons and 50% aromatic hydrocarbons (ADEC, 2000c).

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 11 - Fuel Tank Storage Area - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

				VOC						
	Surface Water	Ingestion	Dermal	Inhalation	Pathway-Specific Haza					Chemical-
	Concentration ^a	Dose	Dose	Dose	Reference Dose (mg	g/kg-d)			VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral Dermal I	nhalation	Ingestion	Dermal	Inhalation	HQ

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE INCIDENTAL VISITOR SITE 11 - Fuel Tank Storage Area - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Path	way-Specific	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose	(mg/kg-d)			VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.010	1.1E-05	2.4E-06	3.4E-05	4.0E-03	4.0E-03	8.6E-03	2.9E-03	5.9E-04	4.0E-03	0.0074
Methylene chloride	0.011	1.3E-05	5.6E-07	1.5E-05	6.0E-02	6.0E-02	8.6E-01	2.1E-04	9.3E-06	1.8E-05	0.00024
n-Propylbenzene	0.016	1.8E-05	5.6E-05	1.3E-04	4.0E-02	4.0E-02	4.0E-02	4.6E-04	1.4E-03	3.3E-03	0.0052
POLYNUCLEAR AROMATIC HYDROCARBONS											
Naphthalene	0.39	4.5E-04	3.1E-04	Inc	2.0E-02	2.0E-02	8.6E-04	2.2E-02	1.5E-02	Inc	0.038
-										HI	0.051
PETROLEUM HYDROCARBONS ^c										_	
Diesel Range Organics	45	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	36	4.1E-02	Inc	9.9E-03	1.0E-01	na	2.9E-01	4.1E-01	Inc	3.4E-02	0.44
Diesel Range Organics, Aromatic	18	2.1E-02	Inc	4.9E-03	4.0E-02	na	5.7E-01	5.1E-01	Inc	8.7E-03	0.52
Gasoline Range Organics	1.1	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Gasoline Range Organics, Aliphatic	0.77	8.8E-04	Inc	4.2E-03	5.0E+00	na	5.3E+00	1.8E-04	Inc	7.9E-04	0.00096
Gasoline Range Organics, Aromatic	0.55	6.3E-04	Inc	3.0E-03	2.0E-01	na	1.1E-01	3.1E-03	Inc	2.7E-02	0.030
										HI	1.0
Notes:											
^a Based on the maximum or 95 percent upper confidence limit	t (95% UCL) on the	mean						HI	Hazard inde	х.	
concentration detected at the site.								HQ	Hazard quot	ient.	
^b Consistent with EPA policy, lead is not evaluated in the cun	nulative HI estimate.							Inc	Incomplete j	pathway.	
^c Risks associated with indicator compounds are included in a	cumulative risk and l	hazard						mg/L	Milligrams 1	per liter.	
estimates for each site. However, the health hazards associa	ted with petroleum r	nixtures						mg/kd-d	Milligrams	oer kilogram p	ber day.
will be evaluated and reported separately.								na	not available	e	
^d Exposure dose and noncancer hazards were calculated for pe	etroleum hydrocarbo	ns measured	as DRO (met	hod 8100)				VOC	Volatile orga	anic compoun	d.
by segregating total DRO concentrations into aliphatic and	aromatic fractions, a	ssuming 80%	aliphatic								

hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c).

e Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as GRO (method 8015)

by segregating total GRO concentrations into aliphatic and aromatic fractions, assuming 70% aliphatic hydrocarbons and 50% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

NONCANCER HAZARD CALCULATIONS FOR A FUTURE INCIDENTAL VISITOR SITE 11 - Fuel Tank Storage Area - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

				VOC							
	Surface Water	Ingestion	Dermal	Inhalation	1			Pathwa	ay-Specific	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Reference Dose (mg/kg-d)		mg/kg-d)			VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health

effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

CANCER RISK CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 13- Heat and Electrical Power Building - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Soil Dermal	Dust Inhalation				Pathway-	Specific Ca	ncer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer Sl	ope Factor	$(mg/kg-d)^{-1}$	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.012	4.9E-09	0.0E+00	3.6E-13	5.5E-02	5.5E-02	2.7E-02	2.7E-10	0.0E+00	9.7E-15	2.7E-10
Ethylbenzene	1.4	5.8E-07	0.0E+00	4.2E-11	3.9E-03	3.9E-03	3.9E-03	2.2E-09	0.0E+00	1.6E-13	2.2E-09
POLYCHLORINATED BIPHENYLS											
PCB-1260 (Aroclor 1260)	115	4.6E-05	2.6E-05	3.4E-09	2.0E+00	2.0E+00	2.0E+00	9.3E-05	5.1E-05	6.8E-09	1.4E-04
										ILCR	1E-04
Notes:											
 ^a Based on the maximum or 95 percent upper conf 1) Doses and cancer risks shown only for carcinoge 2) Based on the maximum or 95 percent upper conf Doses and cancer risks shown only for carcinoge 3) Absorbed doses were calculated for dermal conta of a medium 	pr confidence limit (95% UCL) on the mean concentration detected at the site.ILCRIncremental lifetime cancercinogenic chemicals with available toxicity values.IncIncomplete pathway.pr confidence limit (95% UCL) on the mean concentration detected at the site.mg/kgMilligrams per kilogram.cinogenic chemicals with available toxicity values.mg/kgMilligrams per kilogram.cinogenic chemicals with available toxicity values.mg/kg-dMilligrams per kilogram.						icer risk. n. 1 per day.				

Cancer risks are unitless values which represent the probability of incurring an adverse health

CANCER RISK CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 13 - Heat and Electrical Power Building - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Soil Dermal	Dust Inhalation				Pathwa	y-Specific (Cancer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer Slo	ope Factor	$(mg/kg-d)^{-1}$	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
VOLATH E ODCANIC COMPOUNDS											
VOLATILE OKGANIC COMPOUNDS	0.012	1 55 00	0.05.00	1 15 10	5 5E 00	5 5E 02	2.75.02	0.15 10	0.05.00	2 OF 14	0.15 10
Benzene	0.012	1.5E-08	0.0E+00	1.1E-12	5.5E-02	5.5E-02	2./E-02	8.1E-10	0.0E+00	2.9E-14	8.1E-10
Ethylbenzene	1.4	1.7E-06	0.0E+00	1.3E-10	3.9E-03	3.9E-03	3.9E-03	6.7E-09	0.0E+00	4.9E-13	6.7E-09
POLYCHLORINATED BIPHENYLS											
PCB-1260 (Aroclor 1260)	115	1.4E-04	7.7E-05	1.0E-08	2.0E+00	2.0E+00	2.0E+00	2.8E-04	1.5E-04	2.0E-08	4.3E-04
										ILCR	4E-04
Notes:											
^a Based on the maximum or 95 percent upper co	nfidence limit (95% U	CL) on the me	ean concentra	tion detected	in soil tundra	a		ILCR	Incrementa	lifetime cancer	risk.
and soil gravel at the site.								Inc	Incomplete	pathway.	
1) Doses and cancer risks shown only for carcinos	genic chemicals with a	vailable toxici	ity values.					mg/kg	Milligrams	per kilogram.	
 Absorbed doses were calculated for dermal con of a medium. 	tact with the medium,	and intakes w	vere calculated	l for ingestion	n or inhalatio	n		mg/kg-d	Milligrams	per kilogram per	day.
3) Cancer risks are unitless values which represen	t the probability of inc	curring an advo	erse health								

CANCER RISK CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 13 - Heat and Electrical Power Building - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Soil Dermal	Dust Inhalation				Pathway	-Specific Ca	ancer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer Slope Factor (mg/kg-d) ⁻¹			Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.012	1.2E-10	0.0E+00	3.7E-14	5.5E-02	5.5E-02	2.7E-02	6.6E-12	0.0E+00	9.9E-16	6.6E-12
Ethylbenzene	1.4	1.4E-08	0.0E+00	4.3E-12	3.9E-03	3.9E-03	3.9E-03	5.5E-11	0.0E+00	1.7E-14	5.5E-11
POLYCHLORINATED BIPHENYLS											
PCB-1260 (Aroclor 1260)	115	1.1E-06	2.1E-06	3.5E-10	2.0E+00	2.0E+00	2.0E+00	2.3E-06	4.2E-06	6.9E-10	6.4E-06
										ILCR	6E-06
Notes:										-	

^a Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected at the site.

1) Doses and cancer risks shown only for carcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

3) Cancer risks are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Cancer Risk = Exposure Dose x Cancer Slope Factor. ILCR Incremental lifetime cancer risk. Incomplete pathway. Milligrams per kilogram.

mg/kg mg/kg-d Milligrams per kilogram per day.

Inc

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 13 - Heat and Electrical Power Building - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhalation				Pathw	vav-Specific	Hazard	Chemical-	
	Concentration ^a	Dose	Dose	Dose	Reference Dose (mg/kg-d)			Soil	<u>Dust</u>		Specific	
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ	
VOLATILE ORGANIC COMPOUNDS												
Benzene	0.012	4.4E-08	0.0E+00	2.2E-12	4.0E-03	4.0E-03	8.6E-03	1.1E-05	0.0E+00	2.6E-10	0.000011	
Ethylbenzene	1.4	5.2E-06	0.0E+00	2.6E-10	1.0E-01	1.0E-01	2.9E-01	5.2E-05	0.0E+00	8.9E-10	0.000052	
m,p-Xylene	4.0	1.5E-05	0.0E+00	7.2E-10	2.0E-01	2.0E-01	2.9E-02	7.3E-05	0.0E+00	2.5E-08	0.000073	
o-Xylene	0.80	2.9E-06	0.0E+00	1.4E-10	2.0E-01	2.0E-01	2.9E-02	1.5E-05	0.0E+00	5.0E-09	0.000015	
Toluene	0.80	2.9E-06	0.0E+00	1.4E-10	2.0E-01	2.0E-01	1.1E-01	1.5E-05	0.0E+00	1.3E-09	0.000015	
POLYCHLORINATED BIPHENYLS												
PCB-1260 (Aroclor 1260)	115	4.2E-04	1.9E-04	2.1E-08	2.0E-05	2.0E-05	2.0E-05	2.1E+01	9.3E+00	1.0E-03	30	
POLYNUCLEAR AROMATIC HYDROCARB	ONS											
Naphthalene	15	5.4E-05	2.2E-05	2.7E-09	2.0E-02	2.0E-02	8.6E-04	2.7E-03	1.1E-03	3.1E-06	0.0038	
										HI	30	
PETROLEUM HYDROCARBONS ^c												
Diesel Range Organics	12,000	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	
Diesel Range Organics, Aliphatic	9,600	3.5E-02	Inc	1.7E-06	1.0E-01	na	2.9E-01	3.5E-01	Inc	6.0E-06	0.35	
Diesel Range Organics, Aromatic	4,800	1.7E-02	Inc	8.7E-07	4.0E-02	na	5.7E-01	4.4E-01	Inc	1.5E-06	0.44	
Gasoline Range Organics	294	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	
Gasoline Range Organics, Aliphatic	206	7.5E-04	Inc	3.7E-08	5.0E+00	na	5.3E+00	1.5E-04	Inc	7.0E-09	0.000149826	
Gasoline Range Organics, Aromatic	147	5.4E-04	Inc	2.7E-08	2.0E-01	na	1.1E-01	2.7E-03	Inc	2.4E-07	0.0027	
Residual Range Organics	1,072	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	
Residual Range Organics, Aliphatic	965	3.5E-03	Inc	1.7E-07	2.0E+00	na	na	1.8E-03	Inc	Inc	0.0018	
Residual Range Organics, Aromatic	322	1.2E-03	Inc	5.8E-08	3.0E-02	na	na	3.9E-02	Inc	Inc	0.039	
										HI	0.83	
Notes:												
^a Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean								HI	Hazard index.			
concentration detected at the site.								HQ	Hazard quotient.			
^b Consistent with EPA policy, lead is not evaluated in the cumulative HI estimate.								Inc	Incomplete pathway.			
^c Risks associated with indicator compounds are included in cumulative risk and hazard								mg/kg	Milligrams per kilogram.			
estimates for each site. However, the health hazards associated with petroleum mixtures								mg/kd-d	d-d Milligrams per kilogram per dav.			
will be evaluated and reported separately.								na	not available			

^d Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as DRO (method 8100)
NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 13 - Heat and Electrical Power Building - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhalation			_	Pathwa	y-Specific	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	ence Dose (n	ng/kg-d)	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ

by segregating total DRO concentrations into aliphatic and aromatic fractions, assuming 80% aliphatic

hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c).

^e Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as GRO (method 8015) by segregating total GRO concentrations into aliphatic and aromatic fractions, assuming 70% aliphatic hydrocarbons and 50% aromatic hydrocarbons (ADEC, 2000c).

^f Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as RRO (method) by segregating total RRO concentrations into aliphatic and aromatic fractions, assuming 90% aliphatic hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium.

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 13 - Heat and Electrical Power Building - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Ingestion	Dermal	Inhalation				Pathwa	ay-Specific	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose	(mg/kg-d)	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.012	1.3E-07	0.0E+00	6.6E-12	4.0E-03	4.0E-03	8.6E-03	3.3E-05	0.0E+00	7.7E-10	0.000033
Ethylbenzene	1.4	1.6E-05	0.0E+00	7.7E-10	1.0E-01	1.0E-01	2.9E-01	1.6E-04	0.0E+00	2.7E-09	0.00016
m,p-Xylene	4.0	4.4E-05	0.0E+00	2.2E-09	2.0E-01	2.0E-01	2.9E-02	2.2E-04	0.0E+00	7.5E-08	0.00022
o-Xylene	0.80	8.7E-06	0.0E+00	4.3E-10	2.0E-01	2.0E-01	2.9E-02	4.4E-05	0.0E+00	1.5E-08	0.000044
Toluene	0.80	8.7E-06	0.0E+00	4.3E-10	2.0E-01	2.0E-01	1.1E-01	4.4E-05	0.0E+00	3.9E-09	0.000044
POLYNUCLEAR AROMATIC HYDROCA	RBONS										
Naphthalene	15	1.6E-04	6.7E-05	8.1E-09	2.0E-02	2.0E-02	8.6E-04	8.2E-03	3.4E-03	9.4E-06	0.012
POLYCHLORINATED BIPHENYLS											
PCB-1260 (Aroclor 1260)	115	1.3E-03	5.6E-04	6.2E-08	2.0E-05	2.0E-05	2.0E-05	6.3E+01	2.8E+01	3.1E-03	91
										HI	91
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	12,000	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	9,600	1.0E-01	Inc	5.2E-06	1.0E-01	na	2.9E-01	1.0E+00	Inc	1.8E-05	1.0
Diesel Range Organics, Aromatic	4,800	5.2E-02	Inc	2.6E-06	4.0E-02	na	5.7E-01	1.3E+00	Inc	4.6E-06	1.3
Gasoline Range Organics	294	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Gasoline Range Organics, Aliphatic	205.8	2.2E-03	Inc	1.1E-07	5.0E+00	na	5.3E+00	4.5E-04	Inc	2.1E-08	0.00045
Gasoline Range Organics, Aromatic	147	1.6E-03	Inc	8.0E-08	2.0E-01	na	1.1E-01	8.0E-03	Inc	7.2E-07	0.008
Residual Range Organics	1.072	$\mathbf{n}\mathbf{a}^{\mathrm{f}}$	na ^f	na ^f	naf	naf	naf	naf	naf	na ^f	$\mathbf{na}^{\mathbf{f}}$
Residual Range Organics Alinhatic	965	1 1E-02	Inc	5 2E-07	2.0E+00	na	na	5 3E-03	Inc	Inc	0.005
Residual Range Organics, Ampliate	200	2.5E.02	Inc	1.7E.07	2.0E100	na	na	1.2E-01	Inc	Inc	0.005
Residual Range Organics, Afoniauc	522	5.5E-05	IIIC	1.712-07	5.0E-02	na	IId	1.2E-01	IIIC	inc	0.12
										HI	2.5
otes:											
^a Based on the maximum or 95 percent upper con	fidence limit (95% UCI	L) on the mea	n					HI	Hazard ind	lex.	
concentration detected at the site.								HQ	Hazard qu	otient.	
^b Consistent with EPA policy, lead is not evaluate	d in the cumulative HI	estimate.						Inc	Incomplete	e pathway.	

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 13 - Heat and Electrical Power Building - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil I	Soil Ingestion	Dermal	Dust Inhalation				Pathwa	v-Specific	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	ence Dose	(mg/kg-d)	Soil	.j specific	Dust	Specific
Constituent	(mg/kg) (1	mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
estimates for each site. However, the health hazards will be evaluated and reported separately	associated with petrol	leum mixtu	res					mg/kd-d	Milligrams	s per kilogram	n per day.
^d Exposure dose and noncancer hazards were calculate	d for petroleum hydro	ocarbons me	easured as DI	RO (method 81	00)			па	not availat	ne	
by segregating total DRO concentrations into alight	ic and aromatic fracti	ions assum	ing 80% alin	hatic							
hydrocarbons and 40% aromatic hydrocarbons (ADE	C, 2000c).	iono, ussum	ing 0070 unp	liutie							
^e Exposure dose and noncancer hazards were calculated	d for petroleum hydro	ocarbons me	easured as GI	RO (method 80	15)						
by segregating total GRO concentrations into aliphat	ic and aromatic fracti	ions, assumi	ing 70% alipl	natic							
hydrocarbons and 50% aromatic hydrocarbons (ADE	C, 2000c).										
^f Exposure dose and noncancer hazards were calculated	d for petroleum hydro	ocarbons me	easured as RH	RO (method)							
by segregating total RRO concentrations into aliphat	ic and aromatic fracti	ions, assumi	ing 90% alipl	natic							
hydrocarbons and 30% aromatic hydrocarbons (ADE	C, 2000c).										
 Doses and noncancer hazards shown only for noncard Absorbed doses were calculated for dermal contact w of a medium. Nonconcorr bazardo are unitless values which represent 	inogenic chemicals with the medium, and it	with availab intakes wer	le toxicity va e calculated f	lues. for ingestion or	inhalatio	on					
 ^e Exposure dose and noncancer hazards were calculated by segregating total GRO concentrations into aliphati hydrocarbons and 50% aromatic hydrocarbons (ADE ^f Exposure dose and noncancer hazards were calculated by segregating total RRO concentrations into aliphati hydrocarbons and 30% aromatic hydrocarbons (ADE 1) Doses and noncancer hazards shown only for noncard 2) Absorbed doses were calculated for dermal contact w of a medium. 3) Noncancer hazards are unitless values which represent the second sec	d for petroleum hydro ic and aromatic fracti C, 2000c). d for petroleum hydro ic and aromatic fracti C, 2000c). cinogenic chemicals v ith the medium, and i at the probability of ir	pearbons me ions, assumi pearbons me ions, assumi with availab intakes wer neurring an	easured as GF ing 70% alipf easured as RF ing 90% alipf le toxicity va e calculated f adverse healt	RO (method 80 natic RO (method) natic lues. for ingestion or h	inhalatio	on					

effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 13 - Heat and Electrical Power Building - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhalation				Path	way-Specific H	lazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	ence Dose (1	ng/kg-d)	Soil	· •	Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	нQ
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.012	3.5E-10	0.0E+00	1.1E-13	3.0E-03	3.0E-03	1.7E-03	1.2E-07	0.0E+00	6.3E-11	0.00000012
Ethylbenzene	1.4	4.1E-08	0.0E+00	1.3E-11	1.0E-01	1.0E-01	2.9E-01	4.1E-07	0.0E+00	4.3E-11	0.00000041
m,p-Xylene	4.0	1.1E-07	0.0E+00	3.5E-11	2.0E-01	2.0E-01	2.9E-02	5.7E-07	0.0E+00	1.2E-09	0.00000057
o-Xylene	0.80	2.3E-08	0.0E+00	7.0E-12	2.0E-01	2.0E-01	2.9E-02	1.1E-07	0.0E+00	2.4E-10	0.00000011
Toluene	0.80	2.3E-08	0.0E+00	7.0E-12	2.0E-01	2.0E-01	1.1E-01	1.1E-07	0.0E+00	6.4E-11	0.00000011
POI VCHI ORINATED RIPHENVI S											
PCB-1260 (Aroclor 1260)	115	3.3E-06	6.1E-06	1.0E-09	2.0E-05	2.0E-05	2.0E-05	1.6E-01	3.0E-01	5.0E-05	0.47
POLYNUCLEAR AROMATIC HYDROCAR	BONS										
Naphthalene	15	4.3E-07	7.3E-07	1.3E-10	2.0E-02	2.0E-02	8.6E-04	2.1E-05	3.7E-05	1.5E-07	0.000058
										ні	0.47
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	12,000	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	9.600	2.7E-04	Inc	8.4E-08	1.0E-01	na	2.9E-01	2.7E-03	Inc	2.9E-07	0.0027
Diesel Range Organics, Aromatic	4,800	1.4E-04	Inc	4.2E-08	4.0E-02	na	5.7E-01	3.4E-03	Inc	7.4E-08	0.0034
Gasoline Range Organics	294	na ^e	nae	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Gasoline Range Organics, Aliphatic	206	5.9E-06	Inc	1.8E-09	5.0E+00	na	5.3E+00	1.2E-06	Inc	3.4E-10	0.0000012
Gasoline Range Organics, Aromatic	147	4.2E-06	Inc	1.3E-09	2.0E-01	na	1.1E-01	2.1E-05	Inc	1.2E-08	0.000021
Residual Range Organics	1.072	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f
Residual Range Organics, Aliphatic	965	2.8E-05	Inc	8.5E-09	2.0E+00	na	na	1.4E-05	Inc	Inc	0.000014
Residual Range Organics, Aromatic	322	9.2E-06	Inc	2.8E-09	3.0E-02	na	na	3.1E-04	Inc	Inc	0.00031
Notos										HI	0.0065
^a Decad on the maximum or 05 percent upper confi	idanaa limit (050/ II	CI) on the m						ш	Horond in dow		
Based on the maximum of 95 percent upper com	idence innit (95% U	CL) on the m	ean						Hazard mdex	•	
b C is a set ED to the the time site.								пұ	Hazaru quoto	.1	
Consistent with EPA policy, lead is not evaluated	I in the cumulative F	II estimate.	here					Inc	Incomplete pa	athway.	
• KISKS associated with indicator compounds are in		e risk and ha	zard					mg/kg	Milligrams pe	er kilogram.	
estimates for each site. However, the health haza	rds associated with	petroleum mi	xtures					mg/kd-d	Milligrams pe	er kilogram per	r day.

will be evaluated and reported separately.

^d Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as DRO (method 8100)

na

not available

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 13 - Heat and Electrical Power Building - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

		Soil		Dust							
	Soil	Ingestion	Dermal	Inhalation			-	Pathw	ay-Specific l	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	ence Dose (n	ng/kg-d)	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ

by segregating total DRO concentrations into aliphatic and aromatic fractions, assuming 80% aliphatic

hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c).

e Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as GRO (method 8015)

by segregating total GRO concentrations into aliphatic and aromatic fractions, assuming 70% aliphatic

hydrocarbons and 50% aromatic hydrocarbons (ADEC, 2000c).

^f Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as RRO (method)

by segregating total RRO concentrations into aliphatic and aromatic fractions, assuming 90% aliphatic

hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

CANCER RISK CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 13 - Heat and Electrical Power Building - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Groundwater Concentration ^a	Ingestion Dose	Dermal Dose	VOC Inhalation Dose	Cancer Sl	ope Factor	(mg/kg-d) ⁻¹	Pathway-	Specific Ca	ancer Risk VOC	Chemical- Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
INORGANICS Arsenic	0.073	2.8E-04	3.8E-06	Inc	1.5E+00	1.5E+00	1.5E+01	4.2E-04	5.7E-06	Inc	4.2E-04
VOLATILE ORGANIC COMPOUNDS Benzene Ethylbenzene	0.12 0.14	4.6E-04 5.3E-04	1.3E-04 5.4E-04	1.4E-03 2.4E-03	5.5E-02 3.9E-03	5.5E-02 3.9E-03	2.7E-02 3.9E-03	2.5E-05 2.1E-06	7.1E-06 2.1E-06	3.7E-05 9.3E-06	7.0E-05 1.3E-05

		ILCR	5E-04
Notes:			
^a Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean ILCR	t Incremental	lifetime cancer	risk.
concentration detected at the site. Inc	Incomplete	pathway.	
1) Doses and cancer risks shown only for carcinogenic chemicals with available toxicity values. mg/L	. Milligrams	per liter.	
2) Absorbed doses were calculated for dermal contact with the medium, and intakes were mg/k	g-d Milligrams	per kilogram pe	r day.
calculated for ingestion or inhalation of a medium. VOC	Volatile org	anic compound	
3) Cancer risks are unitless values which represent the probability of incurring an adverse health			

 Cancer risks are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Cancer Risk = Exposure Dose x Cancer Slope Factor.

CANCER RISK CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 13 - Heat and Electrical Power Building - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water Concentration ^a	Ingestion	Dermal Dose	VOC Inhalation Dose	Cancer SI	one Factor	(mø/kø-d) ⁻¹	Pathwa	y-Specific Ca	ncer Risk	Chemical- Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
INORGANICS Arsenic	0.073	1.1E-03	1.5E-05	Inc	1.5E+00	1.5E+00	1.5E+01	1.6E-03	2.2E-05	Inc	1.7E-03
VOLATILE ORGANIC COMPOUNDS Benzene Ethylbenzene	0.12 0.14	1.8E-03 2.1E-03	5.1E-04 2.1E-03	5.4E-03 9.3E-03	5.5E-02 3.9E-03	5.5E-02 3.9E-03	2.7E-02 3.9E-03	9.8E-05 8.0E-06	2.8E-05 8.1E-06	1.4E-04 3.6E-05	2.7E-04 5.2E-05
										ILCR	2E-03
Notes:											
 ^a Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected at the site.) Doses and cancer risks shown only for carcinogenic chemicals with available toxicity values.) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium.) Concerning an available toxicity and the probability of incurring an educate health 								ILCR Inc mg/L mg/kg-d VOC	Incremental I Incomplete pa Milligrams po Milligrams po Volatile organ	ifetime cancer athway. er liter. er kilogram per nic compound.	risk. • day.
3) Cancer risks are unitless values which represen	t the probability of 1	ncurring an a	dverse health	1							

CANCER RISK CALCULATIONS FOR A FUTURE INCIDENTAL VISITOR SITE 13 - Heat and Electrical Power Building - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Pathway	-Specific Ca	ancer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer S	lope Factor	(mg/kg-d) ⁻¹			VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
NODCANICS											
INORGANICS	0.072	2 05 05	2 05 07	Ŧ	1.55.00	1.55.00	1.55.01	1 25 05	4.000.007	T	4.25.05
Arsenic	0.073	2.9E-05	2.9E-07	Inc	1.5E+00	1.5E+00	1.5E+01	4.3E-05	4.3E-07	Inc	4.3E-05
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.12	4.7E-05	9.7E-06	1.4E-04	5.5E-02	5.5E-02	2.7E-02	2.6E-06	5.3E-07	3.8E-06	6.9E-06
Ethylbenzene	0.14	5.4E-05	4.0E-05	6.5E-05	3.9E-03	3.9E-03	3.9E-03	2.1E-07	1.6E-07	2.5E-07	6.2E-07
										-	
										ILCR	5E-05
Notes:											
^a Based on the maximum or 95 percent upper co	nfidence limit (95%	UCL) on the	mean					ILCR	Incrementa	l lifetime cance	er risk.
concentration detected at the site.								Inc	Incomplete	pathway.	
1) Doses and cancer risks shown only for carcino	genic chemicals with	available tox	icity values.					mg/L	Milligrams	per liter.	
2) Absorbed doses were calculated for dermal cor	ntact with the mediur	n, and intakes	s were					mg/kg-d	Milligrams	per kilogram p	er day.
calculated for ingestion or inhalation of a med	ium.							VOC	Volatile org	ganic compoun	d.
3) Cancer risks are unitless values which represent	t the probability of in	ncurring an a	dverse health								
effect. They are calculated using the following	formula: Cancer R	isk = Exposu	re Dose x Ca	ncer Slope Fa	ctor.						

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 13 - Heat and Electrical Power Building - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Pathy	vav-Specific I	Hazard	Chemical
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (mg/kg-d)		v 1	VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
INORGANICS											
Arsenic	0.073	6.2E-04	2.9E-05	Inc	3.0E-04	3.0E-04	3.0E-04	2.1E+00	9.7E-02	Inc	2.2
Copper	0.21	1.8E-03	8.4E-05	Inc	3.7E-02	3.7E-02	3.7E-02	4.8E-02	2.3E-03	Inc	0.050
Lead	0.45	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Lead. Dissolved	0.015	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Nickel	0.17	1.4E-03	6.8E-05	Inc	2.0E-02	2.0E-02	2.0E-02	7.2E-02	3.4E-03	Inc	0.075
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.12	1.0E-03	9.9E-04	8.5E-03	4.0E-03	4.0E-03	8.6E-03	2.5E-01	2.5E-01	9.8E-01	1.5
Ethylbenzene	0.14	1.2E-03	4.1E-03	1.5E-02	1.0E-01	1.0E-01	2.9E-01	1.2E-02	4.1E-02	5.1E-02	0.10
Toluene	0.17	1.4E-03	3.1E-03	1.4E-02	2.0E-01	2.0E-01	1.1E-01	7.2E-03	1.5E-02	1.3E-01	0.15
										HI	4.0
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	100	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	80	6.8E-01	Inc	4.5E-01	1.0E-01	na	2.9E-01	6.8E+00	Inc	1.6E+00	8.3
Diesel Range Organics, Aromatic	40	3.4E-01	Inc	2.3E-01	4.0E-02	na	5.7E-01	8.5E+00	Inc	4.0E-01	8.8
Gasoline Range Organics	4.0	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Gasoline Range Organics, Aliphatic	2.8	2.4E-02	Inc	3.1E-01	5.0E+00	na	5.3E+00	4.7E-03	Inc	5.9E-02	0.064
Gasoline Range Organics, Aromatic	2.0	1.7E-02	Inc	2.2E-01	2.0E-01	na	1.1E-01	8.5E-02	Inc	2.0E+00	2.1
Residual Range Organics	2.3	na ^f	na ^f	na ^f	na ^f	na^{f}	na ^f	na^{f}	na ^f	na ^f	na ^f
Residual Range Organics, Aliphatic	2.1	1.7E-02	Inc	1.2E-05	2.0E+00	na	na	8.7E-03	Inc	Inc	0.0087
Residual Range Organics, Aromatic	0.69	5.8E-03	Inc	4.1E-06	3.0E-02	na	na	1.9E-01	Inc	Inc	0.19
										HI	20
otes:											
^a Based on the maximum or 95 percent upper c	confidence limit (95%	6 UCL) on th	ie mean					HI	Hazard index	κ.	
concentration detected at the site.								HQ	Hazard quoti	ient.	
^b Consistent with EPA policy, lead is not evalu	ated in the cumulati	ve HI estimat	e.					Inc	Incomplete r	athway.	
1 47									1 1	5	

estimates for each site. However, the health hazards associated with petroleum mixtures

mg/kd-d Milligrams per kilogram per day.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 13 - Heat and Electrical Power Building - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Pathy	vay-Specific 1	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Referen	nce Dose (1	mg/kg-d)	_		VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
will be evaluated and reported separately.								na	not available	e	
^d Exposure dose and noncancer hazards were ca	alculated for petrole	um hydrocarł	oons measure	d as DRO (me	thod 8100)			VOC	Volatile orga	anic compound	1.
by segregating total DRO concentrations into	aliphatic and arom	atic fractions,	, assuming 80	% aliphatic							
hydrocarbons and 40% aromatic hydrocarbon	s (ADEC, 2000c).										
^e Exposure dose and noncancer hazards were ca	alculated for petrole	um hydrocarł	oons measure	d as GRO (me	thod 8015)						
by segregating total GRO concentrations into	aliphatic and arom	atic fractions,	assuming 70	% aliphatic							
hydrocarbons and 50% aromatic hydrocarbon	s (ADEC, 2000c).										
^f Exposure dose and noncancer hazards were ca	alculated for petrole	um hydrocarł	oons measure	d as RRO (me	thod)						
by segregating total RRO concentrations into	aliphatic and aroma	atic fractions,	assuming 90	% aliphatic							
hydrocarbons and 30% aromatic hydrocarbon	s (ADEC, 2000c).										
 Doses and noncancer hazards shown only for Absorbed doses were calculated for dermal co of a medium 	noncarcinogenic ch ontact with the medi	emicals with um, and intak	available tox kes were calcu	icity values. ulated for inge	stion or inf	nalation					
3) Noncancer hazards are unitless values which	represent the probab	oility of incur	ring an adver	se health							

effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 13 - Heat and Electrical Power Building - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Patl	1wav-Specific	Hazard	Chemical-
Constituent	Concentration ^a (mg/L)	Dose (mg/kg-d)	Dose (mg/kg-d)	Dose (mg/kg-d)	Refere Oral	nce Dose (Dermal	mg/kg-d) Inhalation	Ingestion	Dermal	VOC Inhalation	Specific HQ
INORGANICS											
Arsenic	0.073	2.4E-03	1.1E-04	Inc	3.0E-04	3.0E-04	3.0E-04	8.0E+00	3.8E-01	Inc	8.4
Copper	0.21	6.9E-03	3.3E-04	Inc	3.7E-02	3.7E-02	3.7E-02	1.9E-01	8.8E-03	Inc	0.20
Lead	0.45	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Lead. Dissolved	0.015	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Nickel	0.17	5.6E-03	5.3E-05	Inc	2.0E-02	2.0E-02	2.0E-02	2.8E-01	2.6E-03	Inc	0.28
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.12	3.9E-03	3.9E-03	3.3E-02	4.0E-03	4.0E-03	8.6E-03	9.9E-01	9.6E-01	3.8E+00	5.8
Ethylbenzene	0.14	4.6E-03	1.6E-02	5.7E-02	1.0E-01	1.0E-01	2.9E-01	4.6E-02	1.6E-01	2.0E-01	0.40
Toluene	0.17	5.6E-03	1.2E-02	5.4E-02	2.0E-01	2.0E-01	1.1E-01	2.8E-02	6.0E-02	4.9E-01	0.58
										HI	16
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	100	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	80	2.6E+00	Inc	1.8E+00	1.0E-01	na	2.9E-01	2.6E+01	Inc	6.0E+00	32
Diesel Range Organics, Aromatic	40	1.3E+00	Inc	8.8E-01	4.0E-02	na	5.7E-01	3.3E+01	Inc	1.5E+00	34
Gasoline Range Organics	4.0	na ^e	nae	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Gasoline Range Organics, Aliphatic	2.8	9.2E-02	Inc	1.2E+00	5.0E+00	na	5.3E+00	1.8E-02	Inc	2.3E-01	0.25
Gasoline Range Organics, Aromatic	2.0	6.6E-02	Inc	8.7E-01	2.0E-01	na	1.1E-01	3.3E-01	Inc	7.9E+00	8.2
Residual Range Organics	2.3	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f
Residual Range Organics, Aliphatic	2.1	6.8E-02	Inc	3.5E-04	2.0E+00	na	na	3.4E-02	Inc	Inc	0.034
Residual Range Organics, Aromatic	0.69	2.3E-02	Inc	1.2E-04	3.0E-02	na	na	7.6E-01	Inc	Inc	0.76
										HI	76
lotes:											
^a Based on the maximum or 95 percent upper	confidence limit (95	5% UCL) on	the mean					HI	Hazard index	Κ.	
concentration detected at the site.								HQ	Hazard quoti	ent.	
^b Consistent with EPA policy, lead is not evalue ^c Risks associated with indicator compounds a	uated in the cumula	tive HI estim ulative risk av	ate. nd hazard					Inc	Incomplete p	athway.	
estimates for each site. However, the health	hazards associated	with netroleu	m mixtures					mg/L	Milligrams p	er inter.	1
will be evaluated and reported separately	nuzurus associateu	min penoleu	in mixtures					mg/kd-d	Milligrams p	er kilogram per	day.
will be evaluated and reported separately.								na	not available		

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 13 - Heat and Electrical Power Building - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Path	way-Specific	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (mg/kg-d)	_		VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
^d Exposure dose and noncancer hazards were of by segregating total DRO concentrations int	calculated for petrol to aliphatic and aron	eum hydroca natic fraction	rbons measu s, assuming 8	red as DRO (m 30% aliphatic	ethod 810	0)		VOC	Volatile orga	nic compound.	
hydrocarbons and 40% aromatic hydrocarbo	carbons and 40% aromatic hydrocarbons (ADEC, 2000c).										
e Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as GRO (method 8015)											
by segregating total GRO concentrations into aliphatic and aromatic fractions, assuming 70% aliphatic											
hydrocarbons and 50% aromatic hydrocarbo	ons (ADEC, 2000c).										
^f Exposure dose and noncancer hazards were	calculated for petrol	eum hydroca	rbons measur	red as RRO (m	ethod)						
by segregating total RRO concentrations int	to aliphatic and aron	natic fraction	s, assuming 9	0% aliphatic							
hydrocarbons and 30% aromatic hydrocarbo	ons (ADEC, 2000c).										
 Doses and noncancer hazards shown only fo Absorbed doses were calculated for dermal c of a medium Noncancer hazards are unitless values which effect. They are calculated using the following 	or noncarcinogenic c contact with the med n represent the proba ing formula: Nonca	hemicals with lium, and inta ubility of incu ancer HI = Ea	h available to akes were cal urring an adve xposure Dose	xicity values. culated for ing erse health /Reference dos	estion or i e.	nhalation					

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 13 - Heat and Electrical Power Building - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Path	way-Specific]	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (mg/kg-d)			VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	нQ
INORGANICS											
Arsenic	0.073	8.3E-05	8.3E-07	Inc	3.0E-04	3.0E-04	3.0E-04	2.8E-01	2.8E-03	Inc	0.28
Copper	0.21	2.4E-04	2.4E-06	Inc	3.7E-02	3.7E-02	3.7E-02	6.5E-03	6.5E-05	Inc	0.0065
Lead	0.45	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Lead, Dissolved	0.015	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Nickel	0.17	1.9E-04	3.9E-07	Inc	2.0E-02	2.0E-02	2.0E-02	9.7E-03	1.9E-05	Inc	0.0097
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.12	1.4E-04	2.8E-05	4.1E-04	4.0E-03	4.0E-03	8.6E-03	3.4E-02	7.1E-03	4.8E-02	0.089
Ethylbenzene	0.14	1.6E-04	1.2E-04	7.1E-04	1.0E-01	1.0E-01	2.9E-01	1.6E-03	1.2E-03	2.5E-03	0.0052
Toluene	0.17	1.9E-04	8.8E-05	6.8E-04	2.0E-01	2.0E-01	1.1E-01	9.7E-04	4.4E-04	6.2E-03	0.0076
										HI	0.40
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	100	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	80	9.1E-02	Inc	2.2E-02	1.0E-01	na	2.9E-01	9.1E-01	Inc	7.6E-02	0.99
Diesel Range Organics, Aromatic	40	4.6E-02	Inc	1.1E-02	4.0E-02	na	5.7E-01	1.1E+00	Inc	1.9E-02	1.2
Gasoline Range Organics	4.0	na ^e	na ^e	na ^e	nae	na ^e	na ^e	na ^e	na ^e	nae	na ^e
Gasoline Range Organics, Aliphatic	2.8	3.2E-03	Inc	1.5E-02	5.0E+00	na	5.3E+00	6.4E-04	Inc	2.9E-03	0.0035
Gasoline Range Organics, Aromatic	2.0	2.3E-03	Inc	1.1E-02	2.0E-01	na	1.1E-01	1.1E-02	Inc	9.9E-02	0.11
Residual Range Organics	2.3	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f
Residual Range Organics, Aliphatic	2.1	2.4E-03	Inc	5.9E-07	2.0E+00	na	na	1.2E-03	Inc	Inc	0.0012
Residual Range Organics, Aromatic	0.69	7.9E-04	Inc	2.0E-07	3.0E-02	na	na	2.6E-02	Inc	Inc	0.026
										HI	2.3
lotes:											
" Based on the maximum or 95 percent upper c	onfidence limit (95%	6 UCL) on th	e mean					HI	Hazard index	х.	
concentration detected at the site.								HQ	Hazard quot	ient.	
^b Consistent with EPA policy, lead is not evalu	ated in the cumulativ	ve HI estimat	e.					Inc	Incomplete p	athway.	
^c Risks associated with indicator compounds an	re included in cumul	ative risk and	hazard					mg/L	Milligrams p	er liter.	
estimates for each site. However, the health h	nazards associated w	ith petroleum	mixtures					mg/kd-d	Milligrams r	er kilogram p	er dav.

will be evaluated and reported separately.

Page 1 of 2

not available

na

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 13 - Heat and Electrical Power Building - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Pathway-Speci		Hazard	Chemical-		
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (mg/kg-d)	.	_	VOC	Specific		
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ		
^d Exposure dose and noncancer hazards were can by segregating total DRO concentrations into	lculated for petroleu aliphatic and aroma	ım hydrocarb tic fractions,	ons measured assuming 80	l as DRO (met % aliphatic	hod 8100)			VOC	Volatile orga	anic compound			
hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c).													
^e Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as GRO (method 8015)													
by segregating total GRO concentrations into	by segregating total GRO concentrations into aliphatic and aromatic fractions, assuming 70% aliphatic												
hydrocarbons and 50% aromatic hydrocarbons	(ADEC, 2000c).												
^f Exposure dose and noncancer hazards were cal	lculated for petroleu	ım hydrocarb	ons measured	l as RRO (met	hod)								
by segregating total RRO concentrations into a	aliphatic and aroma	tic fractions,	assuming 909	% aliphatic									
hydrocarbons and 30% aromatic hydrocarbons	(ADEC, 2000c).												
 Doses and noncancer hazards shown only for r Absorbed doses were calculated for dermal con of a medium 	noncarcinogenic che ntact with the mediu	emicals with a um, and intak	available toxi es were calcu	city values. lated for inges	tion or inh	alation							
 Noncancer hazards are unitless values which re effect. They are calculated using the following 	epresent the probab g formula: Noncan	ility of incurr cer HI = Exp	ing an advers osure Dose/R	e health eference dose.									

CANCER RISK CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 15- Buried Fuel Line Spill Area - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Soil Dermal	Dust Inhalation				Pathway-S	Specific Ca	ncer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer Sl	ope Factor	(mg/kg-d) ⁻¹	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
VOLATILE ORGANIC COMPOUNDS Ethylbenzene	1.0	4.0E-07	0.0E+00	2.9E-11	3.9E-03	3.9E-03	3.9E-03	1.6E-09	0.0E+00	1.1E-13	1.6E-09
										ILCR	2E-09
Notes:											
^a Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected at the site. ILCR Incremental lifetime 1) Doses and cancer risks shown only for carcinogenic chemicals with available toxicity values. Inc Incomplete pathway							al lifetime can e pathway.	cer risk.			
 2) Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected at the site. Doses and cancer risks shown only for carcinogenic chemicals with available toxicity values. 2) Alas half a ha								mg/kg mg/kg-d	Milligram Milligram	s per kilogram s per kilogram	per day.
3) Absorbed doses were calculated for dermal contact of a medium	t with the medium, a	and intakes w	vere calculate	d for ingestior	ı or inhalatio	n					

Cancer risks are unitless values which represent the probability of incurring an adverse health

CANCER RISK CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 15 - Buried Fuel Line Spill Area - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Soil Dermal	Dust Inhalation				Pathwa	y-Specific C	ancer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer Slo	ope Factor	$(mg/kg-d)^{-1}$	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
VOLATILE ORGANIC COMPOUNDS Ethylbenzene	1.0	1.2E-06	0.0E+00	8.8E-11	3.9E-03	3.9E-03	3.9E-03	4.7E-09	0.0E+00	3.4E-13	4.7E-09
										ILCR	5E-09
Notes:											
^a Based on the maximum or 95 percent upper con	fidence limit (95% U	CL) on the me	an concentra	tion detected	in soil tundra	a		ILCR	Incremental	lifetime cancer i	risk.
and soil gravel at the site.1) Doses and cancer risks shown only for carcinog2) Absorbed doses were calculated for dermal cont of a medium.	enic chemicals with a act with the medium,	vailable toxici and intakes w	ty values. ere calculated	l for ingestior	ı or inhalatio	n		Inc mg/kg mg/kg-d	Incomplete pathway. Milligrams per kilogram. Milligrams per kilogram per d		day.

 Cancer risks are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Cancer Risk = Exposure Dose x Cancer Slope Factor.

CANCER RISK CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 15 - Buried Fuel Line Spill Area - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Soil Dermal	Dust Inhalation				Pathway	-Specific Ca	ncer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer Sl	ope Factor	(mg/kg-d) ⁻¹	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
VOLATILE ORGANIC COMPOUNDS Ethylbenzene	1.0	9.8E-09	0.0E+00	3.0E-12	3.9E-03	3.9E-03	3.9E-03	3.8E-11	0.0E+00	1.2E-14	3.8E-11
										ILCR	4E-11
Notes:											
^a Based on the maximum or 95 percent upper confid	ence limit (95% UC	CL) on the me	an concentra	tion detected	at the site.			ILCR	Incremental	lifetime cancer	risk.
1) Doses and cancer risks shown only for carcinogenic chemicals with available toxicity values.									Inc Incomplete pathway.		
2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium								mg/kg Milligrams per kilogram. mg/kg-d Milligrams per kilogram per day.			
3) Cancer risks are unitless values which represent the	e probability of incu	urring an adve	erse health								

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 15 - Buried Fuel Line Spill Area - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhalation				Pathw	vav-Specific	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (n	og/kg-d)	Soil	uj specific	Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
								0			
INORGANICS											
Ethylbenzene	1.0	3.6E-06	0.0E+00	1.8E-10	1.0E-01	1.0E-01	2.9E-01	3.6E-05	0.0E+00	6.2E-10	0.000036
m,p-Xylene	1.8	6.6E-06	0.0E+00	3.3E-10	2.0E-01	2.0E-01	2.9E-02	3.3E-05	0.0E+00	1.1E-08	0.000033
o-Xylene	0.015	5.5E-08	0.0E+00	2.7E-12	2.0E-01	2.0E-01	2.9E-02	2.7E-07	0.0E+00	9.3E-11	0.00000027
POLYNUCLEAR AROMATIC HYDROCAR	BONS										
Naphthalene	28	1.0E-04	4.2E-05	5.1E-09	2.0E-02	2.0E-02	8.6E-04	5.1E-03	2.1E-03	5.9E-06	0.0072
											0.0053
DETROLEUR INVDROCH DRONG ^C										HI	0.0073
PETROLEUM HYDROCARBONS		d	d	đ	d	d	d	d	đ	đ	đ
Diesel Range Organics	16,000	na"	na"	nau	na"	na"	na	na	na"	na"	na"
Diesel Range Organics, Aliphatic	12,800	4.7E-02	Inc	2.3E-06	1.0E-01	na	2.9E-01	4.7E-01	Inc	8.0E-06	0.47
Diesel Range Organics, Aromatic	6,400	2.3E-02	Inc	1.2E-06	4.0E-02	na	5.7E-01	5.8E-01	Inc	2.0E-06	0.58
Gasoline Range Organics	110	na	nač	na	na	na	na	na	nač	na	na
Gasoline Range Organics, Aliphatic	77	2.8E-04	Inc	1.4E-08	5.0E+00	na	5.3E+00	5.6E-05	Inc	2.6E-09	0.000056
Gasoline Range Organics, Aromatic	22	2.0E-04	Inc	9.9E-09	2.0E-01	na	1.1E-01	1.0E-03	Inc	9.0E-08	0.001
										HI	1.0
Notes:											
^a Based on the maximum or 95 percent upper conf	idence limit (95% U	CL) on the me	ean					HI	Hazard ind	ex.	
concentration detected at the site.								HQ	Hazard quo	otient.	
^b Consistent with EPA policy, lead is not evaluated	1 in the cumulative H	I estimate.						Inc	Incomplete	pathway.	
^c Risks associated with indicator compounds are in	ncluded in cumulative	e risk and haz	ard					mg/kg	Milligrams	per kilogram.	
estimates for each site. However, the health haza	ards associated with p	petroleum mix	tures					mg/kd-d	Milligrams	per kilogram	per day.
will be evaluated and reported separately.								na	not availab	le	
^d Exposure dose and noncancer hazards were calcu	ilated for petroleum h	nydrocarbons	measured as I	DRO (method 8	(100)						
by segregating total DRO concentrations into ali	phatic and aromatic	fractions, assu	uming 80% ali	iphatic							
hydrocarbons and 40% aromatic hydrocarbons (A	ADEC, 2000c).										

^e Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as GRO (method 8015) by segregating total GRO concentrations into aliphatic and aromatic fractions, assuming 70% aliphatic hydrocarbons and 50% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium.

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 15 - Buried Fuel Line Spill Area - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhalation	Ðſ	D	(A 1)	Pathwa	ay-Specific	Hazard	Chemical-
Constituent	(mg/kg)	Dose (mg/kg-d)	Dose (mg/kg-d)	Dose (mg/kg-d)	Oral	Dermal	(mg/kg-d) Inhalation	Soll Ingestion	Dermal	Dust Inhalation	Specific
Constituent	(116/166)	(1115/115-0)	(1115/115-4)	(III <u>6</u> /K <u>5</u> -U)	0141	Dermar	Innulation	ingestion	Dermar	Innatation	nų
VOLATILE ORGANIC COMPOUNDS Ethylbenzene	1.0	1.1E-05	0.0E+00	5.4E-10	1.0E-01	1.0E-01	2.9E-01	1.1E-04	0.0E+00	1.9E-09	0.00011
m,p-Xylene	1.8	2.0E-05	0.0E+00	9.8E-10	2.0E-01	2.0E-01	2.9E-02	9.8E-05	0.0E+00	3.4E-08	0.00010
o-Xylene	0.015	1.6E-07	0.0E+00	8.1E-12	2.0E-01	2.0E-01	2.9E-02	8.2E-07	0.0E+00	2.8E-10	0.0000082
POLYNUCLEAR AROMATIC HYDROCAR Naphthalene	ABONS 28	3.1E-04	1.3E-04	1.5E-08	2.0E-02	2.0E-02	8.6E-04	1.5E-02	6.3E-03	1.8E-05	0.022
										HI	0.022
PETROLEUM HYDROCARBONS ^C Diesel Range Organics	16,000	na ^d	na ^d	na ^d	na^d	na ^d	na ^d	na^d	na ^d	na ^d	na ^d
Diesel Range Organics, Anomatic	6 400	1.4E-01 7.0E-02	Inc	0.9E-00 3 5E-06	1.0E-01 4.0E-02	na	2.9E-01 5 7E-01	1.4E+00 1.7E+00	Inc	2.4E-05 6.1E-06	1.4
Gasoline Range Organics, Aliphatic Gasoline Range Organics, Aliphatic Gasoline Range Organics, Aromatic	110 77 55	na ^e 8.4E-04 6.0E-04	na ^e Inc Inc	na ^e 4.2E-08 3.0E-08	na ^e 5.0E+00 2.0E-01	na ^e na na	na ^e 5.3E+00 1.1E-01	na ^e 1.7E-04 3.0E-03	na ^e Inc Inc	na ^e 7.9E-09 2.7E-07	na ^e 0.00017 0.0030
										HI	3.1
Notes:											
^a Based on the maximum or 95 percent upper confi	dence limit (95% UCl	L) on the mea	n					HI	Hazard in	dex.	
concentration detected at the site.								HQ	Hazard qu	otient.	
^b Consistent with EPA policy, lead is not evaluated ^c Risks associated with indicator compounds are inc	in the cumulative HI cluded in cumulative	estimate. risk and hazar	ď					Inc mg/kg	Incomplet Milligram	e pathway. s per kilogran	1.
estimates for each site. However, the health hazar	rds associated with pe	troleum mixtu	ires					mg/kd-d	Milligram	s per kilogran	n per day.
will be evaluated and reported separately.								na	not availal	ble	1 9
^d Exposure dose and noncancer hazards were calcul	lated for petroleum hy	drocarbons m	easured as D	RO (method 8	3100)						
by segregating total DRO concentrations into alip	phatic and aromatic fra	actions, assum	ning 80% alip	hatic							
hydrocarbons and 40% aromatic hydrocarbons (A	DEC, 2000c).										
^e Exposure dose and noncancer hazards were calcul	lated for petroleum hy	drocarbons m	easured as G	RO (method 8	3015)						
by segregating total GRO concentrations into alip	hatic and aromatic fra	actions, assum	ning 70% alip	hatic							

hydrocarbons and 50% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 15 - Buried Fuel Line Spill Area - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

		Soil		Dust						
	Soil	Ingestion	Dermal	Inhalation		-	Pathwa	y-Specific	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Referen	ce Dose (mg/kg-d)	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal Inhalation	Ingestion	Dermal	Inhalation	HQ

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium.

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 15 - Buried Fuel Line Spill Area - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dormal	Dust Inhelation				Path	way-Specific 1	Hazard	Chemical
	Concentration ^a	Dose	Dose	Dose	Roforo	nco Doso (r	ng/kg_d)	Soil	way-specific i	Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
VOLATILE ORGANIC COMPOUNDS											
Ethylbenzene	1.0	2.9E-08	0.0E+00	8.8E-12	1.0E-01	1.0E-01	2.9E-01	2.9E-07	0.0E+00	3.0E-11	0.00000029
m,p-Xylene	1.8	5.1E-08	0.0E+00	1.6E-11	2.0E-01	2.0E-01	2.9E-02	2.6E-07	0.0E+00	5.5E-10	0.00000026
o-Xylene	0.015	4.3E-10	0.0E+00	1.3E-13	2.0E-01	2.0E-01	2.9E-02	2.1E-09	0.0E+00	4.5E-12	0.000000021
POLYNUCLEAR AROMATIC HYDROCAI	RBONS										
Naphthalene	28	8.0E-07	1.4E-06	2.5E-10	2.0E-02	2.0E-02	8.6E-04	4.0E-05	6.9E-05	2.9E-07	0.00011
										ш	0.00011
PETROLEUM HYDROCARBONS ^c											0.00011
Diesel Range Organics	16,000	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics Aliphatic	12,800	3.7E-04	Inc	1.1E-07	1.0E-01	na	2.9E-01	3.7E-03	Inc	3.9E-07	0.0037
Diesel Range Organics, Aromatic	6,400	1.8E-04	Inc	5.6E-08	4.0E-02	na	5.7E-01	4.6E-03	Inc	9.9E-08	0.0046
Gasoline Range Organics	110	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Gasoline Range Organics, Aliphatic	77	2.2E-06	Inc	6.8E-10	5.0E+00	na	5.3E+00	4.4E-07	Inc	1.3E-10	0.00000044
Gasoline Range Organics, Aromatic	55	1.6E-06	Inc	4.8E-10	2.0E-01	na	1.1E-01	7.8E-06	Inc	4.4E-09	0.0000079
										HI	0.0082
Notes:											
^a Based on the maximum or 95 percent upper con	fidence limit (95% U	UCL) on the m	nean					HI	Hazard index	κ.	
concentration detected at the site.								HQ	Hazard quoti	ent.	
^b Consistent with EPA policy, lead is not evaluate	d in the cumulative I	HI estimate.						Inc	Incomplete p	athway.	
^c Risks associated with indicator compounds are i	ncluded in cumulativ	ve risk and ha	zard					mg/kg	Milligrams p	er kilogram.	
estimates for each site. However, the health haz	ards associated with	petroleum mi	xtures					mg/kd-d	Milligrams p	er kilogram pe	er day.
will be evaluated and reported separately.								na	not available		
^d Exposure dose and noncancer hazards were calc	ulated for petroleum	hydrocarbons	s measured as	DRO (metho	d 8100)						
by segregating total DRO concentrations into al	iphatic and aromatic	fractions, as	suming 80%	aliphatic							
hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c).										
e Exposure dose and noncancer hazards were calc	ulated for petroleum	hydrocarbons	s measured as	GRO (metho	d 8015)						

by segregating total GRO concentrations into aliphatic and aromatic fractions, assuming 70% aliphatic

hydrocarbons and 50% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 15 - Buried Fuel Line Spill Area - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

		Soil		Dust							
	Soil	Ingestion	Dermal	Inhalation			-	Pathw	ay-Specific l	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	ence Dose (n	ng/kg-d)	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation

of a medium

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health

effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

CANCER RISK CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 15 - Buried Fuel Line Spill Area - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Groundwater	Ingestion	Dermal	VOC Inhalation				Pathway	-Specific Ca	ncer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer S	lope Factor	(mg/kg-d) ⁻¹			VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
INORGANICS Arsenic	0.11	4.2E-04	5.8E-06	Inc	1.5E+00	1.5E+00	1.5E+01	6.3E-04	8.6E-06	Inc	6.4E-04
Notes:										ILCR	6E-04
^a Based on the maximum or 95 percent upper concentration detected at the site	confidence limit (9	95% UCL) or	the mean					ILCR	Incremental	lifetime cancer	risk.
 Doses and cancer risks shown only for carcinogenic chemicals with available toxicity values. Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium. Cancer risks are unitless values which represent the probability of incurring an adverse health 								mg/L mg/kg-d VOC	Milligrams Milligrams Volatile org	per liter. per kilogram pe anic compound	r day.

CANCER RISK CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 15 - Buried Fuel Line Spill Area - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Pathwa	y-Specific Ca	ncer Risk	Chemical-
Constituent	Concentration ^a (mg/L)	Dose (mg/kg-d)	Dose (mg/kg-d)	Dose (mg/kg-d)	Cancer Sl Oral	ope Factor Dermal	(mg/kg-d) ⁻¹ Inhalation	Ingestion	Dermal	VOC Inhalation	Specific Risk
INORGANICS Arsenic	0.11	1.6E-03	2.2E-05	Inc	1.5E+00	1.5E+00	1.5E+01	2.5E-03	3.4E-05	Inc	2.5E-03
										ILCR	2E-03
Notes:											
^a Based on the maximum or 95 percent upper cor concentration detected at the site	fidence limit (95%	UCL) on the	mean					ILCR Inc	Incremental li	ifetime cancer r athway	isk.
1) Doses and cancer risks shown only for carcinog	enic chemicals with	n available to:	xicity values.					mg/L	Milligrams pe	er liter.	
 Absorbed doses were calculated for dermal con- calculated for ingestion or inhalation of a medi 	tact with the medius um.	n, and intake	s were					mg/kg-d VOC	Milligrams pe Volatile organ	er kilogram per nic compound.	day.
3) Cancer risks are unitless values which represent	the probability of i	ncurring an a	dverse health	h							

CANCER RISK CALCULATIONS FOR A FUTURE INCIDENTAL VISITOR SITE 15 - Buried Fuel Line Spill Area - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Pathway	-Specific Ca	ncer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer S	ope Factor	(mg/kg-d) ⁻¹	-		VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
INORGANICS Arsenic	0.11	4.3E-05	4.3E-07	Inc	1.5E+00	1.5E+00	1.5E+01	6.5E-05	6.5E-07	Inc	6.5E-05
										ILCR	7E-05
Notes:											
^a Based on the maximum or 95 percent upper co	nfidence limit (95%	UCL) on the	mean					ILCR	Incremental	lifetime cance	r risk.
concentration detected at the site. 1) Doses and cancer risks shown only for carcino	genic chemicals wit	h available to	oxicity values					Inc mg/L	Incomplete Milligrams	pathway. per liter.	
 Absorbed doses were calculated for dermal concalculated for ingestion or inhalation of a med Constraints and the set of the set	ntact with the mediu ium.	im, and intake	es were	1.				mg/kg-d VOC	Milligrams Volatile org	per kilogram po anic compound	er day. 1.
3) Cancer risks are unitiess values which represer	it the probability of	incurring an a	adverse healt	n							

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 15 - Buried Fuel Line Spill Area - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Pathy	way-Specific 1	Hazard	Chemical-
Constituent	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (mg/kg-d)	Ingestion	Dermal	VOC Inhelation	Specific
Constituent	(IIIg/L)	(ing/kg-u)	(Ing/Kg-u)	(Ing/kg-u)	Ofai	Dermai	malation	ingestion	Dermai	malation	nų
INORGANICS											
Arsenic	0.11	9.3E-04	4.4E-05	Inc	3.0E-04	3.0E-04	3.0E-04	3.1E+00	1.5E-01	Inc	3.2
Arsenic, Dissolved	0.006	5.1E-05	2.4E-06	Inc	3.0E-04	3.0E-04	3.0E-04	1.7E-01	8.0E-03	Inc	0.18
Lead	0.68	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Nickel	0.20	1.7E-03	1.6E-05	Inc	2.0E-02	2.0E-02	2.0E-02	8.5E-02	8.0E-04	Inc	0.085
										HI	3.5
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	960	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	768	6.5E+00	Inc	4.3E+00	1.0E-01	na	2.9E-01	6.5E+01	Inc	1.5E+01	80
Diesel Range Organics, Aromatic	384	3.2E+00	Inc	2.2E+00	4.0E-02	na	5.7E-01	8.1E+01	Inc	3.8E+00	85
Residual Range Organics	3.8	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Residual Range Organics, Aliphatic	3.4	2.9E-02	Inc	2.0E-05	2.0E+00	na	na	1.4E-02	Inc	Inc	0.014
Residual Range Organics, Aromatic	1.1	9.6E-03	Inc	6.7E-06	3.0E-02	na	na	3.2E-01	Inc	Inc	0.32
										HI	165
Notes:											
^a Based on the maximum or 95 percent upper	confidence limit (95%	6 UCL) on th	e mean					HI	Hazard inde	х.	
concentration detected at the site.								HQ	Hazard quot	ient.	
^b Consistent with EPA policy, lead is not eval	uated in the cumulati	ve HI estimat	e.					Inc	Incomplete p	oathway.	
Please refer to Section 4.2.3.3.3.								mg/L	Milligrams p	ber liter.	
^c Risks associated with indicator compounds	are included in cumul	ative risk and	l hazard					mg/kd-d	Milligrams p	er kilogram p	er day.
estimates for each site. However, the health	hazards associated w	ith petroleum	n mixtures					na	not available	2	-
will be evaluated and reported separately.								VOC	Volatile orga	anic compound	1.
^d Exposure dose and noncancer hazards were	calculated for petrole	um hydrocart	ons measure	d as DRO (m	ethod 8100)			0	· · · · · ·	
by segregating total DRO concentrations in	to aliphatic and arom	atic fractions,	assuming 80)% aliphatic							
hydrocarbons and 40% aromatic hydrocarbo	ons (ADEC, 2000c).		5								
^e Exposure dose and noncancer hazards were	calculated for petrole	um hydrocart	ons measure	d as RRO (m	ethod)						

by segregating total RRO concentrations into aliphatic and aromatic fractions, assuming 90% aliphatic

hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 15 - Buried Fuel Line Spill Area - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

				VOC							
	Surface Water	Ingestion	Dermal	Inhalation				Pathwa	ay-Specific l	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	ence Dose (1	mg/kg-d)			VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 15 - Buried Fuel Line Spill Area - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Pathy	vay-Specific 1	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (mg/kg-d)			VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
INORGANICS											
Arsenic	0.11	3.6E-03	1.7E-04	Inc	3.0E-04	3.0E-04	3.0E-04	1.2E+01	5.7E-01	Inc	13
Arsenic, Dissolved	0.0060	2.0E-04	9.3E-06	Inc	3.0E-04	3.0E-04	3.0E-04	6.6E-01	3.1E-02	Inc	0.69
Lead	0.68	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Nickel	0.20	6.6E-03	6.2E-05	Inc	2.0E-02	2.0E-02	2.0E-02	3.3E-01	3.1E-03	Inc	0.33
										TT	14
PETROLEUM HVDROCARBONS ^C										m	14
Diesel Range Organics	960	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics. Aliphatic	768	2.5E+01	Inc	1.7E+01	1.0E-01	na	2.9E-01	2.5E+02	Inc	5.8E+01	311
Diesel Range Organics, Aromatic	384	1.3E+01	Inc	8.4E+00	4.0E-02	na	5.7E-01	3.2E+02	Inc	1.5E+01	330
Residual Range Organics	3.8	na ^e	na ^e	na ^e	na ^e	na ^e	nae	na ^e	na ^e	na ^e	na ^e
Residual Range Organics, Aliphatic	3.4	1.1E-01	Inc	7.8E-05	2.0E+00	na	na	5.6E-02	Inc	Inc	0.056
Residual Range Organics, Aromatic	1.1	3.7E-02	Inc	2.6E-05	3.0E-02	na	na	1.2E+00	Inc	Inc	1.2
										HI	642
Notes:											
^a Based on the maximum or 95 percent upper	confidence limit (95	5% UCL) on	the mean					HI	Hazard index	к.	
concentration detected at the site.								HQ	Hazard quot	ient.	
^b Consistent with EPA policy, lead is not evaluate	uated in the cumula	tive HI estima	ate.					Inc	Incomplete p	athway.	
^c Risks associated with indicator compounds a	are included in cum	ulative risk ar	nd hazard					mg/L	Milligrams p	er liter.	
estimates for each site. However, the health	hazards associated	with petroleur	m mixtures					mg/kd-d	Milligrams p	er kilogram po	er day.
will be evaluated and reported separately.								na	not available		,
^d Exposure dose and noncancer hazards were	calculated for petrol	leum hydroca	rbons measur	red as DRO (r	nethod 810	0)		VOC	Volatile orga	inic compound	1.
by segregating total DRO concentrations int	o aliphatic and aror	natic fraction	s, assuming 8	0% aliphatic						F	
hydrocarbons and 40% aromatic hydrocarbo	ons (ADEC, 2000c).										
^e Exposure dose and noncancer hazards were	calculated for petrol	leum hydroca	rbons measur	ed as RRO (r	nethod)						
by segregating total RRO concentrations int	o aliphatic and aron	natic fractions	s, assuming 9	0% aliphatic							
hydrocarbons and 30% aromatic hydrocarbo	ons (ADEC, 2000c).		5	1							

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 15 - Buried Fuel Line Spill Area - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

				VOC							
	Surface Water	Ingestion	Dermal	Inhalation				Pathwa	ay-Specific 1	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	ence Dose (r	ng/kg-d)			VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE INCIDENTAL VISITOR SITE 15 - Buried Fuel Line Spill Area - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Path	way-Specific	Hazard	Chemical-
Constituent	Concentration" (mg/L)	Dose (mg/kg-d)	Dose (mg/kg-d)	Dose (mg/kg-d)	Refere Oral	nce Dose (Dermal	mg/kg-d) Inhalation	Ingestion	Dermal	VOC Inhalation	Specific HQ
NADO ANICO											
	0.11	1 3E-04	1 3E-06	Inc	3 0E-04	3.0F-04	3.0F-04	4 2E-01	4 2E-03	Inc	0.42
Arsenic, Dissolved	0.006	6.8E-06	6.8E-08	Inc	3.0E-04	3.0E-04	3.0E-04	4.2E-01 2.3E-02	4.2E-03 2.3E-04	Inc	0.023
Lead	0.68	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Nickel	0.20	2.3E-04	4.6E-07	Inc	2.0E-02	2.0E-02	2.0E-02	1.1E-02	2.3E-05	Inc	0.011
										HI	0.46
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	960	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	768	8.8E-01	Inc	2.1E-01	1.0E-01	na	2.9E-01	8.8E+00	Inc	7.3E-01	9.5
Diesel Range Organics, Aromatic	384	4.4E-01	Inc	1.1E-01	4.0E-02	na	5.7E-01	1.1E+01	Inc	1.8E-01	11
Residual Range Organics	3.8	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Residual Range Organics, Aliphatic	3.4	3.9E-03	Inc	9.8E-07	2.0E+00	na	na	2.0E-03	Inc	Inc	0.0020
Residual Range Organics, Aromatic	1.1	1.3E-03	Inc	3.3E-07	3.0E-02	na	na	4.3E-02	Inc	Inc	0.043
<u></u>										HI	21
Notes:	C 1 1 1 1 10 10 50								** 1. 1		
Based on the maximum or 95 percent uppe	r confidence limit (95%	6 UCL) on th	e mean					HI	Hazard inde	X.	
concentration detected at the site.								HQ	Hazard quot	ient.	
 ^c Consistent with EPA policy, lead is not eva ^c Risks associated with indicator compounds 	luated in the cumulati are included in cumul	ve HI estimat ative risk and	e. I hazard					Inc mg/L	Incomplete p Milligrams p	pathway. per liter.	
estimates for each site. However, the healt	h hazards associated w	ith petroleum	mixtures					mg/kd-d	Milligrams r	oer kilogram p	er day.
will be evaluated and reported separately.								na	not available	. 0 I	,
^d Exposure dose and noncancer hazards were	e calculated for petrole	um hydrocart	ons measured	i as DRO (me	thod 8100))		VOC	Volatile orga	anic compoun	d.
by segregating total DRO concentrations in	nto aliphatic and aroma	atic fractions,	assuming 80	% aliphatic					U	1	
hydrocarbons and 40% aromatic hydrocarb	ons (ADEC, 2000c).										
^e Exposure dose and noncancer hazards were	e calculated for petrole	um hydrocart	ons measured	l as RRO (me	thod)						
by segregating total RRO concentrations in	nto aliphatic and aroma	atic fractions,	assuming 90 ^o	% aliphatic							
hydrocarbons and 30% aromatic hydrocarb	ons (ADEC, 2000c).										
1) Doses and noncancer bazards shown only f	for noncarcinogenic ch	amicals with	available tovi	city values							

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation

NONCANCER HAZARD CALCULATIONS FOR A FUTURE INCIDENTAL VISITOR SITE 15 - Buried Fuel Line Spill Area - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

				VOC						
	Surface Water	Ingestion	Dermal	Inhalation			Pathwa	ay-Specific I	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Reference Dose	(mg/kg-d)			VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ

of a medium

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health

effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

CANCER RISK CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 16 - Paint and Dope Storage Building - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Soil Dermal	Dust Inhalation				Pathway-S	Specific Ca	ncer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer Sl	ope Factor	$(mg/kg-d)^{-1}$	Soil	• _	Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
INORGANICS											
Arsenic	6.4	2.6E-06	3.0E-07	1.9E-10	1.5E+00	1.5E+00	1.5E+01	3.9E-06	4.6E-07	2.8E-09	4.3E-06
Beryllium	1.1	4.2E-07	0.0E+00	3.1E-11	na	na	8.4E+00	na	na	2.6E-10	2.6E-10
Cadmium	2.4	9.9E-07	3.9E-09	7.2E-11	na	na	6.3E+00	na	na	4.5E-10	4.5E-10
VOLATILE ORGANIC COMPOUNDS											
Methylene chloride	0.0072	2.9E-09	0.0E+00	2.1E-13	7.5E-03	7.5E-03	1.6E-03	2.2E-11	0.0E+00	3.5E-16	2.2E-11
POLYCHLORINATED BIPHENYLS											
PCB-1260 (Aroclor 1260)	0.78	3.1E-07	1.7E-07	2.3E-11	2.0E+00	2.0E+00	2.0E+00	6.3E-07	3.5E-07	4.6E-11	9.7E-07
										ILCR	5E-06
Notes:											
^a Based on the maximum or 95 percent upper conf	idence limit (95% UC	CL) on the me	ean concentra	tion detected	at the site.			ILCR	Increment	al lifetime can	cer risk.
1) Doses and cancer risks shown only for carcinoge	nic chemicals with av	ailable toxici	ty values.					Inc	Incomplet	e pathway.	
2) Based on the maximum or 95 percent upper cont	idence limit (95% UC	CL) on the me	an concentra	tion detected	at the site.			mg/kg	Milligram	s per kilogram	
Doses and cancer risks shown only for carcinoge	nic chemicals with av	ailable toxici	ty values.					mg/kg-d	Milligram	s per kilogram	per day.

3) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

Cancer risks are unitless values which represent the probability of incurring an adverse health

CANCER RISK CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 16 - Paint and Dope Storage Building - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Soil Dermal	Dust Inhalation				Pathwa	y-Specific C	ancer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer Slo	ope Factor	(mg/kg-d) ⁻¹	Soil	_	Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
INORGANICS											
Arsenic	6.4	7.7E-06	9.1E-07	5.6E-10	1.5E+00	1.5E+00	1.5E+01	1.2E-05	1.4E-06	8.5E-09	1.3E-05
Beryllium	1.1	1.3E-06	0.0E+00	9.3E-11	na	na	8.4E+00	na	na	7.8E-10	7.8E-10
Cadmium	2.4	3.0E-06	1.2E-08	2.2E-10	na	na	6.3E+00	na	na	1.4E-09	1.4E-09
VOLATILE ORGANIC COMPOUNDS Methylene chloride	0.0072	8.7E-09	0.0E+00	6.4E-13	7.5E-03	7.5E-03	1.6E-03	6.5E-11	0.0E+00	1.0E-15	6.5E-11
POLYCHLORINATED BIPHENYLS PCB-1260 (Aroclor 1260)	0.78	9.4E-07	5.2E-07	6.9E-11	2.0E+00	2.0E+00	2.0E+00	1.9E-06	1.0E-06	1.4E-10	2.9E-06

		ILCR 2E-05
Notes:		-
^a Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected in soil tundra	ILCR	Incremental lifetime cancer risk.
and soil gravel at the site.	Inc	Incomplete pathway.
1) Doses and cancer risks shown only for carcinogenic chemicals with available toxicity values.	mg/kg	Milligrams per kilogram.
2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation	mg/kg-d	Milligrams per kilogram per day.
of a medium.		

3) Cancer risks are unitless values which represent the probability of incurring an adverse health

CANCER RISK CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 16 - Paint and Dope Storage Building - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Soil Dermal	Dust Inhalation				Pathway	-Specific Ca	ancer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer Sl	ope Factor	(mg/kg-d) ⁻¹	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
INORGANICS											
Arsenic	6.4	6.2E-08	2.5E-08	1.9E-11	1.5E+00	1.5E+00	1.5E+01	9.4E-08	3.7E-08	2.9E-10	1.3E-07
Beryllium	1.1	1.0E-08	0.0E+00	3.2E-12	na	na	8.4E+00	na	na	2.7E-11	2.7E-11
Cadmium	2.4	2.4E-08	3.2E-10	7.4E-12	na	na	6.3E+00	na	na	4.6E-11	4.6E-11
VOLATILE ORGANIC COMPOUNDS											
Methylene chloride	0.0072	7.0E-11	0.0E+00	2.2E-14	7.5E-03	7.5E-03	1.6E-03	5.3E-13	0.0E+00	3.6E-17	5.3E-13
POLYCHLORINATED BIPHENYLS											
PCB-1260 (Aroclor 1260)	0.78	7.6E-09	1.4E-08	2.3E-12	2.0E+00	2.0E+00	2.0E+00	1.5E-08	2.8E-08	4.7E-12	4.3E-08
										ILCR	2E-07
Notes:											
^a Based on the maximum or 95 percent upper conf	idence limit (95% U	CL) on the me	ean concentra	ation detected	at the site.			ILCR	Incrementa	l lifetime cance	r risk.
1) Doses and cancer risks shown only for carcinoge	nic chemicals with av	vailable toxic	ity values.					Inc	Incomplete	pathway.	
2) Absorbed doses were calculated for dermal conta	ct with the medium,	and intakes w	vere calculate	d for ingestio	n or inhalati	on		mg/kg	Milligrams	per kilogram.	
of a medium				-				mg/kg-d	Milligrams	per kilogram p	er day.

 Cancer risks are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Cancer Risk = Exposure Dose x Cancer Slope Factor.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 16 - Paint and Dope Storage Building - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	S-3	Soil	Dermal	Dust				Datha		Hanand	Chaminal
		Ingestion	Dermai	Innalation	D.C	D (7 1)		vay-specific	Hazaro	Chemical-
Constituent	(mg/kg)	Dose (mg/kg-d)	Dose (mg/kg_d)	Dose (mg/kg_d)	Oral	Dermal	1g/kg-d) Inhalation	Soll	Dormol	Dust Inholation	Specific
Constituent	(IIIg/Kg)	(Ing/kg-u)	(ing/kg-u)	(IIIg/Kg-u)	Orai	Dermai	malation	ingestion	Dermai	IIIIaiation	nų
INORGANICS											
Antimony	9.6	3.5E-05	0.0E+00	1.7E-09	4.0E-04	4.0E-04	4.0E-04	8.8E-02	0.0E+00	4.3E-06	0.088
Arsenic	6.4	2.3E-05	2.2E-06	1.2E-09	3.0E-04	3.0E-04	3.0E-04	7.7E-02	7.4E-03	3.8E-06	0.085
Beryllium	1.1	3.8E-06	0.0E+00	1.9E-10	2.0E-03	2.0E-03	5.7E-06	1.9E-03	0.0E+00	3.3E-05	0.0019
Cadmium	2.4	8.9E-06	2.8E-08	4.4E-10	5.0E-04	5.0E-04	5.0E-04	1.8E-02	5.6E-05	8.8E-07	0.018
Chromium	69	2.5E-04	0.0E+00	1.2E-08	1.5E+00	1.5E+00	1.5E+00	1.7E-04	0.0E+00	8.3E-09	0.00017
Lead	530	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Thallium	0.26	9.5E-07	0.0E+00	4.7E-11	7.0E-05	7.0E-05	7.0E-05	1.4E-02	0.0E+00	6.7E-07	0.014
Zinc	3,521	1.3E-02	0.0E+00	6.4E-07	3.0E-01	3.0E-01	3.0E-01	4.3E-02	0.0E+00	2.1E-06	0.043
VOLATILE ORGANIC COMPOUNDS											
Methylene chloride	0.0072	2.6E-08	0.0E+00	1.3E-12	6.0E-02	6.0E-02	8.6E-01	4.4E-07	0.0E+00	1.5E-12	0.00000044
POLYCHLORINATED BIPHENYLS											
PCB-1260 (Aroclor 1260)	0.78	2.8E-06	1.3E-06	1.4E-10	2.0E-05	2.0E-05	2.0E-05	1.4E-01	6.3E-02	7.0E-06	0.20
										HI	0.45
Notes:										m	0.40
^a Based on the maximum or 95 percent upper con	fidence limit (95% UC	L) on the mea	an					HI	Hazard ind	ex.	
concentration detected at the site.								HQ	Hazard quotient.		
^b Consistent with EPA policy, lead is not evaluated in the cumulative HI estimate								Inc	Incomplete pathway.		
^c Risks associated with indicator compounds are included in cumulative risk and hazard								ma/ka	Milligrams per kilogram		
estimates for each site. However, the health hazards associated with petroleum mixtures									Milligrams per kilogram per dav		
will be evaluated and reported separately.								na	not available		
^d Exposure dose and noncancer hazards were calc	ulated for petroleum h	ydrocarbons r	neasured as D	RO (method 81	.00)			nu	not available		
by segregating total DRO concentrations into al	liphatic and aromatic fi	ractions, assur	ming 80% alip	ohatic							
hydrocarbons and 40% aromatic hydrocarbons ((ADEC, 2000c).										
e Exposure dose and noncancer hazards were calc	ulated for petroleum h	ydrocarbons r	neasured as G	RO (method 80	015)						
by segregating total GRO concentrations into al	liphatic and aromatic fi	ractions, assu	ming 70% alij	ohatic							
hydrocarbons and 50% aromatic hydrocarbons ((ADEC, 2000c).										
f Exposure dose and noncancer hazards were calc	ulated for petroleum h	ydrocarbons r	neasured as R	RO (method)							
by segregating total RRO concentrations into al	iphatic and aromatic fi	actions, assur	ming 90% alip	ohatic							
hydrocarbons and 30% aromatic hydrocarbons ((ADEC, 2000c).		-								

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 16 - Paint and Dope Storage Building - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

		Soil		Dust							
	Soil	Ingestion	Dermal	Inhalation	Reference Dose (mg/kg-d)			Pathway-Specific Hazard		Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose				Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium.

 Noncancer hazards are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.
NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 16 - Paint and Dope Storage Building - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

		Soil		Dust							
	Soil	Ingestion	Dermal	Inhalation				Pathwa	ay-Specific	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose	(mg/kg-d)	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
INORGANICS											
Antimony	9.6	1.1E-04	1.0E-05	5.2E-09	4.0E-04	4.0E-04	4.0E-04	2.6E-01	2.5E-02	1.3E-05	0.29
Arsenic	6.4	7.0E-05	6.6E-06	3.5E-09	3.0E-04	3.0E-04	3.0E-04	2.3E-01	2.2E-02	1.2E-05	0.25
Beryllium	1.1	1.1E-05	1.1E-06	5.7E-10	2.0E-03	2.0E-03	5.7E-06	5.7E-03	5.5E-04	1.0E-04	0.0064
Cadmium	2.4	2.7E-05	8.5E-08	1.3E-09	5.0E-04	5.0E-04	5.0E-04	5.3E-02	1.7E-04	2.7E-06	0.054
Chromium	69	7.5E-04	0.0E+00	3.7E-08	1.5E+00	1.5E+00	1.5E+00	5.0E-04	0.0E+00	2.5E-08	0.00050
Lead	530	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Thallium	0.26	2.8E-06	0.0E+00	1.4E-10	7.0E-05	7.0E-05	7.0E-05	4.1E-02	0.0E+00	2.0E-06	0.041
Zinc	3,521	3.8E-02	0.0E+00	1.9E-06	3.0E-01	3.0E-01	3.0E-01	1.3E-01	0.0E+00	6.4E-06	0.13
VOLATILE ORGANIC COMPOUNDS											
Methylene chloride	0.0072	7.9E-08	0.0E+00	3.9E-12	6.0E-02	6.0E-02	8.6E-01	1.3E-06	0.0E+00	4.5E-12	0.0000013
POLYCHLORINATED BIPHENYLS											
PCB-1260 (Aroclor 1260)	0.78	8.5E-06	3.8E-06	4.2E-10	2.0E-05	2.0E-05	2.0E-05	4.2E-01	1.9E-01	2.1E-05	0.61
										HI	1.4
Notes:											
^a Based on the maximum or 95 percent upper confider	nce limit (95% UCI	L) on the mean	1					HI	Hazard inc	lex.	
concentration detected at the site.								HQ	Hazard qu	otient.	
^b Consistent with EPA policy, lead is not evaluated in	the cumulative HI	estimate.						Inc	Incomplete	e pathway.	
^c Risks associated with indicator compounds are inclu	ded in cumulative r	isk and hazar	d					mø/kø	Milligrams	ner kilogram	L
estimates for each site. However, the health hazards	associated with pe	troleum mixtu	res					mg/kd-d	Milligram	ner kilogram	ner dav
will be evaluated and reported separately.								na	not availab	ole	per day.
^d Exposure dose and noncancer hazards were calculate	ed for petroleum hy	drocarbons m	easured as DI	RO (method 8	100)						
by segregating total DRO concentrations into aliphatic and aromatic fractions, assuming 80% aliphatic											
hydrocarbons and 40% aromatic hydrocarbons (ADI	EC, 2000c).		• •								
^e Exposure dose and noncancer hazards were calculate	ed for petroleum hv	drocarbons m	easured as GI	RO (method 8	015)						
by segregating total GRO concentrations into alipha	tic and aromatic fra	ctions, assum	ing 70% alip	hatic	/						
hydrocarbons and 50% aromatic hydrocarbons (ADI	EC. 2000c)	,	8 · • · • • • • • • •								
^f Exposure dose and noncancer hazards were calculate	ed for petroleum hv	drocarbons m	easured as RI	RO (method)							
hy segregating total RRO concentrations into alinha	tic and aromatic fra	ctions assum	ing 90% alin	hatic							

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 16 - Paint and Dope Storage Building - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

		Soil		Dust						
	Soil	Ingestion	Dermal	Inhalation			Pathwa	y-Specific	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Reference D	ose (mg/kg-d)	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral Dern	nal Inhalation	Ingestion	Dermal	Inhalation	HQ

hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium.

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 16 - Paint and Dope Storage Building - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhalation				Pathw	vay-Specific l	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	ence Dose (r	ng/kg-d)	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
INORGANICS											
Antimony	9.6	2.7E-07	0.0E+00	8.5E-11	4.0E-04	4.0E-04	4.0E-04	6.9E-04	0.0E+00	2.1E-07	0.00069
Arsenic	6.4	1.8E-07	7.2E-08	5.6E-11	3.0E-04	3.0E-04	3.0E-04	6.1E-04	2.4E-04	1.9E-07	0.00085
Beryllium	1.1	3.0E-08	0.0E+00	9.2E-12	2.0E-03	2.0E-03	5.7E-06	1.5E-05	0.0E+00	1.6E-06	0.000017
Cadmium	2.4	7.0E-08	9.2E-10	2.2E-11	5.0E-04	5.0E-04	5.0E-04	1.4E-04	1.8E-06	4.3E-08	0.00014
Chromium	69	2.0E-06	0.0E+00	6.0E-10	1.5E+00	1.5E+00	1.5E+00	1.3E-06	0.0E+00	4.0E-10	0.0000013
Lead	530	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Thallium	0.26	7.4E-09	0.0E+00	2.3E-12	7.0E-05	7.0E-05	7.0E-05	1.1E-04	0.0E+00	3.3E-08	0.00011
Zinc	3,521	1.0E-04	0.0E+00	3.1E-08	3.0E-01	3.0E-01	3.0E-01	3.3E-04	0.0E+00	1.0E-07	0.00034
VOLATILE ORGANIC COMPOUNDS Methylene chloride	0.0072	2.1E-10	0.0E+00	6.3E-14	6.0E-02	6.0E-02	8.6E-01	3.4E-09	0.0E+00	7.4E-14	0.000000034
POLYCHLORINATED BIPHENYLS PCB-1260 (Aroclor 1260)	0.78	2.2E-08	4.1E-08	6.8E-12	2.0E-05	2.0E-05	2.0E-05	1.1E-03	2.1E-03	3.4E-07	0.0032

		HI 0.0053
Notes:		
^a Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean	HI	Hazard index.
concentration detected at the site.	HQ	Hazard quotient.
^b Consistent with EPA policy, lead is not evaluated in the cumulative HI estimate.	Inc	Incomplete pathway.
^c Risks associated with indicator compounds are included in cumulative risk and hazard	mg/kg	Milligrams per kilogram.
estimates for each site. However, the health hazards associated with petroleum mixtures	mg/kd-d	Milligrams per kilogram per day.
will be evaluated and reported separately.	na	not available
^d Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as DRO (method 8100)		
by segregating total DRO concentrations into aliphatic and aromatic fractions, assuming 80% aliphatic		
hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c).		
e Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as GRO (method 8015)		
by segregating total GRO concentrations into aliphatic and aromatic fractions, assuming 70% aliphatic		
hydrocarbons and 50% aromatic hydrocarbons (ADEC, 2000c).		
^f Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as RRO (method)		

by segregating total RRO concentrations into aliphatic and aromatic fractions, assuming 90% aliphatic

hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 16 - Paint and Dope Storage Building - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

		Soil		Dust							
	Soil	Ingestion	Dermal	Inhalation			-	Pathwa	ay-Specific l	Iazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (r	ng/kg-d)	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

CANCER RISK CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 16 - Paint and Dope Storage Building - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Groundwater	Ingestion	Dermal	VOC Inhalation				Pathway	-Specific Ca	nncer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer S	lope Factor	$(mg/kg-d)^{-1}$	_		VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
VOLATILE ORGANIC COMPOUNDS											
bis(2-ethylexyl)phthalate	0.017	6.5E-05	2.2E-05	9.6E-09	1.4E-02	1.4E-02	1.4E-02	9.1E-07	3.1E-07	1.3E-10	1.2E-06
Trichloroethene	0.0033	1.3E-05	2.7E-06	7.3E-05	4.0E-01	4.0E-01	4.0E-01	5.0E-06	1.1E-06	2.9E-05	3.5E-05
										ILCR	4E-05
Notes:											
^a Based on the maximum or 95 percent upper cor	nfidence limit (95%	UCL) on the	mean					ILCR	Incrementa	l lifetime cance	er risk.
concentration detected at the site.								Inc	Incomplete	pathway.	
1) Doses and cancer risks shown only for carcinog	genic chemicals with	available to	cicity values.					mg/L	Milligrams	per liter.	
 Absorbed doses were calculated for dermal con calculated for ingestion or inhalation of a medi 	tact with the mediur um.	n, and intake	s were					mg/kg-d VOC	Milligrams Volatile org	per kilogram p anic compour	ber day. d.
3) Cancer risks are unitless values which represent	t the probability of i	ncurring an a	dverse health							····· · ····	

CANCER RISK CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 16 - Paint and Dope Storage Building - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Pathwa	y-Specific Ca	ncer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer S	lope Factor	(mg/kg-d) ⁻¹	-		VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
VOLATILE ORGANIC COMPOUNDS											
bis(2-ethylexyl)phthalate	0.017	2.5E-04	8.7E-05	3.7E-08	1.4E-02	1.4E-02	1.4E-02	3.6E-06	1.2E-06	5.2E-10	4.8E-06
Trichloroethene	0.0033	4.9E-05	1.1E-05	2.8E-04	4.0E-01	4.0E-01	4.0E-01	2.0E-05	4.2E-06	1.1E-04	1.4E-04
										ILCR	1E-04
Notes:											
^a Based on the maximum or 95 percent upper com	fidence limit (95% U	UCL) on the	mean					ILCR	Incremental	lifetime cancer	risk.
concentration detected at the site.								Inc	Incomplete p	athway.	
1) Doses and cancer risks shown only for carcinog	enic chemicals with	available tox	cicity values.					mg/L	Milligrams p	er liter.	
 Absorbed doses were calculated for dermal cont calculated for ingestion or inhalation of a mediu 	act with the mediun	n, and intakes	s were					mg/kg-d VOC	Milligrams p Volatile orga	er kilogram per nic compound.	r day.
3) Cancer risks are unitless values which represent	the probability of in	ncurring an ad	iverse health								

CANCER RISK CALCULATIONS FOR A FUTURE INCIDENTAL VISITOR SITE 16 - Paint and Dope Storage Building - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Pathway	-Specific Ca	ancer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer S	lope Factor	$(mg/kg-d)^{-1}$	_		VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
VOLATILE ORGANIC COMPOUNDS											
bis(2-ethylexyl)phthalate	0.017	6.7E-06	1.7E-06	9.8E-10	1.4E-02	1.4E-02	1.4E-02	9.3E-08	2.3E-08	1.4E-11	1.2E-07
Trichloroethene	0.0033	1.3E-06	2.0E-07	7.4E-06	4.0E-01	4.0E-01	4.0E-01	5.2E-07	8.1E-08	3.0E-06	3.6E-06
										ILCR	4E-06
Notes:											
^a Based on the maximum or 95 percent upper cor	nfidence limit (95% U	JCL) on the n	nean					ILCR	Incrementa	l lifetime cance	er risk.
concentration detected at the site.								Inc	Incomplete	pathway.	
1) Doses and cancer risks shown only for carcinog	genic chemicals with	available toxi	city values.					mg/L	Milligrams	per liter.	
 Absorbed doses were calculated for dermal con calculated for ingestion or inhalation of a medi 	tact with the medium um.	, and intakes	were					mg/kg-d VOC	Milligrams Volatile org	per kilogram p ganic compoun	ber day. d.
3) Cancer risks are unitless values which represent	t the probability of in	curring an ad	verse health								

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 16 - Paint and Dope Storage Building - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Pathy	way-Specific 1	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (mg/kg-d)		• •	VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
DIODGANICG											
	0.040	2 45 04	1 6E 05	Inc	2.05.02	2.05.02	57006	1.7E.01	8 OF 02	Ino	0.19
Cadmium	0.040	5.4E-04	1.0E-05	Inc	2.0E-03	2.0E-03	5.7E-00	1./E-01 1.0E+00	8.0E-03	Inc	0.18
Copper	0.000	4.2E-04	2.4E-03 2.0E-04	Inc	3.0E-04	3.0E-04	3.0E-04	1.0E+00	4.8E-02 5.4E-03	Inc	0.12
Laad	0.50	4.2L-05	2.0L-04	no ^b	5.7L=02	5.7L-02	5.7L=02	no ^b	5.4L-05	no ^b	0.12
Lead	0.55	lla b	h	na b	na b	na b	h	lla b	na b	на	na b
Lead, Dissolved	0.0040	na [°]	na [°]	na	na"	na [°]	na [°]	na [°]	na [°]	na	na
Nickel	0.42	3.6E-03	3.4E-05	Inc	2.0E-02	2.0E-02	2.0E-02	1.8E-01	1./E-03	Inc	0.18
Zinc	1.5	1.3E-02	6.0E-04	Inc	3.0E-01	3.0E-01	3.0E-01	4.2E-02	2.0E-03	Inc	0.044
VOLATILE ORGANIC COMPOUNDS											
4-Isopropyltoluene	0.0066	5.6E-05	3.2E-04	9.7E-04	1.0E-01	1.0E-01	1.1E-01	5.6E-04	3.2E-03	8.8E-03	0.013
bis(2-ethylexyl)phthalate	0.017	1.4E-04	1.7E-04	5.9E-08	2.0E-02	2.0E-02	2.0E-02	7.2E-03	8.5E-03	2.9E-06	0.016
n-Propylbenzene	0.0043	3.6E-05	5.2E-04	7.3E-04	4.0E-02	4.0E-02	4.0E-02	9.1E-04	1.3E-02	1.8E-02	0.032
sec-Butylbenzene	0.0040	3.4E-05	1.3E-04	9.6E-04	4.0E-02	4.0E-02	4.0E-02	8.5E-04	3.2E-03	2.4E-02	0.028
Trichloroethene	0.0033	2.8E-05	2.1E-05	4.5E-04	3.0E-04	3.0E-04	1.0E-02	9.3E-02	6.9E-02	4.5E-02	0.21
										HI	1.9
Notes:											
^a Based on the maximum or 95 percent upper co concentration detected at the site.	onfidence limit (959	% UCL) on th	e mean					HI HQ	Hazard inde Hazard quot	x. ient.	
^b Consistent with EPA policy, lead is not evaluate Risks associated with indicator compounds ar	ated in the cumulati re included in cumu	ve HI estimat lative risk and	e. I hazard					Inc mg/L	Incomplete p Milligrams r	oathway. Der liter	
estimates for each site. However, the health h	azards associated w	vith petroleum	n mixtures					mg/kd-d	Milligrams r	er kilogram r	er dav.
will be evaluated and reported separately.								na	not available	er knogram p	or day.
^d Exposure dose and noncancer hazards were ca	alculated for petrole	um hydrocart	oons measure	d as DRO (m	ethod 8100)		VOC	Volatile orga	nic compoun	d
by segregating total DRO concentrations into	aliphatic and arom	atic fractions,	assuming 80)% aliphatic				100	volutile orge	une compoun	u.
hydrocarbons and 40% aromatic hydrocarbon	s (ADEC, 2000c).		_	-							
^e Exposure dose and noncancer hazards were ca	alculated for petrole	um hydrocart	oons measure	d as GRO (m	ethod 8015)					
by segregating total GRO concentrations into	aliphatic and arom	atic fractions,	assuming 70)% aliphatic							

hydrocarbons and 50% aromatic hydrocarbons (ADEC, 2000c).

^f Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as RRO (method)

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 16 - Paint and Dope Storage Building - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

				VOC						
	Surface Water	Ingestion	Dermal	Inhalation			F	Pathway-Specific	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	ence Dose (mg/kg-	d)		VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal Inhala	ation Ingest	tion Dermal	Inhalation	HQ

by segregating total RRO concentrations into aliphatic and aromatic fractions, assuming 90% aliphatic

hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 16 - Paint and Dope Storage Building - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Path	way-Specific 1	Hazard	Chemical-
Constituent	Concentration ^a (mg/L)	Dose (mg/kg-d)	Dose (mg/kg-d)	Dose (mg/kg-d)	Refere Oral	nce Dose (Dermal	mg/kg-d) Inhalation	- Ingestion	Dermal	VOC Inhalation	Specific HQ
NORGANICS											
INORGANICS	0.04	1 2E 02	6 2E 05	Inc	2 05 02	2.05.02	57006	6 6E 01	2 1E 02	Inc	0.60
Cadmium	0.04	1.3E-03	0.2E-05 0.3E-05	Inc	2.0E-03	2.0E-05	5.7E-00	0.0E-01	5.1E-02	Inc	0.09
Copper	0.00	2.0E-03	7.3E-03	Inc	3.0E-04	3.0E-04	3.0E-04	3.9E+00	1.9E-01 2.1E-02	Inc	4.1
Load	0.50	n.0L-02	7.0L-04	no ^b	5.7E=02	5.7L-02	5.7E-02		2.112-02	no ^b	0.47
Leau	0.55	h	h	h	na b	na b	h	na b	na b	h	h
Lead, Dissolved	0.004	na	na	na	na	na	na	na	na"	na	na"
Nickel	0.42	1.4E-02	1.3E-04	Inc	2.0E-02	2.0E-02	2.0E-02	6.9E-01	6.5E-03	Inc	0.70
Zinc	1.5	4.9E-02	2.3E-03	Inc	3.0E-01	3.0E-01	3.0E-01	1.6E-01	7.8E-03	Inc	0.17
VOLATILE ORGANIC COMPOUNDS											
4-Isopropyltoluene	0.0066	2.2E-04	1.2E-03	3.8E-03	1.0E-01	1.0E-01	1.1E-01	2.2E-03	1.2E-02	3.4E-02	0.049
bis(2-ethylexyl)phthalate	0.0170	5.6E-04	6.6E-04	2.3E-07	2.0E-02	2.0E-02	2.0E-02	2.8E-02	3.3E-02	1.1E-05	0.061
n-Propylbenzene	0.0043	1.4E-04	2.0E-03	2.8E-03	4.0E-02	4.0E-02	4.0E-02	3.5E-03	5.1E-02	7.1E-02	0.13
sec-Butylbenzene	0.0040	1.3E-04	5.0E-04	3.7E-03	4.0E-02	4.0E-02	4.0E-02	3.3E-03	1.2E-02	9.4E-02	0.11
Trichloroethene	0.0033	1.1E-04	8.2E-05	1.7E-03	3.0E-04	3.0E-04	1.0E-02	3.6E-01	2.7E-01	1.7E-01	0.81
										HI	73
Notes:											1.5
^a Based on the maximum or 95 percent upper	confidence limit (95	5% UCL) on	the mean					HI	Hazard inde	х.	
concentration detected at the site.								HQ	Hazard quot	ient.	
^b Consistent with EPA policy, lead is not eval	uated in the cumula	tive HI estim	ate.					Inc	Incomplete r	athway.	
^c Risks associated with indicator compounds a	are included in cum	ulative risk ar	nd hazard					ma/I	Milligroma	or litor	
estimates for each site. However, the health	hazards associated	with petroleu	m mixtures					IIIg/L	Minigranis p		
will be evaluated and reported separately	nuzurus ussociated	with perioteu	in mixtures					mg/ka-a	Milligrams p	er kilogram p	er day.
The evaluated and reported separately.								na	not available		1
 Doses and noncancer hazards shown only for Absorbed doses were calculated for dermal of of a medium 	contact with the med	dium, and inta	n available to akes were cal	culated for in	gestion or i	nhalation		VUC	v olatile orga	anic compound	a.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE INCIDENTAL VISITOR SITE 16 - Paint and Dope Storage Building - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Path	way-Specific 1	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (mg/kg-d)	_		VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
INORGANICS											
Beryllium	0.04	4.6E-05	4.6E-07	Inc	2.0E-03	2.0E-03	5.7E-06	2.3E-02	2.3E-04	Inc	0.023
Cadmium	0.06	6.8E-05	6.8E-07	Inc	5.0E-04	5.0E-04	5.0E-04	1.4E-01	1.4E-03	Inc	0.14
Copper	0.50	5.7E-04	5.7E-06	Inc	3.7E-02	3.7E-02	3.7E-02	1.5E-02	1.5E-04	Inc	0.016
Lead	0.53	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Lead, Dissolved	0.004	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Nickel	0.42	4.8E-04	9.6E-07	Inc	2.0E-02	2.0E-02	2.0E-02	2.4E-02	4.8E-05	Inc	0.024
Zinc	1.5	1.7E-03	1.7E-05	Inc	3.0E-01	3.0E-01	3.0E-01	5.7E-03	5.7E-05	Inc	0.0058
VOLATILE ORGANIC COMPOUNDS											
4-Isopropyltoluene	0.0066	7.5E-06	9.0E-06	4.7E-05	1.0E-01	1.0E-01	1.1E-01	7.5E-05	9.0E-05	4.3E-04	0.00059
bis(2-ethylexyl)phthalate	0.0170	1.9E-05	4.9E-06	2.9E-09	2.0E-02	2.0E-02	2.0E-02	9.7E-04	2.4E-04	1.4E-07	0.0012
n-Propylbenzene	0.0043	4.9E-06	1.5E-05	3.6E-05	4.0E-02	4.0E-02	4.0E-02	1.2E-04	3.7E-04	8.9E-04	0.0014
sec-Butylbenzene	0.0040	4.6E-06	3.7E-06	4.7E-05	4.0E-02	4.0E-02	4.0E-02	1.1E-04	9.1E-05	1.2E-03	0.0014
Trichloroethene	0.0033	3.8E-06	5.9E-07	2.2E-05	3.0E-04	3.0E-04	1.0E-02	1.3E-02	2.0E-03	2.2E-03	0.017
										HI	0.21
Notes:											
^a Based on the maximum or 95 percent upper co	onfidence limit (95%	6 UCL) on th	e mean					HI	Hazard index	х.	
concentration detected at the site.								HQ	Hazard quot	ient.	
^b Consistent with EPA policy, lead is not evaluate	ated in the cumulativ	ve HI estimat	e.					Inc	Incomplete p	athway.	
^c Risks associated with indicator compounds ar	e included in cumul	ative risk and	hazard					mg/L	Milligrams r	er liter.	
estimates for each site. However, the health h	azards associated w	ith petroleum	mixtures					mg/kd-d	Milligrams r	er kilogram n	er dav.
will be evaluated and reported separately.								na	not available	, and an	er dagt
^d Exposure dose and noncancer hazards were ca	lculated for petrole	um hvdrocarh	ons measured	l as DRO (me	thod 8100))		VOC	Volatila orga	, nia compound	4
hy segregating total DRO concentrations into	aliphatic and arom	atic fractions	assuming 80	% alinhatic	,			VUC	volatile orga	une compound	1.
hydrocarbons and 40% aromatic hydrocarbons	(ADEC 2000c)	atte fractions,	ussunning oo	/o unpilatie							
f Evenesure doos and non-some house do were on	loulated for notrola	um herdus souk			(had 9015)						
Exposure dose and noncancer nazards were ca	atinhatian 1	uni nyurocart		i as GRU (me	uiou 8015)	1					
by segregating total GRO concentrations into	aliphatic and aroma	atic fractions,	assuming 709	% aliphatic							
hydrocarbons and 50% aromatic hydrocarbons	s (ADEC, 2000c).										

^f Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as RRO (method)

NONCANCER HAZARD CALCULATIONS FOR A FUTURE INCIDENTAL VISITOR SITE 16 - Paint and Dope Storage Building - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

by segregating total RRO concentrations into aliphatic and aromatic fractions, assuming 90% aliphatic

hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

CANCER RISK CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 19 - Auto Maintenance and Storage Facilities - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Soil Dermal	Dust Inhalation				Pathway-	Specific Ca	ncer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer Sl	ope Factor	(mg/kg-d) ⁻¹	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
INORGANICS											
Cadmium	2.2	8.7E-07	3.4E-09	6.3E-11	na	na	6.3E+00	na	na	4.0E-10	4.0E-10
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.74	3.0E-07	0.0E+00	2.2E-11	5.5E-02	5.5E-02	2.9E-02	1.6E-08	0.0E+00	6.3E-13	1.6E-08
Ethylbenzene	3.0	1.2E-06	0.0E+00	8.8E-11	3.9E-03	3.9E-03	3.9E-03	4.7E-09	0.0E+00	3.4E-13	4.7E-09
										ILCR	2E-08
Notes:											
^a Based on the maximum or 95 percent upper cor	nfidence limit (95% U	CL) on the me	ean concentra	ation detected	at the site.			ILCR	Increment	al lifetime can	cer risk.
1) Doses and cancer risks shown only for carcinog	enic chemicals with a	ailable toxici	ity values					Inc	Incomplet	e nathway	
2) Based on the maximum or 95 percent upper cor	fidence limit (95% U	T) on the me	ean concentra	ation detected	at the site			mg/kg	Milligram	s per kilogram	
2) Dased on the maximum of 55 percent upper con	onia chomicals with a	(ailable tovici	ity volues	anon detected	at the site.			mg/kg d	Milligram	s per kilogram	
2) Abasehad dasas ware calculated for dermal and			ity values.	1 6 !	!1 1. 4! .			mg/kg-u	Winngram	s per knogram	per day.
5) Absorbed doses were calculated for dermal cont	tact with the medium,	and intakes w	ere calculate	a for ingestion	n or inhalatio	n					
of a medium											

Cancer risks are unitless values which represent the probability of incurring an adverse health

CANCER RISK CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 19 - Auto Maintenance and Storage Facilities - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Soil Dermal	Dust Inhalation				Pathwa	y-Specific C	ancer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer Slo	ope Factor	(mg/kg-d) ⁻¹	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
INORGANICS Cadmium	2.2	2.6E-06	1.0E-08	1.9E-10	na	na	6.3E+00	na	na	1.2E-09	1.2E-09
VOLATILE ORGANIC COMPOUNDS Benzene Ethylbenzene	0.74 3.0	8.9E-07 3.6E-06	0.0E+00 0.0E+00	6.5E-11 2.6E-10	5.5E-02 3.9E-03	5.5E-02 3.9E-03	2.7E-02 3.9E-03	4.9E-08 1.4E-08	0.0E+00 0.0E+00	1.8E-12 1.0E-12	4.9E-08 1.4E-08
										ILCR	6E-08

Notes:

^a Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected in soil tundra and soil gravel at the site.

1) Doses and cancer risks shown only for carcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium.

3) Cancer risks are unitless values which represent the probability of incurring an adverse health

effect. They are calculated using the following formula: Cancer Risk = Exposure Dose x Cancer Slope Factor.

ILCR Incremental lifetime cancer risk.

Inc Incomplete pathway.

mg/kg Milligrams per kilogram.

mg/kg-d Milligrams per kilogram per day.

CANCER RISK CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 19 - Auto Maintenance and Storage Facilities - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Soil Dermal	Dust Inhalation				Pathway-	Specific Ca	ncer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer Sl	ope Factor	(mg/kg-d) ⁻¹	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
INORGANICS Cadmium	2.2	2.1E-08	2.8E-10	6.5E-12	na	na	6.3E+00	na	na	4.1E-11	4.1E-11
VOLATILE ORGANIC COMPOUNDS Benzene Ethylbenzene	0.74 3.0	7.2E-09 2.9E-08	0.0E+00 0.0E+00	2.2E-12 9.0E-12	5.5E-02 3.9E-03	5.5E-02 3.9E-03	2.7E-01 3.9E-03	4.0E-10 1.1E-10	0.0E+00 0.0E+00	6.0E-13 3.5E-14	4.0E-10 1.1E-10

Notes:

^a Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected at the site.

1) Doses and cancer risks shown only for carcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

3) Cancer risks are unitless values which represent the probability of incurring an adverse health

effect. They are calculated using the following formula: Cancer Risk = Exposure Dose x Cancer Slope Factor.

ILCR Incremental lifetime cancer risk.

ILCR

6E-10

Inc Incomplete pathway.

- mg/kg Milligrams per kilogram.
- mg/kg-d Milligrams per kilogram per day.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 19 - Auto Maintenance and Storage Facilities - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dormol	Dust Inhelation				Dothu	ou Specifie	Uozord	Chomical
	Concentration ^a	Dogo	Derma	Doco	Dofore	nas Daga (n	allea d)	F atil w	ay-specific	Duct	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HO
								0			
INORGANICS											
Cadmium	2.2	7.8E-06	2.5E-08	3.9E-10	5.0E-04	5.0E-04	5.0E-04	1.6E-02	5.0E-05	7.8E-07	0.016
Chromium	27	9.8E-05	0.0E+00	4.9E-09	1.5E+00	1.5E+00	1.5E+00	6.5E-05	0.0E+00	3.2E-09	0.000065
Lead	86	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.74	2.7E-06	0.0E+00	1.3E-10	4.0E-03	4.0E-03	8.6E-03	6.7E-04	0.0E+00	1.5E-08	0.00067
Ethylbenzene	3.0	1.1E-05	0.0E+00	5.4E-10	1.0E-01	1.0E-01	2.9E-01	1.1E-04	0.0E+00	1.9E-09	0.00011
m,p-xylene	0.11	4.0E-07	0.0E+00	2.0E-11	2.0E-01	2.0E-01	2.9E-02	2.0E-06	0.0E+00	6.9E-10	0.00000
Toluene	3.10	1.1E-05	0.0E+00	5.6E-10	2.0E-01	2.0E-01	1.1E-01	5.6E-05	0.0E+00	5.1E-09	0.000056
Xylenes	8.6	3.1E-05	0.0E+00	1.6E-09	2.0E-01	2.0E-01	2.9E-02	1.6E-04	0.0E+00	5.5E-08	0.00016
										HI	0.017
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	13,300	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	10,640	3.9E-02	Inc	1.9E-06	1.0E-01	na	2.9E-01	3.9E-01	Inc	6.6E-06	0.39
Diesel Range Organics, Aromatic	5,320	1.9E-02	Inc	9.6E-07	4.0E-02	na	5.7E-01	4.8E-01	Inc	1.7E-06	0.48
Gasoline Range Organics	6,650	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Gasoline Range Organics, Aliphatic	4,655	1.7E-02	Inc	8.4E-07	5.0E+00	na	5.3E+00	3.4E-03	Inc	1.6E-07	0.0034
Gasoline Range Organics, Aromatic	3,325	1.2E-02	Inc	6.0E-07	2.0E-01	na	1.1E-01	6.1E-02	Inc	5.5E-06	0.061
										HI	0.94
Notes:											
^a Based on the maximum or 95 percent upper confident	ence limit (95% UC	L) on the mea	an					HI	Hazard inde	ex.	
concentration detected at the site.								HQ	Hazard quo	tient.	
^b Consistent with EPA policy, lead is not evaluated it	n the cumulative HI	estimate.						Inc	Incomplete	pathway.	
° Risks associated with indicator compounds are incl	uded in cumulative	risk and haza	rd					mg/kg	Milligrams	per kilogram.	
estimates for each site. However, the health hazard	ls associated with p	etroleum mixt	ures					mg/kd-d	Milligrams	per kilogram	per day.
will be evaluated and reported separately.								na	not availabl	e	1 2
^d Exposure dose and noncancer hazards were calcula	ted for petroleum h	ydrocarbons r	neasured as D	RO (method 81	.00)						
by segregating total DRO concentrations into aliph	natic and aromatic fi	ractions, assur	ming 80% alip	ohatic							
hydrocarbons and 40% aromatic hydrocarbons (AI	DEC, 2000c).										

^e Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as GRO (method 8015) by segregating total GRO concentrations into aliphatic and aromatic fractions, assuming 70% aliphatic

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 19 - Auto Maintenance and Storage Facilities - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

		Soil		Dust							
	Soil	Ingestion	Dermal	Inhalation			-	Pathwa	y-Specific	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refer	ence Dose (n	ng/kg-d)	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ

hydrocarbons and 50% aromatic hydrocarbons (ADEC, 2000c).

-

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 19 - Auto Maintenance and Storage Facilities - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhalation				Pathwa	ay-Specific	Hazard	Chemical-
Constituent	Concentration ^a (mg/kg)	Dose (mg/kg-d)	Dose (mg/kg-d)	Dose (mg/kg-d)	Refere Oral	nce Dose (Dermal	(mg/kg-d) Inhalation	Soil Ingestion	Dermal	Dust Inhalation	Specific HO
Construction	(ing,ing)	(ing/ing u)	(ing/ing u)	(ing/ing u)	orui	Dermar	mulation	ingestion	Derma	Innulation	nų
INORGANICS											
Cadmium	2.2	2.3E-05	7.4E-08	1.2E-09	5.0E-04	5.0E-04	5.0E-04	4.7E-02	1.5E-04	2.3E-06	0.047
Chromium	27	2.9E-04	0.0E+00	1.5E-08	1.5E+00	1.5E+00	1.5E+00	2.0E-04	0.0E+00	9.7E-09	0.00020
Lead	86	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.74	8.0E-06	0.0E+00	4.0E-10	4.0E-03	4.0E-03	8.6E-03	2.0E-03	0.0E+00	4.6E-08	0.0020
Ethylbenzene	3.0	3.3E-05	0.0E+00	1.6E-09	1.0E-01	1.0E-01	2.9E-01	3.3E-04	0.0E+00	5.6E-09	0.00033
m,p-xylene	0.11	1.2E-06	0.0E+00	6.0E-11	2.0E-01	2.0E-01	2.9E-02	6.0E-06	0.0E+00	2.1E-09	0.00001
Toluene	3.1	3.4E-05	0.0E+00	1.7E-09	2.0E-01	2.0E-01	1.1E-01	1.7E-04	0.0E+00	1.5E-08	0.000169
Xylenes	8.6	9.4E-05	0.0E+00	4.7E-09	2.0E-01	2.0E-01	2.9E-02	4.7E-04	0.0E+00	1.6E-07	0.00047
										HI	0.050
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	13,300	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	10,640	1.2E-01	Inc	5.8E-06	1.0E-01	na	2.9E-01	1.2E+00	Inc	2.0E-05	1.2
Diesel Range Organics, Aromatic	5,320	5.8E-02	Inc	2.9E-06	4.0E-02	na	5.7E-01	1.5E+00	Inc	5.1E-06	1.5
Gasoline Range Organics	6,650	na ^e	nae	nae	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Gasoline Range Organics, Aliphatic	4,655	5.1E-02	Inc	2.5E-06	5.0E+00	na	5.3E+00	1.0E-02	Inc	4.8E-07	0.010
Gasoline Range Organics, Aromatic	3,325	3.6E-02	Inc	1.8E-06	2.0E-01	na	1.1E-01	1.8E-01	Inc	1.6E-05	0.18
Notes.										HI	2.8
^a Passed on the maximum or 05 percent upper confide	maa limit (05% UCI) on the mass	2					ш	Hozord in	lov	
Based on the maximum of 95 percent upper confide	ance minit (95% UCI	2) On the mea	11								
concentration detected at the site.								ΗŲ	Hazard qu	otient.	
Consistent with EPA policy, lead is not evaluated in	the cumulative HI e	estimate.						Inc	Incomplete	e pathway.	
Kisks associated with indicator compounds are inclu-	uded in cumulative r	isk and hazar	a					mg/kg	Milligram	s per kilogram	
estimates for each site. However, the health hazard	s associated with per	roleum mixtu	ires					mg/kd-d	Milligrams	s per kilogram	per day.
will be evaluated and reported separately.								na	not availal	ole	
^d Exposure dose and noncancer hazards were calculate	ted for petroleum hy	drocarbons m	easured as DI	RO (method 8	3100)						

by segregating total DRO concentrations into aliphatic and aromatic fractions, assuming 80% aliphatic

hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c).

^e Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as GRO (method 8015)

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 19 - Auto Maintenance and Storage Facilities - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

		Soil		Dust							
	Soil	Ingestion	Dermal	Inhalation				Pathwa	y-Specific	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refer	ence Dose ((mg/kg-d)	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ

by segregating total GRO concentrations into aliphatic and aromatic fractions, assuming 70% aliphatic

hydrocarbons and 50% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium.

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 19 - Auto Maintenance and Storage Facilities - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Seil	Soil Incostion	Dormal	Dust Inholation				Dath	way Spacifia I	Jogond	Chamical
	Soli Constantina ^a	ngestion	Dermai	ninaiation	D.C	D (7 1)	rau	way-specific i		
Constituent	(mg/kg)	Dose (mg/kg-d)	Dose (mg/kg-d)	Dose (mg/kg-d)	Oral	nce Dose (n Dermal	ng/kg-d) Inhalation		Dermal	Dust Inhalation	Specific
constituent	(116/16)	(Ing/Kg-u)	(IIIg/Ikg-u)	(IIIg/Kg-u)	0141	Dermar	Innatation	ingestion	Dermai	Innatation	nų
INORGANICS											
Cadmium	2.2	6.1E-08	8.1E-10	1.9E-11	5.0E-04	5.0E-04	5.0E-04	1.2E-04	1.6E-06	3.8E-08	0.00012
Chromium	27	7.7E-07	0.0E+00	2.4E-10	1.5E+00	1.5E+00	1.5E+00	5.1E-07	0.0E+00	1.6E-10	0.00000051
Lead	86	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.74	2.1E-08	0.0E+00	6.5E-12	4.0E-03	4.0E-03	8.6E-03	5.3E-06	0.0E+00	7.5E-10	0.0000053
Ethylbenzene	3.0	8.6E-08	0.0E+00	2.6E-11	1.0E-01	1.0E-01	2.9E-01	8.6E-07	0.0E+00	9.1E-11	0.0000086
m,p-xylene	0.11	3.1E-09	0.0E+00	9.7E-13	2.0E-01	2.0E-01	2.9E-02	1.6E-08	0.0E+00	3.4E-11	0.00000016
Toluene	3.1	8.8E-08	0.0E+00	2.7E-11	2.0E-01	2.0E-01	1.1E-01	4.4E-07	0.0E+00	2.5E-10	0.00000044
Xylenes	8.6	2.5E-07	0.0E+00	7.6E-11	2.0E-01	2.0E-01	2.9E-02	1.2E-06	0.0E+00	2.6E-09	0.0000012
										HI	0.00013
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	13,300	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	10,640	3.0E-04	Inc	9.3E-08	1.0E-01	na	2.9E-01	3.0E-03	Inc	3.2E-07	0.0030
Diesel Range Organics, Aromatic	5,320	1.5E-04	Inc	4.7E-08	4.0E-02	na	5.7E-01	3.8E-03	Inc	8.2E-08	0.0038
Gasoline Range Organics	6,650	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Gasoline Range Organics, Aliphatic	4,655	1.3E-04	Inc	4.1E-08	5.0E+00	na	5.3E+00	2.7E-05	Inc	7.7E-09	0.000027
Gasoline Range Organics, Aromatic	3,325	9.5E-05	Inc	2.9E-08	2.0E-01	na	1.1E-01	4.7E-04	Inc	2.7E-07	0.00047
										HI	0.0073
Notes:											
^a Based on the maximum or 95 percent upper con	fidence limit (95% U	CL) on the m	ean					HI	Hazard index	ζ.	
concentration detected at the site.								HQ	Hazard quoti	ent.	
^b Consistent with EPA policy, lead is not evaluate	ed in the cumulative H	II estimate.						Inc	Incomplete p	athwav.	
^c Risks associated with indicator compounds are	included in cumulativ	e risk and haz	zard					mo/ko	Milligrams n	er kilogram	
estimates for each site. However, the health haz	zards associated with	petroleum miz	xtures					mg/kd_d	Milligrams p	er kilogram ne	r dav
will be evaluated and reported separately.								ng ku u	not available	er knogram pe	a duj.
^d Exposure dose and noncancer hazards were calc	culated for petroleum	hydrocarbons	measured as	DRO (metho	d 8100)			na	not available		
by segregating total DRO concentrations into a	liphatic and aromatic	fractions. ass	uming 80% a	liphatic	,						
hydrocarbons and 40% aromatic hydrocarbons	(ADEC, 2000c).	, ,	0	1							
^e Exposure dose and noncancer hazards were calc	culated for petroleum	hydrocarbons	measured as	GRO (metho	1 8015)						

by segregating total GRO concentrations into aliphatic and aromatic fractions, assuming 70% aliphatic

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 19 - Auto Maintenance and Storage Facilities - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

		Soil		Dust							
	Soil	Ingestion	Dermal	Inhalation			_	Pathw	ay-Specific l	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	ence Dose (n	ng/kg-d)	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ

hydrocarbons and 50% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation

of a medium

CANCER RISK CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 19 - Auto Maintenance and Storage Facilities - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Groundwater	Ingestion	Dermal	VOC Inhalation				Pathway	-Specific Ca	nncer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer S	ope Factor	$(mg/kg-d)^{-1}$	-		VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
VOLATILE ORGANIC COMPOUNDS Benzene	0.025	9.6E-05	2.7E-05	2.9E-04	5.5E-02	5.5E-02	2.7E-02	5.3E-06	1.5E-06	7.7E-06	1.4E-05
										ILCR	1E-05
Notes:										-	
^a Based on the maximum or 95 percent upper con	fidence limit (95%	UCL) on the	mean					ILCR	Incrementa	l lifetime canc	er risk.
concentration detected at the site.								Inc	Incomplete	pathway.	
1) Doses and cancer risks shown only for carcinog	genic chemicals with	h available to	xicity values					mg/L	Milligrams	per liter.	
2) Absorbed doses were calculated for dermal contact with the medium, and intakes were									Milligrams	per kilogram	per day.
calculated for ingestion or inhalation of a medium.										ganic compoui	nd.
3) Cancer risks are unitless values which represent	t the probability of	incurring an a	adverse healt	h Gl				na	Not availab	ole.	

CANCER RISK CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 19 - Auto Maintenance and Storage Facilities - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Groundwater	Ingestion	Dermal	VOC Inhalation				Pathwa	y-Specific Ca	ncer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer S	ope Factor	(mg/kg-d) ⁻¹	_		VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
VOLATILE ORGANIC COMPOUNDS Benzene	DLATILE ORGANIC COMPOUNDS nzene 0.025 3.7E-04 1.1E-03 5.5E-02 5.5E-02 2.7									3.0E-05	5.6E-05
										ILCR	6E-05
Notes:											
^a Based on the maximum or 95 percent upper con	fidence limit (95%	UCL) on the	mean					ILCR	Incremental l	ifetime cancer	risk.
concentration detected at the site.								Inc	Incomplete p	athway.	
1) Doses and cancer risks shown only for carcinog	genic chemicals with	available to	xicity values					mg/L	Milligrams p	er liter.	
2) Absorbed doses were calculated for dermal con		mg/kg-d	Milligrams p	er kilogram pei	day.						
calculated for ingestion or inhalation of a media		VOC	Volatile orga	nic compound.							
3) Cancer risks are unitless values which represent		na	Not available								
effect. They are calculated using the following formula: Cancer Risk = Exposure Dose x Cancer Slope Factor.											

CANCER RISK CALCULATIONS FOR A FUTURE INCIDENTAL VISITOR SITE 19 - Auto Maintenance and Storage Facilities - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Pathway	-Specific Ca	ncer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer S	lope Factor	$(mg/kg-d)^{-1}$	-		VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
VOLATILE ORGANIC COMPOUNDS Benzene	0.025	9.8E-06	2.0E-06	2.9E-05	5.5E-02	5.5E-02	2.7E-02	5.4E-07	1.1E-07	7.9E-07	1.4E-06
										ILCR	1E-06
Notes:											
^a Based on the maximum or 95 percent upper co	nfidence limit (95%	UCL) on the	e mean					ILCR	Incremental	l lifetime cance	er risk.
concentration detected at the site.								Inc	Incomplete	pathway.	
1) Doses and cancer risks shown only for carcinog	genic chemicals wit	h available to	oxicity values					mg/L	Milligrams	per liter.	
 Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium. 								mg/kg-d VOC	Milligrams Volatile org	per kilogram p ganic compound	er day. d.
3) Cancer risks are unitless values which represent	t the probability of	incurring an a	adverse healt	h				na	Not availab	le.	
affect. They are calculated using the following	formulas Concord	Diale - Euroa	ura Daga v C	oneer Clone E	laatar						

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 19 - Auto Maintenance and Storage Facilities - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Path	way-Specific 1	Hazard	Chemical-
Constituent	Concentration ^a	Dose	Dose	Dose	Refere	ence Dose	(mg/kg-d)	- Ingestion	Dormal	VOC Inhalation	Specific HO
Constituent	(IIIg/L)	(Ing/Kg-u)	(Ing/kg-u)	(Ing/kg-u)	Ofai	Dermai	malation	ingestion	Dermai	Innalation	nų
INORGANICS											
Copper	0.20	1.7E-03	8.0E-05	Inc	3.7E-02	3.7E-02	3.7E-02	4.6E-02	2.2E-03	Inc	0.0479
Lead	0.42	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.025	2.1E-04	2.1E-04	2.9E-04	4.0E-03	4.0E-03	8.6E-03	5.3E-02	5.2E-02	3.3E-02	0.14
Ethane	0.0017	1.4E-05	nc	nc	na	na	na	na	na	na	0
										HI	0.19
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	34	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	27	2.3E-01	Inc	1.5E-01	1.0E-01	na	2.9E-01	2.3E+00	Inc	5.3E-01	2.8
Diesel Range Organics, Aromatic	14	1.1E-01	Inc	7.7E-02	4.0E-02	na	5.7E-01	2.9E+00	Inc	1.3E-01	3.0
Gasoline Range Organics	6.1	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Gasoline Range Organics, Aliphatic	4.3	3.6E-02	Inc	4.8E-01	5.0E+00	na	5.3E+00	7.2E-03	Inc	9.0E-02	0.097
Gasoline Range Organics, Aromatic	3.1	2.6E-02	Inc	3.4E-01	2.0E-01	na	1.1E-01	1.3E-01	Inc	3.1E+00	3.2
Residual Range Organics	1.3	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f
Residual Range Organics, Aliphatic	0.91	7.7E-03	Inc	5.3E-06	2.0E+00	na	na	3.8E-03	Inc	Inc	0.0038
Residual Range Organics, Aromatic	0.65	5.5E-03	Inc	3.8E-06	3.0E-02	na	na	1.8E-01	Inc	Inc	0.18
										HI	9.3
Notes:										-	
^a Based on the maximum or 95 percent upper c	onfidence limit (959	% UCL) on th	ie mean					HI	Hazard inde	х.	
concentration detected at the site.								HQ	Hazard quot	ient.	
^b Consistent with EPA policy, lead is not evalu	ated in the cumulati	ve HI estimat	e.					Inc	Incomplete j	oathway.	
^c Risks associated with indicator compounds an	e included in cumu	lative risk and	l hazard					mg/L	Milligrams r	ber liter.	
estimates for each site. However, the health h	azards associated w	vith petroleun	n mixtures					mø/kd-d	Milliorams r	er kilooram n	er dav
will be evaluated and reported separately.								na	not available	sor knogram p	er duj.
^d Exposure does and noncancer hazards were ca	alculated for petrole	um hydrocarl	oons measure	d as DRO (m	ethod 8100))		VOC	Volatila orga	nic compour	h
by segregating total DRO concentrations into	aliphatic and arom	atic fractions.	assuming 80)% aliphatic				,00	, orachie orga	ane compound	u.

hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c).

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 19 - Auto Maintenance and Storage Facilities - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Pathwa	ay-Specific I	Hazard	Chemical-
Constituent	Concentration ^a (mg/L)	Dose (mg/kg-d)	Dose (mg/kg-d)	Dose (mg/kg-d)	Refer Oral	ence Dose (Dermal	(mg/kg-d) Inhalation	Ingestion	Dermal	VOC Inhalation	Specific HQ

e Exposure does and noncancer hazards were calculated for petroleum hydrocarbons measured as GRO (method 8015)

by segregating total GRO concentrations into aliphatic and aromatic fractions, assuming 70% aliphatic

hydrocarbons and 50% aromatic hydrocarbons (ADEC, 2000c).

^f Exposure does and noncancer hazards were calculated for petroleum hydrocarbons measured as RRO (method)

by segregating total RRO concentrations into aliphatic and aromatic fractions, assuming 90% aliphatic

hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 19 - Auto Maintenance and Storage Facilities - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Path	wav-Specific	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (ma/ka-d)	<u> </u>	aug opeenie	VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
INORGANICS											
Copper	0.20	6.6E-03	3.1E-04	Inc	3.7E-02	3.7E-02	3.7E-02	1.8E-01	8.4E-03	Inc	0.1861
Lead	0.42	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.025	8.2E-04	8.0E-04	1.1E-03	4.0E-03	4.0E-03	8.6E-03	2.1E-01	2.0E-01	1.3E-01	0.54
Ethane	0.0017	5.6E-05	nc	nc	na	na	na	na	na	na	0
										HI	0.72
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	34	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	27	8.9E-01	Inc	6.0E-01	1.0E-01	na	2.9E-01	8.9E+00	Inc	2.1E+00	11
Diesel Range Organics, Aromatic	14	4.5E-01	Inc	3.0E-01	4.0E-02	na	5.7E-01	1.1E+01	Inc	5.2E-01	12
Gasoline Range Organics	6.1	na ^e	nae	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	nae
Gasoline Range Organics, Aliphatic	4.3	1.4E-01	Inc	1.9E+00	5.0E+00	na	5.3E+00	2.8E-02	Inc	3.5E-01	0.38
Gasoline Range Organics, Aromatic	3.1	1.0E-01	Inc	1.3E+00	2.0E-01	na	1.1E-01	5.0E-01	Inc	1.2E+01	13
Residual Range Organics	1.3	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f
Residual Range Organics, Aliphatic	0.91	3.0E-02	Inc	2.1E-05	2.0E+00	na	na	1.5E-02	Inc	Inc	0.015
Residual Range Organics, Aromatic	0.65	2.1E-02	Inc	1.5E-05	3.0E-02	na	na	7.1E-01	Inc	Inc	0.71
										HI	36
Notes:											
Based on the maximum or 95 percent upper co	onfidence limit (95%	UCL) on the	e mean					HI	Hazard inde	х.	
concentration detected at the site.								HQ	Hazard quot	ient.	
^b Consistent with EPA policy, lead is not evalua	ted in the cumulativ	e HI estimate						Inc	Incomplete p	pathway.	
^c Risks associated with indicator compounds are	e included in cumula	tive risk and	hazard					mg/L	Milligrams p	per liter.	
estimates for each site. However, the health ha	azards associated wi	th petroleum	mixtures					mg/kd-d	Milligrams r	oer kilogram p	er dav.
will be evaluated and reported separately.								na	not available	. 0 r	5
^d Exposure does and noncancer hazards were ca	lculated for petroleu	m hydrocarb	ons measured	as DRO (me	thod 8100)			VOC	Volatila org	nic compour	4
by segregating total DRO concentrations into	aliphatic and aroma	tic fractions,	assuming 809	% aliphatic				, OC	• oranie orga	ane compoun	u.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 19 - Auto Maintenance and Storage Facilities - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Pathw	ay-Specific 1	Hazard	Chemical-
Constituent	Concentration ^a (mg/L)	Dose (mg/kg-d)	Dose (mg/kg-d)	Dose (mg/kg-d)	Refere Oral	nce Dose (Dermal	mg/kg-d) Inhalation	Ingestion	Dermal	VOC Inhalation	Specific HQ

hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c).

e Exposure does and noncancer hazards were calculated for petroleum hydrocarbons measured as GRO (method 8015)

by segregating total GRO concentrations into aliphatic and aromatic fractions, assuming 70% aliphatic

hydrocarbons and 50% aromatic hydrocarbons (ADEC, 2000c).

f Exposure does and noncancer hazards were calculated for petroleum hydrocarbons measured as RRO (method)

by segregating total RRO concentrations into aliphatic and aromatic fractions, assuming 90% aliphatic

hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

NONCANCER HAZARD CALCULATIONS FOR A FUTURE INCIDENTAL VISITOR SITE 19 - Auto Maintenance and Storage Facilities - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Path	wav-Specific	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (mø/kø-d)		7	VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
INORGANICS											
Copper	0.20	2.3E-04	4.6E-06	Inc	1.5E+00	1.5E+00	1.5E+00	1.5E-04	3.0E-06	Inc	0.00016
Lead	0.42	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.025	2.9E-05	5.9E-06	2.9E-05	4.0E-03	4.0E-03	8.6E-03	7.1E-03	1.5E-03	3.4E-03	0.012
Ethane	0.0017	1.9E-06	nc	nc	na	na	na	na	na	na	0.0
										HI	0.012
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	34	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	27	3.1E-02	Inc	7.5E-03	1.0E-01	na	2.9E-01	3.1E-01	Inc	2.6E-02	0.34
Diesel Range Organics, Aromatic	14	1.6E-02	Inc	3.7E-03	4.0E-02	na	5.7E-01	3.9E-01	Inc	6.5E-03	0.39
Gasoline Range Organics	6.1	nae	nae	nae	nae	na ^e	na ^e	na ^e	na ^e	nae	nae
Gasoline Range Organics, Aliphatic	4.3	4.9E-03	Inc	2.3E-02	5.0E+00	na	5.3E+00	9.7E-04	Inc	4.4E-03	0.0053
Gasoline Range Organics, Aromatic	3.1	3.5E-03	Inc	1.7E-02	2.0E-01	na	1.1E-01	1.7E-02	Inc	1.5E-01	0.17
Residual Range Organics	1.3	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f
Residual Range Organics, Aliphatic	0.91	1.0E-03	Inc	2.6E-07	2.0E+00	na	na	5.2E-04	Inc	Inc	0.00052
Residual Range Organics, Aromatic	0.65	7.4E-04	Inc	1.9E-07	3.0E-02	na	na	2.5E-02	Inc	Inc	0.025
										HI	0.93
Notes:											
^a Based on the maximum or 95 percent upper c	onfidence limit (95%	6 UCL) on th	e mean					HI	Hazard inde	х.	
concentration detected at the site.								HQ	Hazard quot	ient.	
^b Consistent with EPA policy, lead is not evaluate	ated in the cumulativ	ve HI estimat	e.					Inc	Incomplete r	oathway.	
^c Risks associated with indicator compounds ar	e included in cumul	ative risk and	hazard					mø/I	Milliorams r	ner liter	
estimates for each site. However, the health h	azards associated w	vith petroleum	mixtures					mg/kd d	Millioroma	or kilogram n	or day
will be evaluated and reported separately		rinorean						mg/Ku-u	not oveil-1-1	ла кноgrani р	ci uay.
^d Exposure does and popeaneer bazarda ware or	alculated for netrola	um hydrocarb	one measuro	l as DRO (ma	thod \$100			па	not available		
by correcting total DBO concentrations into	alinhatic and cross	atio frontiers		λ alights λ	uiou 8100)			VOC	Volatile orga	anic compound	d.
by segregating total DKO concentrations into	amphatic and aroma	auc fractions,	assuming 80	% anpnanc							

NONCANCER HAZARD CALCULATIONS FOR A FUTURE INCIDENTAL VISITOR SITE 19 - Auto Maintenance and Storage Facilities - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

				VOC							
	Surface Water	Ingestion	Dermal	Inhalation				Pathwa	ay-Specific 1	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	ence Dose (mg/kg-d)			VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ

hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c).

e Exposure does and noncancer hazards were calculated for petroleum hydrocarbons measured as GRO (method 8015)

by segregating total GRO concentrations into aliphatic and aromatic fractions, assuming 70% aliphatic

hydrocarbons and 50% aromatic hydrocarbons (ADEC, 2000c).

^f Exposure does and noncancer hazards were calculated for petroleum hydrocarbons measured as RRO (method)

by segregating total RRO concentrations into aliphatic and aromatic fractions, assuming 90% aliphatic

hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

CANCER RISK CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 21 - Wastewater Treatment Facility - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Soil Dermal	Dust Inhalation				Pathway-	Specific Ca	ncer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer Sl	ope Factor	(mg/kg-d) ⁻¹	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
INORGANICS											
Arsenic	28	1.1E-05	1.3E-06	8.2E-10	1.5E+00	1.5E+00	1.5E+01	1.7E-05	2.0E-06	1.2E-08	1.9E-05
Cadmium	5.2	2.1E-06	8.2E-09	1.5E-10	na	na	6.3E+00	na	na	9.6E-10	9.6E-10
Cobalt	12	4.8E-06	0.0E+00	3.5E-10	na	na	9.8E+00	na	na	3.5E-09	3.5E-09
VOLATILE ORGANIC COMPOUNDS											
Methylene chloride	0.006	2.4E-09	0.0E+00	1.8E-13	7.5E-03	7.5E-03	1.6E-03	1.8E-11	0.0E+00	2.9E-16	1.8E-11
POLYCHLORINATED BIPHENYLS											
PCB-1260 (Aroclor 1260)	2.4	9.7E-07	5.3E-07	7.1E-11	2.0E+00	2.0E+00	2.0E+00	1.9E-06	1.1E-06	1.4E-10	3.0E-06
										ILCR	2E-05
Notes:											
^a Based on the maximum or 95 percent upper con	nfidence limit (95% U	CL) on the me	ean concentra	ation detected	cted at the site.			ILCR	Increment	al lifetime can	icer risk.
1) Doses and cancer risks shown only for carcinog	genic chemicals with av	vailable toxic	ity values.					Inc	Incomplet	e pathway.	
2) Based on the maximum or 95 percent upper con	nfidence limit (95% UG	CL) on the me	ean concentra	ation detected	at the site.			mg/kg	Milligram	is per kilogram	1.
Doses and cancer risks shown only for carcinog	genic chemicals with av	vailable toxic	ity values.					mg/kg-d	Milligram	is per kilogram	n per day.
3) Absorbed doses were calculated for dermal con	tact with the medium,	and intakes w	ere calculate	d for ingestion	n or inhalatic	n		na	Not availa	able.	

3) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

Cancer risks are unitless values which represent the probability of incurring an adverse health

effect. They are calculated using the following formula: Cancer Risk = Exposure Dose x Cancer Slope Factor.

b Total polychlorinated biphenyls were not included in the cummulative ILCR because measurements of individual Aroclors are available.

CANCER RISK CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 21 - Wastewater Treatment Facility - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Soil Dermal	Dust Inhalation				Pathwa	y-Specific (Cancer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer Sl	ope Factor	(mg/kg-d) ⁻¹	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
INORGANICS											
Arsenic	28	3.4E-05	4.0E-06	2.5E-09	1.5E+00	1.5E+00	1.5E+01	5.1E-05	6.0E-06	3.7E-08	5.7E-05
Cadmium	5.2	6.3E-06	2.5E-08	4.6E-10	na	na	6.3E+00	na	na	2.9E-09	2.9E-09
Cobalt	12	1.4E-05	0.0E+00	1.1E-09	na	na	9.8E+00	na	na	1.0E-08	1.0E-08
VOLATILE ORGANIC COMPOUNDS											
Methylene chloride	0.0060	7.2E-09	0.0E+00	5.3E-13	7.5E-03	7.5E-03	1.6E-03	5.4E-11	0.0E+00	8.7E-16	5.4E-11
POLYCHLORINATED BIPHENYLS											
PCB-1260 (Aroclor 1260)	2.4	2.9E-06	1.6E-06	2.1E-10	2.0E+00	2.0E+00	2.0E+00	5.8E-06	3.2E-06	4.2E-10	9.0E-06
										ILCR	7E-05
Notes:											
^a Based on the maximum or 95 percent upper confidence	e limit (95% UCL) on the r	nean concentra	ation detected	l in soil tundr	a			ILCR	Incremental	lifetime cancer	risk.
and soil gravel at the site								Inc	Incomplete	nathway	
1) Doses and cancer risks shown only for carcinogenic cl	nemicals with available toxi	city values.						mg/kg	Milligrams	per kilogram.	
2) Absorbed doses were calculated for dermal contact wi	th the medium, and intakes	were calculate	ed for ingestio	on or inhalatio	on			mg/kg-d	Milligrams	per kilogram per	day.

Not available.

na

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium.

 Cancer risks are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Cancer Risk = Exposure Dose x Cancer Slope Factor.

^b Total polychlorinated biphenyls were not included in the cummulative ILCR because measurements of individual Aroclors are available.

CANCER RISK CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 21 - Wastewater Treatment Facility - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Soil Dermal	Dust Inhalation				Pathway	-Specific Ca	ancer Risk	Chemical-
Constituent	Concentration ^a (mg/kg)	Dose (mg/kg-d)	Dose (mg/kg-d)	Dose (mg/kg-d)	Cancer Sl Oral	ope Factor Dermal	(mg/kg-d) ⁻¹ Inhalation	Soil Ingestion	Dermal	Dust Inhalation	Specific Risk
Constructiv	((((20011111		ingestion	201111		
INORGANICS											
Arsenic	28	2.7E-07	1.1E-07	8.4E-11	1.5E+00	1.5E+00	1.5E+01	4.1E-07	1.6E-07	1.3E-09	5.7E-07
Cadmium	5.2	5.1E-08	6.7E-10	1.6E-11	na	na	6.3E+00	na	na	9.9E-11	9.9E-11
Cobalt	12	1.2E-07	0.0E+00	3.6E-11	na	na	9.8E+00	na	na	3.5E-10	3.5E-10
VOLATILE ORGANIC COMPOUNDS											
Methylene chloride	0.006	5.9E-11	0.0E+00	1.8E-14	7.5E-03	7.5E-03	1.6E-03	4.4E-13	0.0E+00	3.0E-17	4.4E-13
POLYCHLORINATED BIPHENYLS											
PCB-1260 (Aroclor 1260)	2.4	2.3E-08	4.3E-08	7.2E-12	2.0E+00	2.0E+00	2.0E+00	4.7E-08	8.7E-08	1.4E-11	1.3E-07
										ILCR	7E-07
otes:											
Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected at the site.									Incrementa	l lifetime cance	r risk.
) Doses and cancer risks shown only for carcinog	genic chemicals with av	vailable toxici	ty values.					Inc	Incomplete	pathway.	
) Absorbed doses were calculated for dermal con of a medium	Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium								Milligrams Milligrams	per kilogram. per kilogram p	er day.
) Cancer risks are unitless values which represent	t the probability of incu	urring an adve	erse health					na	Not availab	ole.	

effect. They are calculated using the following formula: Cancer Risk = Exposure Dose x Cancer Slope Factor.

^b Total polychlorinated biphenyls were not included in the cummulative ILCR because measurements of individual Aroclors are available.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 21 - Wastewater Treatment Facility - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhalation				Pathway-Specific Hazard		Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (n	ng/kg-d)	Soil	v 1	Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
INORGANICS											
Aluminum	21,708	7.9E-02	0.0E+00	3.9E-06	1.0E+00	1.0E+00	1.4E-03	7.9E-02	0.0E+00	2.8E-03	0.082
Antimony	9.7	3.5E-05	0.0E+00	1.7E-09	4.0E-04	4.0E-04	4.0E-04	8.8E-02	0.0E+00	4.4E-06	0.088
Arsenic	28	1.0E-04	9.7E-06	5.1E-09	3.0E-04	3.0E-04	3.0E-04	3.4E-01	3.2E-02	1.7E-05	0.37
Barium	141	5.1E-04	0.0E+00	2.5E-08	7.0E-02	7.0E-02	1.4E-04	7.3E-03	0.0E+00	1.8E-04	0.0075
Cadmium	5.2	1.9E-05	6.0E-08	9.4E-10	5.0E-04	5.0E-04	5.0E-04	3.8E-02	1.2E-04	1.9E-06	0.04
Chromium	44	1.6E-04	0.0E+00	7.9E-09	1.5E+00	1.5E+00	1.5E+00	1.1E-04	0.0E+00	5.3E-09	0.00011
Cobalt	12	4.3E-05	0.0E+00	2.1E-09	2.0E-02	2.0E-02	5.7E-06	2.1E-03	0.0E+00	3.7E-04	0.0025
Manganese	561	2.0E-03	0.0E+00	1.0E-07	1.4E-01	1.4E-01	1.4E-05	1.5E-02	0.0E+00	7.2E-03	0.022
Mercury	0.76	2.8E-06	0.0E+00	1.4E-10	3.0E-04	3.0E-04	3.0E-04	9.2E-03	0.0E+00	4.6E-07	0.009
Selenium	2.0	7.3E-06	0.0E+00	3.6E-10	5.0E-03	5.0E-03	5.0E-03	1.5E-03	0.0E+00	7.2E-08	0.0015
Silver	2.1	7.6E-06	0.0E+00	3.8E-10	5.0E-03	5.0E-03	5.0E-03	1.5E-03	0.0E+00	7.6E-08	0.0015
Thallium	0.53	1.9E-06	0.0E+00	9.6E-11	7.0E-05	7.0E-05	7.0E-05	2.8E-02	0.0E+00	1.4E-06	0.028
Vanadium	56	2.0E-04	0.0E+00	1.0E-08	7.0E-03	7.0E-03	7.0E-03	2.9E-02	0.0E+00	1.4E-06	0.029
Zinc	480	1.7E-03	0.0E+00	8.7E-08	3.0E-01	3.0E-01	3.0E-01	5.8E-03	0.0E+00	2.9E-07	0.0058
VOLATILE ORGANIC COMPOUNDS											
1,2,4-Trimethylbenzene	0.19	6.9E-07	0.0E+00	3.4E-11	5.0E-02	5.0E-02	1.7E-03	1.4E-05	0.0E+00	2.0E-08	0.000014
m,p-Xylene	0.048	1.7E-07	0.0E+00	8.6E-12	2.0E-01	2.0E-01	2.9E-02	8.7E-07	0.0E+00	3.0E-10	0.00000087
Methylene chloride	0.006	2.2E-08	0.0E+00	1.1E-12	6.0E-02	6.0E-02	8.6E-01	3.6E-07	0.0E+00	1.3E-12	0.00000036
n-Butylbenzene	0.062	2.3E-07	0.0E+00	1.1E-11	4.0E-02	4.0E-02	4.0E-02	5.6E-06	0.0E+00	2.8E-10	0.0000056
n-Propylbenzene	0.04	1.5E-07	0.0E+00	7.2E-12	4.0E-02	4.0E-02	4.0E-02	3.6E-06	0.0E+00	1.8E-10	0.0000036
o-Xylene	0.006	2.2E-08	0.0E+00	1.1E-12	2.0E-01	2.0E-01	2.9E-02	1.1E-07	0.0E+00	3.7E-11	0.000000022
sec-Butylbenzene	0.036	1.3E-07	0.0E+00	6.5E-12	4.0E-02	4.0E-02	4.0E-02	3.3E-06	0.0E+00	1.6E-10	0.00000013
SEMIVOLATILE ORGANIC COMPOUNDS											
4-Chloroaniline	5.5	2.0E-05	6.3E-06	9.9E-10	4.0E-03	4.0E-03	4.0E-03	5.0E-03	1.6E-03	2.5E-07	0.0066
POLYCHLORINATED BIPHENYLS											
PCB-1260 (Aroclor 1260)	2.4	8.7E-06	3.9E-06	4.3E-10	2.0E-05	2.0E-05	2.0E-05	4.4E-01	1.9E-01	2.2E-05	0.63
										НІ	1.3
PETROLEUM HYDROCARBONS ^c										L	
Diesel Range Organics	3.800	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	3.040	1.1E-02	Inc	5.5E-07	1.0E-01	na	2.9E-01	1.1E-01	Inc	1.9E-06	0.11
Diesel Range Organics, Aromatic	1.520	5.5E-03	Inc	2.7E-07	4.0E-02	na	5.7E-01	1.4E-01	Inc	4.8E-07	0.14
Pasidual Panga Organics	2 201	no ^f	nof	no ^f	no ^f	nof	no ^f	nof	nof	no ^f	ro ^f
Residual Range Organics Aliphatic	2,304	11a 7 8E-03	Inc	3 9E-07	11a 2 0E±00	11a 119	11a 129	11a 3 9E-03	Inc	Inc	0.0039
Residual Range Organics, Aliphatic	2,140	7.0E-05	nic	5.76-07	2.00+00	11a	na	J.7E-03	me	nic	0.0039

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 21 - Wastewater Treatment Facility - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil Concentration ^a	Soil Ingestion Dose	Dermal Dose	Dust Inhalation Dose	on <u>Reference Dose (mg/kg-d)</u> d) Oral Dermal Inhalat			Pathw Soil	ay-Specific	Hazard Dust	Chemical- Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
Residual Range Organics, Aromatic	715	2.6E-03	Inc	1.3E-07	3.0E-02	na	na	8.7E-02	Inc	Inc	0.087
										HI	0.34
Notes:											
^a Based on the maximum or 95 percent upper confid	lence limit (95% UC	L) on the mea	an					HI	Hazard inde	ex.	
concentration detected at the site.	concentration detected at the site.									tient.	
^b Consistent with EPA policy, lead is not evaluated i	onsistent with EPA policy, lead is not evaluated in the cumulative HI estimate.									pathway.	
° Risks associated with indicator compounds are inc	luded in cumulative	risk and haza	rd					mg/kg Milligrams per kilogram.			
estimates for each site. However, the health hazar	ds associated with pe	etroleum mixt	ures					mg/kd-d	kd-d Milligrams per kilogram per day.		
will be evaluated and reported separately.								na	not availabl	e	
^d Exposure dose and noncancer hazards were calculated	ated for petroleum hy	drocarbons n	neasured as D	RO (method 81	.00)						
by segregating total DRO concentrations into alipl	natic and aromatic fr	actions, assur	ning 80% alip	hatic							
hydrocarbons and 40% aromatic hydrocarbons (AI	DEC, 2000c).										
^e Exposure dose and noncancer hazards were calculated	ated for petroleum hy	drocarbons n	neasured as G	RO (method 80)15)						
by segregating total GRO concentrations into alipl	natic and aromatic fr	actions, assur	ning 70% alip	hatic							
hydrocarbons and 50% aromatic hydrocarbons (AI	DEC, 2000c).										
^f Exposure dose and noncancer hazards were calculated	ated for petroleum hy	drocarbons n	neasured as R	RO (method)							
by segregating total RRO concentrations into aliph	natic and aromatic fra	actions, assun	ning 90% alip	hatic							
hydrocarbons and 30% aromatic hydrocarbons (AI	DEC, 2000c).										
 Doses and noncancer hazards shown only for nonc Absorbed doses were calculated for dermal contact of a medium. 	arcinogenic chemica t with the medium, a	ls with availa nd intakes we	ble toxicity va	dues. for ingestion or	inhalation						
 Noncancer hazards are unitless values which repre effect. They are calculated using the following for 	sent the probability of mula: Noncancer H	of incurring an II = Exposure	n adverse heal Dose/Referen	th nce dose.							

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 21 - Wastewater Treatment Facility - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

		Soil		Dust							
	Soil	Ingestion	Dermal	Inhalation			Pathway-Specific Hazard			Chemical-	
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose	(mg/kg-d)	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
INORGANICS											
Aluminum	21,708	2.4E-01	0.0E+00	1.2E-05	1.0E+00	1.0E+00	1.4E-03	2.4E-01	0.0E+00	8.4E-03	0.25
Antimony	9.7	1.1E-04	0.0E+00	5.2E-09	4.0E-04	4.0E-04	4.0E-04	2.6E-01	0.0E+00	1.3E-05	0.26
Arsenic	28	3.1E-04	2.9E-05	1.5E-08	3.0E-04	3.0E-04	3.0E-04	1.0E+00	9.7E-02	5.1E-05	1.1
Barium	141	1.5E-03	0.0E+00	7.6E-08	7.0E-02	7.0E-02	1.4E-04	2.2E-02	0.0E+00	5.5E-04	0.023
Cadmium	5.2	5.7E-05	1.8E-07	2.8E-09	5.0E-04	5.0E-04	5.0E-04	1.1E-01	3.6E-04	5.6E-06	0.11
Chromium	44	4.8E-04	0.0E+00	2.4E-08	1.5E+00	1.5E+00	1.5E+00	3.2E-04	0.0E+00	1.6E-08	0.00032
Cobalt	12	1.3E-04	0.0E+00	6.3E-09	6.0E-02	6.0E-02	6.0E-02	2.1E-03	0.0E+00	1.1E-07	0.0021
Manganese	561	6.1E-03	0.0E+00	3.0E-07	1.4E-01	1.4E-01	1.4E-05	4.4E-02	0.0E+00	2.2E-02	0.065
Mercury	0.76	8.3E-06	0.0E+00	4.1E-10	3.0E-04	3.0E-04	3.0E-04	2.8E-02	0.0E+00	1.4E-06	0.028
Selenium	2.0	2.2E-05	0.0E+00	1.1E-09	5.0E-03	5.0E-03	5.0E-03	4.4E-03	0.0E+00	2.2E-07	0.0044
Silver	2.1	2.3E-05	0.0E+00	1.1E-09	5.0E-03	5.0E-03	5.0E-03	4.6E-03	0.0E+00	2.3E-07	0.0046
Thallium	0.53	5.8E-06	0.0E+00	2.9E-10	6.6E-05	6.6E-05	6.6E-05	8.8E-02	0.0E+00	4.4E-06	0.088
Vanadium	56	6.1E-04	0.0E+00	3.0E-08	7.0E-03	7.0E-03	7.0E-03	8.7E-02	0.0E+00	4.3E-06	0.087
Zinc	480	5.2E-03	0.0E+00	2.6E-07	3.0E-01	3.0E-01	3.0E-01	1.7E-02	0.0E+00	8.7E-07	0.017
VOLATILE ORGANIC COMPOUNDS											
1,2,4-Trimethylbenzene	0.19	2.1E-06	0.0E+00	1.0E-10	5.0E-02	5.0E-02	1.7E-03	4.1E-05	0.0E+00	6.1E-08	0.000042
m,p-Xylene	0.048	5.2E-07	0.0E+00	2.6E-11	2.0E-01	2.0E-01	2.9E-02	2.6E-06	0.0E+00	8.9E-10	0.0000026
Methylene chloride	0.006	6.6E-08	0.0E+00	3.3E-12	6.0E-02	6.0E-02	8.6E-01	1.1E-06	0.0E+00	3.8E-12	0.0000011
n-Butylbenzene	0.062	6.8E-07	0.0E+00	3.4E-11	4.0E-02	4.0E-02	4.0E-02	6.8E-07	6.8E-07	6.8E-07	0.00000068
n-Propylbenzene	0.04	4.4E-07	0.0E+00	2.2E-11	4.0E-02	4.0E-02	4.0E-02	4.4E-07	4.4E-07	4.4E-07	0.00000044
o-Xylene	0.006	6.6E-08	0.0E+00	3.3E-12	2.0E-01	2.0E-01	2.9E-02	6.6E-08	6.6E-08	6.6E-08	0.000000066
sec-Butylbenzene	0.036	3.9E-07	0.0E+00	2.0E-11	4.0E-02	4.0E-02	4.0E-02	3.9E-07	3.9E-07	3.9E-07	0.00000039
SEMIVOLATILE ORGANIC COMPOUNDS											
4-Chloroaniline	5.5	6.0E-05	1.9E-05	3.0E-09	4.0E-03	4.0E-03	4.0E-03	1.5E-02	4.7E-03	7.4E-07	0.020
POLYCHLORINATED BIPHENYLS											
PCB-1260 (Aroclor 1260)	2.4	2.6E-05	1.2E-05	1.3E-09	2.0E-05	2.0E-05	2.0E-05	1.3E+00	5.8E-01	6.5E-05	1.9
										HI	4.0
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	3.800	na ^d	na ^d	na ^d	na ^d	na ^d					
Diesel Range Organics, Aliphatic	3.040	3.3E-02	Inc	1.6E-06	1.0E-01	na	2.9E-01	3.3E-01	Inc	5.7E-06	0.3
	2,010									2	
NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 21 - Wastewater Treatment Facility - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

Constituent	Soil Concentration ^a (mg/kg) 1 520	Soil Ingestion Dose (mg/kg-d)	Dermal Dose (mg/kg-d)	Dust Inhalation Dose (mg/kg-d) 8.2E-07	Refere Oral	nce Dose Dermal	(mg/kg-d) Inhalation 5 7E-01	Pathwa Soil Ingestion 4 1E-01	ny-Specific Dermal	Hazard Dust Inhalation	Chemical- Specific HQ
Residual Range Organics	2,384	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	naf	na ^f	na ^f	na ^f
Residual Range Organics, Aliphatic	2,146	2.3E-02	Inc	1.2E-06	2.0E+00	na	na	1.2E-02	Inc	Inc	0.012
Residual Range Organics, Aromatic	715	7.8E-03	Inc	3.9E-07	3.0E-02	na	na	2.6E-01	Inc	Inc	0.26
											1.0
Notes:										HI	1.0
 ^a Based on the maximum or 95 percent upper confider concentration detected at the site. ^b Consistent with EPA policy, lead is not evaluated in ^c Risks associated with indicator compounds are inclue estimates for each site. However, the health hazards will be evaluated and reported separately. ^d Exposure dose and noncancer hazards were calculated by segregating total DRO concentrations into alipha hydrocarbons and 40% aromatic hydrocarbons (ADI ^c Exposure dose and noncancer hazards were calculated by segregating total GRO concentrations into alipha hydrocarbons and 50% aromatic hydrocarbons (ADI ^f Exposure dose and noncancer hazards were calculated by segregating total GRO concentrations into alipha hydrocarbons and 50% aromatic hydrocarbons (ADI ^f Exposure dose and noncancer hazards were calculated by segregating total RRO concentrations into alipha hydrocarbons and 30% aromatic hydrocarbons (ADI ^f Exposure doses were calculated for dermal contact v of a medium. 3) Noncancer hazards are unitless values which represe effect. They are calculated using the following form 	nce limit (95% UCL the cumulative HI e ded in cumulative H associated with pet ed for petroleum hyd tic and aromatic fra EC, 2000c). ed for petroleum hyd tic and aromatic fra EC, 2000c). ed for petroleum hyd tic and aromatic fra EC, 2000c). reinogenic chemical with the medium, an ent the probability of ula: Noncancer HI	 on the mean on the mean estimate. isk and hazard roleum mixtu drocarbons mean drocarbons mean	h res easured as DF ing 80% alipl easured as GF ing 70% alipl easured as RF ing 90% aliph ble toxicity va e calculated f adverse healt Dose/Referen	RO (method 8 hatic RO (method 8 hatic RO (method) hatic lues. for ingestion of h ce dose.	3100) 3015) or inhalatio	n		HI HQ Inc mg/kg mg/kd-d na	Hazard ind Hazard qu Incomplete Milligrams not availab	lex. otient. e pathway. s per kilogram. s per kilogram ole	per day.

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 21 - Wastewater Treatment Facility - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhalation				Pathw	av-Specific 1	Hazard	Chemical-
	Concentration ^a	Doco	Doso	Doco	Doforo	nao Doco (n	ng/kg d)	Soil	uj opeenie	Duct	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
INOPCANICS											
Aluminum	21 708	6 2E-04	0.0E+00	1 9E-07	1.0E+00	1.0E+00	14E-03	6 2E-04	0.0E + 00	1 4 F- 04	0.00076
Antimony	97	2.8E-07	0.0E+00	8 5E-11	4.0F-04	4.0E-04	4.0E-04	6.9E-04	0.0E+00	2.1E-07	0.00070
Arsenic	28	2.0E 07 8.0E-07	3.2E-07	2.5E-10	4.0E 04	3.0E-04	3.0E-04	2.7E-03	1 1E-03	2.1E 07 8.2E-07	0.00005
Barium	141	4 0E-06	0.0E+00	1.2E-09	7.0E-02	7.0E-02	1.4E-04	5.7E-05	0.0E+00	8.8E-06	0.000066
Cadmium	52	1.5E-07	2.0E-09	4.6E-11	5.0E-04	5.0E-02	5.0E-04	3.0E-04	3.9E-06	9.1E-08	0.000000
Chromium	J.2 44	1.3E-07	0.0E+09	4.0E-11 3.9E-10	5.0E-04 1.5E±00	5.0L-04 1.5E±00	5.0E-04 1.5E±00	3.0E-04 8.4E-07	0.0E±00	2.6E-10	0.00000084
Cobalt	12	3 3E 07	0.0E+00	1.0E 10	6.0E.02	6.0E.02	6 0E 02	5.4E-07	0.0E+00	1.7E.00	0.00000004
Manganese	561	1.6E.05	0.0E+00	1.0E-10	1 /F 01	1.4E.01	1.4E.05	1.1E.04	0.0E+00	3.5E.04	0.0000030
Manganese	0.76	1.0E-03	0.0E+00	4.9E-09	2 OF 04	2 OF 04	2 OE 04	1.1E-04 7.2E-05	0.0E+00	3.5E-04	0.00047
Selenium	2.0	2.2E-08	0.0E+00	0.7E-12	5.0E-04	5.0E-04	5.0E-04	1.1E.05	0.0E+00	2.2E-08	0.000072
Selemin	2.0	5.7E-08	0.0E+00	1.6E-11	5.0E-05	5.0E-05	5.0E-05	1.1E-05	0.0E+00	3.3E-09	0.000011
	2.1	0.0E-08	0.0E+00	1.6E-11 4.7E 12	5.0E-05	5.0E-05	3.0E-05	1.2E-03	0.0E+00	5.7E-09	0.000012
	0.53	1.5E-08	0.0E+00	4./E-12	0.0E-05	0.0E-05	6.6E-05	2.3E-04	0.0E+00	7.1E-08	0.00023
vanadium	56	1.6E-06	0.0E+00	4.9E-10	7.0E-03	7.0E-03	7.0E-03	2.3E-04	0.0E+00	7.0E-08	0.00023
Zinc	480	1.4E-05	0.0E+00	4.2E-09	3.0E-01	3.0E-01	3.0E-01	4.6E-05	0.0E+00	1.4E-08	0.000046
VOLATILE ORGANIC COMPOUNDS											
1,2,4-Trimethylbenzene	0.19	5.4E-09	0.0E+00	1.7E-12	5.0E-02	5.0E-02	1.7E-03	1.1E-07	0.0E+00	9.8E-10	0.00000011
m,p-Xylene	0.048	1.4E-09	0.0E+00	4.2E-13	2.0E-01	2.0E-01	2.9E-02	6.8E-09	0.0E+00	1.4E-11	0.000000007
Methylene chloride	0.006	1.7E-10	0.0E+00	5.3E-14	6.0E-02	6.0E-02	8.6E-01	2.9E-09	0.0E+00	6.1E-14	0.0000000029
n-Butylbenzene	0.062	1.8E-09	0.0E+00	5.4E-13	4.0E-02	4.0E-02	4.0E-02	4.4E-08	0.0E+00	1.4E-11	0.000000044
n-Propylbenzene	0.04	1.1E-09	0.0E+00	3.5E-13	4.0E-02	4.0E-02	4.0E-02	2.9E-08	0.0E+00	8.8E-12	0.00000029
o-Xylene	0.006	1.7E-10	0.0E+00	5.3E-14	2.0E-01	2.0E-01	2.9E-02	8.6E-10	0.0E+00	1.8E-12	0.0000000086
sec-Butylbenzene	0.036	1.0E-09	0.0E+00	3.2E-13	4.0E-02	4.0E-02	4.0E-02	2.6E-08	0.0E+00	7.9E-12	0.00000026
SEMIVOLATILE ORGANIC COMPOUNDS											
4-Chloroaniline	5.5	1.6E-07	2.1E-07	4.8E-11	4.0E-03	4.0E-03	4.0E-03	3.9E-05	5.2E-05	1.2E-08	0.000091
POLYCHLORINATED BIPHENYLS											
PCB-1260 (Aroclor 1260)	2.4	6.8E-08	1.3E-07	2.1E-11	2.0E-05	2.0E-05	2.0E-05	3.4E-03	6.3E-03	1.1E-06	0.010
										ні	0.016
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	3 800	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics Aliphatic	3,000	8 7E-05	Inc	2 7E-08	1.0F-01	na	2 9E-01	8 7E-04	Inc	9 2E-08	0.00087
Diesel Range Organics, Aromatic	1 520	4 3E-05	Inc	1 3E-08	4 0F-02	na	5.7E-01	1.1E-03	Inc	2 3E-08	0.00087
Dieser Kange Organics, Aromatic	1,520	т.5£-05 f	f	1.5E-00	т.012-02 f	f	5.712-01 f	1.112-05 f	f	2.5E-00 f	0.0011 f
Residual Range Organics	2,384	na'	na'	na'	na'	na'	na'	na'	na'	na'	na'

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 21 - Wastewater Treatment Facility - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil Dust Soil Ingestion Dermal Inhalation Pathway-Specific Hazard								Hazard	Chemical-	
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (n	ng/kg-d)	Soil	D	Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	НQ
Residual Range Organics, Aliphatic	2,146	6.1E-05	Inc	1.9E-08	2.0E+00	na	na	3.1E-05	Inc	Inc	0.000031
Residual Range Organics, Aromatic	715	2.0E-05	Inc	6.3E-09	3.0E-02	na	na	6.8E-04	Inc	Inc	0.00068
NT. 4										HI	0.0027
Notes:											
Based on the maximum or 95 percent upper con	fidence limit (95% U	CL) on the m	iean					HI	Hazard index	Κ.	
concentration detected at the site.								HQ	Hazard quoti	ient.	
Consistent with EPA policy, lead is not evaluate	d in the cumulative H	II estimate.	đ					Inc	Incomplete p	oathway.	
Risks associated with indicator compounds are i		e risk and ha	zard					mg/kg	Milligrams p	er kilogram.	
estimates for each site. However, the health haz	ards associated with	petroleum mi	xtures					mg/kd-d	Milligrams p	er kilogram per	day.
will be evaluated and reported separately.								na	not available		
^d Exposure dose and noncancer hazards were calcu	ulated for petroleum	hydrocarbons	s measured as	s DRO (metho	od 8100)						
by segregating total DRO concentrations into al	iphatic and aromatic	fractions, ass	suming 80%	aliphatic							
hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c).										
^e Exposure dose and noncancer hazards were calcu	ulated for petroleum	hydrocarbons	s measured as	s GRO (metho	od 8015)						
by segregating total GRO concentrations into al	iphatic and aromatic	fractions, ass	suming 70%	aliphatic							
hydrocarbons and 50% aromatic hydrocarbons (.	ADEC, 2000c).										
^f Exposure dose and noncancer hazards were calculated	ulated for petroleum	hydrocarbons	s measured as	s RRO (metho	od)						
by segregating total RRO concentrations into al	iphatic and aromatic	fractions, ass	uming 90%	aliphatic							
hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).		-	-							
1) Doses and noncancer hazards shown only for no	ncarcinogenic chemi	cals with ava	ilable toxicit	v values.							
2) Absorbed doses were calculated for dermal conta	act with the medium,	and intakes	were calculat	ed for ingestio	on or inhalat	ion					
of a medium											
3) Noncancer hazards are unitless values which rep	resent the probability	y of incurring	an adverse h	health							
effect. They are calculated using the following f	ormula: Noncancer	HI = Exposu	re Dose/Refe	erence dose.							

CANCER RISK CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 21 - Wastewater Treatment Facility - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Groundwater	Ingestion	Dermal	VOC Inhalation				Pathway	-Specific Ca	ncer Risk	Chemical-
Constituent	Concentration ^a (mg/L)	Dose (mg/kg-d)	Dose (mg/kg-d)	Dose (mg/kg-d)	Cancer Sl Oral	ope Factor Dermal	(mg/kg-d) ⁻¹ Inhalation	Ingestion	Dermal	VOC Inhalation	Specific Risk
Constituent	(iiig/2)	(ing/ing u)	(ing/ing u)	(ing/ing u)	orui	Dermai	Innutation	ingestion	Dorma	Innutron	H USH
INORGANICS Arsenic	0.072	2.8E-04	3.8E-06	Inc	1.5E+00	1.5E+00	1.5E+01	4.1E-04	5.7E-06	Inc	4.2E-04
										ILCR	4E-04
Notes:											
^a Based on the maximum or 95 percent upper c	onfidence limit (95	% UCL) on th	ne mean					ILCR	Incrementa	l lifetime canc	er risk.
concentration detected at the site.								Inc	Incomplete	pathway.	
1) Doses and cancer risks shown only for carcin	ogenic chemicals w	ith available	toxicity value	es.				mg/L	Milligrams	per liter.	
2) Absorbed doses were calculated for dermal co	ontact with the med	ium, and inta	kes were					mg/kg-d	Milligrams	per kilogram	per day.
calculated for ingestion or inhalation of a me	calculated for ingestion or inhalation of a medium.								Volatile org	ganic compour	nd.
3) Cancer risks are unitless values which represe	ent the probability o	f incurring ar	n adverse hea	lth							

CANCER RISK CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 21 - Wastewater Treatment Facility - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Groundwater	Ingestion	Dermal	VOC Inhalation				Pathwa	y-Specific Ca	ncer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer S	ope Factor	(mg/kg-d) ⁻¹	-		VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
INORGANICS Arsenic	0.072	1.1E-03	1.5E-05	Inc	1.5E+00	1.5E+00	1.5E+01	1.6E-03	2.2E-05	Inc	1.6E-03
										ILCR	2E-03
Notes:											
^a Based on the maximum or 95 percent upper co	nfidence limit (95%	UCL) on the	e mean					ILCR	Incremental l	ifetime cancer	risk.
concentration detected at the site.								Inc	Incomplete p	athway.	
1) Doses and cancer risks shown only for carcinogenic chemicals with available toxicity values.								mg/L Milligrams per liter.			
2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium.								mg/kg-d VOC	Milligrams p Volatile orga	er kilogram per nic compound.	r day.
 Cancer risks are unitless values which represer 	t the probability of	incurring an a	adverse healt	h							

CANCER RISK CALCULATIONS FOR A FUTURE INCIDENTAL VISITOR SITE 21 - Wastewater Treatment Facility - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Pathway	-Specific Ca	nncer Risk	Chemical-
Constituent	Concentration ^a (mg/L)	Dose (mg/kg-d)	Dose (mg/kg-d)	Dose (mg/kg-d)	Cancer S Oral	lope Factor Dermal	(mg/kg-d) ⁻¹ Inhalation	Ingestion	Dermal	VOC Inhalation	Specific Risk
INORGANICS Arsenic	0.072	2.8E-05	2.8E-07	Inc	1.5E+00	1.5E+00	1.5E+01	4.2E-05	4.2E-07	Inc	4.3E-05
										ILCR	4E-05
Notes:											
^a Based on the maximum or 95 percent upper co	onfidence limit (95%	UCL) on the	e mean					ILCR	Incremental	l lifetime cance	r risk.
concentration detected at the site.								Inc	Incomplete	pathway.	
1) Doses and cancer risks shown only for carcino	genic chemicals wit	h available to	xicity values					mg/L	Milligrams	per liter.	
 2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium. 2) Control of the second s								mg/kg-d Milligrams per kilogram per day. VOC Volatile organic compound.			
 Cancer risks are unitless values which represer 	nt the probability of	incurring an a	adverse healt	h							

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 21 - Wastewater Treatment Facility - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Pathy	way-Specific]	Hazard	Chemical
	Concentration ^a	Dose	Dose	Dose	Refere	ence Dose (mg/kg-d)		č I	VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
INODCANICS											
Arsenic	0.072	6 1E-04	2.9E-05	Inc	3 0E-04	3.0F-04	3 0E-04	2 0E±00	9 6E-02	Inc	21
Copper	0.26	2.2E-03	2.9E-03 1.0E-04	Inc	3.7E-04	3.7E-04	3.7E-02	5.9E-02	2.8E-03	Inc	0.062
Lead	0.26	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Mercury	0.0006	5.1E-06	2.4E-07	Inc	3.0E-04	3.0E-04	8.0E-06	1.7E-02	8.0E-04	Inc	0.018
Nickel	0.18	1.5E-03	1.4E-05	Inc	2.0E-02	2.0E-02	2.0E-02	7.6E-02	7.2E-04	Inc	0.077
Zinc	5.1	4.3E-02	2.0E-03	Inc	3.0E-01	3.0E-01	3.0E-01	1.4E-01	6.8E-03	Inc	0.15
VOLATILE ORGANIC COMPOUNDS											
n-Propylbenzene	0.0011	9.3E-06	1.4E-04	1.9E-04	4.0E-02	4.0E-02	4.0E-02	2.3E-04	3.4E-03	4.7E-03	0.0083
										HI	2.4
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	1.0	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	0.80	6.8E-03	Inc	4.5E-03	1.0E-01	na	2.9E-01	6.8E-02	Inc	1.6E-02	0.083
Diesel Range Organics, Aromatic	0.40	3.4E-03	Inc	2.3E-03	4.0E-02	na	5.7E-01	8.5E-02	Inc	4.0E-03	0.088
										HI	0.17
Notes:										_	
^a Based on the maximum or 95 percent upper of	confidence limit (959	6 UCL) on th	ie mean					HI	Hazard inde	х.	
concentration detected at the site.								HQ	Hazard quot	ient.	
^b Consistent with EPA policy, lead is not evalu	ated in the cumulati	ve HI estimat	e.					Inc	Incomplete p	oathway.	
^c Risks associated with indicator compounds a	re included in cumu	ative risk and	l hazard					mg/L	Milligrams p	per liter.	
estimates for each site. However, the health	hazards associated w	ith petroleun	n mixtures					mg/kd-d	Milligrams r	oer kilogram p	er dav.
will be evaluated and reported separately.								na	not available	ср.	
^d Exposure dose and noncancer hazards were c	calculated for petrole	um hydrocarl	oons measure	d as DRO (m	ethod 8100))		VOC	Volatile org	anic compound	h
by segregating total DRO concentrations into	o aliphatic and arom	atic fractions.	assuming 80	% aliphatic				võe	volutile orge	anie compound	u.
hydrocarbons and 40% aromatic hydrocarbor	ns (ADEC, 2000c).		U								
1) Doses and noncancer bazards shown only for	r noncarcinogenic ch	emicals with	available tox	icity values							

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 21 - Wastewater Treatment Facility - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

				VOC							
	Surface Water	Ingestion	Dermal	Inhalation	l			Pathwa	ay-Specific l	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Reference Dose (mg/kg-d)				VOC	Specific	
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 21 - Wastewater Treatment Facility - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Path	wav-Specific]	Hazard	Chemical-
~	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (mg/kg-d)			VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
INORGANICS											
Arsenic	0.072	2.4E-03	1.1E-04	Inc	3.0E-04	3.0E-04	3.0E-04	7.9E+00	3.7E-01	Inc	8.3
Copper	0.26	8.5E-03	4.0E-04	Inc	3.7E-02	3.7E-02	3.7E-02	2.3E-01	1.1E-02	Inc	0.24
Lead	0.26	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Mercury	0.00060	2.0E-05	9.3E-07	Inc	3.0E-04	3.0E-04	8.0E-06	6.6E-02	3.1E-03	Inc	0.069
Nickel	0.18	5.9E-03	5.6E-05	Inc	2.0E-02	2.0E-02	2.0E-02	3.0E-01	2.8E-03	Inc	0.30
Zinc	5.1	1.7E-01	7.9E-03	Inc	3.0E-01	3.0E-01	3.0E-01	5.6E-01	2.6E-02	Inc	0.59
VOLATILE ORGANIC COMPOUNDS											
n-Propylbenzene	0.0011	3.6E-05	5.3E-04	7.3E-04	4.0E-02	4.0E-02	4.0E-02	9.0E-04	1.3E-02	1.8E-02	0.032
										HI	9.5
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	1.0	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	0.80	2.6E-02	Inc	1.8E-02	1.0E-01	na	2.9E-01	2.6E-01	Inc	6.0E-02	0.32
Diesel Range Organics, Aromatic	0.40	1.3E-02	Inc	8.8E-03	4.0E-02	na	5.7E-01	3.3E-01	Inc	1.5E-02	0.34
										HI	0.67
Notes:											
^a Based on the maximum or 95 percent upper	confidence limit (95	5% UCL) on	the mean					HI	Hazard index	х.	
concentration detected at the site.								HQ	Hazard quot	ient.	
^b Consistent with EPA policy, lead is not evaluate	uated in the cumula	tive HI estima	ate.					Inc	Incomplete p	athway.	
^c Risks associated with indicator compounds a	are included in cum	ulative risk ar	nd hazard					mg/L	Milligrams p	er liter.	
estimates for each site. However, the health	hazards associated	with petroleu	m mixtures					mg/kd-d	Milligrams p	er kilogram p	er day.
will be evaluated and reported separately.								na	not available	,	-
^d Exposure dose and noncancer hazards were	calculated for petro	leum hydroca	rbons measur	red as DRO (r	nethod 810	00)		VOC	Volatile orga	anic compound	d.
by segregating total DRO concentrations int	to aliphatic and arou	natic fraction	s, assuming 8	30% aliphatic						-	
hydrocarbons and 40% aromatic hydrocarbo	ons (ADEC, 2000c).										
1) Doses and noncancer hazards shown only for	or noncarcinogenic o	chemicals wit	h available to	xicity values.							

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 21 - Wastewater Treatment Facility - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

				VOC						
	Surface Water	Ingestion	Dermal	Inhalation		-	Pathwa	y-Specific 1	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Reference	e Dose (mg/kg-d)			VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral E	Dermal Inhalation	Ingestion	Dermal	Inhalation	HQ

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health

effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 21 - Wastewater Treatment Facility - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Path	way-Specific 1	Hazard	Chemical-
Constituent	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (mg/kg-d)	Ingestion	Dormal	VOC Inhelation	Specific
Constituent	(IIIg/L)	(IIIg/Kg-u)	(Ing/kg-u)	(Ing/kg-u)	Ofai	Dermai	Innalation	ingestion	Dermai	Innalation	nų
INORGANICS											
Arsenic	0.072	8.2E-05	8.2E-07	Inc	3.0E-04	3.0E-04	3.0E-04	2.7E-01	2.7E-03	Inc	0.28
Copper	0.26	3.0E-04	3.0E-06	Inc	3.7E-02	3.7E-02	3.7E-02	8.0E-03	8.0E-05	Inc	0.0081
Lead	0.26	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Mercury	0.0006	6.8E-07	6.8E-09	Inc	3.0E-04	3.0E-04	8.0E-06	2.3E-03	2.3E-05	Inc	0.0023
Nickel	0.18	2.1E-04	4.1E-07	Inc	2.0E-02	2.0E-02	2.0E-02	1.0E-02	2.1E-05	Inc	0.010
Zinc	5.1	5.8E-03	5.8E-05	Inc	3.0E-01	3.0E-01	3.0E-01	1.9E-02	1.9E-04	Inc	0.020
VOLATILE ORGANIC COMPOUNDS											
n-Propylbenzene	0.0011	1.3E-06	3.9E-06	9.1E-06	4.0E-02	4.0E-02	4.0E-02	3.1E-05	9.7E-05	2.3E-04	0.00036
										HI	0.32
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	1.0	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	0.80	9.1E-04	Inc	2.2E-04	1.0E-01	na	2.9E-01	9.1E-03	Inc	7.6E-04	0.0099
Diesel Range Organics, Aromatic	0.40	4.6E-04	Inc	1.1E-04	4.0E-02	na	5.7E-01	1.1E-02	Inc	1.9E-04	0.012
										HI	0.021
Notes:											
^a Based on the maximum or 95 percent upper co	onfidence limit (95%	6 UCL) on th	e mean					HI	Hazard index	х.	
concentration detected at the site.								HQ	Hazard quot	ient.	
^b Consistent with EPA policy, lead is not evaluate	ated in the cumulati	ve HI estimat	e.					Inc	Incomplete r	oathway.	
^c Risks associated with indicator compounds ar	e included in cumul	ative risk and	hazard					mg/L	Milligrams r	ber liter.	
estimates for each site. However, the health h	azards associated w	ith petroleum	mixtures					mø/kd-d	Milliorams r	her kilogram n	er dav
will be evaluated and reported separately.		-						no	not available		er day.
^d Exposure dose and noncancer hazards were ca	alculated for petrole	um hydrocarb	ons measured	l as DRO (me	thod 8100)			lla NOC	Volotile ener	-	J
by sogragating total DBO concentrations into	aliphatic and arom	atic fractions	assuming 80	4 aliphatia				VUC	volatile orga	anic compound	1.
by segregating total DKO concentrations into		aue macuolis,	assuming ou	% anphatic							
nyurocarbons and 40% aromatic nyurocarbon	s (ADEC, 2000C).			·. 1							
 Doses and noncancer hazards shown only for Absorbed doses were calculated for dermal co 	noncarcinogenic ch ontact with the medi	emicals with um, and intak	available toxi	city values. lated for inge	stion or inh	nalation					

of a medium

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 21 - Wastewater Treatment Facility - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

				VOC							
	Surface Water	Ingestion	Dermal	Inhalation	1			Pathwa	ay-Specific 1	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Reference Dose (mg/kg-d)				VOC	Specific	
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ

effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

CANCER RISK CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 22 - Water Wells and Water Supply Building - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Soil Dermal	Dust Inhalation				Pathway-	Specific Ca	ncer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer Sl	ope Factor	(mg/kg-d) ⁻¹	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
POLYNUCLEAR AROMATIC HYDROCARBONS											
Benzo(a)pyrene	0.079	3.2E-08	1.6E-08	2.3E-12	7.3E+00	7.3E+00	7.3E+00	2.3E-07	1.2E-07	1.7E-11	3.5E-07
										ILCR	3E-07
Notes:											
^a Based on the maximum or 95 percent upper confidence lin	nit (95% UCL) on	the mean con	centration de	tected at the s	ite.			ILCR	Incrementa	al lifetime can	cer risk.
1) Doses and cancer risks shown only for carcinogenic chemi	cals with available	toxicity value	es.					Inc	Incomplete	e pathway.	
2) Based on the maximum or 95 percent upper confidence lin	nit (95% UCL) on	the mean con	centration de	tected at the s	ite.			mg/kg	Milligram	s per kilogram	
Doses and cancer risks shown only for carcinogenic chemi	cals with available	toxicity value	es.					mg/kg-d	Milligram	s per kilogram	per day.
3) Absorbed doses were calculated for dermal contact with th	e medium, and inta	akes were cal	culated for in	gestion or inh	alation						
of a medium											
Cancer risks are unitless values which represent the probab	oility of incurring a	n adverse hea	ılth								

CANCER RISK CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 22 - Water Wells and Water Supply Building - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Soil Dermal	Dust Inhalation				Pathwa	ay-Specific C	ancer Risk	Chemical-
Constituent	Concentration ^a	Dose	Dose	Dose	Cancer Slo	pe Factor	(mg/kg-d) ⁻¹	Soil	Dormal	Dust Inhelation	Specific
Constituent	(iiig/kg)	(ing/kg-u)	(ing/kg-u)	(ing/kg-u)	Ofai	Dermai	IIIIalation	ingestion	Dermai	IIIIalation	KISK
POLYNUCLEAR AROMATIC HYDROCARBONS Benzo(a)pyrene	0.079	9.5E-08	4.9E-08	6.9E-12	7.3E+00	7.3E+00	7.3E+00	6.9E-07	3.6E-07	5.1E-11	1.0E-06
										ILCR	1E-06
Notes:											
^a Based on the maximum or 95 percent upper confidence limit (and soil gravel at the site.	(95% UCL) on the me	ean concentrati	on detected in	n soil tundra				ILCR Inc	Incremental Incomplete	lifetime cancer pathway.	risk.
1) Doses and cancer risks shown only for carcinogenic chemicals	s with available toxici	ity values.						mg/kg	Milligrams	per kilogram.	
 Absorbed doses were calculated for dermal contact with the m of a medium. 	edium, and intakes w	vere calculated	for ingestion	or inhalation				mg/kg-d	Milligrams	per kilogram pe	r day.
3) Cancer risks are unitless values which represent the probabilit	y of incurring an adve	erse health									

CANCER RISK CALCULATIONS FOR A FUTURE INCIDENTAL VISITOR SITE 22 - Water Wells and Water Supply Building - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Soil Dermal	Dust Inhalation				Pathway	-Specific Ca	ancer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer Sl	ope Factor	$(mg/kg-d)^{-1}$	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
POLYNUCLEAR AROMATIC HYDROCARBONS Benzo(a)pyrene	0.079	7.7E-10	1.3E-09	2.4E-13	7.3E+00	7.3E+00	7.3E+00	5.6E-09	9.6E-09	1.7E-12	1.5E-08
										ILCR	2E-08
Notes:											
 ^a Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected at the site. 1) Doses and cancer risks shown only for carcinogenic chemicals with available toxicity values. 2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium 3) Cancer risks are unitless values which represent the probability of incurring an adverse health 									Incrementa Incomplete Milligrams Milligrams	l lifetime cance pathway. per kilogram. per kilogram p	er risk. er day.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 22 - Water Wells and Water Supply Building - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhalation				Pathw	ay-Specific	Hazard	Chemical-
Constituent	Concentration ^a (mg/kg)	Dose (mg/kg-d)	Dose (mg/kg-d)	Dose (mg/kg-d)	Refere Oral	nce Dose (n Dermal	ng/kg-d) Inhalation	Soil Ingestion	Dermal	Dust Inhalation	Specific HO
								8			
INORGANICS		,			,		,	,		,	,
Lead	497	na ^b	na ^b	na ^b	na⁵	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
VOLATILE ORGANIC COMPOUNDS											
o-Xylene	0.37	1.4E-06	0.0E+00	6.7E-11	2.0E-01	2.0E-01	2.9E-02	6.8E-06	0.0E+00	2.3E-09	0.0000068
										НІ	0.0000068
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	4.070	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	\mathbf{na}^{d}	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	3,256	1.2E-02	Inc	5.9E-07	1.0E-01	na	2.9E-01	1.2E-01	Inc	2.0E-06	0.12
Diesel Range Organics, Aromatic	1,628	5.9E-03	Inc	2.9E-07	4.0E-02	na	5.7E-01	1.5E-01	Inc	5.2E-07	0.15
Gasoline Range Organics	38	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Gasoline Range Organics, Aliphatic	27	9.8E-05	Inc	4.9E-09	5.0E+00	na	5.3E+00	2.0E-05	Inc	9.2E-10	2.0E-05
Gasoline Range Organics, Aromatic	19	7.0E-05	Inc	3.5E-09	2.0E-01	na	1.1E-01	3.5E-04	Inc	3.2E-08	0.00034992
Residual Range Organics	3,815	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f
Residual Range Organics, Aliphatic	3,434	1.2E-02	Inc	6.2E-07	2.0E+00	na	na	6.2E-03	Inc	Inc	0.0062
Residual Range Organics, Aromatic	1,145	4.2E-03	Inc	2.1E-07	3.0E-02	na	na	1.4E-01	Inc	Inc	0.14
										HI	0.41
Notes:										-	
^a Based on the maximum or 95 percent upper confid	dence limit (95% UC	CL) on the mea	an					HI	Hazard inde	ex.	
concentration detected at the site.								HQ	Hazard quo	tient.	
^b Consistent with EPA policy, lead is not evaluated	in the cumulative HI	estimate.						Inc	Incomplete	pathway.	
^c Risks associated with indicator compounds are ind	cluded in cumulative	risk and haza	ırd					mg/kg	Milligrams	per kilogram.	
estimates for each site. However, the health hazar	ds associated with p	etroleum mixt	tures					mg/kd-d	Milligrams	per kilogram	per day.
will be evaluated and reported separately.								na	not availabl	le	
^d Exposure dose and noncancer hazards were calcul	ated for petroleum h	ydrocarbons r	neasured as D	RO (method 81	.00)						
by segregating total DRO concentrations into alip	hatic and aromatic f	ractions, assu	ming 80% alip	ohatic							
hydrocarbons and 40% aromatic hydrocarbons (A	DEC, 2000c).										
© Evenopure does and non-concer beyonds were coloul	atad for natural aum h	udrocorbona r	management of C	DO (mathed 9)	15)						

^e Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as GRO (method 8015)
 by segregating total GRO concentrations into aliphatic and aromatic fractions, assuming 70% aliphatic

hydrocarbons and 50% aromatic hydrocarbons (ADEC, 2000c).

^f Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as RRO (method)

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 22 - Water Wells and Water Supply Building - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhalation				Pathwa	ay-Specific	Hazard	Chemical-
Constituent	Concentration ^a	Dose	Dose (mg/kg-d)	Dose (mg/kg-d)	Refer	ence Dose (n Dermal	ıg/kg-d) Inhalation	Soil Ingestion	Dermal	Dust Inhalation	Specific HO

by segregating total RRO concentrations into aliphatic and aromatic fractions, assuming 90% aliphatic

hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 22 - Water Wells and Water Supply Building - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhalation	De	D	(Pathwa	ay-Specific	Hazard	Chemical-
Constituent	Concentration (mg/kg)	Dose (mg/kg-d)	Dose (mg/kg-d)	Dose (mg/kg-d)	Oral	nce Dose Dermal	(mg/kg-d) Inhalation	Soll Ingestion	Dermal	Dust Inhalation	Specific НО
								8			<u> </u>
INORGANICS											
Lead	497	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
VOLATILE ORGANIC COMPOUNDS o-Xylene	0.37	4.1E-06	0.0E+00	2.0E-10	2.0E-01	2.0E-01	2.9E-02	2.0E-05	0.0E+00	6.9E-09	0.000020
										HI	0.000020
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	4,070	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	3,256	3.6E-02	Inc	1.8E-06	1.0E-01	na	2.9E-01	3.6E-01	Inc	6.1E-06	0.4
Diesel Range Organics, Aromatic	1,628	1.8E-02	Inc	8.8E-07	4.0E-02	na	5.7E-01	4.4E-01	Inc	1.5E-06	0.4
Gasoline Range Organics	38	na ^e	nae	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Gasoline Range Organics, Aliphatic	26.915	2.9E-04	Inc	1.5E-08	5.0E+00	na	5.3E+00	5.9E-05	Inc	2.8E-09	0.000059
Gasoline Range Organics, Aromatic	19.225	2.1E-04	Inc	1.0E-08	2.0E-01	na	1.1E-01	1.0E-03	Inc	9.5E-08	0.0010
Residual Range Organics	3,815	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f
Residual Range Organics, Aliphatic	3,434	3.7E-02	Inc	1.9E-06	2.0E+00	na	na	1.9E-02	Inc	Inc	0.019
Residual Range Organics, Aromatic	1,145	1.2E-02	Inc	6.2E-07	3.0E-02	na	na	4.2E-01	Inc	Inc	0.42
										HI	1.2
Notes:											
^a Based on the maximum or 95 percent upper confic concentration detected at the site.	lence limit (95% UCI	L) on the mean	n					HI HQ	Hazard ind Hazard qu	lex. otient.	
^b Consistent with EPA policy, lead is not evaluated	in the cumulative HI	estimate.						Inc	Incomplet	e pathway.	
^c Risks associated with indicator compounds are inc	cluded in cumulative i	isk and hazar	d					ma/ka	Milligram	s per kilogram	
estimates for each site. However, the health hazar	ds associated with pe	troleum mixtu	ires					mg/kg	M:11: amount	s per kilogram	
will be evaluated and reported separately	as associated with pe							mg/ka-a	Minigrams	s per knogram	per day.
d European door on discourse housed and the	o to al form an otran low 1			DO(math - 1)	2100)			na	not availat	ble	
• Exposure dose and noncancer nazards were calcul by segregating total DRO concentrations into alin	ated for petroleum ny	drocarbons m	ing 80% alin	kO (method a	\$100)						
hydrocarbons and 40% aromatic hydrocarbons (A)	DEC 2000c)										
nyerocarbons and +070 aromane nyerocarbons (A	DLC, 2000C).										

^e Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as GRO (method 8015) by segregating total GRO concentrations into aliphatic and aromatic fractions, assuming 70% aliphatic

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 22 - Water Wells and Water Supply Building - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

		Soil		Dust							
	Soil	Ingestion	Dermal	Inhalation	n DAD (A)		_	Pathwa	y-Specific	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Reference Dose (mg/kg-d)		Soil		Dust	Specific	
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal I	nhalation	Ingestion	Dermal	Inhalation	HQ

hydrocarbons and 50% aromatic hydrocarbons (ADEC, 2000c).

f Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as RRO (method)

by segregating total RRO concentrations into aliphatic and aromatic fractions, assuming 90% aliphatic

hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE INCIDENTAL VISITOR SITE 22 - Water Wells and Water Supply Building - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dormal	Dust Inhelation				Path	way-Specific 1	Hazard	Chemical
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (r	ng/kg_d)	Soil	way-opeenie i	Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
INORGANICS											
Lead	497	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
VOLATILE ORGANIC COMPOUNDS											
o-Xylene	0.37	1.1E-08	0.0E+00	3.3E-12	2.0E-01	2.0E-01	2.9E-02	5.3E-08	0.0E+00	1.1E-10	0.000000053
										HI	0.000000053
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	4,070	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	3,256	9.3E-05	Inc	2.9E-08	1.0E-01	na	2.9E-01	9.3E-04	Inc	9.9E-08	0.00093
Diesel Range Organics, Aromatic	1,628	4.6E-05	Inc	1.4E-08	4.0E-02	na	5.7E-01	1.2E-03	Inc	2.5E-08	0.0012
Gasoline Range Organics	38	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Gasoline Range Organics, Aliphatic	27	7.7E-07	Inc	2.4E-10	5.0E+00	na	5.3E+00	1.5E-07	Inc	4.5E-11	0.00000015
Gasoline Range Organics, Aromatic	19	5.5E-07	Inc	1.7E-10	2.0E-01	na	1.1E-01	2.7E-06	Inc	1.5E-09	0.0000027
Residual Range Organics	3,815	na'	na'	na	na'	na'	na'	na'	na	na'	na'
Residual Range Organics, Aliphatic	3,434	9.8E-05	Inc	3.0E-08	2.0E+00	na	na	4.9E-05	Inc	Inc	0.000049
Residual Range Organics, Aromatic	1,145	3.3E-05	Inc	1.0E-08	3.0E-02	na	na	1.1E-03	Inc	Inc	0.0011
Notors										HI	0.0032
^a Develop the merimum of 05 meres to meres	- f: 1 1:: + (0.50/ II	CI) and the sec							II	_	
concentration detected at the site.	fildence limit (95% U	CL) on the m	ean					HI HQ	Hazard index Hazard quoti	ent.	
^b Consistent with EPA policy, lead is not evaluat	ed in the cumulative H	II estimate.						Inc	Incomplete p	athway.	
^c Risks associated with indicator compounds are	included in cumulativ	e risk and haz	zard					mø/kø	Milligrams p	er kilogram	
estimates for each site. However, the health ha	zards associated with	petroleum miz	xtures					mg/kd_d	Milligrams n	er kilogram pe	r dav
will be evaluated and reported separately.								ng/Ku u	not available	er knogram pe	a duy.
^d Exposure dose and noncancer hazards were cal	culated for petroleum	hydrocarbons	measured as	DRO (metho	d 8100)			na	not available		
by segregating total DRO concentrations into a	linhatic and aromatic	fractions ass	uming 80% a	linhatic	a 0100)						
hydrocarbons and 40% aromatic hydrocarbons	(ADEC 2000c)	indetions, uss	unning 0070 u	inpitute							
^c Exposure does and popeapar bazerds were cal	aulated for natroloum	hudroaarbara	manuradas	CPO (mothe	4 8015)						
Exposure dose and noncancer nazards were cal		nyurocarbons	measured as		u 0013)						
by segregating total GRO concentrations into a	diphatic and aromatic	fractions, ass	uming 70% a	liphatic							

hydrocarbons and 50% aromatic hydrocarbons (ADEC, 2000c).

^f Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as RRO (method)

NONCANCER HAZARD CALCULATIONS FOR A FUTURE INCIDENTAL VISITOR SITE 22 - Water Wells and Water Supply Building - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

		Soil		Dust							
	Soil	Ingestion	Dermal	Inhalation	ion <u>Pathway-Specific Haz</u>			Hazard	Chemical-		
	Concentration ^a	Dose	Dose	Dose	Refere	ence Dose (n	ng/kg-d)	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ

by segregating total RRO concentrations into aliphatic and aromatic fractions, assuming 90% aliphatic

hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 22 - Water Wells and Water Supply Building - DEEP SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Pathy	way-Specific l	Hazard	Chemical-
Cometita and	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (mg/kg-d)		Dermal	VOC	Specific
Constituent	(mg/L)	(mg/kg-a)	(mg/kg-a)	(mg/kg-a)	Orai	Dermai	Innalation	ingestion	Dermai	Innalation	пұ
INORGANICS											
Manganese	0.20	1.7E-03	8.1E-05	Inc	1.4E-01	1.4E-01	1.4E-05	1.2E-02	5.8E-04	Inc	0.013
Manganese, Dissolved	0.17	1.4E-03	6.6E-05	Inc	1.4E-01	1.4E-01	1.4E-05	1.0E-02	4.7E-04	Inc	0.010
										HI	0.023
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	1.4	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	1.1	9.5E-03	Inc	6.3E-03	1.0E-01	na	2.9E-01	9.5E-02	Inc	2.2E-02	0.12
Diesel Range Organics, Aromatic	0.56	4.7E-03	Inc	3.2E-03	4.0E-02	na	5.7E-01	1.2E-01	Inc	5.5E-03	0.12
Residual Range Organics	2.8	na ^f	na ^f	na ^f	na ^f	na^{f}	na ^f	na ^f	na^{f}	na ^f	na ^f
Residual Range Organics, Aliphatic	2.5	2.1E-02	Inc	1.5E-05	2.0E+00	na	na	1.1E-02	Inc	Inc	0.011
Residual Range Organics, Aromatic	0.8	7.1E-03	Inc	4.9E-06	3.0E-02	na	na	2.4E-01	Inc	Inc	0.24
										НІ	0.49
Notes:											
^a Based on the maximum or 95 percent upper	confidence limit (959	% UCL) on th	ne mean					HI	Hazard index	к.	
concentration detected at the site.								HQ	Hazard quot	ient.	
^b Consistent with EPA policy, lead is not eval	uated in the cumulati	ve HI estimat	e.					Inc	Incomplete r	athway.	
^c Risks associated with indicator compounds a	are included in cumu	ative risk and	l hazard					mg/L	Milligrams r	er liter.	
estimates for each site. However, the health	hazards associated w	ith petroleum	n mixtures					mg/kd-d	Milligrams r	er kilogram p	er dav.
will be evaluated and reported separately.								na	not available	сВ р	
^d Exposure dose and noncancer hazards were	calculated for petrole	um hydrocarł	bons measure	d as DRO (m	ethod 8100)		VOC	Volatile orga	unic compound	d.
by segregating total DRO concentrations int	to aliphatic and arom	atic fractions,	, assuming 80)% aliphatic					Ð	1	
hydrocarbons and 40% aromatic hydrocarbo	ons (ADEC, 2000c).										
e Exposure dose and noncancer hazards were	calculated for petrole	um hydrocarł	bons measure	d as GRO (m	ethod 8015)					
by segregating total GRO concentrations int	to aliphatic and arom	atic fractions,	, assuming 70)% aliphatic							
hydrocarbons and 50% aromatic hydrocarbo	ons (ADEC, 2000c).										
^f Exposure dose and noncancer hazards were	calculated for petrole	um hydrocart	bons measure	d as RRO (me	ethod)						
-	-	•									

by segregating total RRO concentrations into aliphatic and aromatic fractions, assuming 90% aliphatic

hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 22 - Water Wells and Water Supply Building - DEEP SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

				VOC							
	Surface Water	Ingestion	Dermal	Inhalation	n Dí Dí ()			Pathwa	ay-Specific l	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Reference Dose (mg/kg-d)				VOC	Specific	
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 22 - Water Wells and Water Supply Building - DEEP SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Pathy	way-Specific l	Hazard	Chemical-
Constituent	Concentration ^a (mg/L)	Dose (mg/kg-d)	Dose (mg/kg-d)	Dose (mg/kg-d)	Refere Oral	nce Dose (Dermal	mg/kg-d) Inhalation	Ingestion	Dermal	VOC Inhalation	Specific HO
								0			
INORGANICS	0.20	67E 03	3 2E 04	Inc	1 <i>4</i> E 01	1 <i>4</i> E 01	1 <i>4</i> E 05	4 8E 02	2 3E 03	Inc	0.050
Manganese, Dissolved	0.20	5.4E-03	3.2E-04 2.6E-04	Inc	1.4E-01 1.4E-01	1.4E-01 1.4E-01	1.4E-05 1.4E-05	4.8E-02 3.9E-02	2.3E-03 1.8E-03	Inc	0.030
										HI	0.091
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	1.4	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	1.1	3.7E-02	Inc	2.5E-02	1.0E-01	na	2.9E-01	3.7E-01	Inc	8.5E-02	0.45
Diesel Range Organics, Aromatic	0.56	1.8E-02	Inc	1.2E-02	4.0E-02	na	5.7E-01	4.6E-01	Inc	2.2E-02	0.48
Residual Range Organics	2.8	na'	na'	na'	na'	na'	na'	na	na'	na'	na
Residual Range Organics, Aliphatic	2.5	8.3E-02	Inc	5.8E-05	2.0E+00	na	na	4.1E-02	Inc	na	0.041
Residual Range Organics, Aromatic	0.8	2.8E-02	Inc	1.9E-03	5.0E-02	па	па	9.2E-01	inc	па	0.92
										HI	1.9
Notes:											
^a Based on the maximum or 95 percent upper	confidence limit (95	5% UCL) on	the mean					HI	Hazard index	κ.	
concentration detected at the site.								HQ	Hazard quot	ent.	
^b Consistent with EPA policy, lead is not eval	uated in the cumula	tive HI estima	ate.					Inc	Incomplete p	athway.	
^c Risks associated with indicator compounds a	are included in cum	ulative risk ar	nd hazard					mg/L	Milligrams p	er liter.	
estimates for each site. However, the health	hazards associated	with petroleu	m mixtures					mg/kd-d	Milligrams p	er kilogram p	er day.
will be evaluated and reported separately.								na	not available		-
^d Exposure dose and noncancer hazards were	calculated for petrol	leum hydroca	rbons measur	red as DRO (1	nethod 810	0)		VOC	Volatile orga	nic compound	1.
by segregating total DRO concentrations int	o aliphatic and aror	natic fraction	s, assuming 8	0% aliphatic					U	1	
hydrocarbons and 40% aromatic hydrocarbo	ons (ADEC, 2000c).										
^e Exposure dose and noncancer hazards were	calculated for petrol	leum hydroca	rbons measur	ed as GRO (1	nethod 801	5)					
by segregating total GRO concentrations int	to aliphatic and aror	natic fraction	s, assuming 7	0% aliphatic							
hydrocarbons and 50% aromatic hydrocarbo	ons (ADEC, 2000c).			1							
^f Exposure dose and noncancer hazards were	calculated for petrol	leum hvdroca	rbons measu	ed as RRO (r	nethod)						
by sogragating total PBO concentrations int	o aliphatic and aron	notic frection		00/ alimbatia							

hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 22 - Water Wells and Water Supply Building - DEEP SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

				VOC						
	Surface Water	Ingestion	Dermal	Inhalation		Pathwa	y-Specific l	Hazard	Chemical-	
	Concentration ^a	Dose	Dose	Dose	Reference Dose (mg	g/kg-d)			VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral Dermal II	nhalation	Ingestion	Dermal	Inhalation	HQ

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

NONCANCER HAZARD CALCULATIONS FOR A FUTURE INCIDENTAL VISITOR SITE 22 - Water Wells and Water Supply Building - DEEP SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Path	way-Specific I	Hazard	Chemical-
Constituent	(mg/L)	Dose (mg/kg-d)	Dose (mg/kg-d)	Dose (mg/kg-d)	Refere Oral	nce Dose (Dermal	(mg/kg-d) Inhalation	- Ingestion	Dermal	VOC Inhalation	Specific HQ
INORGANICS	0.20	2 3E 04	2 3E 06	Inc	1 <i>4</i> E 01	1 <i>4</i> E 01	1 /E 05	1 7E 03	1 7E 05	Inc	0.0017
Manganese. Dissolved	0.20	2.3E-04 1.9E-04	2.3E-00 1.9E-06	Inc	1.4E-01 1.4E-01	1.4E-01 1.4E-01	1.4E-05 1.4E-05	1.7E-03	1.7E-05 1.3E-05	Inc	0.0017
										HI	0.0030
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	1.4	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d				
Diesel Range Organics, Aliphatic	1.12	1.3E-03	Inc	3.1E-04	1.0E-01	na	2.9E-01	1.3E-02	Inc	1.1E-03	0.014
Diesel Range Organics, Aromatic	0.56	6.4E-04	Inc	1.5E-04	4.0E-02	na	5.7E-01	1.6E-02	Inc	2.7E-04	0.016
Residual Range Organics	2.8	na'	na'	na'	na'	na'	na'	na'	na'	na'	na'
Residual Range Organics, Aliphatic	2.5	2.9E-03 9.6E-04	Inc	7.2E-07 2.4E-07	2.0E+00 3.0E_02	na	na	1.4E-03 3.2E-02	Inc	Inc	0.0014
Residual Range Organies, Afoniatie	0.8	9.0L-04	inc	2.412-07	5.02-02	па	na	J.2E-02	IIIC	IIIC	0.032
										HI	0.063
Notes:											
^a Based on the maximum or 95 percent upper	confidence limit (95%	6 UCL) on th	e mean					HI	Hazard index	κ.	
concentration detected at the site.								HQ	Hazard quoti	ent.	
^b Consistent with EPA policy, lead is not eval	uated in the cumulativ	ve HI estimat	e.					Inc	Incomplete p	athway.	
^c Risks associated with indicator compounds	are included in cumul	ative risk and	hazard					mg/L	Milligrams p	er liter.	
estimates for each site. However, the health	hazards associated w	ith petroleum	mixtures					mg/kd-d	Milligrams p	er kilogram p	er day.
will be evaluated and reported separately.								na	not available		
^d Exposure dose and noncancer hazards were	calculated for petrole	um hydrocart	ons measured	l as DRO (me	thod 8100)			VOC	Volatile orga	nic compound	d.
by segregating total DRO concentrations in	to aliphatic and aroma	atic fractions,	assuming 80	% aliphatic					U	1	
hydrocarbons and 40% aromatic hydrocarbo	ons (ADEC, 2000c).										
e Exposure dose and noncancer hazards were	calculated for petrole	um hydrocart	ons measured	l as GRO (me	thod 8015)						
by segregating total GRO concentrations in	to aliphatic and aroma	atic fractions,	assuming 70	% aliphatic							
hydrocarbons and 50% aromatic hydrocarbo	ons (ADEC, 2000c).										
^f Exposure dose and noncancer hazards were	calculated for petrole	um hydrocart	ons measured	l as RRO (me	thod)						
by segregating total RRO concentrations in	to aliphatic and aroma	atic fractions,	assuming 909	% aliphatic							

hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).

NONCANCER HAZARD CALCULATIONS FOR A FUTURE INCIDENTAL VISITOR SITE 22 - Water Wells and Water Supply Building - DEEP SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

				VOC							
	Surface Water	Ingestion	Dermal	Inhalation				Pathwa	ay-Specific 1	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	ence Dose (mg/kg-d)			VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

CANCER RISK CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 27 - Diesel Fule Pump Island - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Soil Dermal	Dust Inhalation				Pathway-	Specific Ca	ncer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer Sl	ope Factor	(mg/kg-d) ⁻¹	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.28	1.1E-07	0.0E+00	8.3E-12	5.5E-02	5.5E-02	2.7E-02	6.3E-09	0.0E+00	2.2E-13	6.3E-09
Ethylbenzene	8.1	3.3E-06	0.0E+00	2.4E-10	3.9E-03	3.9E-03	3.9E-03	1.3E-08	0.0E+00	9.3E-13	1.3E-08
										ILCR	2E-08
Notes:											
^a Based on the maximum or 95 percent upper co	onfidence limit (95%	UCL) on the	mean concer	tration detected	ed at the site.			ILCR	Increment	al lifetime can	cer risk.
1) Doses and cancer risks shown only for carcino	ogenic chemicals with	n available to	kicity values.					Inc	Incomplet	e pathway.	
2) Based on the maximum or 95 percent upper co	onfidence limit (95%	UCL) on the	mean concer	tration detected	ed at the site.			mg/kg	Milligram	s per kilogram	
Doses and cancer risks shown only for carcino	ogenic chemicals with	n available to	kicity values.					mg/kg-d	Milligram	s per kilogram	per day.
3) Absorbed doses were calculated for dermal co	ntact with the medius	m, and intake	s were calcul	ated for ingest	ion or inhala	tion					
of a medium											

Cancer risks are unitless values which represent the probability of incurring an adverse health

CANCER RISK CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 27 - Diesel Fuel Pump Island - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Soil Dermal	Dust Inhalation				Pathwa	ay-Specific (ancer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer Sl	ope Factor	$(mg/kg-d)^{-1}$	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.28	3.4E-07	0.0E+00	2.5E-11	5.5E-02	5.5E-02	2.7E-02	1.9E-08	0.0E+00	6.7E-13	1.9E-08
Ethylbenzene	8.1	9.8E-06	0.0E+00	7.1E-10	3.9E-03	3.9E-03	3.9E-03	3.8E-08	0.0E+00	2.8E-12	3.8E-08
										ILCR	6E-08
Notes:											
^a Based on the maximum or 95 percent upper con	nfidence limit (95% U	CL) on the me	an concentrat	ion detected i	n soil tundra			ILCR	Incremental	lifetime cancer	risk.
and soil gravel at the site.								Inc	Incomplete	pathway.	
1) Doses and cancer risks shown only for carcinogenic chemicals with available toxicity values.									Milligrams	per kilogram.	
 Absorbed doses were calculated for dermal con of a medium. 	tact with the medium,	and intakes w	ere calculated	for ingestion	or inhalatior	1		mg/kg-d	Milligrams	per kilogram per	day.
2) Cancer risks are unitless values which represent	t the probability of ine	urring on odyg	rso hoolth								

 Cancer risks are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Cancer Risk = Exposure Dose x Cancer Slope Factor.

CANCER RISK CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 27 - Diesel Fuel Pump Island - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Soil Dermal	Dust Inhalation				Pathway	-Specific Ca	ancer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer S	lope Factor	(mg/kg-d) ⁻¹	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.28	2.8E-09	0.0E+00	8.5E-13	5.5E-02	5.5E-02	2.7E-02	1.5E-10	0.0E+00	2.3E-14	1.5E-10
Ethylbenzene	8.1	7.9E-08	0.0E+00	2.4E-11	3.9E-03	3.9E-03	3.9E-03	3.1E-10	0.0E+00	9.5E-14	3.1E-10
										ILCR	5E-10
Notes:											
 ^a Based on the maximum or 95 percent upper cont 1) Doses and cancer risks shown only for carcinoge 2) Absorbed doses were calculated for dermal conta of a medium 2) Constraining on provide any provid	fidence limit (95% UC enic chemicals with av act with the medium, a	CL) on the mo vailable toxic and intakes w	ean concentra ity values. vere calculate	tion detected	at the site. 1 or inhalatio	on		ILCR Inc mg/kg mg/kg-d	Incrementa Incomplete Milligrams Milligrams	l lifetime cance pathway. per kilogram. per kilogram p	er risk. oer day.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 27 - Diesel Fuel Pump Island - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhalation				Pathw	av-Snecific	Hazard	Chemical.
	Concentration ^a	Doco	Dorman	Doso	Doforo	nco Doso (n	aa/ka-d)	Soil	uy-opeenie	Duct	Spacific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HO
								0			`
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.28	1.0E-06	0.0E+00	5.1E-11	4.0E-03	4.0E-03	8.6E-03	2.6E-04	0.0E+00	5.9E-09	0.00026
Ethylbenzene	8.1	2.9E-05	0.0E+00	1.5E-09	1.0E-01	1.0E-01	2.9E-01	2.9E-04	0.0E+00	5.0E-09	0.00029
m,p-Xylene	25	9.2E-05	0.0E+00	4.6E-09	2.0E-01	2.0E-01	2.9E-02	4.6E-04	0.0E+00	1.6E-07	0.00046
o-Xylene	16	5.9E-05	0.0E+00	2.9E-09	2.0E-01	2.0E-01	2.9E-02	5.9E-05	5.9E-05	5.9E-05	0.000059
Toluene	7.6	2.7E-05	0.0E+00	1.4E-09	2.0E-01	2.0E-01	1.1E-01	1.4E-04	0.0E+00	1.2E-08	0.00014
POLYNUCLEAR AROMATIC HYDROCAR	BONS										
Naphthalene	191	7.0E-04	0.0E+00	3.5E-08	2.0E-02	2.0E-02	8.6E-04	3.5E-02	0.0E+00	4.0E-05	0.035
										HI	0.036
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	51,000	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	40,800	1.5E-01	Inc	7.4E-06	1.0E-01	na	2.9E-01	1.5E+00	Inc	2.5E-05	1.5
Diesel Range Organics, Aromatic	20,400	7.4E-02	Inc	3.7E-06	4.0E-02	na	5.7E-01	1.9E+00	Inc	6.5E-06	1.9
Gasoline Range Organics	491	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Gasoline Range Organics, Aliphatic	344	1.3E-03	Inc	6.2E-08	5.0E+00	na	5.3E+00	2.5E-04	Inc	1.2E-08	0.0002502
Gasoline Range Organics, Aromatic	246	8.9E-04	Inc	4.4E-08	2.0E-01	na	1.1E-01	4.5E-03	Inc	4.0E-07	0.0045
Residual Range Organics	3,459	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f
Residual Range Organics, Aliphatic	3,113	1.1E-02	Inc	5.6E-07	2.0E+00	na	na	5.7E-03	Inc	Inc	0.0057
Residual Range Organics, Aromatic	1,038	3.8E-03	Inc	1.9E-07	3.0E-02	na	na	1.3E-01	Inc	Inc	0.13
										HI	3.5
Notes:											
^a Based on the maximum or 95 percent upper confi	idence limit (95% UC	L) on the mea	an					HI	Hazard inde	ex.	
concentration detected at the site.								HQ	Hazard quo	tient.	
^b Consistent with EPA policy, lead is not evaluated	l in the cumulative HI	estimate.						Inc	Incomplete	pathway.	
° Risks associated with indicator compounds are in	cluded in cumulative	risk and haza	rd					mg/kg	Milligrams	per kilogram.	
estimates for each site. However, the health haza	rds associated with p	etroleum mixt	ures					mg/kd-d	Milligrams	per kilogram	per day.
will be evaluated and reported separately.								na	not availabl	e	1
^d Exposure dose and noncancer hazards were calcu	lated for petroleum h	ydrocarbons r	neasured as D	RO (method 81	.00)						
by segregating total DRO concentrations into ali	phatic and aromatic f	ractions, assur	ming 80% alip	ohatic							

hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c).

^e Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as GRO (method 8015)

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 27 - Diesel Fuel Pump Island - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhalation				Pathwa	y-Specific	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refer	ence Dose (n	ng/kg-d)	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ

by segregating total GRO concentrations into aliphatic and aromatic fractions, assuming 70% aliphatic

hydrocarbons and 50% aromatic hydrocarbons (ADEC, 2000c).

^f Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as RRO (method)

by segregating total RRO concentrations into aliphatic and aromatic fractions, assuming 90% aliphatic

hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

- 2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium.
- 3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 27 - Diesel Fuel Pump Island - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhalation				Pathwa	y-Specific	Hazard	Chemical-
Constitution	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose	(mg/kg-d)	Soil	Dommal	Dust Inholotion	Specific
Constituent	(mg/kg)	(mg/kg-a)	(mg/kg-a)	(mg/kg-a)	Orai	Dermai	Innalation	ingestion	Dermai	Innalation	нŲ
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.28	3.1E-06	0.0E+00	1.5E-10	4.0E-03	4.0E-03	8.6E-03	7.7E-04	0.0E+00	1.8E-08	0.00077
Ethylbenzene	8.1	8.8E-05	0.0E+00	4.4E-09	1.0E-01	1.0E-01	2.9E-01	8.8E-04	0.0E+00	1.5E-08	0.0009
m,p-Xylene	25	2.8E-04	0.0E+00	1.4E-08	2.0E-01	2.0E-01	2.9E-02	1.4E-03	0.0E+00	4.7E-07	0.0014
o-Xylene	16	1.8E-04	0.0E+00	8.8E-09	2.0E-01	2.0E-01	2.9E-02	8.9E-04	0.0E+00	3.0E-07	0.00089
Toluene	7.6	8.2E-05	0.0E+00	4.1E-09	2.0E-01	2.0E-01	1.1E-01	4.1E-04	0.0E+00	3.7E-08	0.00041
POLYNUCLEAR AROMATIC HYDROCA	RBONS										
Naphthalene	191	2.1E-03	8.6E-04	1.0E-07	2.0E-02	2.0E-02	8.6E-04	1.0E-01	4.3E-02	1.2E-04	0.15
										HI	0.15
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	51,000	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	40,800	4.5E-01	Inc	2.2E-05	1.0E-01	na	2.9E-01	4.5E+00	Inc	7.6E-05	4.5
Diesel Range Organics, Aromatic	20,400	2.2E-01	Inc	1.1E-05	4.0E-02	na	5.7E-01	5.6E+00	Inc	1.9E-05	5.6
Gasoline Range Organics	491	na ^e	na ^e	na ^e	na ^e	na ^e	nae	na ^e	na ^e	na ^e	na ^e
Gasoline Range Organics, Aliphatic	344	3.8E-03	Inc	1.9E-07	5.0E+00	na	5.3E+00	7.5E-04	Inc	3.5E-08	0.00075
Gasoline Range Organics, Aromatic	246	2.7E-03	Inc	1.3E-07	2.0E-01	na	1.1E-01	1.3E-02	Inc	1.2E-06	0.013
Residual Range Organics	3,459	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f
Residual Range Organics, Aliphatic	3,113	3.4E-02	Inc	1.7E-06	2.0E+00	na	na	1.7E-02	Inc	Inc	0.017
Residual Range Organics, Aromatic	1,038	1.1E-02	Inc	5.6E-07	3.0E-02	na	na	3.8E-01	Inc	Inc	0.38
										HI	10
lotes:											
^a Based on the maximum or 95 percent upper con-	fidence limit (95% UCI	L) on the mea	n					HI	Hazard ind	lex.	
concentration detected at the site.								HQ	Hazard qu	otient.	
^b Consistent with EPA policy, lead is not evaluate	d in the cumulative HI	estimate.						Inc	Incomplete	e pathway.	
^c Risks associated with indicator compounds are i	ncluded in cumulative	isk and hazar	d					mg/kg	Milligram	s per kilogram	l .
estimates for each site. However, the health haz	ards associated with pe	troleum mixtu	ires					mg/kd-d	Milligram	s per kilogram	per day.
will be evaluated and reported separately.								na	not availab	le	

^d Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as DRO (method 8100)

by segregating total DRO concentrations into aliphatic and aromatic fractions, assuming 80% aliphatic

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 27 - Diesel Fuel Pump Island - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

		Soil		Dust						
	Soil	Ingestion	Dermal	Inhalation	Inhalation		Pathwa	y-Specific	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refer	ence Dose (mg/kg-d)	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal Inhalation	Ingestion	Dermal	Inhalation	HQ

hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c).

e Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as GRO (method 8015)

by segregating total GRO concentrations into aliphatic and aromatic fractions, assuming 70% aliphatic

hydrocarbons and 50% aromatic hydrocarbons (ADEC, 2000c).

^f Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as RRO (method)

by segregating total RRO concentrations into aliphatic and aromatic fractions, assuming 90% aliphatic

hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium.

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 27 - Diesel Fuel Pump Island - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhalation				Path	way-Specific H	Iazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	ence Dose (r	ng/kg-d)	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	нQ
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.28	8.1E-09	0.0E+00	2.5E-12	4.0E-03	4.0E-03	8.6E-03	2.0E-06	0.0E+00	2.9E-10	0.0000020
Ethylbenzene	8.1	2.3E-07	0.0E+00	7.1E-11	1.0E-01	1.0E-01	2.9E-01	2.3E-06	0.0E+00	2.4E-10	0.0000023
m,p-Xylene	25	7.2E-07	0.0E+00	2.2E-10	2.0E-01	2.0E-01	2.9E-02	3.6E-06	0.0E+00	7.7E-09	0.0000036
o-Xylene	16	4.7E-07	0.0E+00	1.4E-10	2.0E-01	2.0E-01	2.9E-02	2.3E-06	0.0E+00	4.9E-09	0.0000023
Toluene	7.6	2.2E-07	0.0E+00	6.6E-11	2.0E-01	2.0E-01	1.1E-01	1.1E-06	0.0E+00	6.0E-10	0.0000011
POLYNUCLEAR AROMATIC HYDROCAL	RBONS										
Naphthalene	191	5.5E-06	9.4E-06	1.7E-09	2.0E-02	2.0E-02	8.6E-04	2.7E-04	4.7E-04	2.0E-06	0.00074
										HI	0.00075
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	51,000	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	40,800	1.2E-03	Inc	3.6E-07	1.0E-01	na	2.9E-01	1.2E-02	Inc	1.2E-06	0.012
Diesel Range Organics, Aromatic	20,400	5.8E-04	Inc	1.8E-07	4.0E-02	na	5.7E-01	1.5E-02	Inc	3.1E-07	0.015
Gasoline Range Organics	491	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Gasoline Range Organics, Aliphatic	344	9.8E-06	Inc	3.0E-09	5.0E+00	na	5.3E+00	2.0E-06	Inc	5.7E-10	0.0000020
Gasoline Range Organics, Aromatic	246	7.0E-06	Inc	2.2E-09	2.0E-01	na	1.1E-01	3.5E-05	Inc	2.0E-08	0.000035
Residual Range Organics	3.459	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f
Residual Range Organics, Aliphatic	3,113	8.9E-05	Inc	2.7E-08	2.0E+00	na	na	4.4E-05	Inc	Inc	4.4E-05
Residual Range Organics, Aromatic	1,038	3.0E-05	Inc	9.1E-09	3.0E-02	na	na	9.9E-04	Inc	Inc	0.00099
										НІ	0.027
Notes:											01027
^a Based on the maximum or 95 percent upper conf	idence limit (95% U	CL) on the m	ean					HI	Hazard index		
concentration detected at the site.								HQ	Hazard quotie	ent.	
^b Consistent with EPA policy, lead is not evaluated	l in the cumulative F	II estimate						Inc	Incomplete p	athway.	
^c Risks associated with indicator compounds are in	cluded in cumulativ	e risk and ha	zard					ma/ka	Milligrams	r kilogram	
estimates for each site. However, the health have	ards associated with	netroleum mi	vtures					nig/Kg	winingrams pe		
	indo associated with j	peu oleuni III.	AUTES					mg/kd-d	Milligrams pe	er kilogram pei	day.
will be evaluated and reported separately.								na	not available		

^d Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as DRO (method 8100)

by segregating total DRO concentrations into aliphatic and aromatic fractions, assuming 80% aliphatic

hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c).

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 27 - Diesel Fuel Pump Island - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

		Soil		Dust							
	Soil	Ingestion	Dermal	Inhalation			-	Pathw	ay-Specific	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	ence Dose (r	ng/kg-d)	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ

e Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as GRO (method 8015)

by segregating total GRO concentrations into aliphatic and aromatic fractions, assuming 70% aliphatic

hydrocarbons and 50% aromatic hydrocarbons (ADEC, 2000c).

^f Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as RRO (method)

by segregating total RRO concentrations into aliphatic and aromatic fractions, assuming 90% aliphatic

hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium
CANCER RISK CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 27 - Diesel Fuel Pump Island - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Groundwater	Ingestion	Dermal	VOC Inhalation				Pathway	-Specific Ca	nncer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer S	lope Factor	$(mg/kg-d)^{-1}$	_		VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.030	1.1E-04	3.2E-05	3.4E-04	5.5E-02	5.5E-02	2.7E-02	6.3E-06	1.8E-06	9.3E-06	1.7E-05
Ethylbenzene	0.12	4.6E-04	4.6E-04	2.1E-03	3.9E-03	3.9E-03	3.9E-03	1.8E-06	1.8E-06	8.1E-06	1.2E-05
										ILCR	3E-05
Notes:											
^a Based on the maximum or 95 percent upper co	onfidence limit (95%	UCL) on the	e mean					ILCR	Incrementa	l lifetime cano	er risk.
concentration detected at the site.								Inc	Incomplete	pathway.	
1) Doses and cancer risks shown only for carcino	genic chemicals wit	h available to	xicity values	3.				mg/L	Milligrams	per liter.	
2) Absorbed doses were calculated for dermal con- calculated for ingestion or inhalation of a med	ntact with the mediu lium.	ım, and intak	es were					mg/kg-d VOC	Milligrams Volatile org	per kilogram ganic compou	per day. nd.
3) Cancer risks are unitless values which represent	nt the probability of	incurring an	adverse healt	h							

CANCER RISK CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 27 - Diesel Fuel Pump Island - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Groundwater	Ingestion	Dermal	VOC Inhalation				Pathwa	y-Specific Ca	ncer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer S	lope Factor	(mg/kg-d) ⁻¹			VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.030	4.5E-04	1.3E-04	1.3E-03	5.5E-02	5.5E-02	2.7E-02	2.5E-05	7.0E-06	3.6E-05	6.8E-05
Ethylbenzene	0.12	1.8E-03	1.8E-03	8.0E-03	3.9E-03	3.9E-03	3.9E-03	7.0E-06	7.0E-06	3.1E-05	4.5E-05
										ILCR	1E-04
Notes:											
^a Based on the maximum or 95 percent upper conf	fidence limit (95% U	JCL) on the r	nean					ILCR	Incremental	lifetime cancer	risk.
concentration detected at the site.								Inc	Incomplete p	oathway.	
1) Doses and cancer risks shown only for carcinogenic chemicals with available toxicity values.								mg/L	Milligrams p	ber liter.	
2) Absorbed doses were calculated for dermal conta	act with the medium	n, and intakes	were					mg/kg-d	Milligrams p	er kilogram pe	r day.
calculated for ingestion or inhalation of a mediu	ım.							VOC	Volatile orga	anic compound.	
3) Cancer risks are unitless values which represent	the probability of in	curring an ad	verse health								

CANCER RISK CALCULATIONS FOR A FUTURE INCIDENTAL VISITOR SITE 27 - Diesel Fuel Pump Island - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Pathway	-Specific Ca	ncer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer S	lope Factor	$(mg/kg-d)^{-1}$	_		VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.030	1.2E-05	2.4E-06	3.5E-05	5.5E-02	5.5E-02	2.7E-02	6.5E-07	1.3E-07	9.5E-07	1.7E-06
Ethylbenzene	0.12	4.7E-05	3.5E-05	2.1E-04	3.9E-03	3.9E-03	3.9E-03	1.8E-07	1.4E-07	8.2E-07	1.1E-06
										ILCR	3E-06
Notes:											
^a Based on the maximum or 95 percent upper conf	idence limit (95% U	JCL) on the n	nean					ILCR	Incrementa	l lifetime cance	er risk.
concentration detected at the site.								Inc	Incomplete	pathway.	
1) Doses and cancer risks shown only for carcinogenic chemicals with available toxicity values.								mg/L Milligrams per liter.			
2) Absorbed doses were calculated for dermal contact with the medium, and intakes were								mg/kg-d	Milligrams	per kilogram p	er day.
calculated for ingestion or inhalation of a mediu	m.							VOC	Volatile org	ganic compoun	d.
3) Cancer risks are unitless values which represent	the probability of in	curring an ad	verse health								

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 27 - Diesel Fuel Pump Island - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Pathy	vay-Specific 1	Hazard	Chemical-
Constituent	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (Dermal	mg/kg-d) Inhalation	Ingestion	Dermal	VOC Inhalation	Specific HO
	(iiig/12)	(ing/kg-u)	(ing/kg-u)	(IIIg/Kg-u)	Ofui	Dermar	Innulation	ingestion	Derma	Innutation	nų
INORGANICS		h	h	h	h	h	h	h	h	h	h
Lead	0.19	na	na	na	na	na	na	na	na	na	na
Lead, Dissolved	0.0020	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Manganese	0.20	1.7E-03	8.1E-05	Inc	1.4E-01	1.4E-01	1.4E-05	1.2E-02	5.8E-04	Inc	0.013
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.03	2.5E-04	2.5E-04	2.1E-03	4.0E-03	4.0E-03	8.6E-03	6.3E-02	6.2E-02	2.5E-01	0.37
Ethylbenzene	0.12	1.0E-03	3.5E-03	1.3E-02	1.0E-01	1.0E-01	2.9E-01	1.0E-02	3.5E-02	4.4E-02	0.089
										HI	0.47
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	64	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	51	4.3E-01	Inc	2.9E-01	1.0E-01	na	2.9E-01	4.3E+00	Inc	1.0E+00	5.3
Diesel Range Organics, Aromatic	26	2.2E-01	Inc	1.4E-01	4.0E-02	na	5.7E-01	5.4E+00	Inc	2.5E-01	5.7
Gasoline Range Organics	1.7	nae	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Gasoline Range Organics, Aliphatic	1.2	9.8E-03	Inc	1.3E-01	5.0E+00	na	5.3E+00	2.0E-03	Inc	2.4E-02	0.026
Gasoline Range Organics, Aromatic	0.83	7.0E-03	Inc	9.2E-02	2.0E-01	na	1.1E-01	3.5E-02	Inc	8.4E-01	0.87
Residual Range Organics	1.6	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f
Residual Range Organics, Aliphatic	1.4	1.2E-02	Inc	8.5E-06	2.0E+00	na	na	6.1E-03	Inc	Inc	0.0061
Residual Range Organics, Aromatic	0.5	4.1E-03	Inc	2.8E-06	3.0E-02	na	na	1.4E-01	Inc	Inc	0.14
										HI	12
lotes:											
^a Based on the maximum or 95 percent upper c	onfidence limit (95%	6 UCL) on th	ie mean					HI	Hazard inde	х.	
concentration detected at the site.								HQ	Hazard quot	ient.	
^b Consistent with EPA policy, lead is not evalu	ated in the cumulati	ve HI estimat	e.					Inc	Incomplete r	oathway.	
^c Risks associated with indicator compounds an	e included in cumul	ative risk and	l hazard					mg/L	Milligrams r	ber liter.	
estimates for each site. However, the health h	azards associated w	ith petroleun	n mixtures					mg/kd-d	Milligrams r	per kilogram n	er dav.
will be evaluated and reported separately.								na	not available	er knogruni p	er auy.
^d Exposure dose and noncancer hazards were c	alculated for petrole	um hydrocarl	oons measure	d as DRO (me	ethod 8100)		VOC	Volatile orga	anic compound	1.

by segregating total DRO concentrations into aliphatic and aromatic fractions, assuming 80% aliphatic

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 27 - Diesel Fuel Pump Island - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingostion	Dormal	VOC Inhelation			р	athway Spacific	Hozord	Chomical
	Surface water	ingestion	Dermai	malation			r	athway-specific	падаги	Chemical-
	Concentration ^a	Dose	Dose	Dose	Reference Dose (mg/kg-d)		l)		VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal Inhala	tion Ingest	ion Dermal	Inhalation	HQ

hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c).

e Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as GRO (method 8015)

by segregating total GRO concentrations into aliphatic and aromatic fractions, assuming 70% aliphatic

hydrocarbons and 50% aromatic hydrocarbons (ADEC, 2000c).

^f Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as RRO (method)

by segregating total RRO concentrations into aliphatic and aromatic fractions, assuming 90% aliphatic

hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 27 - Diesel Fuel Pump Island - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Pathy	way-Specific 1	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (mg/kg-d)			VOC	Specific
Constituent	(mg /L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Innalation	Ingestion	Dermal	Innalation	HQ
INORGANICS											
Lead	0.19	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Lead, Dissolved	0.0020	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Manganese	0.20	6.7E-03	3.2E-04	Inc	1.4E-01	1.4E-01	1.4E-05	4.8E-02	2.3E-03	Inc	0.050
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.03	9.9E-04	9.6E-04	1.3E-03	4.0E-03	4.0E-03	8.6E-03	2.5E-01	2.4E-01	1.6E-01	0.64
Ethylbenzene	0.12	3.9E-03	1.4E-02	8.0E-03	1.0E-01	1.0E-01	2.9E-01	3.9E-02	1.4E-01	2.8E-02	0.20
										HI	0.90
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	64	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	51	1.7E+00	Inc	1.1E+00	1.0E-01	na	2.9E-01	1.7E+01	Inc	3.9E+00	21
Diesel Range Organics, Aromatic	26	8.4E-01	Inc	5.6E-01	4.0E-02	na	5.7E-01	2.1E+01	Inc	9.8E-01	22
Gasoline Range Organics	1.7	nae	nae	nae	na ^e	na ^e	na ^e	nae	na ^e	na ^e	nae
Gasoline Range Organics, Aliphatic	1.2	3.8E-02	Inc	5.0E-01	5.0E+00	na	5.3E+00	7.6E-03	Inc	9.5E-02	0.10
Gasoline Range Organics, Aromatic	0.83	2./E-02	Inc	3.6E-01	2.0E-01 f	na	1.1E-01 f	1.4E-01 f	Inc	3.3E+00	3.4 f
Residual Range Organics	1.6	na^{-}	na	na 2 2E 05	na^{-}	na	na	na	na	na	na na
Residual Range Organics, Amphatic	1.4	4.7E-02	Inc	5.5E-05 1.1E-05	2.0E+00 3.0E-02	na	na	2.4E-02 5.3E-01	Inc	na	0.024
Residual Range Organies, Afoniatie	0.5	1.0E-02	Inc	1.1L-05	5.0E-02	па	IIa	5.52-01	inc	IIa	0.55
N. 4										HI	47
Notes:			.1					* * *	** 1.1		
Based on the maximum or 95 percent upper	confidence limit (93	5% UCL) on	the mean					HI	Hazard inde	X.	
concentration detected at the site.								HQ	Hazard quot	ient.	
Consistent with EPA policy, lead is not eval	uated in the cumula	tive HI estima	ate.					Inc	Incomplete p	oathway.	
^c Risks associated with indicator compounds a	are included in cum	ulative risk ar	nd hazard					mg/L	Milligrams p	ber liter.	
estimates for each site. However, the health	hazards associated	with petroleu	m mixtures					mg/kd-d	Milligrams p	oer kilogram p	er day.
will be evaluated and reported separately.								na	not available	e	
^d Exposure dose and noncancer hazards were	calculated for petrol	leum hydroca	rbons measur	red as DRO (r	method 810	0)		VOC	Volatile orga	anic compound	d.
by segregating total DRO concentrations int	to aliphatic and aror	natic fraction	s, assuming 8	0% aliphatic							

hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c).

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 27 - Diesel Fuel Pump Island - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

				VOC						
	Surface Water	Ingestion	Dermal	Inhalation			Pathw	ay-Specific	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	ence Dose (mg/kg-d)	_		VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal Inhalation	Ingestion	Dermal	Inhalation	HQ

e Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as GRO (method 8015)

by segregating total GRO concentrations into aliphatic and aromatic fractions, assuming 70% aliphatic

hydrocarbons and 50% aromatic hydrocarbons (ADEC, 2000c).

f Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as RRO (method)

by segregating total RRO concentrations into aliphatic and aromatic fractions, assuming 90% aliphatic

hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

NONCANCER HAZARD CALCULATIONS FOR A FUTURE INCIDENTAL VISITOR SITE 27 - Diesel Fuel Pump Island - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Path	wav-Specific	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose ((mg/kg-d)		~ r	VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
INORGANICS											
Lead	0.19	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Lead, Dissolved	0.002	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Manganese	0.20	2.3E-04	2.3E-06	Inc	1.4E-01	1.4E-01	1.4E-05	1.7E-03	1.7E-05	Inc	0.0017
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.03	3.4E-05	7.1E-06	1.0E-04	4.0E-03	4.0E-03	8.6E-03	8.6E-03	1.8E-03	1.2E-02	0.022
Ethylbenzene	0.12	1.4E-04	1.0E-04	6.2E-04	1.0E-01	1.0E-01	2.9E-01	1.4E-03	1.0E-03	2.1E-03	0.0045
										HI	0.0017
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	64	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	51.2	5.8E-02	Inc	1.4E-02	1.0E-01	na	2.9E-01	5.8E-01	Inc	4.8E-02	0.63
Diesel Range Organics, Aromatic	25.6	2.9E-02	Inc	7.0E-03	4.0E-02	na	5.7E-01	7.3E-01	Inc	1.2E-02	0.74
Gasoline Range Organics	1.7	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Gasoline Range Organics, Aliphatic	1.155	1.3E-03	Inc	6.3E-03	5.0E+00	na	5.3E+00	2.6E-04	Inc	1.2E-03	0.0014
Gasoline Range Organics, Aromatic	0.825	9.4E-04	Inc	4.5E-03	2.0E-01	na	1.1E-01	4.7E-03	Inc	4.1E-02	0.045
Residual Range Organics	1.6	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f
Residual Range Organics, Aliphatic	1.4	1.6E-03	Inc	4.1E-07	2.0E+00	na	na	8.2E-04	Inc	Inc	0.00082
Residual Range Organics, Aromatic	0.5	5.5E-04	Inc	1.4E-07	3.0E-02	na	na	1.8E-02	Inc	Inc	0.018
										HI	1.4
lotes:											
" Based on the maximum or 95 percent upper c	confidence limit (95%	6 UCL) on th	e mean					HI	Hazard inde	х.	
concentration detected at the site.								HQ	Hazard quot	ient.	
^b Consistent with EPA policy, lead is not evalu	ated in the cumulativ	ve HI estimat	e.					Inc	Incomplete J	oathway.	
^c Risks associated with indicator compounds an	re included in cumul	ative risk and	hazard					mg/L	Milligrams p	ber liter.	
estimates for each site. However, the health h	hazards associated w	ith petroleum	mixtures					mg/kd-d	Milligrams r	er kilogram p	er day.
will be evaluated and reported separately.								na not available			
^d Exposure dose and noncancer hazards were c	alculated for petrole	um hydrocart	ons measured	l as DRO (me	thod 8100)			VOC	Volatile org	h	
by segregating total DRO concentrations into	o aliphatic and aroma	atic fractions,	assuming 80	% aliphatic	,			100	, onume orgo	ane compound	<i></i>

NONCANCER HAZARD CALCULATIONS FOR A FUTURE INCIDENTAL VISITOR SITE 27 - Diesel Fuel Pump Island - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Pathwa	ay-Specific I	Hazard	Chemical-
Constituent	Concentration ^a	Dose	Dose	Dose	Reference Dose (mg/kg-d)		mg/kg-d)	Ingestion	Dermal	VOC Inhalation	Specific HO
Constituent	(Ing/L)	(Ing/kg-u)	(ing/kg-u)	(Ing/kg-u)	Ulai	Dermai	Innalation	ingestion	Dermai	Innalation	пų

hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c).

e Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as GRO (method 8015)

by segregating total GRO concentrations into aliphatic and aromatic fractions, assuming 70% aliphatic

hydrocarbons and 50% aromatic hydrocarbons (ADEC, 2000c).

^f Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as RRO (method)

by segregating total RRO concentrations into aliphatic and aromatic fractions, assuming 90% aliphatic

hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

CANCER RISK CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 28 - Drainage Basin - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Soil Dermal	Dust Inhalation				Pathway-	Specific Ca	ncer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer SI	ope Factor	(mg/kg-d) ⁻¹	Soil	- F	Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
								0			
INORGANICS											
Beryllium	1.5	6.1E-07	0.0E+00	4.5E-11	na	na	8.4E+00	na	na	3.7E-10	3.7E-10
VOLATILE ORGANIC COMPOUNDS											
Ethylbenzene	1.1	4.4E-07	0.0E+00	3.2E-11	3.9E-03	3.9E-03	3.9E-03	1.7E-09	0.0E+00	1.3E-13	1.7E-09
Methylene chloride	0.16	6.4E-08	0.0E+00	4.7E-12	7.5E-03	7.5E-03	1.6E-03	4.8E-10	0.0E+00	7.7E-15	4.8E-10
POLYCHLORINATED BIPHENYLS											
PCB-1254 (Aroclor 1254)	0.47	1.9E-07	1.0E-07	1.4E-11	2.0E+00	2.0E+00	2.0E+00	3.8E-07	2.1E-07	2.8E-11	5.9E-07
POLYNUCLEAR AROMATIC HYDROCARBONS											
Benzo(a)anthracene	4.4	1.8E-06	9.1E-07	1.3E-10	7.3E-01	7.3E-01	7.3E-01	1.3E-06	6.6E-07	9.4E-11	2.0E-06
Benzo(a)pyrene	2.3	9.3E-07	4.7E-07	6.8E-11	7.3E+00	7.3E+00	7.3E+00	6.8E-06	3.5E-06	4.9E-10	1.0E-05
Benzo(b)fluoranthene	2.6	1.0E-06	5.4E-07	7.6E-11	7.3E-01	7.3E-01	7.3E-01	7.6E-07	3.9E-07	5.6E-11	1.2E-06
										ILCR	1E-05
Notes:											
^a Based on the maximum or 95 percent upper confidence lim	nit (95% UCL) on th	ne mean conc	entration det	ected at the si	te.			ILCR	Increment	al lifetime can	cer risk.
1) Doses and cancer risks shown only for carcinogenic chemi	cals with available	toxicity value	s.					Inc	Incomplet	e pathway.	
2) Based on the maximum or 95 percent upper confidence lim	it (95% UCL) on the	ne mean conc	entration det	ected at the si	te.			mg/kg	Milligram	s per kilogram	
Doses and cancer risks shown only for carcinogenic chemi	cals with available	toxicity value	s.					mg/kg-d	Milligram	s per kilogram	per day.

Not available.

na

3) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

Cancer risks are unitless values which represent the probability of incurring an adverse health

CANCER RISK CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 28 - Drainage Basin - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Soil Dermal	Dust Inhalation				Pathway	-Specific Ca	ncer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer Sl	ope Factor	(mg/kg-d) ⁻¹	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
INORGANICS Beryllium	1.5	1.5E-08	0.0E+00	4.6E-12	na	na	8.4E+00	na	na	3.8E-11	3.8E-11
VOLATILE ORGANIC COMPOUNDS											
Ethylbenzene	1.1	1.1E-08	0.0E+00	3.3E-12	3.9E-03	3.9E-03	3.9E-03	4.2E-11	0.0E+00	1.3E-14	4.2E-11
Methylene chloride	0.16	1.6E-09	0.0E+00	4.8E-13	7.5E-03	7.5E-03	1.6E-03	1.2E-11	0.0E+00	7.9E-16	1.2E-11
POLYCHLORINATED BIPHENYLS											
PCB-1254 (Aroclor 1254)	0.47	4.6E-09	8.5E-09	1.4E-12	2.0E+00	2.0E+00	2.0E+00	9.2E-09	1.7E-08	2.8E-12	2.6E-08
POLYNUCLEAR AROMATIC HYDROCARBONS											
Benzo(a)anthracene	4.4	4.3E-08	8.0E-08	1.3E-11	7.3E-01	7.3E-01	7.3E-01	3.1E-08	5.8E-08	9.7E-12	9.0E-08
Benzo(a)pyrene	2.3	2.3E-08	4.2E-08	6.9E-12	7.3E+00	7.3E+00	7.3E+00	1.6E-07	3.0E-07	5.1E-11	4.7E-07
Benzo(b)fluoranthene	2.6	2.5E-08	4.7E-08	7.8E-12	7.3E-01	7.3E-01	7.3E-01	1.9E-08	3.4E-08	5.7E-12	5.3E-08
										ILCR	6E-07

Notes:

^a Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected at the site.

1) Doses and cancer risks shown only for carcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

 Cancer risks are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Cancer Risk = Exposure Dose x Cancer Slope Factor.
 ILCR
 Incremental lifetime cancer risk.

 Inc
 Incomplete pathway.

 mg/kg
 Milligrams per kilogram.

 mg/kg-d
 Milligrams per kilogram per day.

 na
 Not available.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 28 - Drainage Basin - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhelation				Pathy	29v-Specific	Hazard	Chemical
	Concentration ^a	Doco	Dermai	Dogo	Dofono	nao Dogo (m	ag/lag d)	- I atily Soil	ay-specific	Duct	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
INORGANICS											
Beryllium	1.5	5.5E-06	0.0E+00	2.7E-10	2.0E-03	2.0E-03	5.7E-06	2.8E-03	0.0E+00	4.8E-05	0.0028
Thallium	0.26	9.5E-07	0.0E+00	4.7E-11	7.0E-05	7.0E-05	7.0E-05	1.4E-02	0.0E+00	6.7E-07	0.014
VOLATILE ORGANIC COMPOUNDS											
Ethylbenzene	1.1	4.0E-06	0.0E+00	2.0E-10	1.0E-01	1.0E-01	2.9E-01	4.0E-05	0.0E+00	6.9E-10	0.000040
Methylene chloride	0.16	5.8E-07	0.0E+00	2.9E-11	6.0E-02	6.0E-02	8.6E-01	9.7E-06	0.0E+00	3.4E-11	0.000010
POLYCHLORINATED BIPHENYLS											
PCB-1254 (Aroclor 1254)	0.47	1.7E-06	7.6E-07	8.5E-11	2.0E-05	2.0E-05	2.0E-05	8.6E-02	3.8E-02	4.3E-06	0.12
										HI	0.14
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	92,650	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	74,120	2.7E-01	Inc	1.3E-05	1.0E-01	na	2.9E-01	2.7E+00	Inc	4.6E-05	2.7
Diesel Range Organics, Aromatic	37,060	1.3E-01	Inc	6.7E-06	4.0E-02	na	5.7E-01	3.4E+00	Inc	1.2E-05	3.4
Gasoline Range Organics	120	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Gasoline Range Organics, Aliphatic	84	3.1E-04	Inc	1.5E-08	5.0E+00	na	5.3E+00	6.1E-05	Inc	2.9E-09	0.000061
Gasoline Range Organics, Aromatic	60	2.2E-04	Inc	1.1E-08	2.0E-01	na	1.1E-01	1.1E-03	Inc	9.9E-08	0.0011
Residual Range Organics	2,073	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f
Residual Range Organics, Aliphatic	1,866	6.8E-03	Inc	3.4E-07	2.0E+00	na	na	3.4E-03	Inc	Inc	0.0034
Residual Range Organics, Aromatic	622	2.3E-03	Inc	1.1E-07	3.0E-02	na	na	7.5E-02	Inc	Inc	0.075
										HI	6.2
Notes:											
^a Based on the maximum or 95 percent upper cont	fidence limit (95% UC	CL) on the me	an					HI	Hazard ind	ex.	
concentration detected at the site.								HQ	Hazard quo	tient.	
^b Consistent with EPA policy, lead is not evaluate	d in the cumulative HI	l estimate.						Inc	Incomplete	pathway.	
^c Risks associated with indicator compounds are i	ncluded in cumulative	risk and haza	ırd					mg/kg	Milligrams	per kilogram.	
estimates for each site. However, the health haz	ards associated with p	etroleum mixt	tures					mg/kd-d	Milligrams	per kilogram	per day.
will be evaluated and reported separately.								na	not availab	le	

^d Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as DRO (method 8100)

by segregating total DRO concentrations into aliphatic and aromatic fractions, assuming 80% aliphatic

hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c).

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 28 - Drainage Basin - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhalation				Pathwa	y-Specific	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	ence Dose (m	ng/kg-d)	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ

e Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as GRO (method 8015)

by segregating total GRO concentrations into aliphatic and aromatic fractions, assuming 70% aliphatic

hydrocarbons and 50% aromatic hydrocarbons (ADEC, 2000c).

^f Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as RRO (method) by segregating total RRO concentrations into aliphatic and aromatic fractions, assuming 90% aliphatic hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium.

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 28 - Drainage Basin - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhalation				Path	way-Snecific F	Iazard	Chemical.
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (r	ng/kg_d)	Soil	way-opeenie i	Duct	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
NODCANICS											
Bayllium	1.5	43E08	$0.0E \pm 0.0$	13E 11	2 OF 03	2 OF 03	5 7E 06	2 2E 05	$0.0E \pm 0.0$	2 3E 06	0.000024
Thallium	0.26	4.3E-08 7.4E-09	0.0E+00	2.3E-12	7.0E-05	7.0E-05	7.0E-05	1.1E-04	0.0E+00	3.3E-08	0.00011
VOLATH E ORGANIC COMPOUNDS											
Ethylbenzene	1.1	3.1E-08	0.0E+00	9.7E-12	1.0E-01	1.0E-01	2.9E-01	3.1E-07	0.0E+00	3.3E-11	0.00000031
Methylene chloride	0.16	4.6E-09	0.0E+00	1.4E-12	6.0E-02	6.0E-02	8.6E-01	7.6E-08	0.0E+00	1.6E-12	0.00000076
POLYCHLORINATED BIPHENYLS											
PCB-1260 (Aroclor 1260)	0.47	1.3E-08	2.5E-08	4.1E-12	2.0E-05	2.0E-05	2.0E-05	6.7E-04	1.2E-03	2.1E-07	0.0019
										HI	0.0020
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	92,650	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	74,120	2.1E-03	Inc	6.5E-07	1.0E-01	na	2.9E-01	2.1E-02	Inc	2.2E-06	0.021
Diesel Range Organics, Aromatic	37,060	1.1E-03	Inc	3.3E-07	4.0E-02	na	5.7E-01	2.6E-02	Inc	5.7E-07	0.026
Gasoline Range Organics	120	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Gasoline Range Organics, Aliphatic	84	2.4E-06	Inc	7.4E-10	5.0E+00	na	5.3E+00	4.8E-07	Inc	1.4E-10	0.00000048
Gasoline Range Organics, Aromatic	60	1.7E-06	Inc	5.3E-10	2.0E-01	na	1.1E-01	8.6E-06	Inc	4.8E-09	0.0000086
Residual Range Organics	2,073	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f
Residual Range Organics, Aliphatic	1,866	5.3E-05	Inc	1.6E-08	2.0E+00	na	na	2.7E-05	Inc	Inc	0.000027
Residual Range Organics, Aromatic	622	1.8E-05	Inc	5.5E-09	3.0E-02	na	na	5.9E-04	Inc	Inc	0.00059
										HI	0.048
Notes:											
^a Based on the maximum or 95 percent upper con	fidence limit (95% U	CL) on the m	ean					HI	Hazard index		
concentration detected at the site.								HQ	Hazard quotie	ent.	
^b Consistent with EPA policy, lead is not evaluate	d in the cumulative F	II estimate.						Inc	Incomplete pa	athway.	
^c Risks associated with indicator compounds are i	ncluded in cumulativ	e risk and haz	zard					mg/kg	Milligrams pe	er kilogram	
estimates for each site. However, the health haz	ards associated with	petroleum miz	xtures					mg/kd-d	Milligrams pe	er kilogram pe	r day.
will be evaluated and reported separately.								na	not available		·

^d Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as DRO (method 8100)

by segregating total DRO concentrations into aliphatic and aromatic fractions, assuming 80% aliphatic

hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c).

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 28 - Drainage Basin - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

		Soil		Dust							
	Soil	Ingestion	Dermal	Inhalation	-			Pathw	ay-Specific l	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	ence Dose (n	ng/kg-d)	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ

e Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as GRO (method 8015)

by segregating total GRO concentrations into aliphatic and aromatic fractions, assuming 70% aliphatic

hydrocarbons and 50% aromatic hydrocarbons (ADEC, 2000c).

^f Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as RRO (method)

by segregating total RRO concentrations into aliphatic and aromatic fractions, assuming 90% aliphatic

hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).

^g DRO_Aliphatic screened out during Tier I selection.

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

CANCER RISK CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 28 - Drainage Basin - SEDIMENT NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Sediment	Sediment Ingestion	Sediment Dermal	Dust Inhalation	t ion			Pathway-S	Specific Ca	ıcer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer Sl	ope Factor	(mg/kg-d) ⁻¹	Sediment	•	Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.050	2.0E-08	0.0E+00	1.5E-12	5.5E-02	5.5E-02	2.7E-02	1.1E-09	0.0E+00	4.0E-14	1.1E-09
Ethylbenzene	1.8	7.1E-07	0.0E+00	5.2E-11	3.9E-03	3.9E-03	3.9E-03	2.8E-09	0.0E+00	2.0E-13	2.8E-09
DOL VALUELEAD ADOMATIC HVDDOCADDONS											
PULYNULLEAK AKUMATIC HYDKULAKDUNS			2 25 05	4 55 11	5 35 61	5 35 61	5 6 1	4 55 05		0.05.11	< 0E 05
Benzo(a)anthracene	1.5	6.2E-07	3.2E-07	4.5E-11	7.3E-01	7.3E-01	7.3E-01	4.5E-07	2.3E-07	3.3E-11	6.9E-07
Benzo(a)pyrene	1.4	5.5E-07	2.8E-07	4.0E-11	7.3E+00	7.3E+00	7.3E+00	4.0E-06	2.0E-06	2.9E-10	6.0E-06
Benzo(b)fluoranthene	1.5	6.0E-07	3.1E-07	4.4E-11	7.3E-01	7.3E-01	7.6E-01	4.4E-07	2.2E-07	3.3E-11	6.6E-07
Ideno(1,2,3-cd)pyrene	1.2	4.8E-07	2.5E-07	3.5E-11	7.3E-01	7.3E-01	7.3E-01	3.5E-07	1.8E-07	2.6E-11	5.3E-07
POLYCHLORINATED BIPHENYLS											
PCB-1254 (Aroclor 1254)	0.16	6.6E-08	3.6E-08	4.8E-12	2.0E+00	2.0E+00	2.0E+00	1.3E-07	7.2E-08	9.6E-12	2.0E-07
PCB-1260 (Aroclor 1260)	0.52	2.1E-07	1.2E-07	1.5E-11	2.0E+00	2.0E+00	2.0E+00	4.2E-07	2.3E-07	3.1E-11	6.5E-07
PESTICIDES											
hete BHC	0.010	4 OF 00	6 3E 10	2 OF 13	1.8E+00	1.8E+00	1.0E+00	73E00	1 1E 00	5.6E 13	8 4E 00
Deta-BHC	0.010	4.0E-09	1 4E 00	2.9E-13	1.2E+00	1.00	1.95+00	7.5E-09	1.112-09	3.0E-13	6.4E-07
gamma-BHC (Lindane)	0.0065	2.6E-09	1.4E-09	1.9E-13	1.3E+00	1.3E+00	1.3E+00	3.4E-09	1.9E-09	2.5E-15	5.3E-09
										ILCR	9E-06

Notes:

^a Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected at the site.

1) Doses and cancer risks shown only for carcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

 Cancer risks are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Cancer Risk = Exposure Dose x Cancer Slope Factor. ILCRIncremental lifetime cancer risk.IncIncomplete pathway.mg/kgMilligrams per kilogram.mg/kg-dMilligrams per kilogram per day.naNot available.

CANCER RISK CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 28 - Drainage Basin - SEDIMENT NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Sediment	Sediment Ingestion	Sediment Dermal	Dust Inhalation				Pathway	-Specific Ca	ncer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer Sl	ope Factor	(mg/kg-d) ⁻¹	Sediment		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
VOLATH F ODCANIC COMPOLINDS											
Panzana	0.050	4 0E 10	0.0E+00	1 5E 12	2 OF 02	2 OF 02	2 7E 02	1 4E 12	0.0E+00	4 1E 15	1 4E 12
Ethelbarrene	0.050	4.9E-10	0.0E+00	1.3E-13	2.9E-03	2.9E-05	2.7E-02	1.4E-12 1.2E 10	0.0E+00	4.1E-15	1.4E-12 1.2E-10
Etnylbenzene	1.8	1./E-08	0.0E+00	5.3E-12	7.5E-03	7.5E-03	1.6E-03	1.3E-10	0.0E+00	8.8E-15	1.3E-10
POLYNUCLEAR AROMATIC HYDROCARBONS											
Benzo(a)anthracene	1.5	1.5E-08	2.6E-08	4.7E-12	7.3E-01	7.3E-01	7.3E-01	1.1E-08	1.9E-08	3.4E-12	3.0E-08
Benzo(a)pyrene	1.4	1.3E-08	2.3E-08	4.1E-12	7.3E+00	7.3E+00	7.3E+00	9.7E-08	1.7E-07	3.0E-11	2.6E-07
Benzo(b)fluoranthene	1.5	1.5E-08	2.5E-08	4.5E-12	7.3E-01	7.3E-01	7.3E-01	1.1E-08	1.8E-08	3.3E-12	2.9E-08
Ideno(1,2,3-cd)pyrene	1.2	1.2E-08	2.0E-08	3.6E-12	7.3E-01	7.3E-01	7.3E-01	8.6E-09	1.5E-08	2.6E-12	2.3E-08
POLYCHLORINATED RIPHENVLS											
PCB-1254 (Aroclor 1254)	0.16	1 6E-09	3.0E-09	4 9E-13	2 0E+00	2 0E+00	2 0E+00	3.2E-09	5 9E-09	9 8E-13	9 1E-09
PCB-1260 (Aroclor 1260)	0.52	5.1E-09	9.4E-09	1.6E-12	2.0E+00	2.0E+00	2.0E+00	1.0E-08	1.9E-08	3.1E-12	2.9E-08
PESTICIDES											
beta-BHC	0.010	9.8E-11	3.9E-11	3.0E-14	1.8E+00	1.8E+00	1.9E+00	1.8E-10	7.0E-11	5.7E-14	2.5E-10
gamma-BHC (Lindane)	0.0065	6.4E-11	2.5E-11	2.0E-14	1.3E+00	1.3E+00	1.3E+00	8.3E-11	3.3E-11	2.5E-14	1.2E-10
										ILCR	4E-07

^a Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected at the site.

1) Doses and cancer risks shown only for carcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

3) Cancer risks are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Cancer Risk = Exposure Dose x Cancer Slope Factor.

ILCR	Incremental lifetime cancer risk.
Inc	Incomplete pathway.
mg/kg	Milligrams per kilogram.
mg/kg-d	Milligrams per kilogram per day.
na	Not available.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 28 - Drainage Basin - SEDIMENT NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Sediment	Sediment Ingestion	Sediment Dermal	Dust Inhalation				Pathway	-Specific Ca	ancer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	ence Dose (n	ng/kg-d)	Sediment		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
INORGANICS											
Chromium	28	1.0E-04	0.0E+00	5.0E-09	1.5E+00	1.5E+00	1.5E+00	6.8E-05	0.0E+00	3.4E-09	0.000068
Lead	74	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Zinc	26	9.5E-05	0.0E+00	4.7E-09	3.0E-01	3.0E-01	3.0E-01	3.2E-04	0.0E+00	1.6E-08	0.00032
VOLATH FORGANIC COMPOUNDS											
Benzene	0.050	1.8E-07	0.0E+00	9.0E-12	4.0E-03	4.0E-03	8.6E-03	4.5E-05	0.0E+00	1.1E-09	0.000046
Ethylbenzene	1.8	6.4E-06	0.0E+00	3.2E-10	1.0E-01	1.0E-01	2.9E-01	6.4E-05	0.0E+00	1.1E-09	0.000064
POI VCHI ORINATED RIPHENVI S											
PCB 1254 (Aroclor 1254)	0.16	5.8E-07	2.6E-07	2.9E-11	2.0E-05	2.0E-05	2.0E-05	2.9E-02	1.3E-02	1.4E-06	0.042
PCB 1260 (Aroclor 1260)	0.52	1.9E-06	8.4E-07	9.4E-11	2.0E-05	2.0E-05	2.0E-05	9.5E-02	4.2E-02	4.7E-06	0.14
PESTICIDES											
beta-BHC	0.010	3.6E-08	5.8E-09	1.8E-12	1.8E+00	1.8E+00	1.9E+00	2.0E-08	3.2E-09	9.5E-13	0.00000023
gamma-BHC (Lindane)	0.0065	2.4E-08	3.0E-09	1.2E-12	1.0E-01	1.0E-01	2.9E-01	2.4E-07	3.0E-08	4.0E-12	0.00000027
POLYNUCLEAR AROMATIC HYDROCARBONS											
2-Methylnaphthalene	500	1.8E-03	7.5E-04	9.0E-08	2.0E-02	2.0E-02	8.6E-04	9.1E-02	3.7E-02	1.1E-04	0.13
Naphthalene	175	6.4E-04	2.6E-04	3.2E-08	2.0E-02	2.0E-02	8.6E-04	3.2E-02	1.3E-02	3.7E-05	0.045
DIOXINS/FURANS											
Dibenzofuran	4.5	1.6E-05	5.2E-08	8.1E-10	4.0E-03	4.0E-03	4.0E-03	4.1E-03	1.3E-05	2.0E-07	0.0041
										HI	0.36
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	98,564	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	78,851	2.9E-01	Inc	1.4E-05	1.0E-01	na	2.9E-01	2.9E+00	Inc	4.9E-05	2.9
Diesel Range Organics, Aromatic	39,426	1.4E-01	Inc	7.1E-06	4.0E-02	na	5.7E-01	3.6E+00	Inc	1.2E-05	3.6
Gasoline Range Organics	220	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Gasoline Range Organics, Aliphatic	154	5.6E-04	Inc	2.8E-08	5.0E+00	na	5.3E+00	1.1E-04	Inc	5.2E-09	0.00011
Gasoline Range Organics, Aromatic	110	4.0E-04	Inc	2.0E-08	2.0E-01	na	1.1E-01	2.0E-03	Inc	1.8E-07	0.0020
Residual Range Organics	3,634	na	na	na	na	na	na	na	na	na	na
Residual Range Organics, Aliphatic	3,271	1.2E-02	Inc	5.9E-07	2.0E+00	na	na	6.0E-03	Inc	Inc	0.0060
Residual Range Organics, Aromatic	1,090	4.0E-03	Inc	2.0E-07	3.0E-02	na	na	1.3E-01	Inc	Inc	0.13
										HI	6.6

Notes:

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 28 - Drainage Basin - SEDIMENT NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Sediment	Sediment Ingestion	Sediment Dermal	Dust Inhalation				Pathway	/-Specific Ca	ncer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	ence Dose (n	ng/kg-d)	Sediment	D 1	Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
^a Based on the maximum or 95 percent upper confidence limit	(95% UCL) on the r	nean						HI	Hazard ind	ex.	
concentration detected at the site.								HQ	Hazard quo	tient.	
^b Consistent with EPA policy, lead is not evaluated in the cum	ulative HI estimate.							Inc	Incomplete	pathway.	
^c Risks associated with indicator compounds are included in cu	imulative risk and ha	azard						mg/kg	Milligrams	per kilogram.	
estimates for each site. However, the health hazards associate	ed with petroleum m	ixtures						mg/kd-d	Milligrams	per kilogram p	er day.
will be evaluated and reported separately.								na	not availab	le	
^d Exposure dose and noncancer hazards were calculated for pet	roleum hydrocarbon	s measured a	s DRO (metho	od 8100)							
by segregating total DRO concentrations into aliphatic and a	romatic fractions, as	suming 80%	aliphatic								
hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000	c).										
e Exposure dose and noncancer hazards were calculated for pet	roleum hydrocarbon	s measured a	s GRO (metho	od 8015)							
by segregating total GRO concentrations into aliphatic and a	romatic fractions, as	suming 70%	aliphatic								
hydrocarbons and 50% aromatic hydrocarbons (ADEC, 2000	c).										
f Exposure dose and noncancer hazards were calculated for pet	roleum hydrocarbon	s measured a	s RRO (metho	od)							
by segregating total RRO concentrations into aliphatic and a	romatic fractions, as	suming 90%	aliphatic								
hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000	c).										
1) Doses and noncancer hazards shown only for noncarcinogeni	c chemicals with ava	ailable toxicit	y values.								
 Absorbed doses were calculated for dermal contact with the r of a medium 	nedium, and intakes	were calculat	ed for ingestic	on or inhalation							
3) Noncancer hazards are unitless values which represent the pro-											
effect. They are calculated using the following formula: No	ncancer HI = Expos	ure Dose/Refe	erence dose.								

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 28 - Drainage Basin - SEDIMENT NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Sediment	Sediment Ingestion	Sediment Dermal	Dust Inhalation				Pathway	-Specific Ca	ncer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	ence Dose (r	ng/kg-d)	Sediment		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
Chromium	28	8 0F-07	0.0E+00	2 5E-10	1 5E+00	1 5E+00	1 5E+00	5 3E-07	0.0E+00	1.6E-10	0.0000053
Leed	20	0.0L 07	0.0E100	2.5E 10	1.5E100	1.5E100	1.5E+00	5.5E 07	0.0E100	1.0 <u>L</u> 10	0.000000000
Zine Zine	7.4	na 7 4E 07	na	na 2 2E 10	na 2 0E 01	na 2 0E 01	na 2 OF 01	na 25E06	na	na 7 6E 10	na
Zinc	20	/.4E-0/	0.0E+00	2.5E-10	5.0E-01	5.0E-01	5.0E-01	2.3E-00	0.0E+00	/.0E-10	0.0000023
VOLATILE ORGANIC COMPOUNDS											
Benzene	0.050	1.4E-09	0.0E+00	4.4E-13	4.0E-03	4.0E-03	8.6E-03	3.6E-07	0.0E+00	5.1E-11	0.0000004
Ethylbenzene	1.8	5.1E-08	0.0E+00	1.6E-11	1.0E-01	1.0E-01	2.9E-01	5.1E-07	0.0E+00	5.4E-11	0.0000005
POLYCHLORINATED BIPHENYLS											
PCB 1254 (Aroclor 1254)	0.16	4.6E-09	8.4E-09	1.4E-12	2.0E-05	2.0E-05	2.0E-05	2.3E-04	4.2E-04	7.0E-08	0.00065
PCB 1260 (Aroclor 1260)	0.52	1.5E-08	2.7E-08	4.6E-12	2.0E-05	2.0E-05	2.0E-05	7.4E-04	1.4E-03	2.3E-07	0.0021
PESTICIDES											
beta-BHC	0.010	2.9E-10	1.9E-10	8.8E-14	1.8E+00	1.8E+00	1.9E+00	1.6E-10	1.0E-10	4.6E-14	0.00000000026
gamma-BHC (Lindane)	0.0065	1.9E-10	9.8E-11	5.7E-14	1.3E+00	1.3E+00	1.3E+00	1.4E-10	7.5E-11	4.4E-14	0.0000000022
POLYNUCLEAR AROMATIC HYDROCARBONS	5										
2-Methylnaphthalene	500	1.4E-05	2.4E-05	4.4E-09	2.0E-02	2.0E-02	8.6E-04	7.1E-04	1.2E-03	5.1E-06	0.0019
Naphthalene	175	5.0E-06	8.6E-06	1.5E-09	2.0E-02	2.0E-02	8.6E-04	2.5E-04	4.3E-04	1.8E-06	0.00068
DIOXINS/FURANS											
Dibenzofuran	4.5	1.3E-07	1.7E-09	4.0E-11	4.0E-03	4.0E-03	4.0E-03	3.2E-05	4.2E-07	9.9E-09	0.000033
										HI	0.0054
PETROLEUM HYDROCARBONS ^c										L	
Diesel Range Organics	98.564	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	78,851	2.3E-03	Inc	6.9E-07	1.0E-01	na	2.9E-01	2.3E-02	Inc	2.4E-06	0.023
Diesel Range Organics, Aromatic	39,426	1.1E-03	Inc	3.5E-07	4.0E-02	na	5.7E-01	2.8E-02	Inc	6.1E-07	0.028
Gasoline Range Organics	220	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Gasoline Range Organics, Aliphatic	154	4.4E-06	Inc	1.4E-09	5.0E+00	na	5.3E+00	8.8E-07	Inc	2.6E-10	0.0000088
Gasoline Range Organics, Aromatic	110	3.1E-06	Inc	9.7E-10	2.0E-01	na	1.1E-01	1.6E-05	Inc	8.8E-09	0.000016
Residual Range Organics	3,634	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f	na ^f
Residual Range Organics, Aliphatic	3,271	9.3E-05	Inc	2.9E-08	2.0E+00	na	na	4.7E-05	Inc	Inc	0.000047
Residual Range Organics, Aromatic	1,090	3.1E-05	Inc	9.6E-09	3.0E-02	na	na	1.0E-03	Inc	Inc	0.0010
										НІ	0.052

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 28 - Drainage Basin - SEDIMENT NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Sediment	Sediment Ingestion	Sediment Dermal	Dust Inhalation				Pathwa	v-Specific Car	ıcer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	ence Dose (n	ng/kg-d)	Sediment		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
^a Based on the maximum or 95 percent upper confidence	limit (95% UCL) on	the mean						HI	Hazard index	t	
^b Consistent with EPA policy, lead is not evaluated in the ^c Risks associated with indicator compounds are included	cumulative HI estin in cumulative risk a	ate. Ind hazard			Inc mg/kg	Incomplete pa Milligrams pe	nt. ithway. er kilogram.				
estimates for each site. However, the health hazards ass will be evaluated and reported separately.	ociated with petrole	um mixtures			mg/kd-d na	Milligrams pe not available	r kilogram per	day.			
^d Exposure dose and noncancer hazards were calculated for by segregating total DRO concentrations into aliphatic a hydrocarbons and 40% aromatic hydrocarbons (ADEC,	or petroleum hydroc and aromatic fraction 2000c).	arbons measuns, assuming									
^e Exposure dose and noncancer hazards were calculated fr by segregating total GRO concentrations into aliphatic a hydrocarbons and 50% aromatic hydrocarbons (ADEC,	drocarbons and 40% aromatic hydrocarbons (ADEC, 2000c). cposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as GRO (method 8015) y segregating total GRO concentrations into aliphatic and aromatic fractions, assuming 70% aliphatic varecarbons and 50% aromatic hydrocarbons (ADEC, 2000c)										
^f Exposure dose and noncancer hazards were calculated f by segregating total RRO concentrations into aliphatic a hydrocarbons and 30% aromatic hydrocarbons (ADEC,											
 Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values. Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium Noncancer hazards are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose. 											

CANCER RISK CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 28 - Drainage Basin - FRESH SURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Pathway	-Specific Ca	ncer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer S	ope Factor	$(mg/kg-d)^{-1}$	-		VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
POLYCHLORINATED BIPHENYLS PCB-1260 (Aroclor 1260)	0.00081	3.1E-06	1.8E-05	Inc	2.0E+00	2.0E+00	2.0E+00	6.2E-06	3.6E-05	Inc	4.2E-05
										ILCR	4E-05
Notes:											
^a Based on the maximum or 95 percent upper co	onfidence limit (959	% UCL) on th	ne mean					ILCR	Incrementa	l lifetime canc	er risk.
 concentration detected at the site. Doses and cancer risks shown only for carcine Absorbed doses were calculated for dermal coccalculated for ingestion or inhalation of a med Cancer risks are unitless values which represe 			Inc mg/L mg/kg-d VOC	Incomplete Milligrams Milligrams Volatile org	pathway. per liter. per kilogram ganic compour	per day. nd.					

CANCER RISK CALCULATIONS FOR A FUTURE INCIDENTAL VISITOR SITE 28 - Drainage Basin - FRESH SURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Pathway	-Specific Ca	ncer Risk	Chemical-	
	Concentration ^a	Dose	Dose	Dose	Cancer S	ope Factor	$(mg/kg-d)^{-1}$	-		VOC	Specific	
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk	
POLYCHLORINATED BIPHENYLS PCB-1260 (Aroclor 1260)	0.00081	3.2E-07	1.4E-06	Inc	2.0E+00	2.0E+00	2.0E+00	6.3E-07	2.7E-06	Inc	3.3E-06	
										ILCR	3E-06	
Notes:												
^a Based on the maximum or 95 percent upper con	nfidence limit (95%	UCL) on the	mean					ILCR	Incremental	l lifetime cance	r risk.	
concentration detected at the site.		Inc	Incomplete	pathway.								
1) Doses and cancer risks shown only for carcinog		mg/L	Milligrams	per liter.								
 Absorbed doses were calculated for dermal con calculated for ingestion or inhalation of a mediu 		mg/kg-d VOC	Milligrams Volatile Or	per kilogram p ganic Compou	er day. nds							
3) Cancer risks are unitless values which represent	t the probability of i	ncurring an a	dverse health	L								

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 28 - Drainage Basin - FRESH SURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Pathy	way-Specific l	Hazard	Chemical-
Com ditament	Concentration ^a	Dose	Dose	Dose	Referen	nce Dose (r	ng/kg-d)	- -	Derrord	VOC	Specific
Constituent	(mg/L)	(mg/kg-a)	(mg/kg-a)	(mg/kg-a)	Oral	Dermai	Innalation	Ingestion	Dermai	Innalation	нų
INORGANICS											
Chromium	0.015	1.3E-04	1.2E-05	Inc	1.5E+00	1.5E+00	1.5E+00	8.5E-05	8.0E-06	Inc	0.000093
Copper	0.040	3.4E-04	1.6E-05	Inc	3.7E-02	3.7E-02	3.7E-02	9.1E-03	4.3E-04	Inc	0.0096
Lead	0.086	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Lead, Dissolved	0.011	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Zinc	0.62	5.2E-03	2.5E-04	Inc	3.0E-01	3.0E-01	3.0E-01	1.7E-02	8.2E-04	Inc	0.018
Zinc, Dissolved	0.23	1.9E-03	9.0E-05	Inc	3.0E-01	3.0E-01	3.0E-01	6.3E-03	3.0E-04	Inc	0.0066
POLYCHLORINATED BIPHENYLS											
PCB-1260 (Aroclor 1260)	0.00081	6.8E-06	1.4E-04	Inc	2.0E-05	2.0E-05	2.0E-05	3.4E-01	6.9E+00	Inc	7.3
										HI	7.3
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	46	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	37	3.1E-01	Inc	2.1E-01	1.0E-01	na	2.9E-01	3.1E+00	Inc	7.2E-01	3.9
Diesel Range Organics, Aromatic	19	1.6E-01	Inc	1.0E-01	4.0E-02	na	5.7E-01	3.9E+00	Inc	1.8E-01	4.1
Gasoline Range Organics	0.57	na ^e	na ^e	nae	na ^e						
Gasoline Range Organics, Aliphatic	0.40	3.3E-03	Inc	4.4E-02	5.0E+00	na	5.3E+00	6.7E-04	Inc	8.3E-03	0.0090
Gasoline Range Organics, Aromatic	0.28	2.4E-03	Inc	3.2E-02	2.0E-01	na	1.1E-01	1.2E-02	Inc	2.9E-01	0.30
										HI	8.3
Notes:											
^a Based on the maximum or 95 percent upper	confidence limit (959	% UCL) on th	ne mean					HI	Hazard index	к.	
concentration detected at the site.								HQ	Hazard quot	ient.	
^b Consistent with EPA policy, lead is not evaluate	luated in the cumulati	ve HI estimat	e.					Inc	Incomplete r	athway.	
^c Risks associated with indicator compounds	are included in cumu	lative risk and	l hazard					mø/L	Milligrams r	er liter.	
estimates for each site. However, the health	n hazards associated v	vith petroleun	n mixtures					mg/kd-d	Milliorams r	er kilogram n	er dav
will be evaluated and reported separately.		1						na	not available	er knogram p	er day.
^d Exposure dose and noncancer hazards were	calculated for petrole	um hydrocarl	bons measure	ed as DRO (me	ethod 8100)			VOC	Volatile orga	nic compound	4
by segregating total DRO concentrations in	to aliphatic and arom	atic fractions	. assuming 80	0% aliphatic	,			,00	, onume orga	and compound	. ه.
hydrocarbons and 40% aromatic hydrocarbo	ons (ADEC 2000c)		,								
inguiseareons and to ve aromate nyaroeareo											

^e Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as GRO (method 8015)

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 28 - Drainage Basin - FRESH SURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

				VOC							
	Surface Water	Ingestion	Dermal	Inhalation				Pathwa	ay-Specific 1	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Ref	erence Dose (1	ng/kg-d)			VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Ora	l Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ

by segregating total GRO concentrations into aliphatic and aromatic fractions, assuming 70% aliphatic

hydrocarbons and 50% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 28 - Drainage Basin - FRESH SURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Path	way-Specific l	Hazard	Chemical-
Constituent	Concentration ^a	Dose (mg/kg-d)	Dose (mg/kg-d)	Dose (mg/kg-d)	Refere	nce Dose (Dermal	mg/kg-d) Inhalation	Ingestion	Dermal	VOC Inhalation	Specific HO
Constituent	(IIIg/L)	(IIIg/Kg-u)	(ing/kg-u)	(ing/kg-u)	Ofai	Dermai	Innalation	Ingestion	Dermai	malation	nų
INORGANICS											
Chromium, Dissolved	0.015	1.7E-05	3.4E-07	Inc	1.5E+00	1.5E+00	1.5E+00	1.1E-05	2.3E-07	Inc	0.000012
Copper	0.040	4.6E-05	4.6E-07	Inc	3.7E-02	3.7E-02	3.7E-02	1.2E-03	1.2E-05	Inc	0.0012
Lead, Dissolved	0.086	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Lead, Dissolved	0.011	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Zinc	0.62	7.0E-04	7.0E-06	Inc	3.0E-01	3.0E-01	3.0E-01	2.3E-03	2.3E-05	Inc	0.0024
Zinc, Dissolved	0.23	2.6E-04	2.6E-06	Inc	3.0E-01	3.0E-01	3.0E-01	8.6E-04	8.6E-06	Inc	0.00086
POLYCHLORINATED BIPHENYLS											
PCB-1260 (Aroclor 1260)	0.00081	9.2E-07	4.0E-06	Inc	2.0E-05	2.0E-05	2.0E-05	4.6E-02	2.0E-01	Inc	0.24
										HI	0.25
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	46	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	37	4.2E-02	Inc	1.0E-02	1.0E-01	na	2.9E-01	4.2E-01	Inc	3.5E-02	0.46
Diesel Range Organics, Aromatic	19	2.1E-02	Inc	5.1E-03	4.0E-02	na	5.7E-01	5.3E-01	Inc	8.9E-03	0.54
Gasoline Range Organics	0.57	nae	na ^e	na ^e	nae	na ^e	na ^e	na ^e	na ^e	na ^e	nae
Gasoline Range Organics, Aliphatic	0.3955	4.5E-04	Inc	2.1E-03	5.0E+00	na	5.3E+00	9.0E-05	Inc	4.0E-04	0.00049
Gasoline Range Organics, Aromatic	0.2825	3.2E-04	Inc	1.5E-03	2.0E-01	na	1.1E-01	1.6E-03	Inc	1.4E-02	0.016
										HI	1.0
Notes:										-	
^a Based on the maximum or 95 percent upper	confidence limit (959	6 UCL) on th	e mean					HI	Hazard index	κ.	
concentration detected at the site.								HQ	Hazard quoti	ent.	
^b Consistent with EPA policy, lead is not eval	uated in the cumulati	ve HI estimat	e.					Inc	Incomplete p	athway.	
^c Risks associated with indicator compounds a	are included in cumul	ative risk and	l hazard					mg/L	Milligrams p	er liter.	
estimates for each site. However, the health	hazards associated w	ith petroleum	n mixtures					mg/kd-d	Milligrams p	er kilogram p	er day.
will be evaluated and reported separately.								na	not available	0 1	·
^d Exposure dose and noncancer hazards were	calculated for petrole	um hydrocart	ons measured	l as DRO (me	thod 8100)			VOC	Volatile orga	nic compound	d.
by segregating total DRO concentrations in	to aliphatic and aroma	atic fractions,	assuming 80	% aliphatic					5		
hydrocarbons and 40% aromatic hydrocarbo	ons (ADEC, 2000c).										

^e Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as GRO (method 8015)

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 28 - Drainage Basin - FRESH SURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

				VOC							
	Surface Water	Ingestion	Dermal	Inhalation				Pathwa	ay-Specific 1	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Referen	nce Dose (1	mg/kg-d)			VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ

by segregating total GRO concentrations into aliphatic and aromatic fractions, assuming 70% aliphatic

hydrocarbons and 50% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

CANCER RISK CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 28 - Drainage Basin - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Groundwater	Ingestion	Dermal	VOC Inhalation				Pathway	-Specific Ca	ncer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer S	lope Factor	(mg/kg-d) ⁻¹	-		VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
INORGANICS Arsenic	0.039	1.5E-04	2.0E-06	Inc	1.5E+00	1.5E+00	1.5E+01	2.2E-04	3.1E-06	Inc	2.3E-04
										ILCR	2E-04
Notes:											
^a Based on the maximum or 95 percent upper	confidence limit (95	% UCL) on th	he mean					ILCR	Incrementa	l lifetime canc	er risk.
concentration detected at the site.								Inc	Incomplete	pathway.	
1) Doses and cancer risks shown only for carc	inogenic chemicals w	ith available	toxicity value	es.				mg/L	Milligrams	per liter.	
2) Absorbed doses were calculated for dermal	contact with the med	ium, and inta	kes were					mg/kg-d	Milligrams	per kilogram	per day.
calculated for ingestion or inhalation of a n	nedium.							VOC	Volatile org	ganic compour	nd.
3) Cancer risks are unitless values which repre-	esent the probability o	f incurring ar	n adverse hea	lth							

CANCER RISK CALCULATIONS FOR A FUTURE INCIDENTAL VISITOR SITE 28 - Drainage Basin - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Pathway	-Specific Ca	nncer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer S	lope Factor	(mg/kg-d) ⁻¹	:	D	VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	RISK
INORGANICS Arsenic	0.039	1.5E-05	1.5E-07	Inc	1.5E+00	1.5E+00	1.5E+01	2.3E-05	2.3E-07	Inc	2.3E-05
										ILCR	2E-05
Notes:											
^a Based on the maximum or 95 percent upper c	onfidence limit (95%	UCL) on the	e mean					ILCR	Incremental	l lifetime cance	er risk.
concentration detected at the site.								Inc	Incomplete	pathway.	
1) Doses and cancer risks shown only for carcine	ogenic chemicals wit	h available to	xicity values					mg/L	Milligrams	per liter.	
2) Absorbed doses were calculated for dermal contact with the medium, and intakes were								mg/kg-d	Milligrams	per kilogram p	er day.
calculated for ingestion or inhalation of a me	dium.							VOC	Volatile org	ganic compound	d.
3) Cancer risks are unitless values which represe	ent the probability of	incurring an a	adverse healt	h							

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 28 - Drainage Basin - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Pathy	vay-Specific 1	Hazard	Chemical-
Constituent	Concentration ^a (mg/L)	Dose (mg/kg-d)	Dose (mg/kg-d)	Dose (mg/kg-d)	Refere Oral	nce Dose (Dermal	mg/kg-d) Inhalation	Ingestion	Dermal	VOC Inhalation	Specific HQ
INORGANICS											
Arsenic	0.039	3.3E-04	1.6E-05	Inc	3.0E-04	3.0E-04	3.0E-04	1.1E+00	5.2E-02	Inc	1.2
Copper	0.18	1.5E-03	7.2E-05	Inc	3.7E-02	3.7E-02	3.7E-02	4.1E-02	1.9E-03	Inc	0.043
Lead	0.20	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Nickel	0.16	1.4E-03	1.3E-05	Inc	2.0E-02	2.0E-02	2.0E-02	6.8E-02	6.4E-04	Inc	0.068
										HI	1.3
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	3.2	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	2.6	2.2E-02	Inc	1.4E-02	1.0E-01	na	2.9E-01	2.2E-01	Inc	5.0E-02	0.27
Diesel Range Organics, Aromatic	1.3	1.1E-02	Inc	7.2E-03	4.0E-02	na	5.7E-01	2.7E-01	Inc	1.3E-02	0.28
										HI	0.55
Notes:											
^a Based on the maximum or 95 percent upper	confidence limit (959	% UCL) on th	ie mean					HI	Hazard inde	х.	
concentration detected at the site.								HQ	Hazard quot	ient.	
^b Consistent with EPA policy, lead is not eva	luated in the cumulati	ve HI estimat	e.					Inc	Incomplete p	oathway.	
° Risks associated with indicator compounds	are included in cumul	lative risk and	l hazard					mg/L	Milligrams r	ber liter.	
estimates for each site. However, the health	hazards associated w	ith petroleun	n mixtures					mg/kd-d	Milligrams r	per kilogram p	er dav.
will be evaluated and reported separately.								na	not available	son miogram p	er dag.
^d Exposure dose and noncancer hazards were	calculated for petrole	um hvdrocarł	oons measure	d as DRO (m	ethod 8100))		VOC	Volatila orga	nia compound	4
by segregating total DRO concentrations in	to aliphatic and arom	atic fractions	assuming 80)% aliphatic		/		VOC	v oranie orga		J.
hydrocarbons and 40% aromatic hydrocarbo	ons (ADEC, 2000c).			····r							

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

NONCANCER HAZARD CALCULATIONS FOR A FUTURE INCIDENTAL VISITOR SITE 28 - Drainage Basin - SHALLOW SUBSURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	Inhalation				Pathy	vay-Specific	Hazard	Chemical-
Constituent	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose ((mg/kg-d)	Incostion	Donmol	VOC Inholation	Specific
Constituent	(mg/L)	(mg/kg-a)	(mg/kg-a)	(mg/kg-a)	Orai	Dermai	Innalation	Ingestion	Dermai	Innalation	пŲ
INORGANICS											
Arsenic	0.039	4.5E-05	4.5E-07	Inc	3.0E-04	3.0E-04	3.0E-04	1.5E-01	1.5E-03	Inc	0.15
Copper	0.18	2.1E-04	2.1E-06	Inc	3.7E-02	3.7E-02	3.7E-02	5.6E-03	5.6E-05	Inc	0.0056
Lead	0.20	na ^b	na ^b								
Nickel	0.16	1.8E-04	3.7E-07	Inc	2.0E-02	2.0E-02	2.0E-02	9.1E-03	1.8E-05	Inc	0.0092
										HI	0.16
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	3.2	na ^d	na ^d								
Diesel Range Organics, Aliphatic	2.6	2.9E-03	Inc	7.0E-04	1.0E-01	na	2.9E-01	2.9E-02	Inc	2.4E-03	0.032
Diesel Range Organics, Aromatic	1.3	1.5E-03	Inc	3.5E-04	4.0E-02	na	5.7E-01	3.7E-02	Inc	6.2E-04	0.037
										HI	0.069
Notes:											
^a Based on the maximum or 95 percent upp	per confidence limit (959	% UCL) on th	e mean					HI	Hazard inde	х.	
concentration detected at the site.								HQ	Hazard quot	ient.	
^b Consistent with EPA policy, lead is not e	valuated in the cumulati	ve HI estimat	e.					Inc	Incomplete j	oathway.	
^c Risks associated with indicator compound	ds are included in cumul	ative risk and	l hazard					mg/L	Milligrams r	per liter.	
estimates for each site. However, the hea	lth hazards associated w	vith petroleun	n mixtures					mg/kd-d	Milliorams r	ner kilogram n	er dav
will be evaluated and reported separately.		•						ng ka a	not available	son knogram p	er day.
^d Exposure dose and noncancer hazards we	re calculated for petrole	um hydrocarl	ons measure	l as DRO (me	thod 8100)		na NOC	Valatila ana	, :	
hy segregating total DRO concentrations	into aliphatic and arom	atic fractions	accuming 80	% alinhatic		•		VUC	volatile orga	and compound	1.
by segregating total DKO concentrations	whoma (ADEC 2000a)	ane macholis.	, assuming 80								
nyarocarbons and 40% aromatic hydrocal	roons (ADEC, 2000c).										

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

Table F-159

CANCER RISK CALCULATIONS FOR SUBSISTENCE FOOD USE SITE 28 - Drainage Basin - PLANT CONSUMPTION NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Plant Concentration ^a	Plant Ingestion Dose	Cancer Slope Factor Oral	Pathway-Specific Cancer Risk Plant	Chemical- Specific
Constituent	(mg/kg)	(mg/kg-d)	$(mg/kg-d)^{-1}$	Ingestion	Risk
INORGANICS					
Arsenic	0.55	1.7E-04	1.5E+00	2.6E-04	2.6E-04
Cadmium	1.1	3.4E-04	na	na	0.0E+00
POLYNUCLEAR AROMATIC HYDROCARBONS					
Benzo(a)anthracene	0.088	2.7E-05	7.3E-01	2.0E-05	2.0E-05
Benzo(a)pyrene	0.13	3.9E-05	7.3E+00	2.9E-04	2.9E-04
Benzo(b)fluoranthene	0.15	4.8E-05	7.3E-01	3.5E-05	3.5E-05
Benzo(k)fluoranthene	0.12	3.9E-05	7.3E-02	2.8E-06	2.8E-06
Chrysene	0.16	4.9E-05	7.3E-03	3.6E-07	3.6E-07
Dibenzo(a,h)anthracene	0.027	8.3E-06	7.3E+00	6.1E-05	6.1E-05
Indeno(1,2,3-cd)pyrene	0.19	5.8E-05	7.3E-01	4.3E-05	4.3E-05
POLYCHLORINATED BIPHENYLS					
PCB-1254 (Aroclor 1254)	0.18	5.6E-05	2.0E+00	1.1E-04	1.1E-04
PCB-1260 (Aroclor 1260)	0.099	3.1E-05	2.0E+00	6.2E-05	6.2E-05
				ILCR	9E-04

Notes:

-

^a Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected at the site.

Only plant samples obtained from harvested species are included in the concentration derivation.

1) Doses and cancer risks shown only for carcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

 Cancer risks are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Cancer Risk = Exposure Dose x Cancer Slope Factor.

NONCANCER HAZARD CALCULATIONS FOR SUBSISTENCE FOOD USE SITE 28 - Drainage Basin - PLANT CONSUMPTION NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Plant	Plant Ingestion	Reference Dose	Pathway-Specific Hazard	Chemical
Constituent	Concentration ^a (mg/kg)	Dose (mg/kg-d)	Oral (mg/kg-d)	Plant Ingestion	Specific HO
Constitution	((1119/119 4)	(ing/ing u)	ingestion	
INORGANICS					
Antimony	0.0030	5.8E-06	4.0E-04	1.4E-02	0.014
Arsenic	0.55	1.0E-03	3.0E-04	3.5E+00	3.5
Barium	36	7.0E-02	7.0E-02	1.0E+00	1.0
Cadmium	1.1	2.2E-03	5.0E-04	4.3E+00	4.3
Chromium	9.6	1.8E-02	1.5E+00	1.2E-02	0.012
Copper	3.2	6.1E-03	3.7E-02	1.7E-01	0.17
Lead	5.0	na ^b	na ^b	na ^b	na ^b
Mercury	0.027	5.2E-05	3.0E-04	1.7E-01	0.17
Nickel	3.7	7.2E-03	2.0E-02	3.6E-01	0.36
Selenium	0.050	9.6E-05	5.0E-03	1.9E-02	0.019
Silver	0.023	4.4E-05	5.0E-03	8.8E-03	0.0088
Vanadium	3.1	6.0E-03	7.0E-03	8.6E-01	0.86
Zinc	61	1.2E-01	3.0E-01	3.9E-01	0.39
POLYNUCLEAR AROMATIC HYDROCARBONS					
2-Methylnaphthalene	0.013	2.5E-05	2.0E-02	1.2E-03	0.0012
Acenaphthene	0.052	1.0E-04	6.0E-02	1.7E-03	0.0017
Anthracene	0.013	2.6E-05	3.0E-01	8.5E-05	0.000085
Benzo(g,h,i)perylene	0.075	1.4E-04	2.0E-02	7.2E-03	0.0072
Fluoranthene	0.44	8.5E-04	4.0E-02	2.1E-02	0.021
Fluorene	0.034	6.6E-05	4.0E-02	1.6E-03	0.0016
Naphthalene	0.017	3.2E-05	2.0E-02	1.6E-03	0.0016
Phenanthrene	0.42	8.0E-04	3.0E-01	2.7E-03	0.0027
Pyrene	0.36	6.9E-04	3.0E-02	2.3E-02	0.023
POLYCHLORINATED BIPHENYLS					
PCB-1254 (Aroclor 1254)	0.18	3.4E-04	2.0E-05	1.7E+01	17

NONCANCER HAZARD CALCULATIONS FOR SUBSISTENCE FOOD USE SITE 28 - Drainage Basin - PLANT CONSUMPTION NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

Constituent	Plant Concentration ^a (mg/kg)	Plant Ingestion Dose (mg/kg-d)	Reference Dose Oral (mg/kg-d)	Pathway-Specific Hazard Plant Ingestion	Chemical- Specific HO
PCB-1260 (Aroclor 1260)	0.099	1.9E-04	2.0E-05	9.4E+00	9.4
				HI	38

Notes:

^a Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected at the site.

Only plant samples obtained from harvested species are included in the concentration derivation.

^b Consistent with EPA policy, lead is not evaluated in the cumulative HI estimate.

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

CANCER RISK CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 29 - Suqitughneg River - SEDIMENT NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Sediment	Sediment Ingestion	Sediment Dermal	Dust Inhalation				Pathway-	Specific Car	ncer Risk	Chemical-
Constituent	Concentration ^a	Dose	Dose	Dose	Cancer Sl	ope Factor	(mg/kg-d) ⁻¹	Sediment	Dormol	Dust Inholotion	Specific
Constituent	(mg/kg)	(IIIg/Kg-u)	(IIIg/Kg-u)	(Ing/kg-u)	Urai	Dermai	Innalation	ingestion	Dermai	Innalation	RISK
INORGANICS Arsenic	5.7	2.3E-06	2.7E-07	1.7E-10	1.5E+00	1.5E+00	1.5E+01	3.4E-06	4.1E-07	2.5E-09	3.9E-06
										ILCR	4E-06
Notes:											
 ^a Based on the maximum or 95 percent upper confide 1) Doses and cancer risks shown only for carcinogenic 2) Absorbed doses were calculated for dermal contact of a medium 3) Cancer risks are unitless values which represent the 	ence limit (95% UCI c chemicals with ava with the medium, ar probability of incur	2) on the mea ilable toxicity ad intakes we ring an adver	n concentrati y values. re calculated se health	on detected at	the site.			ILCR Inc mg/kg mg/kg-d	Incrementa Incomplete Milligrama Milligrama	al lifetime can e pathway. s per kilogram s per kilogram	cer risk. 1. 1 per day.

CANCER RISK CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 29 - Suqitughneg River - SEDIMENT NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Sediment	Sediment Ingestion	Sediment Dermal	Dust Inhalation			1	Pathway	-Specific Ca	ncer Risk	sk Chemical-	
Constituent	Concentration ^a	Dose (mg/kg-d)	Dose (mg/kg_d)	Dose (mg/kg-d)	Cancer Sl	ope Factor	(mg/kg-d) ⁻¹ Inhelation	Sediment	Dormol	Dust Inholation	Specific	
Constituent	(IIIg/Kg)	(IIIg/Kg-u)	(Ing/kg-u)	(IIIg/Kg-u)	Ulai	Dermai	IIIIalation	ingestion	Dermai	Innatation	INISK.	-
INORGANICS Arsenic	5.7	5.6E-08	2.2E-08	1.7E-11	1.5E+00	1.5E+00	1.5E+01	8.4E-08	3.3E-08	2.6E-10	1.2E-07	
										ILCR	1E-07	1
Notes:												
 ^a Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected at the site. 1) Doses and cancer risks shown only for carcinogenic chemicals with available toxicity values. 2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium 								ILCR Inc mg/kg mg/kg-d	Incremental lifetime cancer risk. Incomplete pathway. Milligrams per kilogram. Milligrams per kilogram per day.			
3) Cancer risks are unitless values which represent the	probability of incu	rring an adve	rse health									
NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 29 - Suqitughneg River - SEDIMENT NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Codimont	Sediment	Sediment	Dust Inhelation				Dethmor	Specific Co	noon Diala	Chamical
	Seument	Ingestion	Dermai	Innalation	D.C.	D (<u>Fallway</u>	-specific Ca		Chemical-
Constituent	Concentration	Dose (mg/lvg_d)	Dose (mg/lvg_d)	Dose	Referen	nce Dose (m	lg/kg-d) Inholotion	Sediment	Dominal	Dust	Specific
Constituent	(mg/kg)	(mg/kg-a)	(mg/kg-a)	(mg/kg-a)	Orai	Dermai	Innalation	Ingestion	Dermai	Innalation	KISK
INORGANICS											
Aluminum	15,900	5.8E-02	0.0E+00	2.9E-06	1.0E+00	1.0E+00	1.4E-03	5.8E-02	0.0E+00	2.1E-03	0.060
Arsenic	5.7	2.1E-05	2.0E-06	1.0E-09	3.0E-04	3.0E-04	3.0E-04	6.9E-02	6.6E-03	3.4E-06	0.076
Barium	115	4.2E-04	0.0E+00	2.1E-08	7.0E-02	7.0E-02	1.4E-04	6.0E-03	0.0E+00	1.5E-04	0.0061
Cobalt	7.0	2.5E-05	0.0E+00	1.3E-09	2.0E-02	2.0E-02	5.7E-06	1.3E-03	0.0E+00	2.2E-04	0.0015
Lead	114	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b	na ^b
Manganese	0.05	1.8E-07	0.0E+00	9.0E-12	1.4E-01	1.4E-01	1.4E-05	1.3E-06	0.0E+00	6.5E-07	0.0000019
Vanadium	35	1.3E-04	0.0E+00	6.3E-09	7.0E-03	7.0E-03	7.0E-03	1.8E-02	0.0E+00	9.0E-07	0.018
VOCs											
m,p-Xylene	0.0032	1.2E-08	0.0E+00	5.8E-13	2.0E-01	2.0E-01	2.9E-02	5.8E-08	0.0E+00	2.0E-11	0.000000058
DIOXINS/FURANS											
Dibenzofuran	0.0086	3.1E-08	9.9E-11	1.6E-12	4.0E-03	4.0E-03	4.0E-03	7.8E-06	2.5E-08	3.9E-10	0.0000079
										HI	0.16
PETROLEUM HYDROCARBONS ^c										B	
Diesel Range Organics	1,859	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	1,488	5.4E-03	Inc	2.7E-07	1.0E-01	na	2.9E-01	5.4E-02	Inc	9.3E-07	0.054
Diesel Range Organics, Aromatic	744	2.7E-03	Inc	1.3E-07	4.0E-02	na	5.7E-01	6.8E-02	Inc	2.4E-07	0.068
										HI	0.12
Notes:											
^a Based on the maximum or 95 percent upper co	onfidence limit (95% UC	CL) on the me	an					HI	Hazard ind	ex.	
concentration detected at the site.								HQ	Hazard quo	otient.	
^b Consistent with EPA policy, lead is not evaluate	ted in the cumulative H	I estimate.						Inc	Incomplete	pathway.	
^c Risks associated with indicator compounds are	e included in cumulative	e risk and haz	ard					mg/kg	Milligrams	per kilogram.	
estimates for each site. However, the health ha	azards associated with p	etroleum mix	tures					mg/kd-d	Milligrams	per kilogram	per day.
will be evaluated and reported separately.								na	not availab	le	
^d Exposure dose and noncancer hazards were cal	lculated for petroleum h	ydrocarbons	measured as E	ORO (method 8	100)						
by segregating total DRO concentrations into	aliphatic and aromatic f	ractions, assu	ming 80% ali	phatic							
hydrocarbons and 40% aromatic hydrocarbons	(ADEC, 2000c).										

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 29 - Suqitughneg River - SEDIMENT NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Sediment	Sediment Ingestion	Sediment Dermal	Dust Inhalation				Pathway-	Specific Ca	ncer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Ref	erence Dose (n	ng/kg-d)	Sediment		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health

effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 29 - Suqitughneg River - SEDIMENT NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Sediment	Sediment Ingestion	Sediment Dermal	Dust Inhalation				Pathwa	y-Specific Ca	ncer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (n	ng/kg-d)	Sediment	• •	Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
INORGANICS											
Aluminum	15,900	4.5E-04	0.0E+00	1.4E-07	1.0E+00	1.0E+00	1.4E-03	4.5E-04	0.0E+00	1.0E-04	0.00055
Arsenic	5.7	1.6E-07	6.4E-08	5.0E-11	3.0E-04	3.0E-04	3.0E-04	5.4E-04	2.1E-04	1.7E-07	0.00076
Barium	115	3.3E-06	0.0E+00	1.0E-09	7.0E-02	7.0E-02	1.4E-04	4.7E-05	0.0E+00	7.2E-06	0.000054
Cobalt	7.0	2.0E-07	0.0E+00	6.1E-11	6.0E-02	6.0E-02	6.0E-02	3.3E-06	0.0E+00	1.0E-09	0.0000033
Manganese	114	3.3E-06	0.0E+00	1.0E-09	1.4E-01	1.4E-01	1.4E-05	2.3E-05	0.0E+00	7.2E-05	0.000095
Mercury	0.05	1.4E-09	0.0E+00	4.4E-13	3.0E-04	3.0E-04	3.0E-04	4.8E-06	0.0E+00	1.5E-09	0.0000048
Vanadium	35	1.0E-06	0.0E+00	3.1E-10	7.0E-03	7.0E-03	7.0E-03	1.4E-04	0.0E+00	4.4E-08	0.00014
VOLATILE ORGANIC COMPOUNDS											
m,p-Xylene	0.0032	9.1E-11	0.0E+00	2.8E-14	7.0E-01	7.0E-01	2.9E-02	1.3E-10	0.0E+00	9.7E-13	0.0000000013
DIOXINS/FURANS											
Dibenzofuran	0.0086	2.5E-10	3.2E-12	7.6E-14	4.0E-03	4.0E-03	4.0E-03	6.1E-08	8.1E-10	1.9E-11	0.000000062
										TT	0.0016
DETROLEUN INVDROCH DRONG ^C										ш	0.0010
PETROLEUM HYDROCARBONS						,					
Diesel Range Organics	1,859	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a
Diesel Range Organics, Aliphatic	1,488	4.2E-05	Inc	1.3E-08	1.0E-01	na	2.9E-01	4.2E-04	Inc	4.5E-08	0.00042
Diesel Range Organics, Aromatic	744	2.1E-05	Inc	6.5E-09	4.0E-02	na	5.7E-01	5.3E-04	Inc	1.1E-08	0.00053
										HI	0.0010
Notes:											
^a Based on the maximum or 95 percent upper con	nfidence limit (95% U	UCL) on the m	nean					HI	Hazard index		
concentration detected at the site.								HQ	Hazard quoti	ent.	
^b Consistent with EPA policy, lead is not evaluate	ed in the cumulative I	HI estimate.						Inc	Incomplete p	athway.	
^c Risks associated with indicator compounds are	included in cumulativ	ve risk and ha	zard					mg/kg	Milligrams p	er kilogram.	
								тд/ка-а	Milligrams p	er knogram pe	r day.
estimates for each site. However, the health has will be evaluated and reported separately	zards associated with	petroleum mi	xtures					na	not available		
d Europying does and non-company havanda ware cal	vulated for natural sum	huduooonhon	mananda	DBO (matha	4 9100)						
Exposure dose and noncancer nazards were call	unated for petroleum	nyurocarbons	s measured as		u 0100)						
by segregating total DRO concentrations into a	liphatic and aromatic	tractions, as	suming 80%	aliphatic							
nyulocarbons and 40% aromatic hydrocarbons	(ADEC, 2000C).	1 .1									
1) Doses and noncancer hazards shown only for no	oncarcinogenic chemi	cals with ava	ilable toxicit	v values.							

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 29 - Suqitughneg River - SEDIMENT NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Sediment	Sediment Ingestion	Sediment Dermal	Dust Inhalation				Pathway	-Specific Ca	ncer Risk	Chemical-
Constituent	Concentration ^a (mg/kg)	Dose (mg/kg-d)	Dose (mg/kg-d)	Dose(mg/kg-d)	Refere Oral	ence Dose (n Dermal	ng/kg-d) Inhalation	Sediment Ingestion	Dermal	Dust Inhalation	Specific Risk

of a medium

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health

effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 29 - Suqitughneg River - FRESH SURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation				Path	way-Specific 1	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Referen	nce Dose (r	ng/kg-d)	.		VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
INORGANICS											
Aluminum	0.040	3.4E-04	1.6E-05	Inc	1.0E+00	1.0E+00	1.4E-03	3.4E-04	1.6E-05	Inc	0.00035
Barium	0.0050	4.2E-05	2.0E-06	Inc	7.0E-02	7.0E-02	1.4E-05	6.0E-04	2.9E-05	Inc	0.00063
Manganese	0.027	2.3E-04	1.1E-05	Inc	1.4E-01	1.4E-01	1.4E-05	1.6E-03	7.7E-05	Inc	0.0017
Silver, Dissolved	0.020	1.7E-04	8.0E-06	Inc	5.0E-03	5.0E-03	5.0E-03	3.4E-02	1.6E-03	Inc	0.035
Zinc	0.0080	6.8E-05	3.2E-06	Inc	3.0E-01	3.0E-01	3.0E-01	2.3E-04	1.1E-05	Inc	0.00024
										HI	0.038
PETROLEUM HYDROCARBONS ^c										-	
Diesel Range Organics	0.16	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	0.13	1.1E-03	Inc	7.2E-04	1.0E-01	na	2.9E-01	1.1E-02	Inc	2.5E-03	0.013
Diesel Range Organics, Aromatic	0.064	5.4E-04	Inc	3.6E-04	4.0E-02	na	5.7E-01	1.4E-02	Inc	6.3E-04	0.014
Gasoline Range Organics	0.29	na ^e	nae	na ^e	na ^e	nae	nae	nae	na ^e	na ^e	na ^e
Gasoline Range Organics, Aliphatic	0.21	1.7E-03	Inc	2.3E-02	5.0E+00	na	5.3E+00	3.5E-04	Inc	4.3E-03	0.0047
Gasoline Range Organics, Aromatic	0.15	1.2E-03	Inc	1.6E-02	2.0E-01	na	1.1E-01	6.2E-03	Inc	1.5E-01	0.16
										HI	0.19
Notes:											
^a Based on the maximum or 95 percent upper	confidence limit (959	% UCL) on th	ne mean					HI	Hazard index	κ.	
concentration detected at the site.								HQ	Hazard quot	ient.	
^b Consistent with EPA policy, lead is not evalu	uated in the cumulati	ve HI estimat	e.					Inc	Incomplete p	athway.	
^c Risks associated with indicator compounds a	are included in cumul	lative risk and	l hazard					mg/L	Milligrams r	er liter.	
estimates for each site. However, the health	hazards associated w	vith petroleun	n mixtures					mg/kd-d	Milligrams p	er kilogram p	er day.
will be evaluated and reported separately.								na	not available	,	·
^d Exposure dose and noncancer hazards were of	calculated for petrole	um hydrocarl	bons measure	d as DRO (me	ethod 8100)			VOC	Volatile orga	nic compound	1.
by segregating total DRO concentrations int	to aliphatic and arom	atic fractions	, assuming 80	0% aliphatic						FFF	
hydrocarbons and 40% aromatic hydrocarbo	ns (ADEC, 2000c).										
e Exposure dose and noncancer hazards were of	calculated for petrole	um hydrocarl	oons measure	ed as GRO (me	ethod 8015)						
by segregating total GRO concentrations int	to aliphatic and arom	atic fractions	, assuming 70	0% aliphatic							

hydrocarbons and 50% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 29 - Suqitughneg River - FRESH SURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

				VOC							
	Surface Water	Ingestion	Dermal	Inhalation				Pathwa	ay-Specific 1	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	ence Dose (n	ng/kg-d)			VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health

effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 29 - Suqitughneg River - FRESH SURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Surface Water	Ingestion	Dermal	VOC Inhalation	D 4	-		Path	way-Specific 1	Hazard	Chemical-
Constituent	Concentration (mg/L)	Dose (mg/kg-d)	Dose (mg/kg-d)	Dose (mg/kg-d)	Refere Oral	nce Dose (Dermal	<u>mg/kg-d)</u> Inhalation	Ingestion	Dermal	VOC Inhalation	Specific HO
								8			
INORGANICS				_						_	
Aluminum	0.040	4.6E-05	4.6E-07	Inc	1.0E+00	1.0E+00	1.4E-03	4.6E-05	4.6E-07	Inc	0.000046
Barium	0.0050	5.7E-06	5./E-08	Inc	7.0E-02	7.0E-02	1.4E-04	8.2E-05	8.2E-07	Inc	0.000082
Manganese Silver Disselved	0.027	3.1E-05	3.1E-07	Inc	1.4E-01	1.4E-01	1.4E-05	2.2E-04	2.2E-06	Inc	0.00022
Zinc	0.020	2.3E-03 9.1E-06	9.1E-08	Inc	3.0E-03	3.0E-03	3.0E-03	4.0E-05	2.7E-03 3.0E-07	Inc	0.0040
Zine	0.0000	J.IL-00).1L-00	me	3.0L-01	5.0L-01	5.0L-01	5.0L-05	5.0L-07	HI	0.000031
PETROLEUM HYDROCARBONS ^e											000000
Diesel Range Organics	0.16	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	0.13	1.5E-04	Inc	3.5E-05	1.0E-01	na	2.9E-01	1.5E-03	Inc	1.2E-04	0.0016
Diesel Range Organics, Aromatic	0.064	7.3E-05	Inc	1.8E-05	4.0E-02	na	5.7E-01	1.8E-03	Inc	3.1E-05	0.0019
Gasoline Range Organics	0.29	nae	nae	nae	nae	nae	nae	na ^e	na ^e	na ^e	nae
Gasoline Range Organics, Aliphatic	0.21	2.4E-04	Inc	1.1E-03	5.0E+00	na	5.3E+00	4.7E-05	Inc	2.1E-04	0.00026
Gasoline Range Organics, Aromatic	0.15	1.7E-04	Inc	8.0E-04	2.0E-01	na	1.1E-01	8.4E-04	Inc	7.3E-03	0.0081
										HI	0.012
Notes:											
^a Based on the maximum or 95 percent upper of	confidence limit (95%	6 UCL) on th	e mean					HI	Hazard inde	x.	
concentration detected at the site.								HQ	Hazard quot	ient.	
^b Consistent with EPA policy, lead is not evalu	uated in the cumulativ	ve HI estimat	e.					Inc	Incomplete p	oathway.	
^c Risks associated with indicator compounds a	are included in cumul	ative risk and	hazard					mg/L	Milligrams r	ber liter.	
estimates for each site. However, the health	hazards associated w	ith petroleum	mixtures					mø/kd-d	Milliorams r	er kilogram n	er dav
will be evaluated and reported separately.		-						na	not available	er knogram p	er duy.
^d Exposure dose and noncancer hazards were of	calculated for petrole	um hydrocart	ons measured	l as DRO (me	thod 8100)			VOC	Volatile orga	nic compound	h
by segregating total DRO concentrations int	o aliphatic and aroma	atic fractions.	assuming 809	% aliphatic				100	volutile orge	une compound	u.
hydrocarbons and 40% aromatic hydrocarbon	ns (ADEC. 2000c).	,	U	1							
^e Exposure dose and noncancer bazards were d	calculated for petrole	um hydrocart	ons measured	l as GRO (me	thod 8015)						
by segregating total GRO concentrations int	o aliphatic and arom	atic fractions	assuming 700	% alinhatic							
by segregating total GKO concentrations int	$r_{\rm and}$ (ADEC 2000a)	are macholis,	assuming 70	/o ampliane							
nyurocardons and 50% aromatic hydrocarboi	ns (ADEC, 2000c).										

^f Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as RRO (method)

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 29 - Suqitughneg River - FRESH SURFACE WATER NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

				VOC							
	Surface Water	Ingestion	Dermal	Inhalation				Pathwa	y-Specific 1	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	nce Dose (1	ng/kg-d)			VOC	Specific
Constituent	(mg/L)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ

by segregating total RRO concentrations into aliphatic and aromatic fractions, assuming 90% aliphatic

hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

CANCER RISK CALCULATIONS FOR SUBSISTENCE FOOD USE SITE 29 - Suqitughneg River - FISH CONSUMPTION NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Fish	Fish	Carney Slove Foster	Detheray Specific Concer Disk	Chamical
		Ingestion	Cancer Slope Factor	Pathway-Specific Cancer Risk	Chemical-
	Concentration"	Dose	Oral	Fish	Specific
Constituent	(mg/kg)	(mg/kg-d)	$(mg/kg-d)^{-1}$	Ingestion	Risk
INORGANICS					
Arsenic	0.71	5.6E-04	1.5E+00	8.3E-04	8.3E-04
Cadmium	0.0075	5.9E-06	na	na	0.0E+00
POLYNUCLEAR AROMATIC HYDROCARBONS					
Benzo(a)anthracene	0.0047	3.7E-06	7.3E-01	2.7E-06	2.7E-06
Benzo(a)pyrene	0.0037	2.9E-06	7.3E+00	2.1E-05	2.1E-05
Benzo(b)fluoranthene	0.0030	2.4E-06	7.3E-01	1.7E-06	1.7E-06
Benzo(k)fluoranthene	0.0064	5.0E-06	7.3E-02	3.6E-07	3.6E-07
Chrysene	0.0084	6.6E-06	7.3E-03	4.8E-08	4.8E-08
Dibenzo(a,h)anthracene	0.0041	3.2E-06	7.3E+00	2.3E-05	2.3E-05
Indeno(1,2,3-cd)pyrene	0.0026	2.0E-06	7.3E-01	1.5E-06	1.5E-06
POLYCHLORINATED BIPHENYLS					
PCB-1254 (Aroclor 1254)	0.014	1.1E-05	2.0E+00	2.2E-05	2.2E-05
PCB-1260 (Aroclor 1260)	0.0045	3.5E-06	2.0E+00	7.0E-06	7.0E-06
				ILCR	9E-04

Notes:

^a Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected at the site.

Fish samples obtained from ambient locations. Concentration based only on fillet samples.

1) Doses and cancer risks shown only for carcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

3) Cancer risks are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Cancer Risk = Exposure Dose x Cancer Slope Factor.

CANCER RISK CALCULATIONS FOR SUBSISTENCE FOOD USE SITE 29 - Suqitughneg River - FISH CONSUMPTION NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

Fish Ingestion Cancer Slope Factor <u>Pathway-Specific Cancer Risk</u> Chem		
		sk Chemical-
Concentration ^a Dose Oral Fish Spec		Specific
Constituent (mg/kg) (mg/kg-d) ⁻¹ Ingestion Ris	Constituent	Risk

ILCR - incremental lifetime cancer risk.

mg/kg - Milligrams per kilogram.

mg/kg-d - Milligrams per kilogram per day.

NONCANCER HAZARD CALCULATIONS FOR SUBSISTENCE FOOD USE SITE 29 - Suqitughneg River - FISH CONSUMPTION NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Fish	Fish Ingestion	Reference Dose	Pathway-Specific Hazard	Chemical-
	Concentration ^a	Dose	Oral	Fish	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	Ingestion	HQ
INORGANICS					
Arsenic	0.71	3.6E-03	3.0E-04	1.2E+01	12
Barium	0.043	2.2E-04	7.0E-02	3.1E-03	0.0031
Cadmium	0.0075	3.8E-05	1.5E+00	2.5E-05	0.000025
Copper	0.79	4.0E-03	3.7E-02	1.1E-01	0.11
Lead	0.0080	4.0E-05	na ^b	na ^b	na ^b
Mercury	0.020	1.0E-04	3.0E-04	3.3E-01	0.33
Nickel	0.054	2.7E-04	2.0E-02	1.4E-02	0.014
Selenium	0.15	7.5E-04	5.0E-03	1.5E-01	0.15
Vanadium	0.051	2.6E-04	7.0E-03	3.7E-02	0.037
Zinc	6.9	3.4E-02	3.0E-01	1.1E-01	0.11
POLYNUCLEAR AROMATIC HYDROCARBONS					
2-Methylnaphthalene	0.0065	3.3E-05	2.0E-02	1.6E-03	0.0016
Acenaphthene	0.0042	2.1E-05	6.0E-02	3.5E-04	0.00035
Anthracene	0.0042	2.1E-05	3.0E-01	7.0E-05	0.000070
Benzo(g,h,i)perylene	0.0043	2.2E-05	2.0E-02	1.1E-03	0.0011
Fluoranthene	0.0050	2.5E-05	4.0E-02	6.3E-04	0.00063
Fluorene	0.0046	2.3E-05	4.0E-02	5.8E-04	0.00058
Naphthalene	0.0033	1.7E-05	2.0E-02	8.3E-04	0.00083
Phenanthrene	0.0048	2.4E-05	3.0E-01	8.1E-05	0.000081
Pyrene	0.0054	2.7E-05	3.0E-02	9.0E-04	0.00090
POLYCHLORINATED BIPHENYLS					
PCB-1254 (Aroclor 1254)	0.014	7.0E-05	2.0E-05	3.5E+00	3.5
PCB-1260 (Aroclor 1260)	0.0045	2.3E-05	2.0E-05	1.1E+00	1.1

NONCANCER HAZARD CALCULATIONS FOR SUBSISTENCE FOOD USE SITE 29 - Suqitughneg River - FISH CONSUMPTION NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Fish Concentration ^a	Fish Ingestion Doco	Reference Dose	Pathway-Specific Hazard	Chemical-
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	Ingestion	HQ
				HI	17

Notes:

^a Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected at the site.

Fish samples obtained from Site 29 - Suqitughneq River. Concentration based only on fillet samples.

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

 Noncancer hazards are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

^b Consistent with EPA policy, lead is not evaluated in the cumulative HI estimate.

HI - Hazard index.

HQ - Hazard quotient.

mg/kg - Milligrams per kilogram.

mg/kg-d - Milligrams per kilogram per day.

CANCER RISK CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 30 - Ambient - FISH CONSUMPTION NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Fish Concentration ^a	Fish Ingestion Dose	Cancer Slope Factor Oral	Pathway-Specific Cancer Risk Fish	Chemical- Specific
Constituent	(mg/kg)	(mg/kg-d)	$(mg/kg-d)^{-1}$	Ingestion	Risk
INORGANICS					
Arsenic	0.88	6.9E-04	1.5E+00	1.0E-03	1.0E-03
Cadmium	0.0080	6.3E-06	na	na	0.0E+00
POLYCHLORINATED BIPHENYLS					
PCB-1254 (Aroclor 1254)	0.011	8.6E-06	2.0E+00	1.7E-05	1.7E-05
				ILCR	1E-03

Notes:

^a Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected at the site.

Fish samples obtained from ambient locations. Concentration based only on fillet samples.

1) Doses and cancer risks shown only for carcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium.

3) Cancer risks are unitless values which represent the probability of incurring an adverse health

effect. They are calculated using the following formula: Cancer Risk = Exposure Dose x Cancer Slope Factor.

ILCR - incremental lifetime cancer risk.

mg/kg - Milligrams per kilogram.

mg/kg-d - Milligrams per kilogram per day.

	Fish	Fish Ingestion	Reference Dose	Pathway-Specific Hazard	Chemical
	Concentration ^a	Dose	Oral	Fish	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	Ingestion	HQ
INORGANICS					
Arsenic	0.88	4.4E-03	3.0E-04	1.5E+01	15
Barium	0.059	3.0E-04	7.0E-02	4.2E-03	0.004
Cadmium	0.0080	4.0E-05	5.0E-04	8.0E-02	0.08
Copper	1.1	5.5E-03	3.7E-02	1.5E-01	0.15
Lead	0.0040	2.0E-05	na ^b	na ^b	0
Mercury	0.034	1.7E-04	3.0E-04	5.7E-01	0.57
Nickel	0.050	2.5E-04	2.0E-02	1.3E-02	0.01
Selenium	0.18	9.0E-04	5.0E-03	1.8E-01	0.18
Vanadium	0.075	3.8E-04	7.0E-03	5.4E-02	0.054
Zinc	14	7.0E-02	3.0E-01	2.3E-01	0.23
POLYNUCLEAR AROMA	ATIC HYDROCAF	RBONS			
Fluoranthene	0.0015	7.5E-06	4.0E-02	1.9E-04	0.00019
POLYCHLORINATED B	IPHENYLS				
PCB-1254 (Aroclor 1254)	0.011	5.5E-05	2.0E-05	2.8E+00	2.8
				н	10

NONCANCER HAZARD CALCULATIONS FOR SUBSISTENCE FOOD USE SITE 30 - Ambient - FISH CONSUMPTION NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

Notes:

^a Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected at the site.

Fish samples obtained from Site 29 - Suqitughneq River. Concentration based only on fillet samples.

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health

effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

^b Consistent with EPA policy, lead is not evaluated in the cumulative HI estimate.

HI - Hazard index.

NONCANCER HAZARD CALCULATIONS FOR SUBSISTENCE FOOD USE SITE 30 - Ambient - FISH CONSUMPTION NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

		Fish			
	Fish	Ingestion	Reference Dose	Pathway-Specific Hazard	Chemical-
	Concentration ^a	Dose	Oral	Fish	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	Ingestion	HQ

HQ - Hazard quotient.

mg/kg - Milligrams per kilogram.

mg/kg-d - Milligrams per kilogram per day.

Table F-171

CANCER RISK CALCULATIONS FOR SUBSISTENCE FOOD USE SITE 30 - Ambient - PLANT CONSUMPTION NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Dia 14	Plant		Dethermore Grander Channer Dist	Characteri	
	Plant	ingestion	Cancer Slope Factor	Pathway-Specific Cancer Risk	Chemical-	
	Concentration ⁴	Dose	Oral	Plant	Specific	
Constituent	(mg/kg)	(mg/kg-d)	$(mg/kg-d)^{-1}$	Ingestion	Risk	
INORGANICS						
Arsenic	0.56	1.7E-04	1.5E+00	2.6E-04	2.6E-04	
Cadmium	0.88	2.7E-04	na	na	0.0E+00	
POLYNUCLEAR AROMATIC HYDROCARE	BONS					
Benzo(a)anthracene	0.075	2.3E-05	7.3E-01	1.7E-05	1.7E-05	
Benzo(a)pyrene	0.021	6.6E-06	7.3E+00	4.8E-05	4.8E-05	
Benzo(b)fluoranthene	0.053	1.7E-05	7.3E-01	1.2E-05	1.2E-05	
Benzo(k)fluoranthene	0.046	1.4E-05	7.3E-02	1.0E-06	1.0E-06	
Chrysene	0.087	2.7E-05	7.3E-03	2.0E-07	2.0E-07	
Dibenzo(a,h)anthracene	0.013	4.1E-06	7.3E+00	3.0E-05	3.0E-05	
Indeno(1,2,3-cd)pyrene	0.024	7.5E-06	7.3E-01	5.5E-06	5.5E-06	
POLYCHLORINATED BIPHENYLS						
PCB-1254 (Aroclor 1254)	0.011	3.4E-06	2.0E+00	6.9E-06	6.9E-06	
PCB-1260 (Aroclor 1260)	0.0095	3.0E-06	2.0E+00	5.9E-06	5.9E-06	
				ILCR	4E-04	

Notes:

^a Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected at the site.

Only plant samples obtained from harvested species are included in the concentration derivation.

1) Doses and cancer risks shown only for carcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

 Cancer risks are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Cancer Risk = Exposure Dose x Cancer Slope Factor.

Table F-171

CANCER RISK CALCULATIONS FOR SUBSISTENCE FOOD USE SITE 30 - Ambient - PLANT CONSUMPTION NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Diant	Plant	Concer Slong Factor	Dathway Specific Cancor Dick	Chamiaal
	Plant	ingestion	Cancer Slope Factor	Pathway-Specific Cancer Risk	Chemical-
	Concentration ^a	Dose	Oral	Plant	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d) ⁻¹	Ingestion	Risk

ILCR - incremental lifetime cancer risk.

mg/kg - Milligrams per kilogram.

mg/kg-d - Milligrams per kilogram per day.

NONCANCER HAZARD CALCULATIONS FOR SUBSISTENCE FOOD USE
SITE 30 - Ambient - PLANT CONSUMPTION
NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

Constituent	Plant Concentration ^a (mg/kg)	Plant Ingestion Dose (mg/kg-d)	Reference Dose Oral (mg/kg-d)	Pathway-Specific Hazard Plant Ingestion	Chemical- Specific HQ
				0	`
INORGANICS					
Arsenic	0.56	1.1E-03	3.0E-04	3.6E+00	3.6
Barium	21	4.1E-02	7.0E-02	5.8E-01	0.58
Cadmium	0.88	1.7E-03	5.0E-04	3.4E+00	3.4
Chromium	9.0	1.7E-02	1.0E+00	1.7E-02	0.017
Copper	2.8	5.4E-03	3.7E-02	1.5E-01	0.15
Lead	3.5	na ^b	na ^b	na ^b	na ^b
Mercury	0.021	4.0E-05	3.0E-04	1.3E-01	0.13
Nickel	4.2	8.1E-03	2.0E-02	4.0E-01	0.40
Selenium	0.05	9.6E-05	5.0E-03	1.9E-02	0.019
Silver	0.019	3.6E-05	5.0E-03	7.3E-03	0.007
Vanadium	3.6	7.0E-03	7.0E-03	1.0E+00	1.0
Zinc	57	1.1E-01	3.0E-01	3.6E-01	0.36
POLYNUCLEAR AROMATIC HYDROCARBONS					
2-Methylnaphthalene	0.0076	1.5E-05	2.0E-02	7.3E-04	0.00073
Acenaphthene	0.013	2.5E-05	6.0E-02	4.2E-04	0.00042
Anthracene	0.049	9.4E-05	3.0E-01	3.1E-04	0.00031
Benzo(g,h,i)perylene	0.013	2.5E-05	2.0E-02	1.2E-03	0.0012
Fluoranthene	0.38	7.3E-04	4.0E-02	1.8E-02	0.018
Fluorene	0.022	4.2E-05	4.0E-02	1.1E-03	0.0011
Naphthalene	0.0078	1.5E-05	2.0E-02	7.5E-04	0.00075
Phenanthrene	0.29	5.6E-04	3.0E-01	1.9E-03	0.0019
Pyrene	0.28	5.4E-04	3.0E-02	1.8E-02	0.018
POLYCHLORINATED BIPHENYLS					
PCB-1254 (Aroclor 1254)	0.011	2.1E-05	2.0E-05	1.1E+00	1.1
PCB-1260 (Aroclor 1260)	0.0095	1.8E-05	2.0E-05	0.910958904	0.91
				HI	12

Notes:

^a Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected at the site.

NONCANCER HAZARD CALCULATIONS FOR SUBSISTENCE FOOD USE SITE 30 - Ambient - PLANT CONSUMPTION NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

		Plant			
	Plant	Ingestion	Reference Dose	Pathway-Specific Hazard	Chemical-
	Concentration ^a	Dose	Oral	Plant	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	Ingestion	HQ

Only plant samples obtained from harvested species are included in the concentration derivation.

^b Consistent with EPA policy, lead is not evaluated in the cumulative HI estimate.

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

HI - Hazard index. HQ - Hazard quotient. mg/kg - Milligrams per kilogram. mg/kg-d - Milligrams per kilogram per day.

CANCER RISK CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 31- White Alice Communications Site - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Soil Dermal	Dust Inhalation				Pathway-	Specific Ca	ncer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer Sl	ope Factor	(mg/kg-d) ⁻¹	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
POLYCHLORINATED BIPHENYLS PCB-1260 (Aroclor 1260)	22	8.9E-06	4.9E-06	6.5E-10	2.0E+00	2.0E+00	2.0E+00	1.8E-05	9.8E-06	1.3E-09	2.7E-05
										ILCR	3E-05
Notes:											
^a Based on the maximum or 95 percent upper confide	ence limit (95% UCI	L) on the mea	n concentrati	on detected at	the site.			ILCR	Increment	al lifetime can	cer risk.
1) Doses and cancer risks shown only for carcinogenia	c chemicals with ava	ilable toxicity	values.					Inc	Incomplete	e pathway.	
2) Based on the maximum or 95 percent upper confide	ence limit (95% UCI	L) on the mea	n concentrati	on detected at	the site.			mg/kg	Milligram	s per kilogram	ι.
Doses and cancer risks shown only for carcinogenia	c chemicals with ava	ilable toxicity	values.					mg/kg-d	Milligram	s per kilogram	ı per day.
3) Absorbed doses were calculated for dermal contact	with the medium, ar	nd intakes we	re calculated	for ingestion of	or inhalation						
of a medium											
Cancer risks are unitless values which represent the	probability of incur	ring an adver	se health								

effect. They are calculated using the following formula: Cancer Risk = Exposure Dose x Cancer Slope Factor.

CANCER RISK CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 31 - White Alice Communications Site - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Soil Dermal	Dust Inhalation				Pathwa	y-Specific C	Cancer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer Slo	ope Factor	(mg/kg-d) ⁻¹	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
POLYCHLORINATED BIPHENYLS PCB-1260 (Aroclor 1260)	22	2.7E-05	1.5E-05	1.9E-09	2.0E+00	2.0E+00	2.0E+00	5.3E-05	2.9E-05	3.9E-09	8.2E-05
										ILCR	8E-05
Notes:											
^a Based on the maximum or 95 percent upper confi	dence limit (95% UC	L) on the mean	n concentratio	on detected in	soil tundra			ILCR	Incremental	lifetime cancer	risk.
and soil gravel at the site.1) Doses and cancer risks shown only for carcinogenic chemicals with available toxicity values.2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium.								Inc mg/kg mg/kg-d	Incomplete pathway. Milligrams per kilogram. I Milligrams per kilogram per day.		
3) Cancer risks are unitless values which represent the	he probability of incu	rring an advers	se health								

effect. They are calculated using the following formula: Cancer Risk = Exposure Dose x Cancer Slope Factor.

CANCER RISK CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 31 - White Alice Communications Site - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Soil Dermal	Dust Inhalation				Pathway	-Specific Ca	ncer Risk	Chemical-
	Concentration ^a	Dose	Dose	Dose	Cancer Sl	ope Factor	(mg/kg-d) ⁻¹	Soil	D 1	Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	Risk
POLYCHLORINATED BIPHENYLS PCB-1260 (Aroclor 1260)	22	2.2E-07	4.0E-07	6.6E-11	2.0E+00	2.0E+00	2.0E+00	4.3E-07	8.0E-07	1.3E-10	1.2E-06
										ILCR	1E-06
Notes:											
 Notes: ^a Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected at the site. 1) Doses and cancer risks shown only for carcinogenic chemicals with available toxicity values. 2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium 3) Cancer risks are unitless values which represent the probability of incurring an adverse health 									Incremental Incomplete Milligrams Milligrams	l lifetime cance pathway. per kilogram. per kilogram p	er risk. er day.

effect. They are calculated using the following formula: Cancer Risk = Exposure Dose x Cancer Slope Factor.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 31 - White Alive Site - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Coll	Soil Ingestion	Dormal	Dust Inhelation				Dathy	vor Specific	Herend	Chamical
	5011 Concentration ^a	Dogo	Dermai	Doco	Dofore	maa Daga (m	ag/leg d)	Fauly Soil	vay-specific	Duct	Specific
Constituent	(mg/kg)	Dose (mg/kg-d)	Dose (mg/kg-d)	Dose (mg/kg_d)	Oral	Dermal	lg/Kg-0) Inhalation		Dormal	Dusi Inhelation	Bechic
Constituent	(ing/kg)	(IIIg/Kg-u)	(IIIg/Kg-u)	(IIIg/Kg-u)	Orai	Dermai	maration	ingestion	Dermai	Innalation	nų
VOLATILE ORGANIC COMPOUNDS m,p-Xylene o-Xylene	0.017 0.0053	6.2E-08 1.9E-08	0.0E+00 0.0E+00	3.1E-12 9.6E-13	2.0E-01 2.0E-01	2.0E-01 2.0E-01	2.9E-02 2.9E-02	3.1E-07 1.9E-08	0.0E+00 1.9E-08	1.1E-10 1.9E-08	0.00000031 0.000000019
POLYCHLORINATED BIPHENYLS PCB-1260 (Aroclor 1260)	22	8.0E-05	3.6E-05	4.0E-09	2.0E-05	2.0E-05	2.0E-05	4.0E+00	1.8E+00	2.0E-04	5.8
										HI	5.8
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	8,307	na ^d	na ^d	na ^d	na ^d	na ^d					
Diesel Range Organics, Aliphatic	6,646	2.4E-02	Inc	1.2E-06	1.0E-01	na	2.9E-01	2.4E-01	Inc	4.1E-06	0.24
Diesel Range Organics, Aromatic	3,323	1.2E-02	Inc	6.0E-07	4.0E-02	na	5.7E-01	3.0E-01	Inc	1.1E-06	0.30
Residual Range Organics	2,165	na ^e	na ^e	na ^e	na ^e	na ^e					
Residual Range Organics, Aliphatic	1,948	7.1E-03	Inc	3.5E-07	2.0E+00	na	na	3.5E-03	Inc	Inc	0.0035
Residual Range Organics, Aromatic	649	2.4E-03	Inc	1.2E-07	3.0E-02	na	na	7.9E-02	Inc	Inc	0.079
										HI	0.63
Notes:										8	
^a Based on the maximum or 95 percent upper confi	idence limit (95% UC	CL) on the me	an					HI	Hazard ind	ex.	
concentration detected at the site.								HQ	Hazard quo	tient.	
^b Consistent with EPA policy, lead is not evaluated	l in the cumulative H	I estimate.						Inc	Incomplete	pathway.	
° Risks associated with indicator compounds are in	ncluded in cumulative	risk and haz	ard					mg/kg	Milligrams	per kilogram.	
estimates for each site. However, the health haza	rds associated with p	etroleum mix	tures					mg/kd-d	Milligrams	per kilogram	per day.
will be evaluated and reported separately.								na	not availab	le	
^d Exposure dose and noncancer hazards were calcu	lated for petroleum h	ydrocarbons i	measured as E	RO (method 8	100)						
by segregating total DRO concentrations into ali	phatic and aromatic f	ractions, assu	ming 80% ali	phatic							
hydrocarbons and 40% aromatic hydrocarbons (A	ADEC, 2000c).										
e Exposure dose and noncancer hazards were calcu	lated for petroleum h	ydrocarbons i	measured as R	RO (method)							
by segregating total RRO concentrations into ali	phatic and aromatic f	ractions, assu	ming 90% ali	phatic							
hydrocarbons and 30% aromatic hydrocarbons (A	ADEC, 2000c).										
1) Doses and noncancer hazards shown only for non	carcinogenic chemic	als with avail	able toxicity v	alues.							
2) Absorbed doses were calculated for dermal conta	ct with the medium, a	and intakes w	ere calculated	for ingestion o	r inhalation						

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 31 - White Alive Site - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

		Soil		Dust							
	Soil	Ingestion	Dermal	Inhalation			_	Pathwa	y-Specific	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refer	ence Dose (n	ng/kg-d)	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ

of a medium.

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health

effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 31 - White Alice Communications Site - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhalation				Pathwa	y-Specific	Hazard	Chemical-
Constituent	Concentration ^a (mg/kg)	Dose (mg/kg-d)	Dose (mg/kg-d)	Dose (mg/kg-d)	Refere Oral	nce Dose Dermal	(mg/kg-d) Inhalation	Soil Ingestion	Dermal	Dust Inhalation	Specific HO
Constituent	(iiig/kg)	(IIIg/Kg-u)	(IIIg/Kg-u)	(Ing/Kg-u)	Orai	Dermai	matation	Ingestion	Dermai	Innalation	пų
VOLATILE ORGANIC COMPOUNDS m,p-Xylene o-Xylene	0.017 0.0053	1.9E-07 5.8E-08	0.0E+00 0.0E+00	9.2E-12 2.9E-12	2.0E-01 2.0E-01	2.0E-01 2.0E-01	2.9E-02 2.9E-02	9.3E-07 2.9E-07	0.0E+00 0.0E+00	3.2E-10 9.9E-11	0.00000093 0.00000029
POLYCHLORINATED BIPHENYLS PCB-1260 (Aroclor 1260)	22	2.4E-04	1.1E-04	1.2E-08	2.0E-05	2.0E-05	2.0E-05	1.2E+01	5.3E+00	6.0E-04	17
										HI	17
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	8,307	na ^d	na ^d	na ^d	na ^d	na ^d					
Diesel Range Organics, Aliphatic	6,646	7.3E-02	Inc	3.6E-06	1.0E-01	na	2.9E-01	7.3E-01	Inc	1.2E-05	0.7
Diesel Range Organics, Aromatic	3,323	3.6E-02	Inc	1.8E-06	4.0E-02	na	5.7E-01	9.1E-01	Inc	3.2E-06	0.9
Residual Range Organics	2,165	nae	na ^e	na ^e	nae	na ^e	nae				
Residual Range Organics, Aliphatic	1,948	2.1E-02	Inc	1.1E-06	2.0E+00	na	na	1.1E-02	Inc	Inc	0.011
Residual Range Organics, Aromatic	649	7.1E-03	Inc	3.5E-07	3.0E-02	na	na	2.4E-01	Inc	Inc	0.24
										HI	1.9
Notes:											
^a Based on the maximum or 95 percent upper confide	nce limit (95% UCI	L) on the mean	n					HI	Hazard ind	lex.	
concentration detected at the site.								HQ	Hazard qu	otient.	
^b Consistent with EPA policy, lead is not evaluated in	the cumulative HI	estimate.						Inc	Incomplete	e pathway.	
^c Risks associated with indicator compounds are inclu	ided in cumulative r	isk and hazar	d					mø/kø	Milligram	s per kilogram	1.
estimates for each site. However, the health hazard	s associated with per	troleum mixtu	ires					mg/kd-d	Milligram	s per kilogram	n per dav.
will be evaluated and reported separately.								na	not availab) per miogram	i per any:
^d Exposure dose and noncancer hazards were calculat	ed for petroleum hy	drocarbons m	easured as D	RO (method 8	3100)			nu	not uvunu		
by segregating total DRO concentrations into alipha	atic and aromatic fra	ctions, assum	ning 80% alip	hatic							
hydrocarbons and 40% aromatic hydrocarbons (AD	EC. 2000c).		0 1								
^e Exposure dose and noncancer hazards were calculat	ed for petroleum hv	drocarbons m	easured as RI	RO (method)							
by segregating total RRO concentrations into alipha	tic and aromatic fra	ctions, assum	ing 90% alip	hatic							

hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).

1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 31 - White Alice Communications Site - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

		Soil		Dust							
	Soil	Ingestion	Dermal	Inhalation			-	Pathwa	y-Specific	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refer	ence Dose (n	mg/kg-d)	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal 1	Inhalation	Ingestion	Dermal	Inhalation	HQ

2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium.

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 31 - White Alice Communications Site - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhalation				Path	wav-Specific l	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Roford	nce Dose (i	ma/ka-d)	Soil	specific i	Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	НО
								0			.
VOLATILE ORGANIC COMPOUNDS	0.017	4.05 10	0.05.00	1 55 10	0.05.01	2 05 01	0.05.00	0.45.00		5 15 10	0.000000000
m,p-Xylene	0.017	4.9E-10	0.0E+00	1.5E-13 4.7E-14	2.0E-01	2.0E-01	2.9E-02	2.4E-09	0.0E+00	5.1E-12	0.0000000024
0-Aylene	0.0055	1.5E-10	0.0E+00	4./12-14	2.012-01	2.012-01	2.912-02	7.0E-10	0.012+00	1.0E-12	0.0000000070
POLYCHLORINATED BIPHENYLS											
PCB-1260 (Aroclor 1260)	22	6.3E-07	1.2E-06	1.9E-10	2.0E-05	2.0E-05	2.0E-05	3.1E-02	5.8E-02	9.7E-06	0.089
										HI	0.089
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	8,307	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	6,646	1.9E-04	Inc	5.8E-08	1.0E-01	na	2.9E-01	1.9E-03	Inc	2.0E-07	0.0019
Diesel Range Organics, Aromatic	3,323	9.5E-05	Inc	2.9E-08	4.0E-02	na	5.7E-01	2.4E-03	Inc	5.1E-08	0.0024
Residual Range Organics	2,165	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Residual Range Organics, Aliphatic	1,948	5.6E-05	Inc	1.7E-08	2.0E+00	na	na	2.8E-05	Inc	Inc	0.000028
Residual Range Organics, Aromatic	649	1.9E-05	Inc	5./E-09	3.0E-02	na	na	6.2E-04	Inc	Inc	0.00062
										HI	0.0049
Notes:										-	
^a Based on the maximum or 95 percent upper cor	fidence limit (95% U	JCL) on the n	nean					HI	Hazard index	х.	
concentration detected at the site.	× ×	,						НО	Hazard quoti	ient.	
^b Consistent with EPA policy, lead is not evaluate	ed in the cumulative l	HI estimate.						Inc	Incomplete n	athway	
^c Risks associated with indicator compounds are	included in cumulati	ve risk and ha	zard					mg/kg	Milligrams r	er kilogram	
estimates for each site. However, the health has	ards associated with	petroleum mi	ixtures					mg/kd_d	Milligrams p	er kilogram pe	r dav
will be evaluated and reported separately.		•						na	not available	er knogram pe	a day.
^d Exposure dose and noncancer hazards were cald	culated for petroleum	hydrocarbon	s measured as	s DRO (metho	od 8100)			nu	not available		
by segregating total DRO concentrations into a	liphatic and aromatic	fractions. as	suming 80%	aliphatic	,						
hydrocarbons and 40% aromatic hydrocarbons	(ADEC, 2000c).		U	1							
^e Exposure dose and noncancer hazards were cald	culated for petroleum	hydrocarbon	s measured as	RRO (metho	od)						
by segregating total BRO concentrations into a	liphatic and aromatic	fractions as	suming 90%	aliphatic	- /						
hydrocarbons and 30% aromatic hydrocarbons	(ADEC 2000c)		unning yorv	anpilatio							
1) Doses and noncancer hazards shown only for n	ncarcinogenic chemi	icals with ava	ilable tovicit	v values							
2) Absorbed doses were calculated for dermal cont	act with the medium	and intakes	were calculat	ed for ingestion	on or inhalat	ion					
of a medium		,									

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 31 - White Alice Communications Site - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

		Soil		Dust							
	Soil	Ingestion	Dermal	Inhalation			-	Pathw	ay-Specific I	Hazard	Chemical-
	Concentration ^a	Dose	Dose	Dose	Refere	ence Dose (n	ng/kg-d)	Soil		Dust	Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ

3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health

effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 32 - Lower Tram Terminal - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil	Soil Ingestion	Dermal	Dust Inhalation		_ /		Pathw	vay-Specific	Hazard	Chemical-
Constituent	(mg/kg)	Dose (mg/kg-d)	Dose (mg/kg-d)	Dose (mg/kg-d)	Oral	nce Dose (n Dermal	ig/kg-d) Inhalation	Soll Ingestion	Dermal	Dust Inhalation	Specific HQ
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics Diesel Range Organics, Aliphatic	13,000 10,400	na ^d 3.8E-02	na ^d Inc	na ^d 1.9E-06	na ^d 1.0E-01	na ^d na	na ^d 2.9E-01	na ^d 3.8E-01	na ^d Inc	na ^d 6.5E-06	na ^d 0.38
Residual Range Organics, Aromatic Residual Range Organics Residual Range Organics, Aliphatic Residual Pange Organics, Aromatic	5,200 3,600 3,240	1.9E-02 na ^e 1.2E-02 3.9E-03	Inc na ^e Inc Inc	9.4E-07 na ^e 5.9E-07 2.0E.07	4.0E-02 na ^e 2.0E+00	na na ^e na	5./E-01 na ^e na	4.7E-01 na ^e 5.9E-03	Inc na ^e Inc Inc	1.6E-06 na ^e Inc Inc	0.47 na ^e 0.0059
Kesiduai Kange Organies, Aromane	1,000	J.7E-05	me	2.0E-07	3.0E-02	na	na	1.5E-01	Inc	IIIC UI	0.15
Notes:											0.99
 ^a Based on the maximum or 95 percent upper configeon concentration detected at the site. ^b Consistent with EPA policy, lead is not evaluated ^c Risks associated with indicator compounds are integrated structure of the estimates for each site. However, the health hazar will be evaluated and reported separately. ^d Exposure dose and noncancer hazards were calcul by segregating total DRO concentrations into align hydrocarbons and 40% aromatic hydrocarbons (A ^e Exposure dose and noncancer hazards were calcul by segregating total RRO concentrations into align hydrocarbons and 30% aromatic hydrocarbons (A) 	dence limit (95% UC in the cumulative HI cluded in cumulative rds associated with per ated for petroleum hy phatic and aromatic fr DEC, 2000c). ated for petroleum hy phatic and aromatic fr DEC, 2000c).	CL) on the mean estimate. risk and haza etroleum mixt ydrocarbons r ractions, assur- ydrocarbons r	an Ird ures neasured as D ming 80% alip neasured as R ming 90% alip	RO (method 81 bhatic RO (method) bhatic	.00)			HI HQ Inc mg/kg mg/kd-d na	Hazard ind Hazard quo Incomplete Milligrams Milligrams not availab	ex. ptient. pathway. per kilogram. per kilogram le	per day.
 Doses and noncancer hazards shown only for non Absorbed doses were calculated for dermal contact of a medium. Noncancer hazards are unitless values which represent the following for the fol	carcinogenic chemica et with the medium, a esent the probability rmula: Noncancer F	als with availand intakes we of incurring a H = Exposure	able toxicity va ere calculated n adverse heal e Dose/Referer	alues. for ingestion or hth nce dose.	nhalation						

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 32 - Lower Tram Terminal - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil Concentration ^a	Soil Ingestion Dose	Dermal Dose	Dust Inhalation Dose	Refere	nce Dose	(mg/kg-d)	Pathwa Soil	ay-Specific	Hazard Dust	Chemical- Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	нQ
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	13,000	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	10,400	1.1E-01	Inc	5.6E-06	1.0E-01	na	2.9E-01	1.1E+00	Inc	1.9E-05	1.1
Diesel Range Organics, Aromatic	5,200	5.7E-02	Inc	2.8E-06	4.0E-02	na	5.7E-01	1.4E+00	Inc	4.9E-06	1.4
Residual Range Organics	3,600	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Residual Range Organics, Aliphatic	3,240	3.5E-02	Inc	1.8E-06	2.0E+00	na	na	1.8E-02	Inc	Inc	0.018
Residual Range Organics, Aromatic	1,080	1.2E-02	Inc	5.9E-07	3.0E-02	na	na	3.9E-01	Inc	Inc	0.39
										HI	3.0
Notes:											
^a Based on the maximum or 95 percent upper co	nfidence limit (95% UCI	.) on the mean	n					HI	Hazard in	dex.	
concentration detected at the site.								НО	Hazard qu	otient.	
^b Consistent with EPA policy, lead is not evaluat	ted in the cumulative HI e	estimate.						Inc	Incomplet	e pathway.	
^c Risks associated with indicator compounds are	included in cumulative r	isk and hazar	d					mo/ko	Millioram	s ner kilogram	
estimates for each site. However, the health ha	azards associated with pet	roleum mixtu	ires					mg/kd-d	Milligram	s per kilogram	ner dav
will be evaluated and reported separately.	1							ng/Ku u	not availal	ble	per day.
^d Exposure dose and noncancer hazards were ca	lculated for petroleum hv	drocarbons m	easured as D	RO (method 8	3100)			IIa	not availa	bic	
by segregating total DRO concentrations into a	aliphatic and aromatic fra	ctions, assum	ning 80% alip	hatic	,						
hydrocarbons and 40% aromatic hydrocarbons	(ADEC. 2000c).	,									
^e Exposure dose and noncancer hazards were ca	culated for petroleum hv	drocarbons m	easured as RI	RO (method)							
by segregating total RRO concentrations into a	aliphatic and aromatic fra	ctions assum	ing 90% alin	hatic							
hydrocarbons and 30% aromatic hydrocarbons	(ADEC 2000c)	etions, ussum	ing yow unp	inutio							
1) Doses and noncember hazards shown only for r	(1992C, 2000C).	e with availab	ale toxicity ve	luoc							
 Doses and noncancer nazards shown only for 1 Absorbed doses were calculated for dermal cor of a medium. 	ntact with the medium, an	id intakes wei	re calculated f	for ingestion of	or inhalatic	on					
3) Noncancer hazards are unitless values which re	epresent the probability of	f incurring an	adverse healt	th							
effect. They are calculated using the following	formula: Noncancer H	[= Exposure]	Dose/Referen	ice dose.							

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 32 - Lower Tram Terminal - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	<u></u>
PETROLEUM HYDROCARBONS ^e	
Diesel Range Organics 13,000 na ^d na	na ^d
Diesel Range Organics, Aliphatic 10,400 3.0E-04 Inc 9.1E-08 1.0E-01 na 2.9E-01 3.0E-03 Inc 3.1E- Diesel Pares Organics Asymptic 5 200 1.5E 0.4 Inc 9.1E-08 4.0E 0.2 ns 5.7E 0.1 3.7E 0.2 Inc 9.0E	7 0.0030
Diese Range Organics, Aromatic $5,200$ $1.5E-04$ inc $4.6E-08$ $4.0E-02$ na $5.7E-01$ $5.7E-03$ inc $8.0E-02$	8 0.0037 e
Residual Range Organics 3,600 na	na 4 6E 05
Residual Range Organics, Ariphatic 3,240 9.2E-05 Inc 2.8E-08 2.0E-00 na na 1.0E-03 Inc Inc	0.001
Н	0.0078
Notes:	
" Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean HI Hazard index.	
concentration detected at the site. HQ Hazard quotient.	
⁶ Consistent with EPA policy, lead is not evaluated in the cumulative HI estimate. Inc Incomplete pathway.	
mg/kg Milligrams per kilogra	1.
Risks associated with indicator compounds are included in cumulative risk and hazard mg/kd-d Milligrams per kilogra	n per day.
estimates for each site. However, the health hazards associated with petroleum mixtures na not available	
will be evaluated and reported separately.	
^a Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as DRO (method 8100)	
by segregating total DRO concentrations into aliphatic and aromatic fractions, assuming 80% aliphatic	
hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c).	
^e Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as RRO (method)	
by segregating total RRO concentrations into aliphatic and aromatic fractions, assuming 90% aliphatic	
hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).	
1) Doses and noncancer hazards shown only for noncarcinogenic chemicals with available toxicity values.	
2) Absorbed doses were calculated for dermal contact with the medium, and intakes were calculated for ingestion or inhalation of a medium	
3) Noncancer hazards are unitless values which represent the probability of incurring an adverse health	
effect. They are calculated using the following formula: Noncancer HI = Exposure Dose/Reference dose.	

NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 33 - Upper Tram Terminal - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil Concentration ^a	Soil Ingestion	Dermal	Dust Inhalation	Defeue	D (Pathw	vay-Specific	Hazard	Chemical-
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Dust Inhalation	HQ
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	660	na ^d	na ^d	na ^d	nad	na ^d	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics, Aliphatic	528	1.9E-03	Inc	9.5E-08	1.0E-01	na	2.9E-01	1.9E-02	Inc	3.3E-07	0.019
Diesel Range Organics, Aromatic	264	9.6E-04	Inc	4.8E-08	4.0E-02	na	5./E-01	2.4E-02	Inc	8.4E-08	0.024
Residual Range Organics	2,100	na"	nač	na	na [°]	na	na	na [°]	nač	nač	na
Residual Range Organics, Aliphatic	1,890	6.9E-03	Inc	3.4E-07	2.0E+00	na	na	3.4E-03	Inc	Inc	0.0034
Residual Range Organics, Afomatic	050	2.3E-05	Inc	1.1E-07	5.0E-02	na	па	7.0E-02	Inc	Inc	0.070
										HI	0.12
Notes:										-	
^a Based on the maximum or 95 percent upper conf concentration detected at the site.	fidence limit (95% UC	L) on the mea	an					HI HQ	Hazard ind Hazard quo	ex. otient.	
^b Consistent with EPA policy, lead is not evaluated	d in the cumulative HI	estimate.						Inc	Incomplete	pathway.	
° Risks associated with indicator compounds are in	ncluded in cumulative	risk and haza	ırd					mg/kg	Milligrams	per kilogram.	
estimates for each site. However, the health haze	ards associated with p	etroleum mixt	ures					mg/kd-d	Milligrams	per kilogram	per day.
will be evaluated and reported separately.								na	not availab	le	1 5
^d Exposure dose and noncancer hazards were calcu	ulated for petroleum h	ydrocarbons r	neasured as D	RO (method 81	100)						
by segregating total DRO concentrations into al	iphatic and aromatic fi	ractions, assu	ming 80% alir	ohatic							
hydrocarbons and 40% aromatic hydrocarbons (ADEC. 2000c).	,	0 1								
^e Exposure dose and noncancer hazards were calcu	ulated for petroleum h	vdrocarbons r	neasured as R	RO (method)							
by segregating total RRO concentrations into all	inhatic and aromatic f	actions assu	ming 90% alir	hatic							
hydrocarbons and 30% aromatic hydrocarbons (ADEC 2000c)	uotionis, ussui	ining 9070 unp	inune							
1) Design and a superson because a burner of the superson of the superson because a superson of the superson o	ADEC, 2000C).	.1	.1.1	-1							
 Doses and noncancer nazards shown only for no Absorbed doses were calculated for dermal conta of a medium. 	act with the medium, a	nd intakes we	ere calculated	for ingestion or	inhalation						
 Noncancer hazards are unitless values which rep effect. They are calculated using the following f 	resent the probability formula: Noncancer H	of incurring a H = Exposure	n adverse heal Dose/Referen	lth nce dose.							

NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 33 - Upper Tram Terminal - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil Concentration ^a	Soil Ingestion Dose	Dermal Dose	Dust Inhalation Dose	Refere	nce Dose	(mg/kg-d)	Pathwa Soil	ay-Specific	Hazard Dust	Chemical- Specific
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics Diesel Range Organics, Aliphatic Diesel Range Organics, Aromatic	660 528 264	na ^d 5.8E-03 2.9E-03	na ^d Inc	na ^d 2.9E-07 1.4E-07	na ^d 1.0E-01 4.0E-02	na ^d na	na ^d 2.9E-01 5 7E-01	na ^d 5.8E-02 7.2E-02	na ^d Inc	na ^d 9.9E-07 2.5E-07	na ^d 0.058 0.072
Residual Range Organics, Aloniate Residual Range Organics, Aliphatic Residual Range Organics, Aromatic	2,100 1,890 630	na ^e 2.1E-02 6.9E-03	na ^e Inc Inc	na ^e 1.0E-06 3.4E-07	na ^e 2.0E+00 3.0E-02	na ^e na na	na ^e na na	na ^e 1.0E-02 2.3E-01	na ^e Inc Inc	na ^e Inc Inc	na ^e 0.010 0.23
										TTT	0.27
 ^a Based on the maximum or 95 percent upper confide concentration detected at the site. ^b Consistent with EPA policy, lead is not evaluated in ^c Risks associated with indicator compounds are inclue estimates for each site. However, the health hazards will be evaluated and reported separately. 	 ^a Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected at the site. ^b Consistent with EPA policy, lead is not evaluated in the cumulative HI estimate. ^c Risks associated with indicator compounds are included in cumulative risk and hazard estimates for each site. However, the health hazards associated with petroleum mixtures 								Hazard in Hazard qu Incomplet Milligram Milligram not availal	dex. otient. e pathway. s per kilogram s per kilogram ble	per day.
 ^d Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as DRO (method 8100) by segregating total DRO concentrations into aliphatic and aromatic fractions, assuming 80% aliphatic hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c). ^e Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as RRO (method) by segregating total RRO concentrations into aliphatic and aromatic fractions, assuming 90% aliphatic hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c). 											
 Doses and noncancer hazards shown only for nonca Absorbed doses were calculated for dermal contact of a medium. Noncancer hazards are unitless values which represe effect. They are calculated using the following form 	rcinogenic chemica with the medium, ar ent the probability o nula: Noncancer H	ls with availat nd intakes wer f incurring an I = Exposure 3	ole toxicity va re calculated f adverse healt Dose/Referen	lues. for ingestion of h ce dose.	or inhalatio	n					

NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 33 - Upper Tram Terminal - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

Constituent	Soil Concentration ^a	Soil Ingestion Dose	Dermal Dose	Dust Inhalation Dose	Referer	nce Dose (1	mg/kg-d)	Path Soil	way-Specific I	Hazard Dust	Chemical- Specific
						`````	00/				•
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics Diesel Range Organics, Aliphatic Diesel Range Organics, Aromatic	660 528 264	na ^d 1.5E-05 7.5E-06	na ^d Inc Inc	na ^d 4.6E-09 2.3E-09	na ^d 1.0E-01 4.0E-02	na ^d na na	na ^d 2.9E-01 5.7E-01	na ^d 1.5E-04 1.9E-04	na ^d Inc Inc	na ^d 1.6E-08 4.1E-09	na ^d 0.00015 0.00019
Residual Range Organics Residual Range Organics, Aliphatic Residual Range Organics, Aromatic	2,100 1,890 630	na ^e 5.4E-05 1.8E-05	na ^e Inc Inc	na ^e 1.7E-08 5.5E-09	na ^e 2.0E+00 3.0E-02	na ^e na na	na ^e na na	na ^e 2.7E-05 6.0E-04	na ^e Inc Inc	na ^e Inc Inc	na ^e 0.000027 0.00060
										HI	0.00097
Notes:											
^a Based on the maximum or 95 percent upper co concentration detected at the site.	onfidence limit (95% U	CL) on the m	ean					HI HQ	Hazard index Hazard quoti	ent.	
^b Consistent with EPA policy, lead is not evaluated	ated in the cumulative H	II estimate.						Inc	Incomplete p	athway.	
^c Risks associated with indicator compounds ar	e included in cumulativ	e risk and haz	ard					mg/kg	Milligrams p	er kilogram.	
estimates for each site. However, the health h	azards associated with p	petroleum miz	xtures					mg/kd-d	Milligrams p	er kilogram pe	er day.
will be evaluated and reported separately.	1 1 . 1				1.0100			na	not available		
^a Exposure dose and noncancer hazards were ca	alculated for petroleum	hydrocarbons	measured as	s DRO (metho	d 8100)						
by segregating total DRO concentrations into	aliphatic and aromatic	fractions, ass	uming 80%	aliphatic							
⁶ Eurosure dese and personner hozarda ware as	s (ADEC, 2000c).	a u du o o o u b o n o	manunada	DDO (motho	4)						
Exposure dose and noncancer hazards were ca	alightic and argmetic	fractions	mina 000/	s KKO (Illeulo	u )						
by segregating total KKO concentrations into	s (ADEC 2000c)	11actions, assi	unning 90%	anphatic							
1) Doses and noncancer bazards shown only for	s (ADEC, 2000C).	oole with avai	lable toxicit	v values							
<ol> <li>2) Absorbed doses were calculated for dermal co of a medium</li> </ol>	intact with the medium,	and intakes v	vere calculat	ed for ingestio	n or inhalatio	n					
<ol> <li>Noncancer hazards are unitless values which a effect. They are calculated using the followin</li> </ol>	represent the probability g formula: Noncancer	of incurring HI = Exposu	an adverse ł re Dose/Refe	nealth erence dose.							

## NONCANCER HAZARD CALCULATIONS FOR A FUTURE SEASONAL RESIDENT SITE 34 - Upper Camp - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

Soil	Soil Ingestion	Dermal	Dust Inhalation				Pathw	ay-Specific	Hazard	Chemical-
Concentration ⁻ (mg/kg)	Dose (mg/kg-d)	Dose (mg/kg-d)	Dose (mg/kg-d)	Refere Oral	nce Dose (n Dermal	1g/kg-d) Inhalation	Soil Ingestion	Dermal	Dust Inhalation	Specific HO
1,100 880 440 1,162 1,046 349	na ^d 3.2E-03 1.6E-03 na ^e 3.8E-03 1.3E-03	na ^d Inc Inc na ^e Inc Inc	na ^d 1.6E-07 7.9E-08 na ^e 1.9E-07 6.3E-08	na ^d 1.0E-01 4.0E-02 na ^e 2.0E+00 3.0E-02	na ^d na na ^c na na	na ^d 2.9E-01 5.7E-01 na ^e na na	na ^d 3.2E-02 4.0E-02 na ^e 1.9E-03 4.2E-02	na ^d Inc Inc na ^e Inc Inc	na ^d 5.5E-07 1.4E-07 na ^e Inc Inc	na ^d 0.032 0.040 na ^e 0.0019 0.042
									ш	0.12
the cumulative HI ded in cumulative HI ded in cumulative associated with particular ed for petroleum hy tic and aromatic fr 3C, 2000c). ed for petroleum hy tic and aromatic fr 3C, 2000c). cinogenic chemication with the medium, and nt the probability of	L) on the mea estimate. risk and haza etroleum mixt ydrocarbons m actions, assur drocarbons m actions, assur ds with availa nd intakes we of incurring a	an urd ures neasured as D ming 80% alip neasured as R ming 90% alip able toxicity va ere calculated n adverse heal	RO (method 8 l ohatic RO (method ) ohatic alues. for ingestion or	00) inhalation			HI HQ Inc mg/kg mg/kd-d na	Hazard ind Hazard quo Incomplete Milligrams Milligrams not availab	ex. pathway. per kilogram. per kilogram le	per day.
	Soil Concentration ^a (mg/kg) 1,100 880 440 1,162 1,046 349 nce limit (95% UC the cumulative HI ded in cumulative HI ded in cumulative HI ded in cumulative HI ded in cumulative fi can aromatic fr EC, 2000c). ed for petroleum hy tic and aromatic fr EC, 2000c).	SoilSoilConcentrationaIngestion $Oose$ $Oose$ $(mg/kg)$ $Oose$ $(mg/kg)$ $mg/kg-d$ 1,100 $na^d$ 880 $3.2E-03$ 440 $1.6E-03$ 1,162 $na^e$ 1,046 $3.8E-03$ 349 $1.3E-03$ the cumulative HI estimate.ded in cumulative risk and hazaassociated with petroleum mixtextend aromatic fractions, assuEC, 2000c).cinogenic chemicals with availaatomatic fractions, assuEC, 2000c).cinogenic chemicals with availawith the medium, and intakes withnt the probability of incurring awith the probability of incurring awith the probability of incurring a	Soil IngestionDermal Dose (mg/kg)Dose Dose (mg/kg-d)1,100 $na^d$ $na^d$ 1,100 $na^d$ $na^d$ 1,100 $na^d$ $na^d$ 1,100 $na^d$ $na^d$ 1,100 $na^d$ $na^d$ 1,162 $na^e$ $na^e$ 1,046 $3.8E-03$ Inc1,046 $3.8E-03$ Inc349 $1.3E-03$ Incassociated with petroleum mixturesed for petroleum hydrocarbons measured as Dtic and aromatic fractions, assuming 80% alig2C, 2000c).ed for petroleum hydrocarbons measured as Rtic and aromatic fractions, assuming 90% alig2C, 2000c).cinogenic chemicals with available toxicity with the medium, and intakes were calculatednt the probability of incurring an adverse headula:Noncancer HI = Exposure Dose/Reference	SoilSoilIngestionDermalDust Inhalation DoseConcentrationaDoseDoseDose(mg/kg-d)1,100nadnadnadnad1,100nadnadnadnad8803.2E-03Inc1.6E-074401.6E-03Inc7.9E-081,162nacnacnac1,0463.8E-03Inc1.9E-073491.3E-03Inc6.3E-08the cumulative HI estimate.ded in cumulative risk and hazardassociated with petroleum mixturesed for petroleum hydrocarbons measured as DRO (method 81tic and aromatic fractions, assuming 80% aliphatic3C, 2000c)et al aromatic fractions, assuming 90% aliphatic3C, 2000c) <tr< td=""><td>SoilSoilIngestionDermalInhalationConcentrationaDoseDoseDoseDoseMagestication(mg/kg)(mg/kg-d)(mg/kg-d)(mg/kg-d)(mg/kg-d)Oral1,100$na^d$$na^d$$na^d$$na^d$$na^d$1,100$na^d$$na^d$$na^d$$na^d$$na^d$1,100$na^d$$na^d$$na^d$$na^d$$na^d$1,100$na^d$$na^d$$na^d$$na^d$$na^d$1,100$na^d$$na^c$$1.6E-07$$1.0E-01$440$1.6E-03$$Inc$$7.9E-08$$4.0E-02$1,162$na^c$$na^c$$na^c$$na^c$1,046$3.8E-03$$Inc$$1.9E-07$$2.0E+00$349$1.3E-03$$Inc$$6.3E-08$$3.0E-02$the cumulative HI estimate.ded in cumulative risk and hazardassociated with petroleum mixturesed for petroleum hydrocarbons measured as DRO (method 8100)tic and aromatic fractions, assuming 80% aliphatic2C, 2000c).$C_2$$C_2$$C_2, 2000c$).with available toxicity values.with the medium, and intakes were calculated for ingestion or inhalationIt the probability of incurring an adverse health</td><td>SoilSoilIngestionDermalInhalationConcentrationaDoseDoseDoseOralDermal1,100$na^d$$na^d$$na^d$$na^d$$na^d$$na^d$$na^d$1,100$na^d$$na^d$$na^d$$na^d$$na^d$$na^d$$na^d$1,100$na^d$$na^d$$na^d$$na^d$$na^d$$na^d$$na^d$1,100$na^d$$na^d$$na^d$$na^d$$na^d$$na^d$$na^d$1,102$na^e$$na^e$$na^e$$na^e$$na^e$$na^e$$na^e$1,162$na^e$$na^e$$na^e$$na^a$$na^e$$na^e$$na^e$1,046$3.8E-03$Inc$1.9E-07$$2.0E+00$$na$$349$1.3E-03Inc$6.3E-08$$3.0E-02$$na$the cumulative HI estimate.ded in cumulative risk and hazardassociated with petroleum mixturesed for petroleum hydrocarbons measured as DRO (method 8100)tic and aromatic fractions, assuming 80% aliphatic2C, 2000c).colspan="4"&gt;colspan="4"&gt;colspan="4"&gt;tic and aromatic fractions, assuming 90% aliphatic2C, 2000c).chemical swith available toxicity values.with the medium, and intakes were calculated for ingestion or inhalationin the probability of incurring an adverse healthula . Noncarcer HI = Exposure Dose/Reference dose</td><td>Soil Soil Concentration (mg/kg)Soil Ingestion Dose (mg/kg-d)Dust Inhalation Dose (mg/kg-d)Reference Dose (mg/kg-d)1,100$na^d$$na^d$$na^d$$na^d$$na^d$$na^d$1,100$na^d$$na^d$$na^d$$na^d$$na^d$$na^d$1,100$na^d$$na^d$$na^d$$na^d$$na^d$$na^d$1,100$na^d$$na^d$$na^d$$na^d$$na^d$$na^d$1,100$na^d$$na^d$$na^d$$na^d$$na^d$$na^d$1,100$na^d$$na^c$$na^c$$na^c$$na^c$$na^c$400$1.6E-03$$Inc$$7.9E-08$$4.0E-02$$na$$5.7E-01$1,162$na^c$$na^c$$na^c$$na^c$$na^c$$na^c$1,046$3.8E-03$$Inc$$1.9E-07$$2.0E+00$$na$$na$349$1.3E-03$$Inc$$6.3E-08$$3.0E-02$$na$$na$associated with petroleum mixtureset limit (95% UCL) on the meanthe cumulative HI estimate.ded in cumulative risk and hazardassociated with petroleum mixtureset d for petroleum hydrocarbons measured as DRO (method 8100)tic and aromatic fractions, assuming 80% alighatic3C, 2000c).et d for petroleum hydrocarbons measured as RRO (method )tic and aromatic fractions, assuming 90% alighatic3C, 2000c).et inogenic chemicals with available toxicity values.with the medium, and int</td><td>Soil Soil IngestionDermal Dose (mg/kg-d)Dust InhalationReference Dose (mg/kg-d)Pathw$Concentrationa(mg/kg)Dose(mg/kg-d)Dose(mg/kg-d)Reference Dose (mg/kg-d)SoilIngestion1,100nadadnadnadnadnadnadnadnadnadnadnadnadnad1,100nad40nad1.6E-03Inc1.0E1.0E-011.0E-01na2.9E-013.2E-023.2E-024401.6E-031.6E-03Inc1.9E-072.0E+002.0E+00nanananana1.9E-031,0463.8E-033.491.3E-03Inc6.3E-083.0E-023.0E-02nanananance limit (95% UCL) on the meanthe cumulative HI estimate.HIHQmg/kgassociated with petroleum mixturesIncmg/kgmg/kd-dnaed for petroleum hydrocarbons measured as DRO (method 8100)tic and aromatic fractions, assuming 80% aliphatic3C, 2000c).HImg/kg associated with available toxicity values.ad for petroleum hydrocarbons measured as RRO (method )tic and aromatic fractions, assuming 90% aliphatic3C, 2000c).Hit petroleum initates were calculated for ingestion or inhalationmt the probability of incurring an adverse healthwere calculated for ingestion or inhalationHit headmax$</td><td>Soil       Soil       Dermal       Inhalation       Reference Dose (mg/kg-d)       Pathway-Specific         Concentration^a       Dose       (mg/kg-d)       Oral       Dermal       Inhalation       Ingestion       Dermal         1,100       $na^d$       &lt;</td><td>Soil Soil Dose (mg/kg-d)Dest Inhalation Dose (mg/kg-d)Dust InhalationPathway-Specific Hazard Dust Inhalation$1,100$ (mg/kg-d)na^d (mg/kg-d)na^d (mg/kg-d)na^d (mg/kg-d)na^d (mg/kg-d)na^d (mg/kg-d)$1,100$ (mg/kg-d)na^d (mg/kg-d)na^d (mg/kg-d)na^d (mg/kg-d)na^d (mg/kg-d)na^d (mg/kg-d)$1,100$ (mg/kg-d)na^d (mg/kg-d)na^d (mg/kg-d)na^d (mg/kg-d)na^d (mg/kg-d)na^d (mg/kg-d)$1,100$ (mg/kg-d)na^d (mg/kg-d)na^d (mg/kg-d)na^d (mg/kg-d)na^d (mg/kg-d)na^d (mg/kg-d)$1,100$ (mg/kg-d)na^d (mg/kg-d)na^d (mg/kg-d)na^d (mg/kg-d)na^d (mg/kg-d)na^d (mg/kg-d)$1,100$ (1,62-03nc (1,62-03nc (1,62-07 (1,62-02na (1,62-02na (1,62-02na (1,62-02na (1,62-02na (1,62-02$1,62$ (1,64-03nc (1,62-03nc (1,62-03nc (1,62-03nc (1,62-03nc (1,62-03nc (1,62-03$1,62$ (1,64-03nc (1,62-03nc (1,62-03na^d (1,62-03na^d (1,62-03na^d (1,62-03na^d (1,62-03$1,62$ (1,64-03nc (1,62-03nc (1,62-03na^d (1,62-03na^d (1,62-03na^d (1,62-03na^d (1,62-03$1,62$ (1,64-03nc (1,62-03nc (1,62-03nc (1,62-03nc (1,63-03nc (1,62-03$1$</td></tr<>	SoilSoilIngestionDermalInhalationConcentrationaDoseDoseDoseDoseMagestication(mg/kg)(mg/kg-d)(mg/kg-d)(mg/kg-d)(mg/kg-d)Oral1,100 $na^d$ $na^d$ $na^d$ $na^d$ $na^d$ 1,100 $na^d$ $na^c$ $1.6E-07$ $1.0E-01$ 440 $1.6E-03$ $Inc$ $7.9E-08$ $4.0E-02$ 1,162 $na^c$ $na^c$ $na^c$ $na^c$ 1,046 $3.8E-03$ $Inc$ $1.9E-07$ $2.0E+00$ 349 $1.3E-03$ $Inc$ $6.3E-08$ $3.0E-02$ the cumulative HI estimate.ded in cumulative risk and hazardassociated with petroleum mixturesed for petroleum hydrocarbons measured as DRO (method 8100)tic and aromatic fractions, assuming 80% aliphatic2C, 2000c). $C_2$ $C_2$ $C_2, 2000c$ ).with available toxicity values.with the medium, and intakes were calculated for ingestion or inhalationIt the probability of incurring an adverse health	SoilSoilIngestionDermalInhalationConcentrationaDoseDoseDoseOralDermal1,100 $na^d$ $na^d$ $na^d$ $na^d$ $na^d$ $na^d$ $na^d$ 1,100 $na^d$ $na^d$ $na^d$ $na^d$ $na^d$ $na^d$ $na^d$ 1,100 $na^d$ $na^d$ $na^d$ $na^d$ $na^d$ $na^d$ $na^d$ 1,100 $na^d$ $na^d$ $na^d$ $na^d$ $na^d$ $na^d$ $na^d$ 1,102 $na^e$ $na^e$ $na^e$ $na^e$ $na^e$ $na^e$ $na^e$ 1,162 $na^e$ $na^e$ $na^e$ $na^a$ $na^e$ $na^e$ $na^e$ 1,046 $3.8E-03$ Inc $1.9E-07$ $2.0E+00$ $na$ $349$ 1.3E-03Inc $6.3E-08$ $3.0E-02$ $na$ the cumulative HI estimate.ded in cumulative risk and hazardassociated with petroleum mixturesed for petroleum hydrocarbons measured as DRO (method 8100)tic and aromatic fractions, assuming 80% aliphatic2C, 2000c).colspan="4">colspan="4">colspan="4">tic and aromatic fractions, assuming 90% aliphatic2C, 2000c).chemical swith available toxicity values.with the medium, and intakes were calculated for ingestion or inhalationin the probability of incurring an adverse healthula . Noncarcer HI = Exposure Dose/Reference dose	Soil Soil Concentration (mg/kg)Soil Ingestion Dose (mg/kg-d)Dust Inhalation Dose (mg/kg-d)Reference Dose (mg/kg-d)1,100 $na^d$ $na^d$ $na^d$ $na^d$ $na^d$ $na^d$ 1,100 $na^d$ $na^c$ $na^c$ $na^c$ $na^c$ $na^c$ 400 $1.6E-03$ $Inc$ $7.9E-08$ $4.0E-02$ $na$ $5.7E-01$ 1,162 $na^c$ $na^c$ $na^c$ $na^c$ $na^c$ $na^c$ 1,046 $3.8E-03$ $Inc$ $1.9E-07$ $2.0E+00$ $na$ $na$ 349 $1.3E-03$ $Inc$ $6.3E-08$ $3.0E-02$ $na$ $na$ associated with petroleum mixtureset limit (95% UCL) on the meanthe cumulative HI estimate.ded in cumulative risk and hazardassociated with petroleum mixtureset d for petroleum hydrocarbons measured as DRO (method 8100)tic and aromatic fractions, assuming 80% alighatic3C, 2000c).et d for petroleum hydrocarbons measured as RRO (method )tic and aromatic fractions, assuming 90% alighatic3C, 2000c).et inogenic chemicals with available toxicity values.with the medium, and int	Soil Soil IngestionDermal Dose (mg/kg-d)Dust InhalationReference Dose (mg/kg-d)Pathw $Concentrationa(mg/kg)Dose(mg/kg-d)Dose(mg/kg-d)Reference Dose (mg/kg-d)SoilIngestion1,100nadadnadnadnadnadnadnadnadnadnadnadnadnad1,100nad40nad1.6E-03Inc1.0E1.0E-011.0E-01na2.9E-013.2E-023.2E-024401.6E-031.6E-03Inc1.9E-072.0E+002.0E+00nanananana1.9E-031,0463.8E-033.491.3E-03Inc6.3E-083.0E-023.0E-02nanananance limit (95% UCL) on the meanthe cumulative HI estimate.HIHQmg/kgassociated with petroleum mixturesIncmg/kgmg/kd-dnaed for petroleum hydrocarbons measured as DRO (method 8100)tic and aromatic fractions, assuming 80% aliphatic3C, 2000c).HImg/kg associated with available toxicity values.ad for petroleum hydrocarbons measured as RRO (method )tic and aromatic fractions, assuming 90% aliphatic3C, 2000c).Hit petroleum initates were calculated for ingestion or inhalationmt the probability of incurring an adverse healthwere calculated for ingestion or inhalationHit headmax$	Soil       Soil       Dermal       Inhalation       Reference Dose (mg/kg-d)       Pathway-Specific         Concentration ^a Dose       (mg/kg-d)       Oral       Dermal       Inhalation       Ingestion       Dermal         1,100 $na^d$ <	Soil Soil Dose (mg/kg-d)Dest Inhalation Dose (mg/kg-d)Dust InhalationPathway-Specific Hazard Dust Inhalation $1,100$ (mg/kg-d)na ^d (mg/kg-d)na ^d (mg/kg-d)na ^d (mg/kg-d)na ^d (mg/kg-d)na ^d (mg/kg-d) $1,100$ (1,62-03nc (1,62-03nc (1,62-07 (1,62-02na (1,62-02na (1,62-02na (1,62-02na (1,62-02na (1,62-02 $1,62$ (1,64-03nc (1,62-03nc (1,62-03nc (1,62-03nc (1,62-03nc (1,62-03nc (1,62-03 $1,62$ (1,64-03nc (1,62-03nc (1,62-03na ^d (1,62-03na ^d (1,62-03na ^d (1,62-03na ^d (1,62-03 $1,62$ (1,64-03nc (1,62-03nc (1,62-03na ^d (1,62-03na ^d (1,62-03na ^d (1,62-03na ^d (1,62-03 $1,62$ (1,64-03nc (1,62-03nc (1,62-03nc (1,62-03nc (1,63-03nc (1,62-03 $1$

## NONCANCER HAZARD CALCULATIONS FOR A FUTURE PERMANENT RESIDENT SITE 34 - Upper Camp - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Soil Concentration ^a	Soil Ingestion	Dermal	Dust Inhalation	Defenence Dece (maller d)			Pathway-Specific		Hazard	Chemical-
Constituent	(mg/kg)	(mg/kg-d)	(mg/kg-d)	(mg/kg-d)	Oral	Dermal	Inhalation	Ingestion	Dermal	Inhalation	HQ
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics Diesel Range Organics, Aliphatic Diesel Range Organics, Aromatic	1,100 880 440	na ^d 9.6E-03 4.8E-03	na ^d Inc Inc	na ^d 4.8E-07 2.4E-07	na ^d 1.0E-01 4.0E-02	na ^d na na	na ^d 2.9E-01 5.7E-01	na ^d 9.6E-02 1.2E-01	na ^d Inc Inc	na ^d 1.6E-06 4.2E-07	na ^d 0.10 0.12
Residual Range Organics Residual Range Organics, Aliphatic Residual Range Organics, Aromatic	1,162 1,046 349	na ^e 1.1E-02 3.8E-03	na ^e Inc Inc	na ^e 5.7E-07 1.9E-07	na ^e 2.0E+00 3.0E-02	na ^e na na	na ^e na na	na ^e 5.7E-03 1.3E-01	na ^e Inc Inc	na ^e Inc Inc	na ^e 0.0057 0.13
Notos										HI	0.35
<ul> <li>^a Based on the maximum or 95 percent upper confidence limit (95% UCL) on the mean concentration detected at the site.</li> <li>^b Consistent with EPA policy, lead is not evaluated in the cumulative HI estimate.</li> <li>^c Risks associated with indicator compounds are included in cumulative risk and hazard estimates for each site. However, the health hazards associated with petroleum mixtures will be evaluated and reported separately.</li> <li>^d Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as DRO (method 8100) by segregating total DRO concentrations into aliphatic and aromatic fractions, assuming 80% aliphatic hydrocarbons and 40% aromatic hydrocarbons (ADEC, 2000c).</li> <li>^e Exposure dose and noncancer hazards were calculated for petroleum hydrocarbons measured as RRO (method ) by segregating total RRO concentrations into aliphatic and aromatic fractions, assuming 90% aliphatic hydrocarbons and 30% aromatic hydrocarbons (ADEC, 2000c).</li> </ul>								HI HQ Inc mg/kg mg/kd-d na	Hazard index. Hazard quotient. Incomplete pathway. Milligrams per kilogram. Milligrams per kilogram per day. not available		
<ol> <li>Doses and noncancer hazards shown only for r</li> <li>Absorbed doses were calculated for dermal con of a medium.</li> </ol>	noncarcinogenic chemical ntact with the medium, an	s with availab d intakes wer	ble toxicity va e calculated f	lues. for ingestion o	or inhalatio	n					
<ul><li>3) Noncancer hazards are unitless values which reffect. They are calculated using the following</li></ul>	epresent the probability of formula: Noncancer H	f incurring an	adverse healt Dose/Referen	th ice dose.							
#### TABLE F-187

#### NONCANCER HAZARD CALCULATIONS FOR A CURRENT/FUTURE INCIDENTAL VISITOR SITE 34 - Upper Camp - SOIL NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

Constituent	Soil Concentration ^a (mg/kg)	Soil Ingestion Dose (mg/kg-d)	Dermal Dose (mg/kg-d)	Dust Inhalation Dose (mg/kg-d)	Referer Oral	nce Dose (r Dermal	ng/kg-d) Inhalation	Path Soil Ingestion	way-Specific H Dermal	Hazard Dust Inhalation	Chemical- Specific HQ
PETROLEUM HYDROCARBONS ^c											
Diesel Range Organics	1 100	na ^d	na ^d	na ^d	na ^d	nad	na ^d	na ^d	na ^d	na ^d	na ^d
Diesel Range Organics Aliphatic	880	2 5E-05	Inc	7 7E-09	1 0E-01	na	2 9E-01	2 5E-04	Inc	2 7E-08	0.00025
Diesel Range Organics, Aromatic	440	1.3E-05	Inc	3.9E-09	4.0E-02	na	5.7E-01	3.1E-04	Inc	6.8E-09	0.00031
Residual Range Organics	1.162	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e	na ^e
Residual Range Organics, Aliphatic	1,046	3.0E-05	Inc	9.2E-09	2.0E+00	na	na	1.5E-05	Inc	Inc	0.000015
Residual Range Organics, Aromatic	349	1.0E-05	Inc	3.1E-09	3.0E-02	na	na	3.3E-04	Inc	Inc	0.00033
										НІ	0.00091
Notes:											0.00071
^a Based on the maximum or 95 percent upper confi	dence limit (95% U	CL) on the m	ean					ні	Hazard index	_	
concentration detected at the site								НО	Hazard quotie	ent	
^b Consistent with EPA policy lead is not evaluated	in the cumulative F	II estimate						Inc	Incomplete p	athway	
^c Risks associated with indicator compounds are in	cluded in cumulativ	e risk and ha	zard					ma/ka	Milligrams p	r kilogram	
estimates for each site. However, the health haza	rds associated with	netroleum mi	xtures					mg/kg	Milli ana an		
will be evaluated and reported separately	tub ubboended whiti	peu oleuni nii	Attilos					тд/ка-а	Mingrams pe	er knogram per	day.
^d Exposure dose and noncancer bazards were calcu	lated for petroleum	hydrocarbons	mansurad as	DPO (metho	4 8100)			na	not available		
by sogregating total DBO concentrations into ali	hatia and aromatia	fractions as	uming $200/$	linhatia	u 8100)						
by segregating total DKO concentrations into any		machons, ass	unning 80% a	uipnauc							
nydrocarbons and 40% aromatic nydrocarbons (A	DEC, 2000c).		1		1)						
e Exposure dose and noncancer hazards were calcu	lated for petroleum	hydrocarbons	measured as	RRO (metho	d )						
by segregating total RRO concentrations into alig	bhatic and aromatic	fractions, ass	uming 90% a	liphatic							
hydrocarbons and 30% aromatic hydrocarbons (A	ADEC, 2000c).										
<ol> <li>Doses and noncancer hazards shown only for non</li> <li>Absorbed doses were calculated for dermal contac of a medium</li> </ol>	carcinogenic chemi- ct with the medium,	cals with avai and intakes v	ilable toxicity were calculate	v values. ed for ingestio	n or inhalatio	on					
<ol> <li>Noncancer hazards are unitless values which repr effect. They are calculated using the following for</li> </ol>	esent the probability ormula: Noncancer	of incurring HI = Exposu	an adverse h re Dose/Refe	ealth rence dose.							

# **APPENDIX G**

Ecological Tier 1 Screening Tables



		Soil Gra	wel Data					Ecological	COPEC Screening	
	Maximum	Minimum	Numb	er of	Detection	BUTL (	(mg/kg)	Benchmark ^a	<b>Benchmark</b> ^b	COPEC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
Inorganics										
Chromium	12	9.8	2	2	1.0	48	50	5	0.5	No
Copper	22	9	2	2	1.0	107	44	61	6.1	No
Lead	119	27	3	3	1.0	106	112	50	5	Yes
Nickel	16	8	2	2	1.0	59	30	30	3	No
Zinc	118	35	2	2	1.0	615	157	120	12	No
VOCs										
Methylene chloride	0.0093	0.0093	1	1	1.0	nc	nc	21.4	2.14	No
PCBs										
PCB-1260 (Aroclor 1260)	0.75	0.29	2	2	1.0	nc	nc	0.111	0.0111	Yes
PAHs										
Anthracene	10.29	10.29	3	1	0.3	nc	nc	1.98	0.198	Yes
Naphthalene	50.8	50.8	4	1	0.3	nc	nc	1.98	0.198	Yes
Petroleum Hydrocarbons										
Diesel Range Organics (DRO)	3,760	314	3	3	1.0	nc	nc	na	na	Yes
TRPH	6,550	393	3	3	1.0	nc	nc	NA ^c	NA	No

#### Notes:

^a Ecological Benchmark Criterion selected based on the

following hierarchy:

1) ECO-SSLs

Ecological Soil Screening Level Guidance - Draft. Office of Emergency and Remedial Response. July 10. (EPA, 2000).

2) The lower of ORNL plant or soil invertebrate benchmarks.

Plant benchmarks derived from ORNL (1997), Toxicological Benchmarks for Screening Contaminants of

Potential Concern for Effects on Terrestrial Plants: 1997 Revision. November. (Table 1)

		Soil Gra	vel Data			_	Ecological	<b>COPEC Screening</b>	
	Maximum	Minimum Number of			Detection	BUTL (mg/kg)	Benchmark ^a	<b>Benchmark</b> ^b	COPEC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)

 The lower of ORNL mammalian or avian dietary wildlife benchmarks, assuming diet consists of 100% soil. Toxicological Benchmarks for Wildlife: 1996 Revision. June. (ORNL, 1996). (Appendix D Table 12-NOAEL-Based Benchmark for Food.)

^b Ecological risk-based screening criteria (ERBSC) is equal to one-tenth the ecological benchmark criterion.

^c TRPH is excluded as a COPEC due to outdated analysis methods.

BUTL - Background upper tolerance limit.

COPEC - Chemical of potential ecological concern.

mg/kg - Milligrams per kilogram.

na - Not available.

NA - Not applicable.

VOCs - Volatile Organic Compounds

PCB - Polychlorinated Biphenyls

PAH - Polynuclear Aromatic Hydrocarbons

TRPH - Total Residual Petroleum Hydrocarbons

		Shallow Subsur	face Water	Data				Ecological	COPEC Screening	
	Maximum	Maximum	Numb	oer of	Detection	Subsurface Wate	r BUTL (mg/L)	Benchmark ^a	Benchmark ^b	COPEC?
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Shallow	Deep	(mg/L)	(mg/L)	(Yes/No)
VOCs										
Ethylbenzene	0.066	0.066	1	1	1.0	na	na	3.2	0.32	No
Xylenes	0.54	0.54	1	1	1.0	nc	nc	na	na	Yes
PAHs										
Fluorene	0.0012	0.0012	1	1	1.0	nc	nc	0.03	0.003	No
Naphthalene	0.013	0.013	1	1	1.0	nc	nc	0.62	0.062	No
Petroleum Hydrocarbons										
Diesel Range Organics (DRO)	14	1.8	4	4	1.0	nc	nc	na	na	Yes
Residual Range Organics (RRO)	8.1	1.3	3	3	1.0	nc	nc	na	na	Yes

#### Notes:

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment, Derivation of Ambient Concentrations for Abiotic Media Associated with the Northeast Cape, St. Lawrence Island, Alaska (MWH, 2003).

^b Ecological Benchmark Criterion selected based on the following hierarchy:

 USEPA National Ambient Water Quality Criteria - Freshwater Chronic Value NOAA, 1999. Screening Quick Reference Tables (SQuiRT). September.

 USEPA National Ambient Water Quality Criteria - Marine Chronic Value NOAA, 1999. Screening Quick Reference Tables (SQuiRT). September.

 USEPA National Ambient Water Quality Criteria - Freshwater Acute Value divided by 10 NOAA, 1999. Screening Quick Reference Tables (SQuiRT). September.

 USEPA National Ambient Water Quality Criteria - Marine Acute Value divided by 10 NOAA, 1999. Screening Quick Reference Tables (SQuiRT). September.

5) Lowest Chronic Value observed in freshwater daphnids ORNL, 1996. Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Aquatic Biota: 1996 Revision. November. Table 1. Summary of conventional benchmarks for priority contaminants in fresh water.

NA - Not applicable.

mg/L - Milligrams per liter.

BUTL - Background upper tolerance limit.

COPEC - Chemical of potential ecological concern.

na - Not available.

nc - Not calculated.

VOCs - Volatile Organic Compounds

		Shallow Subsurf	face Water	Data				Ecological	COPEC Screening	
	Maximum	Maximum	Numb	er of	Detection	Subsurface Water	BUTL (mg/L)	Benchmark ^a	<b>Benchmark</b> ^b	COPEC?
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Shallow	Deep	(mg/L)	(mg/L)	(Yes/No)

PAH - Polynuclear Aromatic Hydrocarbons

	Soil Tundra Data						Soil Gra	avel Data					Ecological	COPEC Screenin	g
	Maximum	Minimum	Num	ber of	Detection	Maximum	Minimum	Num	ber of	Detection	BUTL	(mg/kg)	Benchmark ^a	Benchmark ^b	COPEC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
PAHs															
Anthracene	na	na	na	na	na	14	14	1	1	1.0	nc	nc	1.98	0.198	Yes
Chrysene	na	na	na	na	na	11	11	1	1	1.0	nc	nc	1.98	0.198	Yes
Fluorene	na	na	na	na	na	13	13	1	1	1.0	nc	nc	30	3.0	Yes
Petroleum Hydrocarbons															
Diesel Range Organics (DRO)	5,300	150	3	3	1.0	459	459	1	1	1.0	nc	nc	na	na	Yes
Residual Range Organics (RRO)	na	na	na	na	na	3,420	3,420	1	1	1.0	nc	nc	na	na	Yes
TRPH	47,000	690	3	3	1.0	na	na	na	na	na	nc	nc	NA ^d	NA	No

Notes:

^a Ecological Benchmark Criterion selected based on the following hierarchy:

1) ECO-SSLs

Ecological Soil Screening Level Guidance - Draft. Office of Emergency and Remedial Response. July 10. (EPA, 2000).

2) The lower of ORNL plant or soil invertebrate benchmarks.

Plant benchmarks derived from ORNL (1997), Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Terrestrial Plants: 1997 Revision. November. (Table 1)

Soil invertebrate benchmarks derived from ORNL (1997), Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Soil and Litter Invertebrates and Heterotrophic Process: 1997 Revision. (Table 1)

3) The lower of ORNL mammalian or avian dietary wildlife benchmarks, assuming diet consists of 100% soil.

Toxicological Benchmarks for Wildlife: 1996 Revision. June. (ORNL, 1996). (Appendix D Table 12-NOAEL-Based Benchmark for Food.)

^b Benchmark Criteria is equal to 1/10 the indicated regulatory criteria.

^c Soil Screening Criteria are not available for this essential nutrient. This analyte is excluded as a COPEC based on essential nutrient status.

^d TRPH is excluded as a COPEC due to outdated analysis methods.

NA - Not applicable.

mg/kg - Milligrams per kilogram.

BUTL - Background upper tolerance limit.

COPEC - Chemical of potential ecological concern. na - Not available.

nc - Not calculated.

PAHs - Polynuclear Aromatic Hydrocarbons

TRPH - Total Residual Petroleum Hydrocarbons

		Shallow Subsur	face Water	Data				Ecological	COPEC Screening	
	Maximum	Maximum Number of		Detection	Subsurface Wate	er BUTL (mg/L)	Benchmark ^a	Benchmark ^b	COPEC?	
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Shallow	Deep	(mg/L)	(mg/L)	(Yes/No)
VOCs										
Xylenes	0.0069	0.0069	1	1	1.0	nc	nc	na	na	Yes
Petroleum Hydrocarbons										
Diesel Range Organics (DRO)	3.7	0.96	4	4	1.0	nc	nc	na	na	Yes
Residual Range Organics (RRO)	6.5	2.6	3	3	1.0	nc	nc	na	na	Yes

Notes:

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment, Derivation of Ambient Concentrations for Abiotic Media

Associated with the Northeast Cape, St. Lawrence Island, Alaska (MWH, 2003).

^b Ecological Benchmark Criterion selected based on the following hierarchy:

 USEPA National Ambient Water Quality Criteria - Freshwater Chronic Value NOAA, 1999. Screening Quick Reference Tables (SQuiRT). September.

2) USEPA National Ambient Water Quality Criteria - Marine Chronic Value

NOAA, 1999. Screening Quick Reference Tables (SQuiRT). September.

 USEPA National Ambient Water Quality Criteria - Freshwater Acute Value divided by 10 NOAA, 1999. Screening Quick Reference Tables (SQuiRT). September.

 USEPA National Ambient Water Quality Criteria - Marine Acute Value divided by 10 NOAA, 1999. Screening Quick Reference Tables (SQuiRT). September.

5) Lowest Chronic Value observed in freshwater daphnids

ORNL, 1996. Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Aquatic Biota: 1996 Revision. November.

Table 1. Summary of conventional benchmarks for priority contaminants in fresh water.

NA - Not applicable. mg/L - Milligrams per liter. BUTL - Background upper tolerance limit. COPEC - Chemical of potential ecological concern. na - Not available. nc - Not calculated.

VOCs - Volatile Organic Compounds

Table G-5
Selection of Chemicals of Potential Ecological Concern for Tier I Screening - Soil
Site 6
Northeast Cape, St. Lawrence Island, Alaska

	Soil Tundra Data							Ecological COPEC Screening				lā			
	Maximum	Minimum	Numl	ber of	Detection	Maximum	Minimum	Numb	er of	Detection	BUTL	(mg/kg)	Benchmark	Benchmark ^b	COPEC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
Inorganics															
Aluminum	0.850	0.850	1	1	1.0	7 700	7 700	1	1	1.0	20.257		50	5	Vac
Arsonic	9,850	9,850	1	1	1.0	1,790	1,790	1	1	1.0	78	11	30	37	No
Arsenic	4.1	4.1	1	1	1.0	52	52	1	1	1.0	1.0	11	500	5.7	No
Barulium	0.80	0.80	1	1	0.25	1.2	55	1	2	0.2	2.8	ne	10	30	No
Ge derviewe	0.80	0.80	4	1	0.25	1.5	0.6	9	2	0.2	5.8	2.1	10	1	No No
Cadmium	2.250	2.250			1.0	2.0	1.5	9	5	0.6	1.4	5.1	0.38	0.038	NO
Calcium	2,360	2,360	1	1	1.0	1,790	1,790	1	1	1.0	nc	nc	NA -	NA	No
Chromium	20	14	4	3	0.75	18	6.0	9	9	1.0	48	50	5	0.5	No
Cobalt	5.1	5.1	1	1	1.0	2.0	2.0	1	1	1.0	49	nc	32	3.2	No
Copper	23	8.0	4	4	1.0	17	7.4	9	9	1.0	107	44	61	6.1	No
Iron	16,400	16,400	1	1	1.0	12,200	12,200	1	1	1.0	nc	nc	NA ^c	NA	No
Lead	34	13	4	4	1.0	71	8.0	9	9	1.0	106	112	50	5	No
Magnesium	2,900	2,900	1	1	1.0	1,530	1,530	1	1	1.0	nc	nc	NA ^c	NA	No
Manganese	164	164	1	1	1.0	73	73	1	1	1.0	1,589	nc	500	50	Yes
Nickel	15	9.0	4	3	0.75	10	5.0	9	9	1.0	59	30	30	3	No
Potassium	820	820	1	1	1.0	1,500	1,500	1	1	1.0	nc	nc	NA ^c	NA	No
Sodium	160	160	1	1	1.0	450	450	1	1	1.0	nc	nc	NA ^c	NA	No
Thallium						0.29	0.29	2	1	0.5	1.6	0.56	1	0.1	No
Vanadium	26	26	1	1	1.0	16	16	1	1	1.0	73	nc	2	0.2	No
Zinc	93	29.8	4	4	1.0	172	20	9	9	1.0	615	157	120	12	Yes
VOCs															
Fthylbenzene	0.00088	0.00088	5	1	0.20	0.012	0.012	9	1	0.11	nc	nc	52.2	5.22	No
m n-Xylene	0.0033	0.00033	2	1	0.20	0.044	0.044	3	1	0.33	nc	nc	4 162	0.4162	No
Methylene chloride	0.0035	0.0035	- 1	1	1.0	0.0079	0.0044	2	2	1.0	ne	nc	21.4	2.14	No
	0.0070	0.001	2	1	0.50	0.01/	0.014	2	1	0.33	ne	ne	4 162	0.4162	No
Taluana	0.001	0.001	5	1	0.30	0.014	0.0052	0	2	0.33	ne	ne	200	20	No
Toluene	0.0047	0.0047	3	1	0.20	0.078	0.0032	9	3	0.33	lic	ne	200	20	INU
Petroleum Hydrocarbons															
Diesel Range Organics (DRO)	4,660	34	4	4	1.0	102,000	12	13	13	1.0	nc	nc	na	na	Yes
Residual Range Organics (RRO)	220	220	1	1	1.0	8,500	880	5	5	1.0	nc	nc	na	na	Yes
TRPH	19,200	31	3	3	1.0	262,000	67	8	8	1.0	nc	nc	NA ^d	NA	No

Notes:

^a Ecological Benchmark Criterion selected based on the following hierarchy:

1) ECO-SSLs

Ecological Soil Screening Level Guidance - Draft. Office of Emergency and Remedial Response. July 10. (EPA, 2000).

2) The lower of ORNL plant or soil invertebrate benchmarks.

Plant benchmarks derived from ORNL (1997), Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Terrestrial Plants: 1997 Revision. November. (Table 1)

Soil invertebrate benchmarks derived from ORNL (1997), Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Soil and Litter Invertebrates and Heterotrophic Process: 1997 Revision. (Table 1)

3) The lower of ORNL mammalian or avian dietary wildlife benchmarks, assuming diet consists of 100% soil.

Toxicological Benchmarks for Wildlife: 1996 Revision. June. (ORNL, 1996). (Appendix D Table 12-NOAEL-Based Benchmark for Food.)

^b Ecological risk-based screening criteria (ERBSC) is equal to one-tenth the ecological benchmark criterion.

^c Soil Screening Criteria are not available for this essential nutrient. This analyte is excluded as a COPEC based on essential nutrient status.

Table G-5
Selection of Chemicals of Potential Ecological Concern for Tier I Screening - Soil
Site 6
Northeast Cape, St. Lawrence Island, Alaska

		Soil Tundra Data					Soil Gra	avel Data			Ecological COPEC Screening				
	Maximum	Minimum	Numb	er of	Detection	Maximum	Minimum	Numb	er of	Detection	BUTL (mg/kg)	Benchmark	<b>Benchmark</b> ^b	COPEC?	
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra Soil Grav	el (mg/kg)	(mg/kg)	(Yes/No)	
^d TRPH is excluded as a COPEC due to	outdated analysis	methods.													

NA - Not applicable. mg/kg - Milligrams per kilogram. BUTL - Background upper tolerance limit. COPEC - Chemical of potential ecological concern. na - Not available. nc - Not calculated. VOCs - Volatile Organic Compounds TRPH - Total Residual Petroleum Hydrocarbons

	Eph	emeral Surface V	Water Con	centration	l	BUTL	(mg/L)	Ecological	COPEC Screening	
	Maximum	Minimum	Numb	oer of	Detection	Fresh Surface	Ephemeral	Benchmark ^a	Benchmark ^b	COPEC?
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Water	Surface Water	(mg/L)	(mg/L)	(Yes/No)
Inorganics, Total										
Lead	0.005	0.005	2	1	0.50	nc	0.014	0.003	0.00025	No
Zinc	0.1	0.1	2	1	0.50	nc	0.90	0.11	0.011	No
Inorganics, Dissolved										
Zinc, Dissolved	0.06	0.06	2	1	0.50	nc	0.093	0.11	0.011	No
Petroleum Hydrocarbons										
Diesel Range Organics (DRO)	1.8	1.8	3	1	0.33	nc	nc	na	na	Yes
TRPH	16	1.3	2	2	1.0	nc	nc	NA c	NA	No

#### Notes:

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment, Derivation of Ambient Concentrations for Abiotic Media

^b Ecological Benchmark Criterion selected based on the following hierarchy:

 USEPA National Ambient Water Quality Criteria - Freshwater Chronic Value NOAA, 1999. Screening Quick Reference Tables (SQuiRT). September.

- USEPA National Ambient Water Quality Criteria Marine Chronic Value NOAA, 1999. Screening Quick Reference Tables (SQuiRT). September.
- USEPA National Ambient Water Quality Criteria Freshwater Acute Value divided by 10 NOAA, 1999. Screening Quick Reference Tables (SQuiRT). September.
- USEPA National Ambient Water Quality Criteria Marine Acute Value divided by 10 NOAA, 1999. Screening Quick Reference Tables (SQuiRT). September.
- 5) Lowest Chronic Value observed in freshwater daphnids ORNL, 1996. Toxicological Benchmarks for Screening Potential

Table 1. Summary of conventional benchmarks for priority contaminants in fresh water.

^c TRPH is excluded as a COPEC due to outdated analysis methods.

NA - Not applicable.

- mg/L Milligrams per liter.
- BUTL Background upper tolerance limit.
- COPEC Chemical of potential ecological concern.

na - Not available.

nc - Not calculated.

		Soil Tur	dra Data					Ecological	COPEC Screening	5
	Maximum	Minimum	Numb	oer of	Detection	BUTL (	(mg/kg)	Benchmark ^a	<b>Benchmark</b> ^b	COPEC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
Inorganics										
Aluminum	12,000	3 640	5	5	1.0	30 357	nc	50	5	No
Arsenic	50	2.0	18	18	1.0	7 8	11	37	37	Yes
Barium	135	28	5	5	1.0	174	nc	500	50	No
Bervllium	2.3	0.40	19	8	0.42	3.8	nc	10	1	No
Cadmium	4.1	1.0	19	9	0.47	1.4	3.1	0.38	0.038	Yes
Calcium	5.070	1780	5	5	1.0	nc	nc	NA ^c	NA	No
Chromium	100	5.0	19	18	0.95	48	50	5	0.5	Yes
Cobalt	19	2.0	5	5	1.0	49	nc	32	3.2	No
Copper	320	6.6	19	19	1.0	107	44	61	6.1	Yes
Iron	152,000	8,380	5	5	1.0	nc	nc	NA ^c	NA	No
Lead	460	10	20	20	1.0	106	112	50	5	Yes
Magnesium	3,180	740	5	5	1.0	nc	nc	NA ^c	NA	No
Manganese	694	55.3	5	5	1.0	1,589	nc	500	50	No
Mercury	0.56	0.10	18	4	0.22	0.43	nc	0.1	0.01	Yes
Nickel	280	5.0	19	16	0.84	59	30	30	3	Yes
Potassium	1,080	370	5	5	1.0	nc	nc	NA ^c	NA	No
Silver	2.0	2.0	19	2	0.11	nc	nc	2	0.2	Yes
Sodium	210	120	5	5	1.0	nc	nc	NA ^c	NA	No
Thallium	1.2	0.28	2	2	1.0	1.6	0.56	1	0.1	No
Vanadium	31	9.8	5	5	1.0	73	nc	2	0.2	No
Zinc	540	29	19	19	1.0	615	157	120	12	No
VOCs										
1,1,1-Trichloroethane	0.28	0.14	10	3	0.30	nc	nc	2,060	206	No
Acetone	1.4	0.048	10	4	0.40	nc	nc	36.6	3.66	No
Bromomethane	0.40	0.098	10	5	0.50	nc	nc	na	na	Yes
m,p-Xylene	0.13	0.13	10	1	0.10	nc	nc	4.162	0.4162	No
Methylene chloride	0.013	0.0065	9	4	0.44	nc	nc	21.4	2.14	No

		Soil Tur	ndra Data					Ecological	COPEC Screening	
	Maximum	Minimum	Numb	oer of	Detection	BUTL	(mg/kg)	<b>Benchmark</b> ^a	<b>Benchmark</b> ^b	COPEC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
Toluene	0.14	0.026	19	3	0.16	nc	nc	200	20	No
SVOCs										
4-Methylphenol (p-Cresol)	3.85	1.65	14	3	0.21	nc	nc	30	3	Yes
Di-n-butyl phthalate	3.04	3.04	14	1	0.07	nc	nc	200	20	No
PCBs										
PCB-1260 (Aroclor 1260)	13	0.13	22	4	0.18	nc	nc	0.111	0.0111	Yes
Dioxins & Furans										
1,2,3,4,6,7,8,9-Octachlorodibenzofuran	0.00052	0.0000011	13	4	0.31	nc	nc	0.00006	0.000006	Yes
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxi	0.020	0.00000091	13	12	0.92	nc	nc	0.00006	0.000006	Yes
1,2,3,4,6,7,8-Heptachlorodibenzofuran	0.00016	0.00000043	12	4	0.33	nc	nc	0.00006	0.000006	Yes
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	0.0011	0.00000047	13	8	0.62	nc	nc	0.00006	0.000006	Yes
1,2,3,4,7,8,9-Heptachlorodibenzofuran	0.0000013	0.0000013	13	1	0.08	nc	nc	0.00006	0.000006	No
1,2,3,4,7,8-Hexachlorodibenzofuran	0.000027	0.00000012	13	4	0.31	nc	nc	0.00006	0.000006	Yes
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	0.0000020	0.0000020	13	1	0.08	nc	nc	0.00006	0.000006	No
1,2,3,6,7,8-Hexachlorodibenzofuran	0.000011	0.000011	13	1	0.08	nc	nc	0.00006	0.000006	Yes
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	0.000046	0.00000019	13	4	0.31	nc	nc	0.00006	0.000006	Yes
1,2,3,7,8,9-Hexachlorodibenzofuran	0.00000040	0.00000040	13	1	0.08	nc	nc	0.00006	0.000006	No
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.000031	0.0000051	13	2	0.15	nc	nc	0.00006	0.000006	Yes
1,2,3,7,8-Pentachlorodibenzofuran	0.0000045	0.0000045	13	1	0.08	nc	nc	0.00059	0.000059	No
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	0.0000015	0.0000015	13	1	0.08	nc	nc	0.00006	0.000006	No
2,3,4,6,7,8-Hexachlorodibenzofuran	0.000019	0.00000041	13	8	0.62	nc	nc	0.00006	0.000006	Yes
2,3,4,7,8-Pentachlorodibenzofuran	0.000012	0.000012	13	1	0.08	nc	nc	0.00006	0.000006	Yes
2,3,7,8-Tetrachlorodibenzofuran	0.000029	0.00000028	13	6	0.46	nc	nc	8E-07	0.0000008	Yes
Total Heptachlorodibenzofurans (HpCDF)	0.00053	0.00053	3	1	0.33	nc	nc	0.00006	0.000006	Yes
Total Heptachlorodibenzo-p-dioxins (HpC	0.0022	0.000095	3	2	0.67	nc	nc	0.00006	0.000006	Yes
Total Hexachlorodibenzofurans (HxCDF)	0.00019	0.00019	3	1	0.33	nc	nc	0.00006	0.000006	Yes
Total Hexachlorodibenzo-p-dioxins (HxC)	0.00034	0.00034	3	1	0.33	nc	nc	0.00006	0.000006	Yes

		Soil Tun	dra Data					Ecological	COPEC Screening	
	Maximum	Minimum	Numb	er of	Detection	BUTL (	(mg/kg)	<b>Benchmark</b> ^a	<b>Benchmark</b> ^b	COPEC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
Total Pentachlorodibenzofurans (PeCDF)	0.00011	0.00011	3	1	0.33	nc	nc	0.00006	0.000006	Yes
Total Tetrachlorodibenzofurans (TCDF)	0.00015	0.00015	3	1	0.33	nc	nc	8E-07	0.00000008	Yes
Total Tetrachlorodibenzo-p-dioxins (TCD	0.000039	0.000039	3	1	0.33	nc	nc	8E-07	0.00000008	Yes
PAHs										
2-Methylnaphthalene	0.047	0.047	19	1	0.053	nc	nc	1.98	0.198	No
Benzo(a)pyrene	0.082	0.082	19	1	0.053	nc	nc	1.98	0.198	No
Benzo(b)fluoranthene	0.014	0.014	19	1	0.053	nc	nc	1.98	0.198	No
Benzo(k)fluoranthene	0.014	0.014	19	1	0.053	nc	nc	1.98	0.198	No
Chrysene	0.035	0.013	19	2	0.11	nc	nc	1.98	0.198	No
Naphthalene	0.027	0.027	20	1	0.050	nc	nc	1.98	0.198	No
Phenanthrene	0.014	0.014	19	1	0.053	nc	nc	1.98	0.198	No
Pyrene	0.026	0.013	19	2	0.11	nc	nc	1.98	0.198	No
Petroleum Hydrocarbons										
Diesel Range Organics (DRO)	32,000	11	24	21	0.88	nc	nc	na	na	Yes
Residual Range Organics (RRO)	3,900	620	7	7	1.0	nc	nc	na	na	Yes
TRPH	156,000	18	14	14	1.0	nc	nc	NA ^d	NA	No

#### Notes:

^a Ecological Benchmark Criterion selected based on the following hierarchy:

1) ECO-SSLs

Ecological Soil Screening Level Guidance - Draft. Office of Emergency and Remedial Response. July 10. (EPA, 2000).

2) The lower of ORNL plant or soil invertebrate benchmarks.

Plant benchmarks derived from ORNL (1997), Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Terrestrial Plants: 1997 Revision. November. (Table 1)

 The lower of ORNL mammalian or avian dietary wildlife benchmarks, assuming diet consists of 100% soil. Toxicological Benchmarks for Wildlife: 1996 Revision. June. (ORNL, 1996). (Appendix D Table 12-NOAEL-Based Benchmark for Food.)

^b Ecological risk-based screening criteria (ERBSC) is equal to one-tenth the ecological benchmark criterion.

^c Soil Screening Criteria are not available for this essential nutrient. This analyte is excluded as a COPEC based on essential nutrient status.

		Soil Tun	dra Data			_	Ecological	<b>COPEC Screening</b>	
	Maximum	Minimum	Number of		Detection	BUTL (mg/kg)	<b>Benchmark</b> ^a	<b>Benchmark^b</b>	COPEC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)

^d TRPH is excluded as a COPEC due to outdated analysis methods.

NA - Not applicable.

BUTL - Background upper tolerance limit. COPEC - Chemical of potential ecological concern. mg/kg - Milligrams per kilogram. na - Not available. nc - Not calculated. VOCs - Volatile Organic Compounds SVOCs - Semivolatile Organic Compounds PCB - Polychlorinated Biphenyls PAH - Polynuclear Aromatic Hydrocarbons TRPH - Total Residual Petroleum Hydrocarbons

	Epł	nemeral Surface	Water Con	centratior	1	BUTL	(mg/L)	Ecological	COPEC Screening	COPEC?
	Maximum	Maximum	Numb	per of	Detection	Fresh Surface	Ephemeral	Benchmark	Benchmark ^b	
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Water	Surface Water	· (mg/L)	(mg/L)	(Yes/No)
Inorganics, Total										
Aluminum	0.32	0.24	2	2	1.0	nc	2.2	0.087	0.0087	No
Arsenic	0.0165	0.0165	5	1	0.20	nc	nc	0.15	0.015	Yes
Barium	0.012	0.008	2	2	1.0	nc	0.034	na	na	Yes
Calcium	4.99	3.32	2	2	1.0	nc	nc	NA c	NA	No
Chromium	0.020	0.020	5	1	0.20	nc	nc	0.074	0.0074	Yes
Copper	0.075	0.0020	5	3	0.60	nc	0.083	0.009	0.0009	No
Iron	3.66	1.16	2	2	1.0	nc	nc	NA c	NA	No
Lead	0.065	0.0020	5	5	1.0	nc	0.014	0.003	0.00025	Yes
Magnesium	1.44	1.28	2	2	1.0	nc	nc	NA c	NA	No
Manganese	0.096	0.0070	2	2	1.0	nc	0.12	1.1	0.11	No
Nickel	0.0525	0.0525	5	1	0.20	nc	nc	0.052	0.0052	Yes
Potassium	0.81	0.81	2	1	0.50	nc	nc	NA c	NA	No
Sodium	6.29	4.72	2	2	1.0	nc	nc	NA c	NA	No
Thallium	0.0024	0.0024	5	1	0.20	nc	nc	0.04	0.004	Yes
Zinc	0.81	0.019	5	5	1.0	nc	0.90	0.11	0.011	No
Inorganics, Dissolved										
Mercury, Dissolved	0.000375	0.000375	3	1	0.33	nc	nc	1E-05	0.0000012	Yes
Thallium, Dissolved	0.0012	0.0012	3	1	0.33	nc	nc	0.04	0.004	Yes
Zinc, Dissolved	0.07	0.07	3	1	0.33	nc	0.093	0.11	0.011	No
VOCs										
Toluene	0.0038	0.0038	5	1	0.20	nc	nc	5	0.5	No
Dioxins & Furans										
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin	0.0000052	0.0000052	3	1	0.33	nc	nc	1E-08	0.000000001	Yes
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	0.00000071	0.00000071	3	1	0.33	nc	nc	1E-08	0.000000001	Yes
Total Heptachlorodibenzo-p-dioxins (HpCDD)	0.0000014	0.0000014	3	1	0.33	nc	nc	1E-08	0.00000001	Yes
Petroleum Hydrocarbons										
DRO	11.6	0.20	5	2	0.40	nc	nc	na	na	Yes
TRPH	6.25	6.25	3	1	0.33	nc	nc	NA d	NA	No

Notes:

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment, Derivation of Ambient Concentrations for Abiotic Media

^b Ecological Benchmark Criterion selected based on the following hierarchy:

1) USEPA National Ambient Water Quality Criteria - Freshwater Chronic Value

	Eph	emeral Surface	Water Con	centratior	1	BUTL	(mg/L)	Ecological	COPEC Screening	
	Maximum	Maximum	Number of		Detection	Fresh Surface	Ephemeral	Benchmark	Benchmark ^b	COPEC?
Constituent	Detect (mg/L)	Detect (mg/L)	Samples Detects		Frequency	Water	Surface Water	· (mg/L)	(mg/L)	(Yes/No)

NOAA, 1999. Screening Quick Reference Tables (SQuiRT). September.

2) USEPA National Ambient Water Quality Criteria - Marine Chronic Value

NOAA, 1999. Screening Quick Reference Tables (SQuiRT). September.

 USEPA National Ambient Water Quality Criteria - Freshwater Acute Value divided by 10 NOAA, 1999. Screening Quick Reference Tables (SQuiRT). September.

 USEPA National Ambient Water Quality Criteria - Marine Acute Value divided by 10 NOAA, 1999. Screening Quick Reference Tables (SQuiRT). September.

 Lowest Chronic Value observed in freshwater daphnids ORNL, 1996. Toxicological Benchmarks for Screening Potential Table 1. Summary of conventional benchmarks for priority contaminants in fresh water.

^c Soil Screening Criteria are not available for this essential nutrient. This analyte is excluded as a COPEC based on essential nutrient status.

^d TRPH is excluded as a COPEC due to outdated analysis methods.

NA - Not applicable. mg/L - Milligrams per liter. BUTL - Background upper tolerance limit. COPEC - Chemical of potential ecological concern. na - Not available. nc - Not calculated. TRPH - Total residual petroleum hydrocarbons.

		Soil Tur	ndra Data					Ecological	COPEC Screenin	g
	Maximum	Minimum	Numb	per of	Detection	BUTL	(mg/kg)	<b>Benchmark</b> ^a	<b>Benchmark</b> ^b	COPEC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
Inorganics										
Aluminum	0.0000036	0.0000036	5	1	0.20	30,357	nc	50	5	No
Antimony	14	14	15	1	0.067	nc	nc	0.29	0.029	Yes
Arsenic	20	3.6	15	7	0.47	7.8	11	37	3.7	Yes
Beryllium	3.55	0.70	15	5	0.33	3.8	nc	10	1	No
Cadmium	7.0	0.75	15	4	0.27	1.4	3.1	0.38	0.038	Yes
Calcium	4,940	1910	5	5	1.0	nc	nc	NA ^c	NA	No
Chromium	60	5.0	15	14	0.93	48	50	5	0.5	Yes
Cobalt	38	4.0	5	4	0.80	49	nc	32	3.2	No
Copper	429	6.0	15	15	1.0	107	44	61	6.1	Yes
Iron	483,000	13,000	5	5	1.0	nc	nc	NA ^c	NA	No
Lead	630	20	15	14	0.93	106	112	50	5	Yes
Magnesium	3,220	930	5	5	1.0	nc	nc	NA ^c	NA	No
Manganese	970	51	5	5	1.0	1,589	nc	500	50	No
Mercury	0.60	0.60	15	1	0.07	0.43	nc	0.1	0.01	Yes
Nickel	110	7.7	15	11	0.73	59	30	30	3	Yes
Potassium	1,060	650	5	4	0.80	nc	nc	NA ^c	NA	No
Selenium	1.0	1.0	15	1	0.07	nc	nc	1	0.1	Yes
Sodium	280	180	5	5	1.0	nc	nc	NA ^c	NA	No
Thallium	0.28	0.28	2	1	0.50	1.6	0.56	1	0.1	No
Vanadium	44	21	5	4	0.80	73	nc	2	0.2	No
Zinc	1,790	15	15	15	1.0	615	157	120	12	Yes
VOCs										
1,1,1-Trichloroethane	0.20	0.20	8	1	0.13	nc	nc	2060	206	No
1,2,4-Trichlorobenzene	0.00018	0.000040	15	3	0.20	nc	nc	20	2	No
1,2-Dibromoethane	0.000010	0.0000097	8	2	0.25	nc	nc	na	na	Yes
1,2-Dichlorobenzene	0.025	0.0000016	15	7	0.47	nc	nc	na	na	Yes
1,2-Dichloroethane	0.00079	0.000014	8	5	0.63	nc	nc	14.2	1.42	No

		Soil Tun	dra Data					Ecological	<b>COPEC Screenin</b>	g
	Maximum	Minimum	Numb	oer of	Detection	BUTL	(mg/kg)	<b>Benchmark</b> ^a	<b>Benchmark</b> ^b	COPEC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
1,2-Dichloropropane	0.00040	0.0000070	8	4	0.50	nc	nc	700	70	No
1,3,5-Trimethylbenzene	0.00018	0.0000013	8	5	0.63	nc	nc	52.2	5.22	No
1,3-Dichlorobenzene	0.068	0.00000025	15	7	0.47	nc	nc	na	na	Yes
1,3-Dichloropropane	0.000097	0.00000059	8	5	0.63	nc	nc	na	na	Yes
1,4-Dichlorobenzene	0.025	0.000014	15	3	0.20	nc	nc	20	2	No
2,2-Dichloropropane	0.00000092	0.00000092	8	1	0.13	nc	nc	na	na	Yes
2-Butanone	0.0000045	0.00000059	8	2	0.25	nc	nc	6,487	649	No
2-Chloroethyl vinyl ether	0.0000026	0.00000054	5	2	0.40	nc	nc	na	na	Yes
2-Chlorotoluene	0.0000045	0.0000013	8	2	0.25	nc	nc	na	na	Yes
2-Hexanone	0.0000087	0.0000078	5	2	0.40	nc	nc	na	na	Yes
4-Bromophenyl phenyl ether	0.0000024	0.0000012	10	2	0.20	nc	nc	na	na	Yes
4-Chlorophenyl phenyl ether	0.0000029	0.00000064	10	2	0.20	nc	nc	na	na	Yes
4-Isopropyltoluene	0.0000047	0.00000077	8	3	0.38	nc	nc	na	na	Yes
Acetone	0.000013	0.0000048	8	2	0.25	nc	nc	36.6	3.66	No
Bromomethane	0.36	0.36	8	1	0.13	nc	nc	na	na	Yes
Styrene	0.014	0.014	8	1	0.13	nc	nc	300	30	No
Toluene	6.0	0.23	16	2	0.13	nc	nc	200	20	No
SVOCs										
2,4,5-Trichlorophenol	0.0000032	0.0000032	10	1	0.10	nc	nc	9	0.9	No
2,4,6-Trichlorophenol	0.0000025	0.0000011	10	2	0.20	nc	nc	10	1	No
2,4-Dichlorophenol	0.0000015	0.00000034	10	2	0.20	nc	nc	na	na	Yes
2,4-Dimethylphenol	0.0000014	0.0000014	10	1	0.10	nc	nc	na	na	Yes
2,4-Dinitrophenol	0.0000016	0.0000016	10	1	0.10	nc	nc	20	2	No
2,4-Dinitrotoluene	0.0000016	0.0000016	10	1	0.10	nc	nc	na	na	Yes
2,6-Dinitrotoluene	0.0000016	0.0000016	10	1	0.10	nc	nc	na	na	Yes
2-Methyl-4,6-dinitrophenol	0.0000037	0.00000022	10	3	0.30	nc	nc	na	na	Yes
2-Methylphenol (o-Cresol)	0.00000035	0.00000035	10	1	0.10	nc	nc	na	na	Yes
3,3-Dichlorobenzidine	0.0000068	0.00000068	10	1	0.10	nc	nc	na	na	Yes
3-Nitroaniline	0.0000019	0.00000080	10	2	0.20	nc	nc	na	na	Yes

		Soil Tun	dra Data					Ecological	COPEC Screenin	g
	Maximum	Minimum	Numb	oer of	Detection	BUTL (	(mg/kg)	<b>Benchmark</b> ^a	<b>Benchmark</b> ^b	COPEC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
4-Chloroaniline	0.0000026	0.00000061	10	2	0.20	nc	nc	na	na	Yes
4-Chlorotoluene	0.025	0.00000043	8	4	0.50	nc	nc	na	na	Yes
4-Nitroaniline	0.000030	0.000030	10	1	0.10	nc	nc	na	na	Yes
4-Nitrophenol	0.00013	0.0000088	10	3	0.30	nc	nc	7	0.7	No
bis-(2-ethylhexyl)phthalate	1.0	1.0	10	1	0.10	nc	nc	200	20	No
PCBs										
PCB-1260 (Aroclor 1260)	0.13	0.13	15	1	0.067	nc	nc	0.111	0.0111	Yes
Pesticides										
4,4'-DDD	0.0000019	0.0000019	10	1	0.10	nc	nc	0.002	0.0002	No
4,4'-DDE	0.0000016	0.0000016	10	1	0.10	nc	nc	0.002	0.0002	No
4,4'-DDT	0.00000054	0.00000017	10	3	0.30	nc	nc	0.002	0.0002	No
Dioxins & Furans										
1,2,3,4,6,7,8,9-Octachlorodibenzofuran	0.00012	0.0000038	10	6	0.60	nc	nc	6E-05	0.000006	Yes
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxi	0.0011	0.0000070	10	9	0.90	nc	nc	6E-05	0.000006	Yes
1,2,3,4,6,7,8-Heptachlorodibenzofuran	0.000030	0.00000025	10	7	0.70	nc	nc	6E-05	0.000006	Yes
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxii	0.00012	0.00000059	10	8	0.80	nc	nc	6E-05	0.000006	Yes
1,2,3,4,7,8,9-Heptachlorodibenzofuran	0.0000023	0.0000023	9	1	0.11	nc	nc	6E-05	0.000006	No
1,2,3,4,7,8-Hexachlorodibenzofuran	0.0000066	0.0000023	10	4	0.40	nc	nc	6E-05	0.000006	Yes
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	0.0000029	0.0000011	10	4	0.40	nc	nc	6E-05	0.000006	No
1,2,3,6,7,8-Hexachlorodibenzofuran	0.0000016	0.0000014	10	2	0.20	nc	nc	6E-05	0.000006	No
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	0.0000045	0.00000059	9	2	0.22	nc	nc	6E-05	0.000006	No
1,2,3,7,8,9-Hexachlorodibenzofuran	0.0000038	0.0000038	10	1	0.10	nc	nc	6E-05	0.000006	No
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.0000083	0.0000012	10	4	0.40	nc	nc	6E-05	0.000006	Yes
1,2,3,7,8-Pentachlorodibenzofuran	0.0000021	0.00000022	10	3	0.30	nc	nc	6E-04	0.000059	No
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	0.0000035	0.00000035	9	1	0.11	nc	nc	6E-05	0.000006	No
2,3,4,6,7,8-Hexachlorodibenzofuran	0.0000032	0.00000080	10	4	0.40	nc	nc	6E-05	0.000006	No
2,3,4,7,8-Pentachlorodibenzofuran	0.0000025	0.00000033	10	3	0.30	nc	nc	6E-05	0.000006	No

		Soil Tun	dra Data					Ecological	COPEC Screenin	g
	Maximum	Minimum	Numb	oer of	Detection	BUTL	(mg/kg)	Benchmark ^a	<b>Benchmark</b> ^b	COPEC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
2,3,7,8-Tetrachlorodibenzofuran	0.0000066	0.00000026	10	7	0.70	nc	nc	8E-07	0.00000008	Yes
2,3,7,8-Tetrachlorodibenzo-p-dioxin	0.0000017	0.0000028	10	3	0.30	nc	nc	3E-07	0.00000003	Yes
Total Heptachlorodibenzofurans (HpCDF)	0.000095	0.000095	3	1	0.33	nc	nc	6E-05	0.000006	Yes
Total Heptachlorodibenzo-p-dioxins (HpC	0.00018	0.000040	3	2	0.67	nc	nc	6E-05	0.000006	Yes
Total Tetrachlorodibenzofurans (TCDF)	0.00001	0.0000097	3	2	0.67	nc	nc	8E-07	0.00000008	Yes
PAHs										
2-Methylnaphthalene	0.0000021	0.0000011	16	2	0.13	nc	nc	1.98	0.198	No
Acenaphthene	0.000029	0.0000088	16	8	0.50	nc	nc	20	2.0	No
Acenaphthylene	0.000055	0.00000099	16	7	0.44	nc	nc	1.98	0.198	No
Anthracene	0.0092	0.0092	16	1	0.063	nc	nc	1.98	0.198	No
Benzo(k)fluoranthene	0.057	0.057	16	1	0.063	nc	nc	1.98	0.198	No
Chrysene	0.064	0.064	16	1	0.063	nc	nc	1.98	0.198	No
Fluoranthene	0.023	0.023	16	1	0.063	nc	nc	1.98	0.198	No
Indeno(1,2,3-cd)pyrene	0.018	0.018	16	1	0.063	nc	nc	1.98	0.198	No
Phenanthrene	0.024	0.024	16	1	0.063	nc	nc	1.98	0.198	No
Pyrene	0.041	0.041	16	1	0.063	nc	nc	1.98	0.198	No
Petroleum Hydrocarbons										
Diesel Range Organics (DRO)	510	8.9	16	16	1.0	nc	nc	na	na	Yes
Residual Range Organics (RRO)	2,100	53	6	6	1.0	nc	nc	na	na	Yes
TRPH	5,260	169	10	10	1.0	nc	nc	NA ^d	NA	No

#### Notes:

^a Ecological Benchmark Criterion selected based on the following hierarchy:

1) ECO-SSLs

Ecological Soil Screening Level Guidance - Draft. Office of Emergency and Remedial Response. July 10. (EPA, 2000).

2) The lower of ORNL plant or soil invertebrate benchmarks.

Plant benchmarks derived from ORNL (1997), Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Terrestrial Plants: 1997 Revision. November. (Table 1)

		Soil Tun	dra Data				Ecological	<b>COPEC Screening</b>	
	Maximum	Minimum	Numb	er of	Detection	BUTL (mg/kg)	Benchmark ^a	<b>Benchmark</b> ^b	COPEC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples Detects		Frequency	Soil Tundra Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)

3) The lower of ORNL mammalian or avian dietary wildlife benchmarks, assuming diet consists of 100% soil.

Toxicological Benchmarks for Wildlife: 1996 Revision. June. (ORNL, 1996). (Appendix D Table 12-NOAEL-Based Benchmark for Food.)

^b Ecological risk-based screening criteria (ERBSC) is equal to one-tenth the ecological benchmark criterion.

^c Soil Screening Criteria are not available for this essential nutrient. This analyte is excluded as a COPEC based on essential nutrient status.

^d TRPH is excluded as a COPEC due to outdated analysis methods.

NA - Not applicable.

BUTL - Background upper tolerance limit. COPEC - Chemical of potential ecological concern.

mg/kg - Milligrams per kilogram.

na - Not available.

nc - Not calculated.

VOCs - Volatile Organic Compounds

SVOCs - Semivolatile Organic Compounds

PCB - Polychlorinated Biphenyls

PAH - Polynuclear Aromatic Hydrocarbons

TRPH - Total Residual Petroleum Hydrocarbons

	Eph	emeral Surface	Water Conc	centration		BUTL (mg/L)		Ecological	COPEC Screening		
	Maximum	Maximum	Numb	er of	Detection	Fresh Surface	Ephemeral	Benchmark ^a	Benchmark ^b	COPEC?	
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Water	Surface Water	(mg/L)	(mg/L)	(Yes/No)	
Inorganics, Total											
Aluminum	0.23	0.040	6	6	1.0	nc	2.2	0.087	0.0087	No	
Barium	0.020	0.0050	6	6	1.0	nc	0.034	na	na	Yes	
Calcium	3.0	1.0	6	6	1.0	nc	nc	NA c	NA	No	
Copper	0.0040	0.0040	9	1	0.11	nc	0.083	0.009	0.0009	No	
Iron	1.5	0.14	6	6	1.0	nc	nc	NA	NA	No	
Lead	0.011	0.0060	9	2	0.22	nc	0.014	0.003	0.00025	No	
Magnesium	0.95	0.82	6	6	1.0	nc	nc	NA c	NA	No	
Manganese	0.029	0.0060	6	6	1.0	nc	0.12	1.1	0.11	No	
Potassium	1.0	0.52	6	2	0.33	nc	nc	NA c	NA	No	
Sodium	4.4	4.0	6	6	1.0	nc	nc	NA c	NA	No	
Zinc	0.060	0.011	9	2	0.22	nc	0.90	0.11	0.011	No	
Inorganics, Dissolved											
Zinc, Dissolved	0.060	0.060	3	1	0.33	nc	0.093	0.11	0.011	Yes	
Dioxins & Furans											
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin	0.0000037	0.0000037	3	1	0.33	nc	nc	1E-08	0.000000001	Yes	

Notes:

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment, Derivation of Ambient Concentrations for Abiotic Media Associated with the Northeast Cape, St. Lawrence Island, Alaska (MWH, 2003).

^b Ecological Benchmark Criterion selected based on the following hierarchy:

 USEPA National Ambient Water Quality Criteria - Freshwater Chronic Value NOAA, 1999. Screening Quick Reference Tables (SQuiRT). September.

2) USEPA National Ambient Water Quality Criteria - Marine Chronic Value

NOAA, 1999. Screening Quick Reference Tables (SQuiRT). September.3) USEPA National Ambient Water Quality Criteria - Freshwater Acute Value divided by 10

NOAA, 1999. Screening Quick Reference Tables (SQuiRT). September.

 USEPA National Ambient Water Quality Criteria - Marine Acute Value divided by 10 NOAA, 1999. Screening Quick Reference Tables (SQuiRT). September.

5) Lowest Chronic Value observed in freshwater daphnids

ORNL, 1996. Toxicological Benchmarks for Screening Potential

Contaminants of Concern for Effects on Aquatic Biota: 1996 Revision. November.

Table 1. Summary of conventional benchmarks for priority contaminants in fresh water.

	Eph	emeral Surface V	Water Conc	entration	L	BUTL	(mg/L)	Ecological	COPEC Screening	
	Maximum	Maximum	Numb	er of	Detection	Fresh Surface	Ephemeral	<b>Benchmark</b> ^a	<b>Benchmark</b> ^b	COPEC?
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Water	Surface Water	(mg/L)	(mg/L)	(Yes/No)

^c Soil Screening Criteria are not available for this essential nutrient. This analyte is excluded as a COPEC based on essential nutrient status.

NA - Not applicable.

mg/L - Milligrams per liter.

BUTL - Background upper tolerance limit.

COPEC - Chemical of potential ecological concern.

na - Not available.

nc - Not calculated.

		Soil Tun	dra Data					Ecological	COPEC Screenin	g
	Maximum	Minimum				-				5
	Detect (mg/kg)	Detect (mg/kg)	Numł	oer of	Detection	BUTL	(mg/kg)	Benchmark ^a	<b>Benchmark</b> ^b	COPEC?
Constituent			Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
Inorganics										
Aluminum	33,100	3,975	10	10	1.00	30,357	nc	50	5	Yes
Antimony	38	38	19	1	0.053	nc	nc	0.29	0.029	Yes
Arsenic	170	2.8	19	19	1.0	7.8	11	37	3.7	Yes
Barium	193	56.5	10	10	1.0	174	nc	500	50	Yes
Beryllium	1.8	0.30	19	9	0.47	3.8	nc	10	1	No
Cadmium	69	0.40	19	8	0.42	1.4	3.1	0.38	0.038	Yes
Calcium	6,910	1,320	10	10	1.0	nc	nc	NA ^c	NA	No
Chromium	93	4.0	19	19	1.0	48	50	5	0.5	Yes
Cobalt	14.2	2.5	10	10	1.0	49	nc	32	3.2	No
Copper	130	4.0	19	19	1.0	107	44	61	6.1	Yes
Iron	57,400	12,700	10	10	1.0	nc	nc	NA ^c	NA	No
Lead	88	6.1	19	18	0.95	106	112	50	5	No
Magnesium	8,770	1,320	10	10	1.0	nc	nc	NA ^c	NA	No
Manganese	786	77	10	10	1.0	1,589	nc	500	50	No
Mercury	4.8	0.070	19	6	0.32	0.43	nc	0.1	0.01	Yes
Nickel	44	9.8	19	14	0.74	59	30	30	3	No
Potassium	3,670	560	10	10	1.0	nc	nc	NA ^c	NA	No
Selenium	2.0	1.0	19	3	0.16	nc	nc	1	0.1	Yes
Silver	6.7	0.90	19	3	0.16	nc	nc	2	0.2	Yes
Sodium	580	170	10	10	1.0	nc	nc	NA ^c	NA	No
Thallium	0.53	0.53	1	1	1.0	1.6	0.56	1	0.1	No
Vanadium	81	8.5	10	10	1.0	73	nc	2	0.2	Yes
Zinc	1,130	24	19	19	1.0	615	157	120	12	Yes
VOCs										
1,1,1-Trichloroethane	0.016	0.016	4	1	0.25	nc	nc	2,060	206	No
1,2,4-Trimethylbenzene	0.19	0.032	4	2	0.50	nc	nc	52.2	5.22	No

		Soil Tun	dra Data					Ecological	<b>COPEC Screenin</b>	g
	Maximum	Minimum				-		-	h	
	Detect (mg/kg)	Detect (mg/kg)	Numb	er of	Detection	BUTL (	(mg/kg)	Benchmark [*]	<b>Benchmark</b> [®]	COPEC?
Constituent			Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
1,3,5-Trimethylbenzene	0.071	0.012	4	2	0.50	nc	nc	52.2	5.22	No
2-Butanone	0.18	0.043	4	3	0.75	nc	nc	6,487	648.7	No
Acetone	0.53	0.036	4	4	1.0	nc	nc	36.6	3.66	No
Ethylbenzene	0.0067	0.0067	19	1	0.053	nc	nc	52.2	5.22	No
Isopropylbenzene	0.013	0.013	4	1	0.25	nc	nc	52.2	5.22	No
m,p-Xylene	0.096	0.0074	14	7	0.50	nc	nc	4.162	0.4162	No
Methylene chloride	0.0060	0.0060	4	1	0.25	nc	nc	21.4	2.14	No
n-Butylbenzene	0.062	0.062	4	1	0.25	nc	nc	52.2	5.22	No
n-Propylbenzene	0.040	0.040	4	1	0.25	nc	nc	52.2	5.22	No
o-Xylene	0.0063	0.0063	14	1	0.071	nc	nc	4.162	0.4162	No
sec-Butylbenzene	0.036	0.036	4	1	0.25	nc	nc	52.2	5.22	No
Toluene	0.14	0.0060	19	13	0.68	nc	nc	200	20	No
										No
SVOCs										
4-Chloroaniline	5.47	5.47	9	1	0.11	nc	nc	na	na	Yes
bis-(2-ethylhexyl)phthalate	0.98	0.84	9	2	0.22	nc	nc	200	20	No
Di-n-butyl phthalate	5.69	0.90	9	4	0.44	nc	nc	200	20	No
PCBs										
PCB-1254 (Aroclor 1254)	0.14	0.14	19	2	0.11	nc	nc	0.111	0.0111	Yes
PCB-1260 (Aroclor 1260)	3.0	0.15	19	4	0.21	nc	nc	0.111	0.0111	Yes
Petroleum Hydrocarbons										
Diesel Range Organics (DRO)	3.800	46	19	16	0.84	nc	nc	na	na	Yes
Residual Range Organics (RRO)	3.700	25	10	10	1.0	nc	nc	na	na	Yes
TRPH	15,700	85	9	9	1.0	nc	nc	NA ^d	NA	No

Notes:

		Soil Tun	dra Data				Ecological	COPEC Screening	Ş
	Maximum	Minimum	Number of Detection				Dan ahara ah ^a	Danaharanla ^b	CODECS
	Detect (mg/kg)	Detect (mg/kg)	Numb	er of	Detection	BUTL (mg/kg)	Benchmark	Benchmark	COPEC?
Constituent			Samples	Detects	Frequency	Soil Tundra Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)

^a Ecological Benchmark Criterion selected based on the following hierarchy:

1) ECO-SSLs

Ecological Soil Screening Level Guidance - Draft. Office of Emergency and Remedial Response. July 10. (EPA, 2000).

2) The lower of ORNL plant or soil invertebrate benchmarks.

Plant benchmarks derived from ORNL (1997), Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Terrestrial Plants: 1997 Revision. November. (Table 1)

3) The lower of ORNL mammalian or avian dietary wildlife benchmarks, assuming diet consists of 100% soil.

Toxicological Benchmarks for Wildlife: 1996 Revision. June. (ORNL, 1996). (Appendix D Table 12-NOAEL-Based Benchmark for Food.)

^b Ecological risk-based screening criteria (ERBSC) is equal to one-tenth the ecological benchmark criterion.

^c Soil Screening Criteria are not available for this essential nutrient. This analyte is excluded as a COPEC based on essential nutrient status.

^d TRPH is excluded as a COPEC due to outdated analysis methods.

NA - Not applicable. BUTL - Background upper tolerance limit. COPEC - Chemical of potential ecological concern. mg/kg - Milligrams per kilogram. na - Not available. nc - Not calculated. VOCs - Volatile Organic Compounds SVOCs - Semivolatile Organic Compounds

PCB - Polychlorinated Biphenyls

TRPH - Total Residual Petroleum Hydrocarbons

	Eph	nemeral Surface	Water Con	centratior	1	BUTL	(mg/L)	Ecological	COPEC Screening	
	Maximum	Maximum	Numb	oer of	Detection	Fresh Surface	Ephemeral	<b>Benchmark</b> ^a	<b>Benchmark</b> ^b	COPEC?
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Water	Surface Water	(mg/L)	(mg/L)	(Yes/No)
Inorganics, Total										
Aluminum	0.71	0.11	2	2	1.0	nc	2.2	0.087	0.0087	No
Arsenic	0.0020	0.0020	4	2	0.50	nc	nc	0.15	0.015	Yes
Barium	0.010	0.0050	2	2	1.0	nc	0.034	na	na	Yes
Calcium	14	11	2	2	1.0	nc	nc	NA c	NA	No
Copper	0.020	0.020	4	1	0.25	nc	0.083	0.009	0.0009	No
Iron	6.3	4.2	2	2	1.0	nc	nc	NA c	NA	No
Lead	0.0040	0.0020	4	3	0.75	nc	0.014	0.003	0.00025	No
Magnesium	3.0	2.5	2	2	1.0	nc	nc	NA c	NA	No
Manganese	0.69	0.49	2	2	1.0	nc	0.12	1.1	0.11	Yes
Potassium	2.7	2.4	2	2	1.0	nc	nc	NA c	NA	No
Sodium	38	27	2	2	1.0	nc	nc	NA c	NA	No
Zinc	0.49	0.0090	4	3	0.75	nc	0.90	0.11	0.011	No
Inorganics, Dissolved										
Zinc, Dissolved	0.070	0.070	2	1	0.50	nc	0.093	0.11	0.011	No
<b>Petroleum Hydrocarbons</b> Diesel Range Organics (DRO)	0.47	0.20	4	3	0.75	nc	nc	na	na	Yes

#### Notes:

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment, Derivation of Ambient Concentrations for Abiotic Media Associated with the Northeast Cape, St. Lawrence Island, Alaska (MWH, 2003).

^b Ecological Benchmark Criterion selected based on the following hierarchy:

 USEPA National Ambient Water Quality Criteria - Freshwater Chronic Value NOAA, 1999. Screening Quick Reference Tables (SQuiRT). September.

 USEPA National Ambient Water Quality Criteria - Marine Chronic Value NOAA, 1999. Screening Quick Reference Tables (SQuiRT). September.

- USEPA National Ambient Water Quality Criteria Freshwater Acute Value divided by 10 NOAA, 1999. Screening Quick Reference Tables (SQuiRT). September.
- USEPA National Ambient Water Quality Criteria Marine Acute Value divided by 10 NOAA, 1999. Screening Quick Reference Tables (SQuiRT). September.
- 5) Lowest Chronic Value observed in freshwater daphnids

	Eph	emeral Surface V	Water Con	centration	1	BUTL	(mg/L)	Ecological	COPEC Screening	
	Maximum	Maximum	Number of		Detection	Fresh Surface	Ephemeral	Benchmark ^a	Benchmark ^b	COPEC?
Constituent	Detect (mg/L)	Detect (mg/L)	Samples Detects		Frequency	Water	Surface Water	(mg/L)	(mg/L)	(Yes/No)

ORNL, 1996. Toxicological Benchmarks for Screening Potential

Contaminants of Concern for Effects on Aquatic Biota: 1996 Revision.

November.

Table 1. Summary of conventional benchmarks for priority contaminants in fresh water.

^c Soil Screening Criteria are not available for this essential nutrient. This analyte is excluded as a COPEC based on essential nutrient status.

NA - Not applicable.

mg/L - Milligrams per liter.

BUTL - Background upper tolerance limit.

COPEC - Chemical of potential ecological concern.

na - Not available.

nc - Not calculated.

# Table G-13 Selection of Chemicals of Potential Ecological Concern for Tier I Screening - Soil Site 22 Northeast Cape, St. Lawrence Island, Alaska

		Soil Gra	wel Data					Ecological (	COPEC Screenin	g
	Maximum	Minimum	Numb	er of	Detection	BUTL (	mg/kg)	<b>Benchmark</b> ^a	<b>Benchmark</b> ^b	COPEC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
Inorganics										
Antimony	34	34	1	1	1.0	nc	nc	0.29	0.029	Yes
Chromium	16	7.7	5	5	1.0	48	50	5.0	0.5	No
Copper	22	22	1	1	1.0	107	44	61	6.1	No
Lead	497	31	9	9	1.0	106	112	50	5.0	Yes
Nickel	13	13	1	1	1.0	59	30	30	3.0	No
Zinc	169	60	5	5	1.0	615	157	120	12	Yes
VOCs										
o-Xylene	0.37	0.15	8	3	0.375	nc	nc	4.162	0.4162	No
SVOCs										
Di-n-butyl phthalate	3.5	3.5	1	1	1.0	nc	nc	na	na	Yes
PAHs										
Acenaphthene	0.086	0.0076	11	4	0.36	nc	nc	20	2.0	No
Anthracene	0.01180	0.00020	11	3	0.27	nc	nc	1.98	0.198	No
Benzo(a)anthracene	0.0200	0.0015	11	3	0.27	nc	nc	1.98	0.198	No
Benzo(a)pyrene	0.35	0.35	11	1	0.09	nc	nc	1.98	0.198	Yes
Benzo(b)fluoranthene	0.42	0.00035	11	4	0.36	nc	nc	1.98	0.198	Yes
Benzo(g,h,i)perylene	0.015	0.00015	11	4	0.36	nc	nc	1.98	0.198	No
Chrysene	0.77	0.00020	11	7	0.64	nc	nc	1.98	0.198	Yes
Dibenzo(a,h)anthracene	0.00032	0.00032	11	1	0.09	nc	nc	1.98	0.198	No
Fluoranthene	0.048	0.00070	11	7	0.64	nc	nc	1.98	0.198	No
Fluorene	0.036	0.00020	11	3	0.27	nc	nc	30	3.0	No
Indeno(1,2,3-cd)pyrene	0.00032	0.00032	11	1	0.09	nc	nc	1.98	0.198	No
Naphthalene	1.2	0.00031	11	8	0.73	nc	nc	1.98	0.198	Yes
Phenanthrene	0.21	0.00022	11	8	0.73	nc	nc	1.98	0.198	Yes
Phenol	0.74	0.74	1	1	1.0	nc	nc	30	3.0	No
Pyrene	0.10	0.00018	11	7	0.64	nc	nc	1.98	0.198	No

		Soil Gra	wel Data					Ecological	COPEC Screenin	g
	Maximum	Minimum	Numb	oer of	Detection	BUTL (	(mg/kg)	Benchmark ^a	Benchmark ^b	COPEC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
Petroleum Hydrocarbons										
Diesel Range Organics (DRO)	4,070	284	10	5	0.07	nc	nc	na	na	Yes
Gasoline Range Organics (GRO)	38	24	10	3	0.63	nc	nc	na	na	Yes
Residual Range Organics (RRO)	3,815	5.4	8	7	0.88	nc	nc	na	na	Yes
TRPH	5,920	5,920	1	1	1.0	nc	nc	NA ^c	NA	No

Notes:

^a Ecological Benchmark Criterion selected based on the following hierarchy:

1) ECO-SSLs

Ecological Soil Screening Level Guidance - Draft. Office of Emergency and Remedial Response. July 10. (EPA, 2000).

2) The lower of ORNL plant or soil invertebrate benchmarks.

Plant benchmarks derived from ORNL (1997), Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Terrestrial Plants: 1997 Revision. November. (Table 1)

3) The lower of ORNL mammalian or avian dietary wildlife benchmarks, assuming diet consists of 100% soil.

Toxicological Benchmarks for Wildlife: 1996 Revision. June. (ORNL, 1996). (Appendix D Table 12-NOAEL-Based Benchmark for Food.)

^b Ecological risk-based screening criteria (ERBSC) is equal to one-tenth the ecological benchmark criterion.

c TRPH is excluded as a COPEC due to outdated analysis methods.

NA - Not applicable.

- BUTL Background upper tolerance limit.
- COPEC Chemical of potential ecological concern.

mg/kg - Milligrams per kilogram.

na - Not available.

nc - Not calculated.

- VOCs Volatile Organic Compounds
- SVOCs Semivolatile Organic Compounds

PCB - Polychlorinated Biphenyls

PAH - Polynuclear Aromatic Hydrocarbons

TRPH - Total Residual Petroleum Hydrocarbons

		Soil Tur	ndra Data				Soil Gr	avel Data					Ecological	COPEC Screenin	ıg
	Maximum	Minimum	Numb	per of	Detection	Maximum	Minimum	Numb	oer of	Detection	BUTL	(mg/kg)	Benchmark ^a	<b>Benchmark</b> ^b	COPEC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
Inorganics															
Bervllium	na	na	na	na	na	1.8	1.8	11	1	0.091	3.8	nc	10	1	Yes
Cadmium	na	na	na	na	na	2.6	2.4	11	2	0.18	1.4	3.1	0.38	0.038	No
Chromium	31	14	6	6	1.0	41	7.3	11	11	1.0	48	50	5	0.5	No
Copper	na	na	na	na	na	34	8.8	11	11	1.0	107	44	61	6.1	No
Lead	42	24	6	6	1.0	100	7.1	11	11	1.0	106	112	50	5	No
Nickel	na	na	na	na	na	25	7.8	11	8	0.73	59	30	30	3	No
Thallium	na	na	na	na	na	0.26	0.26	1	1	1.0	1.6	0.56	1	0.1	No
Zinc	124	49	6	6	1.0	140	12	11	11	1.0	615	157	120	12	No
VOCs															
Acetone	na	na	na	na	na	0.19	0.032	5	3	0.60	nc	nc	36.6	3.66	No
Ethylbenzene	na	na	na	na	na	1.1	1.1	10	1	0.10	nc	nc	52.2	5.22	No
Methylene chloride	na	na	na	na	na	0.16	0.0071	5	4	0.80	nc	nc	21.4	2.14	No
PCBs															
PCB-1254 (Aroclor 1254)	0.20	0.20	9	1	0.11	1.5	0.24	10	3	0.30	nc	nc	0.111	0.0111	Yes
PAHs															
2-Methylnanhthalene	0.031	0.031	8	1	0.13	na	na	na	na	na	nc	nc	1.98	0.198	No
Anthracene	19	0.016	8	2	0.25	na	na	na	na	na	nc	nc	1.98	0.198	Yes
Benzo(a)anthracene	4.4	4 4	8	1	0.13	na	na	na	na	na	nc	nc	1.98	0.198	Yes
Benzo(a)pyrene	2.3	2.3	8	1	0.13	na	na	na	na	na	nc	nc	1.98	0.198	Yes
Benzo(b)fluoranthene	2.6	2.6	8	1	0.13	na	na	na	na	na	nc	nc	1.98	0.198	Yes
Benzo(g.h.i)pervlene	0.056	0.056	8	1	0.13	na	na	na	na	na	nc	nc	1.98	0.198	No
Benzo(k)fluoranthene	2.7	2.7	8	1	0.13	na	na	na	na	na	nc	nc	1.98	0.198	Yes
Chrysene	5.5	5.5	8	1	0.13	na	na	na	na	na	nc	nc	1.98	0.198	Yes
Fluoranthene	9.3	0.035	8	2	0.25	na	na	na	na	na	nc	nc	1.98	0.198	Yes
Phenanthrene	4.1	0.016	8	2	0.25	na	na	na	na	na	nc	nc	1.98	0.198	Yes
Pyrene	7.5	0.025	8	2	0.25	na	na	na	na	na	nc	nc	1.98	0.198	Yes
Petroleum Hydrocarbons	82.000	05	10	10	1.0	02 (50	7.0	11	10	0.01					V
Diesei Range Organics (DRO)	83,000	95	10	10	1.0	92,650	7.9	11	10	0.91	nc	nc	na	na	Yes
DRO_Afomatic	59	59	2	1	0.50	na	na	па	па	па	nc	nc	na	na	Yes
Casoline Pange Organics (CPO)	490	50	2	2	1.0	na 120	na 2 7	na 10	11a 1	11a	nc	nc	na	na	r es
Pasidual Panga Organics (ORO)	2 200	1 200	6	6	1.0	120	5.7	10	4	0.40	ne	nc	na	na	Vac
PPO Aromatic	2,200	1,200	2	2	1.0	na	na	na	na	na	ne	nc	na	na	Vac
	110,000	230 47.000	2	2	1.0	104 000	12	10	10	10	ne	nc	na NA ^c	IIa NA	I US
	110,000	47,000	2	2	1.0	104,000	12	10	10	1.0	nc	nc	1874	INA	INO

#### Notes:

^a Ecological Benchmark Criterion selected based on the following hierarchy: 1) ECO-SSLs

Ecological Soil Screening Level Guidance - Draft. Office of Emergency and Remedial Response. July 10. (EPA, 2000).

		Soil Tur	dra Data				Soil Gr	avel Data				Ecological	COPEC Screening	J.
	Maximum	Minimum	Numb	er of	Detection	Maximum	Minimum	Numb	er of	Detection	BUTL (mg/kg)	Benchmark ^a	Benchmark ^b	COPEC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
2) The lower of ORNL plant or soil inve	rtebrate benchmar	ks.												

Plant benchmarks derived from ORNL (1997), Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Terrestrial Plants: 1997 Revision. November. (Table 1)

Soil invertebrate benchmarks derived from ORNL (1997), Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Soil and Litter Invertebrates and Heterotrophic Process: 1997 Revision. (Table 1)

3) The lower of ORNL mammalian or avian dietary wildlife benchmarks, assuming diet consists of 100% soil.

Toxicological Benchmarks for Wildlife: 1996 Revision. June. (ORNL, 1996). (Appendix D Table 12-NOAEL-Based Benchmark for Food.)

^b Ecological risk-based screening criteria (ERBSC) is equal to one-tenth the ecological benchmark criterion.

^c TRPH is excluded as a COPEC due to outdated analysis methods.

NA - Not applicable. mg/kg - Milligrams per kilogram. BUTL - Background upper tolerance limit. COPEC - Chemical of potential ecological concern. na - Not available. nc - Not calculated. VOCs - Volatile Organic Compounds PCB - Polychlorinated Biphenyls PCH - Polynuclear Aromatic Hydrocarbons TRPH - Total Residual Petroleum Hydrocarbons

Table G-15 Selection of Chemicals of Potential Ecological Concern for Tier I Screening - Freshwater Sediment Site 28 Northeast Cape, St. Lawrence Island, Alaska

	Sediment Conce	ntration (mg/kg)	Number of		Detection	BUTL (mg/kg)	Ecological Benchmark ^a	COPEC Screening Benchmark ^b	COPEC?
Constituent	Maximum Detect	Minimum Result	Samples	Detects	Frequency	Sediment	(mg/kg)	(mg/kg)	(Yes/No)
Inorganics									
Chromium	649	4.4	68	67	0.99	34	43.4	4.34	Yes
Copper	20	16	3	3	1.0	40	31.6	3.16	No
Lead	4,590	4.0	68	55	0.81	78	35.8	3.58	Yes
Nickel	13	13	3	1	0.33	126	22.7	2.27	No
Zinc	4,810	12	68	68	1.0	148	121	12.1	Yes
VOCs									
Benzene	0.050	0.050	8	1	0.13	nc	0.057	0.0057	No
Ethylbenzene	1.8	0.027	8	2	0.25	nc	3.6	0.36	Yes
Toluene	0.37	0.0038	8	3	0.38	nc	0.67	0.067	Yes
Xylenes	0.78	0.048	8	3	0.38	nc	0.025	0.0025	Yes
PCBs									
PCB-1242 (Aroclor 1242)	0.12	0.12	79	1	0.013	nc	0.0598	0.00598	Yes
PCB-1254 (Aroclor 1254)	2.8	0.038	79	14	0.18	nc	0.06	0.006	Yes
PCB-1260 (Aroclor 1260)	5.4	0.063	79	27	0.34	nc	0.005	0.0005	Yes
Pesticides									
4,4'-DDD	1.2	0.0072	13	6	0.46	nc	0.00488	0.000488	Yes
beta-BHC	0.012	0.0036	10	2	0.20	nc	0.006	0.0006	Yes
Endosulfan sulfate	0.0086	0.0086	10	1	0.10	nc	na	na	Yes
gamma-BHC (Lindane)	0.0065	0.0029	13	2	0.15	nc	0.00237	0.000237	Yes
Heptachlor	0.0046	0.0044	13	2	0.15	nc	0.00247	0.000247	Yes
Dioxins & Furans									
Dibenzofuran	5.6	0.026	68	26	0.38	nc	2	0.2	Yes
PAHs									
2-Methylnaphthalene	500	0.022	71	58	0.82	nc	0.07	0.007	Yes

Table G-15 Selection of Chemicals of Potential Ecological Concern for Tier I Screening - Freshwater Sediment Site 28 Northeast Cape, St. Lawrence Island, Alaska

							Ecological	COPEC Screening	
	Sediment Conce	ntration (mg/kg)	Numb	er of	Detection	BUTL (mg/kg)	<b>Benchmark</b> ^a	<b>Benchmark</b> ^b	COPEC?
Constituent	Maximum Detect	Minimum Result	Samples	Detects	Frequency	Sediment	(mg/kg)	(mg/kg)	(Yes/No)
Acenaphthene	14	0.016	70	40	0.57	nc	0.62	0.062	Yes
Acenaphthylene	0.047	0.047	71	1	0.014	nc	0.044	0.0044	Yes
Anthracene	1.8	0.0092	71	7	0.10	nc	0.0572	0.00572	Yes
Benzo(a)anthracene	1.9	0.10	71	5	0.070	nc	0.108	0.0108	Yes
Benzo(a)pyrene	1.4	0.13	71	4	0.056	nc	0.15	0.015	Yes
Benzo(b)fluoranthene	1.6	0.10	71	5	0.070	nc	0.24	0.024	Yes
Benzo(g,h,i)perylene	0.91	0.037	71	2	0.028	nc	0.29	0.029	Yes
Benzo(k)fluoranthene	1.9	0.19	71	4	0.056	nc	0.24	0.024	Yes
Chrysene	2.6	0.031	71	7	0.10	nc	0.166	0.0166	Yes
Dibenzo(a,h)anthracene	0.015	0.015	71	1	0.014	nc	0.033	0.0033	Yes
Fluoranthene	14	0.0084	71	12	0.17	nc	0.423	0.0423	Yes
Fluorene	20	0.011	71	47	0.66	nc	0.0774	0.00774	Yes
Indeno(1,2,3-cd)pyrene	1.2	0.046	71	3	0.042	nc	0.078	0.0078	Yes
Naphthalene	220	0.024	71	55	0.77	nc	0.176	0.0176	Yes
Phenanthrene	21	0.015	71	42	0.59	nc	0.204	0.0204	Yes
Pyrene	9.5	0.010	71	11	0.15	nc	0.195	0.0195	Yes
Petroleum Hydrocarbons									
Diesel Range Organics (DRO)	150,000	22	83	83	1.0	nc	na	na	Yes
DRO_ Aromatic	60	60	3	1	0.33	nc	na	na	Yes
DRO_Aliphatic	150,000	26	5	5	1.0	nc	na	na	Yes
Gasoline Range Organics (GRO)	220	4.0	5	2	0.40	nc	na	na	Yes
Residual Range Organics (RRO)	14,000	69	69	66	0.96	nc	na	na	Yes
RRO_ Aliphatic	11,000	58	5	4	0.80	nc	na	na	Yes
RRO_Aromatic	500	64	5	5	1.0	nc	na	na	Yes
TRPH	127,000	21,500	5	5	1.0	nc	NA ^c	NA	No

Notes:

^a Ecological Benchmark Criterion selected based on the following hierarchy:

1) Consensus-based Freshwater Threshold Effect Concentrations.

					Ecological COPEC Screening				
	Sediment Concer	ntration (mg/kg)	Num	ber of	Detection	BUTL (mg/kg)	<b>Benchmark</b> ^a	<b>Benchmark</b> ^b	COPEC?
Constituent	Maximum Detect	Minimum Result	Samples	Detects	Frequency	Sediment	(mg/kg)	(mg/kg)	(Yes/No)
MacDonald, D.D., Ingersoll, C.G., Berger, T.A. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. 2000.									
Table 2. Sediment quality guidelines for metals in freshwater ecosystems that reflect TECs (I.e., below which) harmful effects are unlikely to be observed).									
2) Assessment and Remediation of Contaminated Sediment Program - Threshold Effect Concentration.									
ORNL, 1997. Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Sediment - Associated Biota: 1997 Revision. November.									
Archives of Environmental Contamination and Toxicology. January.									
Table 4. Summary of selected toxicity test - and screening level concentration-based sediment quality benchmarks for freshwater sediments.									
3) Untario Ministry of the Environment: Lowest effect level									
ORNL, 1997. Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Sediment - Associated Biota: 1997 Revision. November.									
Table 4. Summary of selected toxicity test - and screening level concentration-based sediment quality benchmarks for freshwater sediments.									
4) EPA USWEK Value -									
UKINL, 1997. Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Sediment - Associated Biota: 1997 Revision. November.									
Table J. Er A Region IV and US wER sedment screening values.									
J) INUAA EK-L ORNI 1007 Toxicological Banchmarks for Screening Contaminants of Potential Concern for Effects on Sediment Associated Biota: 1007 Povision November									
Table 1 Summary of selected integ	rative sediment quality l	henchmarks for marine	and estuarir	a sodimont	i Sediment - A	Associated Diota. 1	77 Revision. No	venioer.	
6) FDEP TEL Value									
ORNI 1997 Toxicological Bench	marks for Screening Co	ntaminants of Potentia	1 Concern fo	r Effects or	Sediment -	Associated Biota: 19	997 Revision No	vember	
Table 1. Summary of selected integrative sediment quality benchmarks for marine and estuarine sediments									
^b Ecological risk-based screening criteria (ERBSC) is equal to one-tenth the ecological benchmark criterion.									
^c TRPH is excluded as a COPEC due to outdated analysis methods.									
NA - Not applicable.									
mg/kg - Milligrams per kilogram.	- 14								
BUIL - Background upper tolerance in	11t.								
na Not available	cai concern.								
ng Not calculated									
VOCs - Volatile Organic Compounds									
PCB - Polychlorinated Binhenyls									
PAH - Polynuclear Aromatic Hydrocarb	ons								
TRPH - Total Residual Petroleum Hydro	ocarbons								
#### Table G-16 Selection of Chemicals of Potential Ecological Concern for Tier I Screening - Surface Water Site 28 Northeast Cape, St. Lawrence Island, Alaska

		Fresh Surfac	e Water Da	ata		BUTL	(mg/L)	Ecological	COPEC Screening	
	Maximum	Maximum	Numb	oer of	Detection	Fresh Surface	Ephemeral	Benchmark ^a	<b>Benchmark</b> ^b	COPEC?
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Water	Surface Water	(mg/L)	(mg/L)	(Yes/No)
Inorganics, Total										
Chromium	0.015	0.015	3	1	0.33	nc	nc	0.074	0.0074	Yes
Copper	0.040	0.040	3	1	0.33	nc	0.083	0.009	0.0009	Yes
Lead	0.086	0.086	3	1	0.33	nc	0.014	0.003	0.00025	Yes
Zinc	0.62	0.62	3	1	0.33	nc	0.90	0.11	0.011	Yes
Inorganics, Dissolved										
Lead, Dissolved	0.011	0.011	3	1	0.33	nc	nc	0.003	0.00025	Yes
Zinc, Dissolved	0.23	0.23	3	1	0.33	nc	0.093	0.11	0.011	Yes
VOCs										
Ethylbenzene	0.0016	0.0016	5	1	0.20	nc	nc	3.2	0.32	No
PCBs										
PCB-1260 (Aroclor 1260)	0.0019	0.0015	15	2	0.13	nc	nc	1E-05	0.0000014	Yes
Petroleum Hydrocarbons										
Diesel Range Organics (DRO)	326	0.39	17	17	1.0	nc	nc	na	na	Yes
Gasoline Range Organics (GRO)	0.57	0.57	5	1	0.20	nc	nc	na	na	Yes
TRPH	19	2.3	5	2	0.40	nc	nc	NA c	NA	No

#### Notes:

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment, Derivation of Ambient Concentrations for Abiotic Media Associated with the Northeast Cape, St. Lawrence Island, Alaska (MWH, 2003).

^b Ecological Benchmark Criterion selected based on the following hierarchy:

1) USEPA National Ambient Water Quality Criteria - Freshwater Chronic Value

NOAA, 1999. Screening Quick Reference Tables (SQuiRT). September.

- 2) USEPA National Ambient Water Quality Criteria Marine Chronic Value NOAA, 1999. Screening Quick Reference Tables (SQuiRT). September.
- USEPA National Ambient Water Quality Criteria Freshwater Acute Value divided by 10 NOAA, 1999. Screening Quick Reference Tables (SQuiRT). September.
- USEPA National Ambient Water Quality Criteria Marine Acute Value divided by 10 NOAA, 1999. Screening Quick Reference Tables (SQuiRT). September.
- 5) Lowest Chronic Value observed in freshwater daphnids

#### Table G-16 Selection of Chemicals of Potential Ecological Concern for Tier I Screening - Surface Water Site 28 Northeast Cape, St. Lawrence Island, Alaska

		Fresh Surfac	e Water Da	ata		BUTL	(mg/L)	Ecological	<b>COPEC Screening</b>	
	Maximum	Maximum	Numb	er of	Detection	Fresh Surface	Ephemeral	Benchmark ^a	<b>Benchmark</b> ^b	COPEC?
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Water	Surface Water	( <b>mg/L</b> )	(mg/L)	(Yes/No)

ORNL, 1996. Toxicological Benchmarks for Screening Potential Contaminants of

Concern for Effects on Aquatic Biota: 1996 Revision. November.

Table 1. Summary of conventional benchmarks for priority contaminants in fresh water.

NA - Not applicable.

- mg/L Milligrams per liter.
- BUTL Background upper tolerance limit.
- COPEC Chemical of potential ecological concern.

na - Not available.

nc - Not calculated.

VOCs - Volatile Organic Compounds

SVOCs - Semivolatile Organic Compounds

PCB - Polychlorinated Biphenyls

TRPH - Total Residual Petroleum Hydrocarbons

#### Table G-17 Selection of Chemicals of Potential Ecological Concern for Tier I Screening - Fish Tissue Site 28 Northeast Cape, St. Lawrence Island, Alaska

							Ecological	COPEC Screening	g COPEC?
	Fish Tissue Conc	entration (mg/kg)	Numb	per of	Detection	BUTL (mg/kg)	Benchmark ^a	Benchmark ^b	COPEC?
Constituent	Maximum Detect	Minimum Result	Samples	Detects	Frequency	Fish Tissue	(mg/kg)	(mg/kg)	(Yes/No)
Inorganics									
Antimony	0.0070	0.0050	3	3	1.00	nc	na	na	Yes
Arsenic	0.080	0.060	3	3	1.0	nc	na	na	Yes
Barium	1.1	1.0	3	3	1.0	nc	na	na	Yes
Cadmium	0.0080	0.0080	3	3	1.0	nc	na	na	Yes
Copper	1.2	0.64	3	3	1.0	nc	na	na	Yes
Lead	0.028	0.011	3	3	1.0	nc	na	na	Yes
Mercury	0.098	0.076	3	3	1.0	nc	na	na	Yes
Nickel	1.1	0.63	3	3	1.0	nc	na	na	Yes
Selenium	0.16	0.13	3	3	1.0	nc	na	na	Yes
Vanadium	0.11	0.099	3	3	1.0	nc	na	na	Yes
Zinc	51	43	3	3	1.0	nc	na	na	Yes
PAHs									
2-Methylnaphthalene	0.19	0.0053	4	4	1.0	nc	na	na	Yes
Acenaphthene	0.026	0.0063	4	4	1.0	nc	na	na	Yes
Benzo(g,h,i)perylene	0.0043	0.0043	4	1	0.25	nc	na	na	Yes
Fluoranthene	0.0037	0.0015	4	2	0.50	nc	na	na	Yes
Fluorene	0.067	0.011	4	4	1.0	nc	na	na	Yes
Naphthalene	0.068	0.016	4	3	0.75	nc	na	na	Yes
Phenanthrene	0.018	0.0062	4	4	1.0	nc	na	na	Yes
Pyrene	0.0023	0.0018	4	2	0.50	nc	na	na	Yes
PCBs									
PCB-1260 (Aroclor 1260)	0.14	0.060	4	4	1.0	nc	na	na	Yes

#### Notes:

^a Regulatory screening criteria for this medium have not been adopted by ADEC.

^b Ecological Benchmark Criterion is not currently available for this media.

NA - Not applicable. BUTL - Background upper tolerance limit. COPEC - Chemical of potential ecological concern. mg/kg - Milligrams per kilogram. na - Not available. nc - Not calculated. VOCs - Volatile Organic Compounds SVOCs - Semivolatile Organic Compounds PCB - Polychlorinated Biphenyls PAH - Polynuclear Aromatic Hydrocarbons

 Table G-18

 Selection of Chemicals of Potential Ecological Concern for Tier I Screening - Plant Tissue Site 28

 Northeast Cape, St. Lawrence Island, Alaska

							Ecological	COPEC Screening	
	Plant Tissue Conc	centration (mg/kg)	Numb	oer of	Detection	BUTL (mg/kg)	Benchmark ^a	<b>Benchmark^b</b>	COPEC?
Constituent	Maximum Detect	Minimum Result	Samples	Detects	Frequency	Plant Tissue	(mg/kg)	(mg/kg)	(Yes/No)
Inorganics									
Antimony	0.0030	0.0030	1	1	1.0	nc	na	na	Yes
Arsenic	2.4	0.060	17	10	0.59	nc	na	na	Yes
Barium	40	0.45	17	17	1.0	nc	na	na	Yes
Cadmium	1.1	0.0020	17	17	1.0	nc	na	na	Yes
Chromium	78	0.12	17	16	0.94	nc	na	na	Yes
Copper	6.9	0.54	17	17	1.0	nc	na	na	Yes
Lead	11	0.065	17	17	1.0	nc	na	na	Yes
Mercury	0.16	0.0030	17	16	0.94	nc	na	na	Yes
Nickel	8.6	0.060	17	17	1.0	nc	na	na	Yes
Selenium	0.99	0.020	17	11	0.65	nc	na	na	Yes
Silver	0.058	0.0070	17	8	0.47	nc	na	na	Yes
Vanadium	7.3	0.016	17	17	1.0	nc	na	na	Yes
Zinc	76	1.3	17	17	1.0	nc	na	na	Yes
PAHs									
2-Methylnaphthalene	0.026	0.0028	17	12	0.71	nc	na	na	Yes
Acenaphthene	0.075	0.0017	17	13	0.76	nc	na	na	Yes
Anthracene	0.050	0.0019	17	11	0.65	nc	na	na	Yes
Benzo(a)anthracene	0.24	0.0028	17	11	0.65	nc	na	na	Yes
Benzo(a)pyrene	0.30	0.0022	17	9	0.53	nc	na	na	Yes
Benzo(b)fluoranthene	0.24	0.0018	17	14	0.82	nc	na	na	Yes
Benzo(g,h,i)perylene	0.15	0.0018	17	10	0.59	nc	na	na	Yes
Benzo(k)fluoranthene	0.34	0.0031	17	11	0.65	nc	na	na	Yes
Chrysene	0.42	0.0020	17	15	0.88	nc	na	na	Yes
Dibenz(a,h)anthracene	0.043	0.0017	17	7	0.41	nc	na	na	Yes
Fluoranthene	1.0	0.0072	17	16	0.94	nc	na	na	Yes
Fluorene	0.077	0.0020	17	16	0.94	nc	na	na	Yes
Indeno(1,2,3-cd)pyrene	0.21	0.0013	17	13	0.76	nc	na	na	Yes
Naphthalene	0.042	0.0027	17	13	0.76	nc	na	na	Yes
Phenanthrene	1.0	0.0027	17	17	1.0	nc	na	na	Yes
Pyrene	0.93	0.0048	17	16	0.94	nc	na	na	Yes
PCBs									
PCB-1254 (Aroclor 1254)	9.3	0.0049	16	16	1.0	nc	na	na	Yes
PCB-1260 (Aroclor 1260)	0.92	0.0049	16	15	0.94	nc	na	na	Yes

## Table G-18 Selection of Chemicals of Potential Ecological Concern for Tier I Screening - Plant Tissue Site 28 Northeast Cape, St. Lawrence Island, Alaska

							Ecological	<b>COPEC Screening</b>	
	Plant Tissue Concentration (mg/kg)		Numb	er of	Detection	BUTL (mg/kg)	Benchmark ^a	<b>Benchmark</b> ^b	COPEC?
Constituent	<b>Maximum Detect</b>	Minimum Result	Samples	Detects	Frequency	Plant Tissue	(mg/kg)	(mg/kg)	(Yes/No)

Notes:

^a Regulatory screening criteria for this medium have not been adopted by ADEC.

^b Ecological Benchmark Criterion is not currently available for this media.

NA - Not applicable.

BUTL - Background upper tolerance limit.

COPEC - Chemical of potential ecological concern.

mg/kg - Milligrams per kilogram.

na - Not available.

nc - Not calculated.

PAH - Polynuclear Aromatic Hydrocarbons

Table G-19 Selection of Chemicals of Potential Ecological Concern for Tier I Screening - Freshwater Sediment Site 29 Northeast Cape, St. Lawrence Island, Alaska

	Sediment Conce	Sediment Concentration (mg/kg)		Number of		on BUTL (mg/kg)	Ecological Benchmark ^a	ral COPEC Screening rk ^a Benchmark ^b	COPEC?
Constituent	Maximum Detect	Minimum Result	Samples	Detects	Frequency	Sediment	(mg/kg)	(mg/kg)	(Yes/No)
Inorganics									
Aluminum	15 900	4 820	4	4	1.0	nc	25 500	2 550	Yes
Arsenic	5.7	2.8	4	4	1.0	nc	9.79	0.979	Yes
Barium	115	40	4	4	1.0	nc	na	na	Yes
Bervllium	1.3	0.20	5	4	0.8	9.8	na	na	Yes
Calcium	3.270	1,580	4	4	1.0	nc	NA ^c	NA	No
Chromium	27	2.6	17	17	1.0	34	43.4	4.34	No
Cobalt	7.0	2.0	4	4	1.0	nc	na	na	Yes
Copper	11	1.8	5	5	1.0	40	31.6	3.16	No
Iron	14,900	8,720	4	4	1.0	nc	NA ^c	NA	No
Lead	24	3.2	17	17	1.0	78	35.8	3.58	No
Magnesium	3,770	2,030	4	4	1.0	nc	NA ^c	NA	No
Manganese	114	80	4	4	1.0	nc	1,673	167.3	Yes
Mercury	0.050	0.050	4	1	0.3	nc	0.18	0.018	Yes
Nickel	14	5.0	5	4	0.8	126	22.7	2.27	No
Potassium	1,360	930	4	4	1.0	nc	NA ^c	NA	No
Sodium	713	416	4	4	1.0	nc	NA ^c	NA	No
Vanadium	35	17	4	4	1.0	nc	na	na	Yes
Zinc	69	14	17	17	1.0	148	121	12.1	No
VOCs									
m,p-Xylene	0.0032	0.0032	4	1	0.25	nc	0.025	0.0025	Yes
Toluene	0.0097	0.0047	9	4	0.44	nc	0.67	0.067	No
Dioxins & Furans									
Dibenzofuran	0.0086	0.0086	16	1	0.063	nc	2	0.2	No
PAHs									
2-Methylnaphthalene	0.23	0.012	21	4	0.19	nc	0.07	0.007	Yes
Acenaphthene	0.014	0.014	21	1	0.048	nc	0.62	0.062	No

#### Table G-19 Selection of Chemicals of Potential Ecological Concern for Tier I Screening - Freshwater Sediment Site 29 Northeast Cape, St. Lawrence Island, Alaska

							Ecological	COPEC Screening	
	Sediment Conce	ntration (mg/kg)	Numb	oer of	Detection	BUTL (mg/kg)	<b>Benchmark</b> ^a	<b>Benchmark</b> ^b	COPEC?
Constituent	Maximum Detect	Minimum Result	Samples	Detects	Frequency	Sediment	(mg/kg)	(mg/kg)	(Yes/No)
Acenaphthylene	0.010	0.010	21	1	0.048	nc	0.044	0.0044	Yes
Anthracene	0.023	0.023	21	1	0.048	nc	0.0572	0.00572	Yes
Benzo(b)fluoranthene	0.0042	0.0042	21	1	0.048	nc	0.24	0.024	No
Benzo(k)fluoranthene	0.0042	0.0042	21	1	0.048	nc	0.24	0.024	No
Chrysene	0.0048	0.0048	21	1	0.048	nc	0.166	0.0166	No
Fluoranthene	0.022	0.010	21	3	0.14	nc	0.423	0.0423	No
Fluorene	0.022	0.013	21	3	0.14	nc	0.0774	0.00774	Yes
Naphthalene	0.11	0.0098	21	3	0.14	nc	0.176	0.0176	Yes
Phenanthrene	0.037	0.010	21	4	0.19	nc	0.204	0.0204	Yes
Pyrene	0.02	0.011	21	2	0.10	nc	0.195	0.0195	Yes
Petroleum Hydrocarbons									
Diesel Range Organics (DRO)	25,000	9.3	26	24	0.92	nc	na	na	Yes
Residual Range Organics (RRO)	1,000	10	18	17	0.94	nc	na	na	Yes
Residual Range Organics_Aromatic	137	53	6	6	1.0	nc	na	na	Yes
TRPH	67	67	1	1	1.0	nc	NA ^d	NA	No

#### Notes:

^a Ecological Benchmark Criterion selected based on the following hierarchy:

1) Consensus-based Freshwater Threshold Effect Concentrations.

MacDonald, D.D., Ingersoll, C.G., Berger, T.A. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater

Ecosystems. 2000. Archives of Environmental Contamination and Toxicology. January

Table 2. Sediment quality guidelines for metals in freshwater ecosystems that reflect TECs (I.e., below which) harmful effects are unlikely to be observed).

2) Assessment and Remediation of Contaminated Sediment Program - Threshold Effect Concentration.

ORNL, 1997. Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Sediment - Associated Biota: 1997 Revision. November. Table 4. Summary of selected toxicity test - and screening level concentration-based sediment quality benchmarks for freshwater sediments.

3) Ontario Ministry of the Environment: Lowest effect level

ORNL, 1997. Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Sediment - Associated Biota: 1997 Revision. November. Table 4. Summary of selected toxicity test - and screening level concentration-based sediment quality benchmarks for freshwater sediments.

4) EPA OSWER Value -

ORNL, 1997. Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Sediment - Associated Biota: 1997 Revision. November. Table 5. EPA Region IV and OSWER sediment screening values.

#### Table G-19 Selection of Chemicals of Potential Ecological Concern for Tier I Screening - Freshwater Sediment Site 29 Northeast Cape, St. Lawrence Island, Alaska

							Ecological	<b>COPEC Screening</b>	
	Sediment Concer	ntration (mg/kg)	Numb	er of	Detection	BUTL (mg/kg)	<b>Benchmark</b> ^a	<b>Benchmark</b> ^b	COPEC?
Constituent	<b>Maximum Detect</b>	Minimum Result	Samples	Detects	Frequency	Sediment	(mg/kg)	(mg/kg)	(Yes/No)

5) NOAA ER-L

ORNL, 1997. Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Sediment - Associated Biota: 1997 Revision. November.

Table 1. Summary of selected integrative sediment quality benchmarks for marine and estuarine sediments

6) FDEP TEL Value

ORNL, 1997. Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Sediment - Associated Biota: 1997 Revision. November.

Table 1. Summary of selected integrative sediment quality benchmarks for marine and estuarine sediments

^b Ecological risk-based screening criteria (ERBSC) is equal to one-tenth the ecological benchmark criterion.

^c Soil Screening Criteria are not available for this essential nutrient. This analyte is excluded as a COPEC based on essential nutrient status.

^d TRPH is excluded as a COPEC due to outdated analysis methods.

NA - Not applicable.

- BUTL Background upper tolerance limit.
- COPEC Chemical of Potential Ecological Concern.
- mg/kg Milligrams per kilogram.

na - Not available.

nc - Not calculated.

PAH - Polynuclear Aromatic Hydrocarbons

VOC - Volatile Organic Compounds

TRPH - Total Residual Petroleum Hydrocarbons

#### Table G-20 Selection of Chemicals of Potential Ecological Concern for Tier I Screening - Surface Water Site 29 Northeast Cape, St. Lawrence Island, Alaska

		Fresh Surfac	e Water Da	ata		BUTL	(mg/L)	Ecolog	ical	COPEC Screening	
	Maximum	Maximum	Numb	oer of	Detection	Fresh Surface	Ephemeral	Benchm	ark ^a	<b>Benchmark</b> ^b	COPEC?
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Water	Surface Water	( <b>mg</b> /l	L)	(mg/L)	(Yes/No)
Inorganics, Total											
Aluminum	0.040	0.040	4	4	1.0	nc	2.2	0.087		0.0087	Yes
Barium	0.0050	0.0050	4	4	1.0	nc	0.034	na		na	Yes
Calcium	7.6	6.9	4	4	1.0	nc	nc	NA	с	NA	No
Iron	0.38	0.31	4	4	1.0	nc	nc	NA		NA	No
Magnesium	2.6	2.0	4	4	1.0	nc	nc	NA	с	NA	No
Manganese	0.027	0.017	4	4	1.0	nc	0.12	1.1		0.11	No
Potassium	1.0	0.68	4	3	0.75	nc	nc	NA	с	NA	No
Sodium	29	14	4	4	1.0	nc	nc	NA	с	NA	No
Zinc	0.0080	0.0080	5	1	0.20	nc	0.90	0.11		0.011	No
Inorganics, Dissolved											
Silver, Dissolved	0.020	0.020	1	1	1.0	nc	nc	0.00012		0.000012	Yes
Petroleum Hydrocarbons											
Diesel Range Organics (DRO)	0.33	0.33	13	1	0.077	nc	nc	na		na	Yes
DRO_Aliphatic	0.33	0.33	1	1	1.0	nc	nc	na		na	Yes
Gasoline Range Organics (GRO)	0.41	0.33	11	2	0.18	nc	nc	na		na	Yes

#### Notes:

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment, Derivation of Ambient Concentrations for Abiotic Media Associated with the Northeast Cape, St. Lawrence Island, Alaska (MWH, 2003).

^b Ecological Benchmark Criterion selected based on the following hierarchy:

- USEPA National Ambient Water Quality Criteria Freshwater Chronic Value NOAA, 1999. Screening Quick Reference Tables (SQuiRT). September.
- USEPA National Ambient Water Quality Criteria Marine Chronic Value NOAA, 1999. Screening Quick Reference Tables (SQuiRT). September.
- USEPA National Ambient Water Quality Criteria Freshwater Acute Value divided by 10 NOAA, 1999. Screening Quick Reference Tables (SQuiRT). September.
- USEPA National Ambient Water Quality Criteria Marine Acute Value divided by 10 NOAA, 1999. Screening Quick Reference Tables (SQuiRT). September.
- Lowest Chronic Value observed in freshwater daphnids ORNL, 1996. Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Aquatic Biota: 1996 Revision. November.

#### Table G-20 Selection of Chemicals of Potential Ecological Concern for Tier I Screening - Surface Water Site 29 Northeast Cape, St. Lawrence Island, Alaska

		Fresh Surfac	e Water Da	ata		BUTL	(mg/L)	Ecological	<b>COPEC Screening</b>	
	Maximum	Maximum	Number of		Detection	Fresh Surface	Ephemeral	Benchmark ^a	<b>Benchmark</b> ^b	COPEC?
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Water	Surface Water	(mg/L)	(mg/L)	(Yes/No)

Table 1. Summary of conventional benchmarks for priority contaminants in fresh water.

^c Soil Screening Criteria are not available for this essential nutrient. This analyte is excluded as a COPEC based on essential nutrient status.

NA - Not applicable.

BUTL - Background upper tolerance limit.

COPEC - Chemical of Potential Ecological Concern.

mg/kg - Milligrams per kilogram.

na - Not available.

nc - Not calculated.

#### Table G-21 Selection of Chemicals of Potential Ecological Concern for Tier I Screening - Fish Tissue Site 29 Northeast Cape, St. Lawrence Island, Alaska

	Fish Times Cours		Nk	<b>F</b>	Detection		Ecological Banaharaala ^a	COPEC Screening	CODEC9
	Fish Tissue Conc	entration (mg/kg)	Numo	ber of	Detection	BUIL (mg/kg)	Benchmark	Benchmark	COPEC:
Constituent	Maximum Detect	Minimum Result	Samples	Detects	Frequency	Fish Tissue	(mg/kg)	(mg/kg)	(Yes/No)
Inorganics									
Antimony	0.01	0.01	15	1	0.07	nc	na	na	Yes
Arsenic	0.78	0.21	15	15	1.0	nc	na	na	Yes
Barium	0.466	0.015	15	15	1.0	nc	na	na	Yes
Cadmium	0.044	0.0060	15	11	0.73	nc	na	na	Yes
Copper	3.01	0.55	15	15	1.0	nc	na	na	Yes
Lead	0.012	0.0030	15	10	0.67	nc	na	na	Yes
Mercury	0.022	0.0040	15	15	1.0	nc	na	na	Yes
Nickel	1.1	0.030	15	7	0.47	nc	na	na	Yes
Selenium	0.52	0.12	15	15	1.0	nc	na	na	Yes
Silver	0.036	0.011	15	5	0.33	nc	na	na	Yes
Vanadium	0.142	0.017	15	15	1.0	nc	na	na	Yes
Zinc	36.9	5.6	15	15	1.0	nc	na	na	Yes
rans 2 Mathulaanhthalana	0.0000	0.0026	16	4	0.25				Vac
	0.0090	0.0020	10	4	0.23	nc	na	na	Ves
Arthracene	0.0092	0.0013	10	5	0.31	nc	na	na	Ves
Ponzo(a)enthraceno	0.011	0.0017	15	5	0.33	ne	na	na	Vos
Benzo(a)pyrana	0.012	0.0014	10	4	0.38	nc	na	na	Ves
Benzo(b)fluoranthene	0.0090	0.0021	10	4	0.23	nc	na	na	Ves
Benzo(g h i)pervlene	0.0075	0.0012	10	6	0.38	nc	na	na	Ves
Benzo(k)fluorenthene	0.0039	0.0023	16	6	0.38	ne	na	na	Vos
Chrusone	0.018	0.0024	10	6	0.38	ne	na	na	Ves
Dibenz(a h)anthracene	0.012	0.0019	10	3	0.38	nc	na	na	Ves
Fluoranthene	0.0008	0.0017	15	5	0.20	nc	na	na	Ves
Fluorana	0.013	0.0017	10	6	0.38	nc	na	na	Ves
Indeno(1,2,3, cd)pyrene	0.0013	0.0012	15	7	0.40	nc	na	na	Ves
Naphthalana	0.0045	0.00074	10	7	0.44	nc	na	na	Ves
Dhenonthrone	0.0000	0.0013	10	0	0.44	nc	na	na	Ves
Pyrene	0.012	0.0026	15	9 7	0.00	nc	na	na	Yes
-									
PCBs									
PCB-1254 (Aroclor 1254)	0.030	0.0061	16	15	0.94	nc	na	na	Yes
PCB-1260 (Aroclor 1260)	0.16	0.0041	16	3	0.19	nc	na	na	Yes

## Notes:

^a Regulaory screening criteria for this medium have not been adopted by ADEC.

^b Ecological Benchmark Criterion is not currently available for this media.

NA - Not applicable.

#### Table G-21 Selection of Chemicals of Potential Ecological Concern for Tier I Screening - Fish Tissue Site 29 Northeast Cape, St. Lawrence Island, Alaska

	Fish Tissue Conco	entration (mg/kg)	Numb	er of	Detection	BUTL (mg/kg)	Ecological Benchmark ^a	COPEC Screening Benchmark ^b	COPEC?
Constituent	Maximum Detect	Minimum Result	Samples	Detects	Frequency	Fish Tissue	(mg/kg)	(mg/kg)	(Yes/No)
BUTL - Background upper tolerance limit.									
COPEC - Chemical of Potential Ecologica	l Concern.								
mg/kg - Milligrams per kilogram.									
na - Not available.									
nc - Not calculated.									
PCB - Polychlorinated Biphenyls									
PAH - Polynuclear Aromatic Hydrocarbon	S								

## Table G-22 Selection of Chemicals of Potential Ecological Concern for Tier I Screening - Soil Site 31 Northeast Cape, St. Lawrence Island, Alaska

		Soil Tun	dra Data					Ecological	COPEC Screening	
	Maximum	Minimum	Numb	er of	Detection	BUTL (	(mg/kg)	Benchmark ^a	<b>Benchmark</b> ^b	COPEC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
VOCs										
m,p-Xylene	0.017	0.0066	4	2	0.50	nc	nc	4.162	0.4162	No
o-Xylene	0.0053	0.0053	4	1	0.25	nc	nc	4.162	0.4162	No
Toluene	0.024	0.0073	4	3	0.75	nc	nc	200	20	No
PCBs										
PCB-1260 (Aroclor 1260)	22	0.36	8	6	0.75	nc	nc	0.111	0.0111	Yes
Petroleum Hydrocarbons										
Diesel Range Organics (DRO)	11,000	11	24	24	1.0	nc	nc	na	na	Yes
Residual Range Organics (RRO)	9,600	12	24	12	0.50	nc	nc	na	na	Yes

Notes:

^a Ecological Benchmark Criterion selected based on the following hierarchy:

1) ECO-SSLs

Ecological Soil Screening Level Guidance - Draft. Office of Emergency and Remedial Response. July 10. (EPA, 2000).

2) The lower of ORNL plant or soil invertebrate benchmarks.

Plant benchmarks derived from ORNL (1997), Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Terrestrial Plants: 1997 Revision. November. (Table 1)

 The lower of ORNL mammalian or avian dietary wildlife benchmarks, assuming diet consists of 100% soil. Toxicological Benchmarks for Wildlife: 1996 Revision. June. (ORNL, 1996). (Appendix D Table 12-NOAEL-Based Benchmark for Food.)

^b Ecological risk-based screening criteria (ERBSC) is equal to one-tenth the ecological benchmark criterion.

NA - Not applicable.

- BUTL Background upper tolerance limit.
- COPEC Chemical of potential ecological concern.

mg/kg - Milligrams per kilogram.

na - Not available.

PCB - Polychlorinated Biphenyls

VOC - Volatile Organic Compounds

#### Table G-23 Selection of Chemicals of Potential Ecological Concern for Tier I Screening - Surface Water Location Site 31 Northeast Cape, St. Lawrence Island, Alaska

	Eph	emeral Surface	Water Con	centration	1	BUTL	(mg/L)	Ecological	COPEC Screening	
	Maximum	Maximum	Numb	per of	Detection	Fresh Surface	Ephemeral	Benchmark ^a	<b>Benchmark</b> ^b	COPEC?
Constituent	Detect (mg/L)	Detect (mg/L)	Samples	Detects	Frequency	Water	Surface Water	(mg/L)	(mg/L)	(Yes/No)
Inorganics, Total										
Aluminum	0.050	0.050	2	1	0.50	nc	2.2	0.087	0.0087	No
Barium	0.0030	0.0030	2	1	0.50	nc	0.034	na	na	Yes
Calcium	2.2	2.1	2	2	1.0	nc	nc	NA c	NA	No
Iron	0.030	0.030	2	1	0.5	nc	nc	NA c	NA	No
Magnesium	0.85	0.80	2	2	1.0	nc	nc	NA c	NA	No
Manganese	0.0050	0.0010	2	2	1.0	nc	0.12	1.1	0.11	Yes
Sodium	4.2	4.1	2	2	1.0	nc	nc	NA c	NA	No

#### Notes:

^a Please refer to Technical Memorandum-Background Determination for Risk Assessment, Derivation of Ambient Concentrations for Abiotic Media Associated with the Northeast Cape, St. Lawrence Island, Alaska (MWH, 2003).

^b Ecological Benchmark Criterion selected based on the following hierarchy:

 USEPA National Ambient Water Quality Criteria - Freshwater Chronic Value NOAA, 1999. Screening Quick Reference Tables (SQuiRT). September.

- USEPA National Ambient Water Quality Criteria Marine Chronic Value NOAA, 1999. Screening Quick Reference Tables (SQuiRT). September.
- USEPA National Ambient Water Quality Criteria Freshwater Acute Value divided by 10 NOAA, 1999. Screening Quick Reference Tables (SQuiRT). September.
- USEPA National Ambient Water Quality Criteria Marine Acute Value divided by 10 NOAA, 1999. Screening Quick Reference Tables (SQuiRT). September.
- Lowest Chronic Value observed in freshwater daphnids ORNL, 1996. Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Aquatic Biota: 1996 Revision. November. Table 1. Summary of conventional benchmarks for priority contaminants in fresh water.

^c Soil Screening Criteria are not available for this essential nutrient. This analyte is excluded as a COPEC based on essential nutrient status.

NA - Not applicable.

- BUTL Background upper tolerance limit.
- COPEC Chemical of potential ecological concern.

mg/L - Milligrams per liter.

na - Not available.

PCB - Polychlorinated Biphenyls

VOC - Volatile Organic Compounds

### Table G-24 Selection of Chemicals of Potential Ecological Concern for Tier I Screening - Soil Site 32 Northeast Cape, St. Lawrence Island, Alaska

		Soil Gra	vel Data					Ecological	<b>COPEC Screening</b>	
	Maximum	Minimum	Numb	oer of	Detection	BUTL (	(mg/kg)	<b>Benchmark</b> ^a	<b>Benchmark</b> ^b	COPEC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
PCBs										
PCB-1260 (Aroclor 1260)	0.89	0.16	3	2	0.67	na	na	0.111	0.0111	Yes
Petroleum Hydrocarbons										
Diesel Range Organics (DRO)	13,000	230	5	5	1.0	na	na	na	na	Yes
Residual Range Organics (RRO)	3,600	1,100	5	3	0.60	na	na	na	na	Yes

#### Notes:

^a Ecological Benchmark Criterion selected based on the following hierarchy:

1) ECO-SSLs

Ecological Soil Screening Level Guidance - Draft. Office of Emergency and Remedial Response. July 10. (EPA, 2000).

2) The lower of ORNL plant or soil invertebrate benchmarks.

Plant benchmarks derived from ORNL (1997), Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Terrestrial Plants: 1997 Revision. November. (Table 1)

 The lower of ORNL mammalian or avian dietary wildlife benchmarks, assuming diet consists of 100% soil. Toxicological Benchmarks for Wildlife: 1996 Revision. June. (ORNL, 1996). (Appendix D Table 12-NOAEL-Based Benchmark for Food.)

^b Ecological risk-based screening criteria (ERBSC) is equal to one-tenth the ecological benchmark criterion.

NA - Not applicable. BUTL - Background upper tolerance limit. mg/kg - Milligram per kilogram. na - Not available. nc - Not calculated. PCB - Polychlorinated Biphenyls COPEC - Chemical of Potential Ecological Concern.

#### Table G-25 Selection of Chemicals of Potential Ecological Concern for Tier I Screening - Soil Site 33 Northeast Cape, St. Lawrence Island, Alaska

						Ecological	COPEC Screening	{		
	Maximum	Minimum	Numb	er of	Detection	BUTL (	(mg/kg)	<b>Benchmark</b> ^a	<b>Benchmark^b</b>	COPEC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
Petroleum Hydrocarbons										
Diesel Range Organics (DRO)	660	150	3	3	1.0	nc	nc	na	na	Yes
Residual Range Organics (RRO)	2,100	270	3	3	1.0	nc	nc	na	na	Yes

Notes:

^a Ecological Benchmark Criterion selected based on the following hierarchy:

1) ECO-SSLs

Ecological Soil Screening Level Guidance - Draft. Office of Emergency and Remedial Response. July 10. (EPA, 2000).

2) The lower of ORNL plant or soil invertebrate benchmarks.

Plant benchmarks derived from ORNL (1997), Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Terrestrial Plants: 1997 Revision. November. (Table 1)

 The lower of ORNL mammalian or avian dietary wildlife benchmarks, assuming diet consists of 100% soil. Toxicological Benchmarks for Wildlife: 1996 Revision. June. (ORNL, 1996). (Appendix D Table 12-NOAEL-Based Benchmark for Food.)

^b Ecological risk-based screening criteria (ERBSC) is equal to one-tenth the ecological benchmark criterion.

NA - Not applicable.

BUTL - Background upper tolerance limit.

COPEC - Chemical of potential ecological concern.

mg/kg - Milligrams per kilogram.

na - Not available.

nc - Not calculated.

#### Table G-26 Selection of Chemicals of Potential Ecological Concern for Tier I Screening - Soil Site 34 Northeast Cape, St. Lawrence Island, Alaska

		Soil Gra	wel Data					Ecological	COPEC Screenin	g
	Maximum	Minimum	Numb	oer of	Detection	BUTL	(mg/kg)	Benchmark ^a	<b>Benchmark</b> ^b	COPEC?
Constituent	Detect (mg/kg)	Detect (mg/kg)	Samples	Detects	Frequency	Soil Tundra	Soil Gravel	(mg/kg)	(mg/kg)	(Yes/No)
PCBs										
PCB-1254 (Aroclor 1254)	0.59	0.050	8	5	0.63	nc	nc	0.111	0.0111	Yes
PCB-1260 (Aroclor 1260)	0.47	0.063	8	4	0.50	nc	nc	0.111	0.0111	Yes
Petroleum Hydrocarbons										
Diesel Range Organics (DRO)	1,100	13	9	9	1.0	nc	nc	na	na	Yes
Residual Range Organics (RRO)	1,200	58	9	8	0.89	nc	nc	na	na	Yes

#### Notes:

^a Ecological Benchmark Criterion selected based on the following hierarchy:

1) ECO-SSLs

Ecological Soil Screening Level Guidance - Draft. Office of Emergency and Remedial Response. July 10. (EPA, 2000).

2) The lower of ORNL plant or soil invertebrate benchmarks.

Plant benchmarks derived from ORNL (1997), Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Terrestrial Plants: 1997 Revision. November. (Table 1)

3) The lower of ORNL mammalian or avian dietary wildlife benchmarks, assuming diet consists of 100% soil.

Toxicological Benchmarks for Wildlife: 1996 Revision. June. (ORNL, 1996). (Appendix D Table 12-NOAEL-Based Benchmark for Food.)

^b Ecological risk-based screening criteria (ERBSC) is equal to one-tenth the ecological benchmark criterion.

COPEC - Chemical of potential ecological concern.

mg/kg - Milligrams per kilogram.

na - Not available.

nc - Not calculated.

# **APPENDIX H**

Ecological Hazard Calculations



## ECOLOGICAL HAZARD CALCULATIONS FOR TUNDRA VOLE

# SITE 3 - Fuel Line Corridor and Pumphouse NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard HQ
Lead	119	0	0.64	6.8E-01	1.3E+01	0.053
Xylenes	0	0.54	0	7.2E-08	8.0E+02	0.00000000089
Anthracene	10.3	0	0.13	7.3E-02	8.7E+01	0.00084
Naphthalene	50.8	0	2.7	7.6E-01	8.0E+01	0.0094
PCB-1260 (Aroclor 1260)	0.75	0	0.00090	3.7E-03	2.9E-01	0.013
Diesel Range Organics	2,587	14	135	na	na	na
Diesel Range Organics, Aliphatic	2,070	11	108	3.1E+01	8.0E+01	0.38
Diesel Range Organics, Aromatic	1,035	0	54	1.5E+01	8.0E+01	0.19
Residual Range Organics	0	8.1	0	na	na	na
Residual Range Organics, Aliphatic	0	7.3	0	9.69E-07	8.69E+01	0.00000011
Residual Range Organics, Aromatic	0	2.4	0	3.23E-07	8.69E+01	0.000000037
					Max HQ	0.38

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

# ECOLOGICAL HAZARD CALCULATIONS FOR CROSS FOX

# SITE 3 - Fuel Line Corridor and Pumphouse NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	C _{HERB} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
Lead	119	0	0.64	0.036	3.1E-04	7.4E-01	0.00042
Xylenes	0	0.54	0	0	8.1E-11	4.6E+01	0.000000000017
Anthracene	10.3	0	0.13	0.0000027	2.8E-05	5.0E+00	0.0000055
Naphthalene	50.8	0	2.7	0.0000024	1.5E-04	4.6E+00	0.000033
PCB-1260 (Aroclor 1260)	0.75	0	0.00090	0.0000079	1.9E-06	1.7E-02	0.00011
Diesel Range Organics	2,587	14	135	0.00012	na	na	na
Diesel Range Organics, Aliphatic	2,070	11	108	0.000096	6.3E-03	4.6E+00	0.0014
Diesel Range Organics, Aromatic	1,035	0	54	0.000048	3.2E-03	4.6E+00	0.00068
Residual Range Organics	0	8.1	0	0	na	na	na
Residual Range Organics, Aliphatic	0	7.3	0	0	1.09E-09	5.01E+00	0.0000000022
Residual Range Organics, Aromatic	0	2.4	0	0	3.63E-10	5.01E+00	0.00000000072
						Max HQ	0.0014

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

## ECOLOGICAL HAZARD CALCULATIONS FOR GLAUCOUS-WINGED GULL

## SITE 3 - Fuel Line Corridor and Pumphouse NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{SEDIMENT} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Exposure Point Concentration C _{FISH} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
	110	0	0	0.64	0	0.00	<b>A</b> 1 <b>F</b> 00	0.00000011
Lead	119	0	0	0.64	0	2.3E-08	2.1E+00	0.00000011
Xylenes	0	0	0.54	0	0	3.5E-13	na	na
Anthracene	10.3	0	0	0.13	0	4.6E-09	5.4E-01	0.000000084
Naphthalene	50.8	0	0	2.7	0	9.4E-08	4.3E-01	0.00000022
PCB-1260 (Aroclor 1260)	0.75	0	0	0.00090	0	3.2E-11	2.0E-01	0.0000000016
Diesel Range Organics	2,587	0	14	135	0	na	na	na
Diesel Range Organics, Aliphatic	2,070	0	11	108	0	3.8E-06	4.3E-01	0.0000090
Diesel Range Organics, Aromatic	1,035	0	0	54	0	1.9E-06	4.3E-01	0.0000045
Residual Range Organics	0	0	8.1	0	0	na	na	na
Residual Range Organics, Aliphatic	0	0	7.3	0	0	4.73E-12	5.41E-01	0.000000000087
Residual Range Organics, Aromatic	0	0	2.4	0	0	1.58E-12	5.41E-01	0.000000000029
							Max HQ	0.0000090

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

## ECOLOGICAL HAZARD CALCULATIONS FOR TUNDRA VOLE

# SITE 4 - Subsistence Fishing and Hunting Camp NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard HQ
V land	0	0.0000	0	0.25 10	9.0E.0 <b>2</b>	0.00000000011
Xylenes	0	0.0069	0	9.2E-10	8.0E+02	0.00000000011
Anthracene	14	0	0.17	9.8E-02	8.7E+01	0.0011
Chrysene	11	0	0.025	5.8E-02	8.7E+01	0.00066
Fluorene	13	0	0.23	1.1E-01	8.7E+01	0.0012
Diesel Range Organics	5,300	3.7	277	na	na	na
Diesel Range Organics, Aliphatic	4,240	3.0	221	6.3E+01	8.0E+01	0.79
Diesel Range Organics, Aromatic	2,120	0	111	3.2E+01	8.0E+01	0.39
Residual Range Organics	3,420	6.5	4.5	na	na	na
Residual Range Organics, Aliphatic	3,078	5.9	4.1	1.53E+01	8.69E+01	0.18
Residual Range Organics, Aromatic	1,026	2.0	1.4	5.09E+00	8.69E+01	0.059
					Max HQ	0.79

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

## ECOLOGICAL HAZARD CALCULATIONS FOR CROSS FOX

# SITE 4 - Subsistence Fishing and Hunting Camp NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	C _{HERB} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
Xylenes	0	0.0069	0	0	2.9E-12	4.6E+01	0.000000000000063
Anthracene	14	0	0.17	0.0000036	1.0E-04	5.0E+00	0.000021
Chrysene	11	0	0.025	0.000042	8.2E-05	5.0E+00	0.000016
Fluorene	13	0	0.23	0.0000020	9.9E-05	5.0E+00	0.000020
Diesel Range Organics	5,300	3.7	277	0.00025	na	na	na
Diesel Range Organics, Aliphatic	4,240	3.0	221	0.00020	3.7E-02	4.6E+00	0.0079
Diesel Range Organics, Aromatic	2,120	0	111	0.000098	1.8E-02	4.6E+00	0.0039
Residual Range Organics	3,420	6.5	4.5	0	na	na	na
Residual Range Organics, Aliphatic	3,078	5.9	4.1	0	2.25E-02	5.01E+00	0.0045
Residual Range Organics, Aromatic	1,026	2.0	1.4	0	7.49E-03	5.01E+00	0.0015
						Max HQ	0.0079

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

## ECOLOGICAL HAZARD CALCULATIONS FOR GLAUCOUS-WINGED GULL SITE 4 - Subsistence Fishing and Hunting Camp NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{SEDIMENT} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Exposure Point Concentration C _{FISH} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
Xvlenes	0	0	0 0069	0	0	1 3E-14	na	na
Anthracene	14	0	0	0.17	0	1.7E-08	5.4E-01	0.00000032
Chrysene	11	0	0	0.025	0	2.5E-09	5.4E-01	0.0000000047
Fluorene	13	0	0	0.23	0	2.3E-08	5.4E-01	0.000000043
Diesel Range Organics	5,300	0	3.7	277	0	na	na	na
Diesel Range Organics, Aliphatic	4,240	0	3.0	221	0	2.2E-05	4.3E-01	0.000052
Diesel Range Organics, Aromatic	2,120	0	0	111	0	1.1E-05	4.3E-01	0.000026
Residual Range Organics	3,420	0	6.5	4.5	0	na	na	na
Residual Range Organics, Aliphatic	3,078	0	5.9	4.1	0	4.12E-07	5.41E-01	0.0000076
Residual Range Organics, Aromatic	1,026	0	2.0	1.4	0	1.37E-07	5.41E-01	0.0000025
							Max HQ	0.000052

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

## ECOLOGICAL HAZARD CALCULATIONS FOR TUNDRA VOLE

# Sites 3 & 4 Combined NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard HQ
Lead	119	0	0.64	6.8E-01	1.3E+01	0.053
Xylenes	0	0.54	0	7.2E-08	8.0E+02	0.00000000089
Anthracene	14	0	0.17	1.0E-01	8.7E+01	0.0011
Chrysene	11	0	0	5.6E-02	8.7E+01	0.00065
Fluorene	13	0	0	1.1E-01	8.7E+01	0.0012
Naphthalene	50.8	0	2.7	7.6E-01	8.0E+01	0.0094
PCB-1260 (Aroclor 1260)	0.75	0	0.00090	3.7E-03	2.9E-01	0.013
Diesel Range Organics	5,300	14	277	na	na	na
Diesel Range Organics, Aliphatic	4,240	11	221	6.3E+01	8.0E+01	0.79
Diesel Range Organics, Aromatic	2,120	0	111	3.2E+01	8.0E+01	0.39
Residual Range Organics	3,420	8.1	4.5	na	na	na
Residual Range Organics, Aliphatic	3,078	7.3	4.1	1.53E+01	8.69E+01	0.18
Residual Range Organics, Aromatic	1,026	2.4	1.4	5.09E+00	8.69E+01	0.059
					Max HQ	0.79

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

## ECOLOGICAL HAZARD CALCULATIONS FOR CROSS FOX

# Sites 3 & 4 Combined NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	C _{HERB} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
Lead	119	0	0.64	0.036	1.2E-03	7.4E-01	0.0016
Xylenes	0	0.54	0	0	3.1E-10	4.6E+01	0.0000000000067
Anthracene	14	0	0.17	0.0000037	1.4E-04	5.0E+00	0.000029
Naphthalene	50.8	0	2.7	0.0000024	5.9E-04	4.6E+00	0.00013
PCB-1260 (Aroclor 1260)	0.75	0	0.00090	0.0000079	7.4E-06	1.7E-02	0.00044
Diesel Range Organics	5,300	14	277	0.00025	na	na	na
Diesel Range Organics, Aliphatic	4,240	11	221	0.000197	4.9E-02	4.6E+00	0.011
Diesel Range Organics, Aromatic	2,120	0	111	0.000098	2.5E-02	4.6E+00	0.0053
Residual Range Organics	3,420	8.1	4.5	0	na	na	na
Residual Range Organics, Aliphatic	3,078	7.3	4.1	0	3.04E-02	5.01E+00	0.0061
Residual Range Organics, Aromatic	1,026	2.4	1.4	0	1.01E-02	5.01E+00	0.0020
						Max HQ	0.011

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

## ECOLOGICAL HAZARD CALCULATIONS FOR GLAUCOUS-WINGED GULL

## Sites 3 & 4 Combined NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{SEDIMENT} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Exposure Point Concentration C _{FISH} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
<b>T</b> 1	110	0	0	0.64	0		0.15 00	0.000000.41
Lead	119	0	0	0.64	0	8.8E-08	2.1E+00	0.00000041
Xylenes	0	0	0.54	0	0	1.3E-12	na	na
Anthracene	14	0	0	0.17	0	2.4E-08	5.4E-01	0.000000044
Naphthalene	51	0	0	2.7	0	3.6E-07	4.3E-01	0.00000085
PCB-1260 (Aroclor 1260)	0.75	0	0	0.00090	0	1.2E-10	2.0E-01	0.0000000061
Diesel Range Organics	5,300	0	14	277	0	na	na	na
Diesel Range Organics, Aliphatic	4,240	0	11	221	0	3.0E-05	4.3E-01	0.000071
Diesel Range Organics, Aromatic	2,120	0	0	111	0	1.5E-05	4.3E-01	0.000035
Residual Range Organics	3,420	0	8.1	4.5	0	na	na	na
Residual Range Organics, Aliphatic	3,078	0	7.3	4.1	0	5.58E-07	5.41E-01	0.0000010
Residual Range Organics, Aromatic	1,026	0	2.4	1.4	0	1.86E-07	5.41E-01	0.00000034
							Max HQ	0.000071

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

## ECOLOGICAL HAZARD CALCULATIONS FOR TUNDRA VOLE

# SITE 6 - Cargo Beach Road Drum Field NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard HQ
	0.070	0	. –		<b>A</b> 1 <b>F</b> 00	
Aluminum	9,850	0	4.7	4.7E+01	3.1E+00	15
Manganese	164	0	4.9	1.7E+00	1.4E+02	0.012
Zinc	106	0	0.000000000153	5.0E-01	9.0E+00	0.055
Diesel Range Organics	102,000	1.8	5,324	na	na	na
Diesel Range Organics, Aliphatic	81,600	1.4	4,259	1.2E+03	8.0E+01	15
Diesel Range Organics, Aromatic	40,800	0.58	2,130	6.1E+02	8.0E+01	7.6
Residual Range Organics	8,500	0	11	na	na	na
Residual Range Organics, Aliphatic	7,650	0	10	3.79E+01	8.69E+01	0.44
Residual Range Organics, Aromatic	2,550	0	3.4	1.26E+01	8.69E+01	0.15
					Max HQ	15

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

## ECOLOGICAL HAZARD CALCULATIONS FOR CROSS FOX

# SITE 6 - Cargo Beach Road Drum Field NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	C _{HERB} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
Aluminum	0.850	0	47	15	2 5E 02	1 9E 01	0.20
Aluminum	9,830	0	4.7	15	5.3E-02	1.8E-01	0.20
Manganese	164	0	4.9	0.07	6.2E-04	8.2E+00	0.000076
Zinc	106	0	0.000000000015	10.60	1.5E-03	5.2E-01	0.0029
Diesel Range Organics	102,000	1.8	5,324	0.00	na	na	na
Diesel Range Organics, Aliphatic	81,600	1.4	4,259	0.00	3.3E-01	4.6E+00	0.071
Diesel Range Organics, Aromatic	40,800	0.58	2,130	0.00	1.6E-01	4.6E+00	0.035
Residual Range Organics	8,500	0	11	0.08	na	na	na
Residual Range Organics, Aliphatic	7,650	0	10	0.07	2.60E-02	5.01E+00	0.0052
Residual Range Organics, Aromatic	2,550	0	3.4	0.02	8.67E-03	5.01E+00	0.0017
						Max HQ	0.20

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

## ECOLOGICAL HAZARD CALCULATIONS FOR GLAUCOUS-WINGED GULL SITE 6 - Cargo Beach Road Drum Field NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{SEDIMENT} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Exposure Point Concentration C _{FISH} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
Aluminum	9,850	0	0	4.7	0	2.2E-07	5.8E+01	0.000000039
Manganese	164	0	0	4.9	0	2.3E-07	5.7E+02	0.00000000041
Zinc	106	0	0	0.00000000015	0	7.2E-19	1.4E+02	5.1E-21
Diesel Range Organics	102,000	0	1.8	5,324	0	na	na	na
Diesel Range Organics, Aliphatic	81,600	0	1.4	4,259	0	2.0E-04	4.3E-01	0.00047
Diesel Range Organics, Aromatic	40,800	0	0.58	2,130	0	1.0E-04	4.3E-01	0.00023
Residual Range Organics	8,500	0	0	11	0	na	na	na
Residual Range Organics, Aliphatic	7,650	0	0	10	0	4.77E-07	5.41E-01	0.00000088
Residual Range Organics, Aromatic	2,550	0	0	3.4	0	1.59E-07	5.41E-01	0.00000029
							Max HQ	0.00047

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

# ECOLOGICAL HAZARD CALCULATIONS FOR TUNDRA VOLE

# Site 7 - Cargo Beach Road Landfill NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard HQ
Arsenic	15	0.017	0.063	8.1E-02	4.9E+00	0.016
Barium	0	0.012	0	1.6E-09	8.2E-01	0.000000019
Cadmium	3.4	0	0.15	4.5E-02	1.6E+00	0.028
Chromium	43	0.016	0	2.0E-01	5.6E+00	0.036
Copper	8.3	0	0.40	1.2E-01	2.5E+01	0.0047
Lead	196	0.065	1.1	1.1E+00	1.3E+01	0.088
Mercury	0.31	0	0	1.5E-03	2.1E+00	0.00070
Mercury, Dissolved	0	0.00038	0	5.1E-11	2.1E+00	0.00000000024
Nickel	50	0.041	0.19	2.7E-01	8.0E+01	0.0034
Silver, Dissolved	2.0	0	0.096	2.8E-02	3.3E-01	0.086
Thallium	0	0.0024	0.00000	3.2E-10	2.1E-02	0.00000015
Thallium, Dissolved	0	0.0012	0	1.6E-10	2.1E-02	0.000000076
Bromomethane	0.18	0	0.19	3.8E-02	4.3E+01	0.00087
4-Methylphenol (p-Cresol)	3.9	0	1.4	2.9E-01	4.6E+02	0.00062
PCB-1260 (Aroclor 1260)	1.6	0	0.0019	7.9E-03	2.9E-01	0.027
1,2,3,4,6,7,8,9-Octachlorodibenzofuran	0.00052	0	0.00000041	2.5E-06	1.6E-02	0.00016
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin	0.020	0.0000052	0.000013	9.7E-05	1.6E-03	0.060
1,2,3,4,6,7,8-Heptachlorodibenzofuran	0.00016	0	0.00000013	7.8E-07	1.6E-04	0.0048
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	0.0011	0.00000071	0.0000074	5.3E-06	1.6E-04	0.033
1.2.3.4.7.8-Hexachlorodibenzofuran	0.000020	0	0.00000016	9.7E-08	1.6E-05	0.0060
1.2.3.6.7.8-Hexachlorodibenzofuran	0.000011	0	0.000000084	5.2E-08	1.6E-05	0.0033
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	0.000030	0	0.00000020	1.4E-07	1.6E-05	0.0090
1.2.3.7.8.9-Hexachlorodibenzo-p-dioxin	0.0000012	0	0.0000000081	5.8E-09	1.6E-05	0.00036
2.3.4.6.7.8-Hexachlorodibenzofuran	0.0000089	Õ	0.0000000070	4.3E-08	1.6E-05	0.0027
2,3,4,7,8-Pentachlorodibenzofuran	0.000012	0	0.000000094	5.8E-08	3.2E-06	0.018

## ECOLOGICAL HAZARD CALCULATIONS FOR TUNDRA VOLE

# Site 7 - Cargo Beach Road Landfill NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

CODEC	Exposure Point Concentration C _{SOIL}	Exposure Point Concentration C _{WATER}	Exposure Point Concentration C _{PLANT}	Ingestion Dose	Toxicity Reference Value	Ecological Hazard
COPEC	(mg/kg)	(mg/L)	(mg/kg)	(mg/kg)	(mg/kg-day)	НŲ
2,3,7,8-Tetrachlorodibenzofuran	0.000029	0	0.00000023	1.4E-07	1.6E-06	0.088
Total Heptachlorodibenzofurans (HpCDF)	0.00053	0	na	na	na	na
Total Heptachlorodibenzo-p-dioxins (HpCDD)	0.0022	0.0000014	na	na	na	na
Total Hexachlorodibenzofurans (HxCDF)	0.00019	0	na	na	na	na
Total Hexachlorodibenzo-p-dioxins (HxCDD)	0.00034	0	na	na	na	na
Total Pentachlorodibenzofurans (PeCDF)	0.00011	0	na	na	na	na
Total Tetrachlorodibenzofurans (TCDF)	0.00015	0	na	na	na	na
Total Tetrachlorodibenzo-p-dioxins (TCDD)	0.000039	0	na	na	na	na
Diesel Range Organics	32,000	12	1,670	na	na	na
Diesel Range Organics, Aliphatic	25,600	9.6	1,336	3.8E+02	8.0E+01	4.8
Diesel Range Organics, Aromatic	12,800	4.8	668	1.9E+02	8.0E+01	2.4
Residual Range Organics	3,448	0	4.6	na	na	na
Residual Range Organics, Aliphatic	3,103	0	4.1	1.5E+01	8.69E+01	0.18
Residual Range Organics, Aromatic	1,034	0	1.4	5.1E+00	8.69E+01	0.059
					Max HQ	4.8

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

# ECOLOGICAL HAZARD CALCULATIONS FOR CROSS FOX

# Site 7 - Cargo Beach Road Landfill NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	C _{HERB} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
Arsonic	15	0.017	0.063	0.03	3 7E 04	2.8E 01	0.0013
Barium	0	0.017	0.005	0.05	1.6E 11	2.8E-01 4.7E-02	0.0013
Codmium	3.4	0.012	0 15	0.00	0.4E.05	4.7E-02	0.0000000034
Chromium	5.4 42	0.016	0.15	0.00	9.4E-03	9.3E-02 3.2E-01	0.0010
Common	43	0.010	0	0.24	1.2E-03	5.2E-01	0.0030
Lond	8.3 106	0 065	0	0.087	2.9E-04	1.4E+00	0.00020
Lead	196	0.065	1.1	0.059	4./E-03	7.4E-01	0.00054
Mercury	0.5	0	0	0.078	6.6E-05	1.2E-01	0.00054
Mercury, Dissolved	0	0.00038	0	0.00	5.1E-13	1.2E-01	0.00000000043
	50	0.041	0.19	0.30	1.4E-03	4.0E+00	0.000304
Silver, Dissolved	2.0	0	0.10	0.006	5.9E-05	1.9E-02	0.0032
Thallium	0	0.0024	0.00000	0.00	3.2E-12	1.2E-03	0.000000027
Thallium, Dissolved	0	0.001	0	0.00	1.6E-12	1.2E-03	0.000000013
Bromomethane	0.18	0	0.19	0.00	2.0E-05	2.5E+00	0.0000080
4-Methylphenol (p-Cresol)	3.9	0	1.4	0.00	2.0E-04	2.7E+01	0.0000077
PCB-1260 (Aroclor 1260)	1.6	0	0.0019	0.00	3.7E-05	1.7E-02	0.0022
1,2,3,4,6,7,8,9-Octachlorodibenzofuran	0.0	0	0	0.00	1.2E-08	9.3E-04	0.000013
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin	0.020	0.0000052	0.000013	0.00	4.7E-07	9.3E-05	0.0050
1,2,3,4,6,7,8-Heptachlorodibenzofuran	0.0002	0	0.000000	0.00	3.7E-09	9.3E-06	0.0004
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	0.0011	0.00000071	0.00000074	0.00	2.6E-08	9.3E-06	0.0028
1,2,3,4,7,8-Hexachlorodibenzofuran	0.000020	0	0.00000016	0.00	4.7E-10	9.3E-07	0.00050
1,2,3,6,7,8-Hexachlorodibenzofuran	0.000011	0	0.000000084	0.00	2.5E-10	9.3E-07	0.00027
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	0.000030	0	0.00000020	0.00	7.0E-10	9.3E-07	0.00076
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.0000012	0	0.0000000081	0.00	2.8E-11	9.3E-07	0.000030
2,3,4,6,7,8-Hexachlorodibenzofuran	0.000089	0	0.0000000070	0.00	2.1E-10	9.3E-07	0.00022
2.3.4.7.8-Pentachlorodibenzofuran	0.000012	0	0.0000000094	0.00	2.8E-10	1.9E-07	0.0015
2.3.7.8-Tetrachlorodibenzofuran	0.000029	Õ	0.00000023	0.00	6.8E-10	9.3E-08	0.0073
Total Heptachlorodibenzofurans (HpCDF)	0.00053	0	na	na	na	na	na

## ECOLOGICAL HAZARD CALCULATIONS FOR CROSS FOX

## Site 7 - Cargo Beach Road Landfill NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	C _{HERB} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
Total Hantachlorodihanzo n diaving (HnCDD)	0.0022	0.0000014	20	20	20	no	20
Total Heyachlorodibenzofurans (HyCDE)	0.0022	0.0000014	na	na	na	na	na
Total Heyachlorodibenzo n dioving (HyCDD)	0.00019	0	na	na	na	na	na
Total Pontachlorodibenzofurons (PaCDE)	0.00034	0	na	na	na	na	na
Total Tetrachlorodibergefurens (TCDE)	0.00011	0	na	na	na	na	lla
	0.00013	0	na	па	па	па	па
Total Tetrachlorodibenzo-p-dioxins (TCDD)	0.000039	0	na	na	na	na	na
Diesel Range Organics	32,000	12	1,670	0.00	na	na	na
Diesel Range Organics, Aliphatic	25,600	9.6	1,336	0.00	7.1E-01	4.6E+00	0.15
Diesel Range Organics, Aromatic	12,800	4.8	668	0.00	3.5E-01	4.6E+00	0.076
Residual Range Organics	3,448	0	4.6	0.030	na	na	na
Residual Range Organics, Aliphatic	3,103	0	4.1	0.027	7.27E-02	5.01E+00	0.014
Residual Range Organics, Aromatic	1,034	0	1.4	0.009	2.42E-02	5.01E+00	0.0048
						Max HQ	0.15

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

## ECOLOGICAL HAZARD CALCULATIONS FOR GLAUCOUS-WINGED GULL

## Site 7 - Cargo Beach Road Landfill NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{SEDIMENT} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Exposure Point Concentration C _{FISH} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
Arsenic	15	0	0.017	0.06	0	2.0E-08	1.1E+00	0.00000019
Barium	0	0	0.012	0	0	7.1E-14	1.1E+01	0.0000000000000063
Cadmium	3.4	0	0	0.15	0	4.8E-08	1.3E+00	0.00000036
Chromium	43	0	0.016	0	0	9.3E-14	9.7E-01	0.00000000000010
Copper	8.3	0	0	0.40	0	1.3E-07	2.5E+01	0.0000000051
Lead	196	0	0.065	1.1	0	3.4E-07	2.1E+00	0.00000016
Mercury	0.31	0	0	0.0	0	0.0E+00	2.6E-01	0
Mercury, Dissolved	0	0	0.00038	0	0	2.2E-15	2.6E-01	0.0000000000000087
Nickel	50	0	0.041	0.19	0	6.2E-08	7.1E+01	0.0000000087
Silver, Dissolved	2.0	0	0	0.10	0	3.1E-08	1.6E+02	0.0000000019
Thallium	0	0	0.0024	0	0	1.4E-14	1.7E-01	0.00000000000083
Thallium, Dissolved	0	0	0.0012	0	0	7.1E-15	1.7E-01	0.000000000000042
Bromomethane	0.18	0	0	0.19	0	6.1E-08	na	na
4-Methylphenol (p-Cresol)	3.9	0	0	1.4	0	4.4E-07	na	na
PCB-1260 (Aroclor 1260)	1.6	0	0	0.0019	0	6.2E-10	2.0E-01	0.000000031
1,2,3,4,6,7,8,9-Octachlorodibenzofuran	0.00052	0	0	0.00000041	0	1.3E-13	1.1E-01	0.000000000012
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin	0.020	0	0.0000052	0.000013	0	4.4E-12	1.1E-01	0.000000000041
1,2,3,4,6,7,8-Heptachlorodibenzofuran	0.00016	0	0	0.00000013	0	4.0E-14	1.1E-03	0.00000000004
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	0.0011	0	0.00000071	0.00000074	0	2.4E-13	1.1E-02	0.00000000022
1,2,3,4,7,8-Hexachlorodibenzofuran	0.000020	0	0	0.000000016	0	5.0E-15	1.1E-04	0.000000000047
1,2,3,6,7,8-Hexachlorodibenzofuran	0.000011	0	0	0.000000084	0	2.7E-15	1.1E-04	0.00000000025
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	0.000030	0	0	0.000000020	0	6.5E-15	1.1E-03	0.0000000000061
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.0000012	0	0	0.0000000081	0	2.6E-16	1.1E-04	0.000000000024
2,3,4,6,7,8-Hexachlorodibenzofuran	0.0000089	0	0	0.0000000070	0	2.2E-15	1.1E-04	0.000000000021
2,3,4,7,8-Pentachlorodibenzofuran	0.000012	0	0	0.0000000094	0	3.0E-15	1.1E-05	0.0000000028
2,3,7,8-Tetrachlorodibenzofuran	0.000029	0	0	0.00000023	0	7.3E-15	1.1E-05	0.0000000068
Total Heptachlorodibenzofurans (HpCDF)	0.00053	0	0	na	na	na	na	na
Total Heptachlorodibenzo-p-dioxins (HpCDD)	0.0022	0	0.0000014	na	na	na	na	na
Total Hexachlorodibenzofurans (HxCDF)	0.00019	0	0	na	na	na	na	na
Total Hexachlorodibenzo-p-dioxins (HxCDD)	0.00034	0	0	na	na	na	na	na
Total Pentachlorodibenzofurans (PeCDF)	0.00011	0	0	na	na	na	na	na
Total Tetrachlorodibenzofurans (TCDF)	0.00015	0	0	na	na	na	na	na
Total Tetrachlorodibenzo-p-dioxins (TCDD)	0.000039	0	0	na	na	na	na	na

## ECOLOGICAL HAZARD CALCULATIONS FOR GLAUCOUS-WINGED GULL Site 7 - Cargo Beach Road Landfill NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{SEDIMENT} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Exposure Point Concentration C _{FISH} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
			10					
Diesel Range Organics	32,000	0	12	1,670	0	na	na	na
Diesel Range Organics, Aliphatic	25,600	0	9.6	1,336	0	4.3E-04	4.3E-01	0.0010
Diesel Range Organics, Aromatic	12,800	0	4.8	668	0	2.2E-04	4.3E-01	0.00050
Residual Range Organics	3,448	0	0	4.6	0	na	na	na
Residual Range Organics, Aliphatic	3,103	0	0	4.1	0	1.33E-06	5.41E-01	0.0000025
Residual Range Organics, Aromatic	1,034	0	0	1.4	0	4.44E-07	5.41E-01	0.0000082
							Max HQ	0.0010

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable
### ECOLOGICAL HAZARD CALCULATIONS FOR TUNDRA VOLE

# Site 6 & 7 Combined NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

СОРЕС	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard HQ
Aluminum	9,850	0	4.7	4.7E+01	3.1E+00	15
Arsenic	15	0.017	0.063	8.1E-02	4.9E+00	0.016
Barium	0	0.012	0	1.6E-09	8.2E-01	0.000000019
Cadmium	3.4	0	0.15	4.5E-02	1.6E+00	0.028
Chromium	43	0.016	0	2.0E-01	5.6E+00	0.036
Lead	196	0.065	1.1	1.1E+00	1.3E+01	0.088
Manganese	164	0	5	1.7E+00	1.4E+02	0.012
Mercury	0.31	0	0	1.5E-03	2.1E+00	0.00070
Mercury, Dissolved	0	0.00038	0	5.1E-11	2.1E+00	0.00000000024
Nickel	50	0.041	0.19	2.7E-01	8.0E+01	0.0034
Silver, Dissolved	2.0	0	0.096	2.8E-02	3.3E-01	0.086
Thallium	0	0.0024	0	3.2E-10	2.1E-02	0.00000015
Thallium, Dissolved	0	0.0012	0	1.6E-10	2.1E-02	0.000000076
Zinc	42	0	0.0000000000060	2.0E-01	9.0E+00	0.022
Bromomethane	0.18	0	0.19	3.8E-02	4.3E+01	0.00087
4-Methylphenol (p-Cresol)	3.9	0	1.4	2.9E-01	4.6E+02	0.00062
PCB-1260 (Aroclor 1260)	1.6	0	0.0019	7.9E-03	2.9E-01	0.027
1,2,3,4,6,7,8,9-Octachlorodibenzofuran	0.00052	0	0.00000041	2.5E-06	1.6E-02	0.00016
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin	0.020	0.0000052	0.000013	9.7E-05	1.6E-03	0.060
1,2,3,4,6,7,8-Heptachlorodibenzofuran	0.00016	0	0.00000013	7.8E-07	1.6E-04	0.0048
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	0.0011	0.00000071	0.0000074	5.3E-06	1.6E-04	0.033
1,2,3,4,7,8-Hexachlorodibenzofuran	0.000020	0	0.00000016	9.7E-08	1.6E-05	0.0060
1,2,3,6,7,8-Hexachlorodibenzofuran	0.000011	0	0.000000084	5.2E-08	1.6E-05	0.0033
1.2.3.6.7.8-Hexachlorodibenzo-p-dioxin	0.000030	0	0.000000020	1.4E-07	1.6E-05	0.0090
1,2,3,7,8,9-Hexachlorodibenzofuran	0.00000040	0	0.0000000031	1.9E-09	1.6E-05	0.00012

#### ECOLOGICAL HAZARD CALCULATIONS FOR TUNDRA VOLE

# Site 6 & 7 Combined NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard HQ
	0.000021	0	0.00000001	1.55.07	1 (E 05	0.0002
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.000031	0	0.00000021	1.5E-07	1.6E-05	0.0093
2,3,4,6,7,8-Hexachlorodibenzofuran	0.0000089	0	0.0000000070	4.3E-08	1.6E-05	0.0027
2,3,4,7,8-Pentachlorodibenzofuran	0.000012	0	0.000000094	5.8E-08	3.2E-06	0.018
2,3,7,8-Tetrachlorodibenzofuran	0.000029	0	0.00000023	1.4E-07	1.6E-06	0.088
Total Heptachlorodibenzofurans (HpCDF)	0.00053	0	na	na	na	na
Total Heptachlorodibenzo-p-dioxins (HpCDD)	0.0022	0.0000014	na	na	na	na
Total Hexachlorodibenzofurans (HxCDF)	0.00019	0	na	na	na	na
Total Hexachlorodibenzo-p-dioxins (HxCDD)	0.00034	0	na	na	na	na
Total Pentachlorodibenzofurans (PeCDF)	0.00011	0	na	na	na	na
Total Tetrachlorodibenzofurans (TCDF)	0.00015	0	na	na	na	na
Total Tetrachlorodibenzo-p-dioxins (TCDD)	0.000039	0	na	na	na	na
Diesel Range Organics	102,000	12	5,324	na	na	na
Diesel Range Organics, Aliphatic	81,600	9.6	4,259	1.2E+03	8.0E+01	15
Diesel Range Organics, Aromatic	40,800	4.8	2,130	6.1E+02	8.0E+01	7.6
Residual Range Organics	8,500	0	11.3	na	na	na
Residual Range Organics, Aliphatic	7,650	0	10.2	3.8E+01	8.69E+01	0.44
Residual Range Organics, Aromatic	2,550	0	3.4	1.3E+01	8.69E+01	0.15
					Max HO	15

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

### ECOLOGICAL HAZARD CALCULATIONS FOR CROSS FOX

# Site 6 & 7 Combined NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

СОРЕС	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	C _{HERB} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
Aluminum	0.850	0	47	15	2 9E 01	1 9E 01	1 5
Arconio	9,830	0 017	4.7	0.020	2.0E-01	1.6E-01	0.0015
Aisenic	13	0.017	0.005	0.029	4.2E-04	2.8E-01 4.7E-02	0.0013
Ballulli	0	0.012	0 15	0 0020	1.9E-11 1.1E-04	4.7E-02	0.0000000039
Chromium	5.4 12	0.016	0.15	0.0020	1.1E-04 1.2E-02	9.3E-02	0.0012
Land	43	0.010	0	0.24	1.3E-03	3.2E-01	0.0042
Manganasa	190	0.005	1.1	0.039	J.4E-05	7.4E-01 8.2E+00	0.0073
Margury	104	0	3	0.008	4.9E-05	6.2E+00	0.00000
Mercury Dissolved	0.5	0 00038	0	0.078	7.5E-05	1.2E-01	0.00002
Niekel	50	0.00038	0 10	0 30	J.9E-15	1.2E-01	0.000000000049
Silver Dissolved	2.0	0.041	0.19	0.0063	1.0E-05	4.0E+00	0.00055
Thellium	2.0	0 0024	0.10	0.0005	0.0E-0J 2.7E 12	1.9E-02	0.0030
Thallium Dissolved	0	0.0024	0.00000	0	5./E-12	1.2E-03	0.0000000051
Zina	0	0.001	0	4.2	1.9E-12 4.7E-02	1.2E-05	0.000000013
Zilic	42	0	0.0000000000000000000000000000000000000	4.2	4.7E-05	3.2E-01	0.0091
Bromometnane	0.18	0	0.19	0	2.3E-05	2.5E+00	0.0000091
4-Methylphenol (p-Cresol)	3.9	0	1.4	0	2.3E-04	2.7E+01	0.000089
PCB-1260  (Aroclor 1260)	1.0	0	0.0019	0	4.5E-05	1.7E-02	0.0025
1,2,3,4,6,7,8,9-Octachlorodibenzoruran	0.00052	0	0	0	1.4E-08	9.3E-04	0.000015
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin	0.020	0.0000052	0.000013	0	5.4E-07	9.3E-05	0.0058
1,2,3,4,6,7,8-Heptachlorodibenzofuran	0.00016	0	0.00000	0	4.3E-09	9.3E-06	0.00046
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	0.0011	0.00000071	0.000000/4	0	2.9E-08	9.3E-06	0.0032
1,2,3,4,7,8-Hexachlorodibenzofuran	0.000020	0	0.00000016	0	5.4E-10	9.3E-07	0.00058
1,2,3,6,7,8-Hexachlorodibenzofuran	0.000011	0	0.000000084	0	2.9E-10	9.3E-07	0.00031
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	0.000030	0	0.000000020	0	8.0E-10	9.3E-07	0.00087
1,2,3,/,8,9-Hexachlorodibenzoturan	0.0000040	0	0.000000003	0	1.1E-11	9.3E-07	0.000012
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.000031	0	0.00000021	0	8.3E-10	9.3E-07	0.00090

#### ECOLOGICAL HAZARD CALCULATIONS FOR CROSS FOX

# Site 6 & 7 Combined NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

СОРЕС	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	C _{HERB} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
2,3,4,6,7,8-Hexachlorodibenzofuran	0.0000089	0	0.000000070	0	2.4E-10	9.3E-07	0.00026
2,3,4,7,8-Pentachlorodibenzofuran	0.000012	0	0.000000094	0	3.2E-10	1.9E-07	0.0017
2,3,7,8-Tetrachlorodibenzofuran	0.000029	0	0.00000023	0	7.8E-10	9.3E-08	0.0084
Total Heptachlorodibenzofurans (HpCDF)	0.00053	0	na	na	na	na	na
Total Heptachlorodibenzo-p-dioxins (HpCDD)	0.0022	0.0000014	na	na	na	na	na
Total Hexachlorodibenzofurans (HxCDF)	0.00019	0	na	na	na	na	na
Total Hexachlorodibenzo-p-dioxins (HxCDD)	0.00034	0	na	na	na	na	na
Total Pentachlorodibenzofurans (PeCDF)	0.00011	0	na	na	na	na	na
Total Tetrachlorodibenzofurans (TCDF)	0.00015	0	na	na	na	na	na
Total Tetrachlorodibenzo-p-dioxins (TCDD)	0.000039	0	na	na	na	na	na
Diesel Range Organics	102,000	12	5,324	0	na	na	na
Diesel Range Organics, Aliphatic	81,600	9.6	4,259	0	2.6E+00	4.6E+00	0.56
Diesel Range Organics, Aromatic	40,800	4.8	2,130	0	1.3E+00	4.6E+00	0.28
Residual Range Organics	8,500	0	11	0.075	na	na	na
Residual Range Organics, Aliphatic	7,650	0	10	0.068	2.05E-01	5.01E+00	0.041
Residual Range Organics, Aromatic	2,550	0	3.4	0.023	6.84E-02	5.01E+00	0.014
						Max HQ	1.5

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

#### ECOLOGICAL HAZARD CALCULATIONS FOR GLAUCOUS-WINGED GULL

#### Site 6 & 7 Combined NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Exposure Point Concentration C _{SOIL}	Exposure Point Concentration C _{SEDIMENT}	Exposure Point Concentration C _{WATER}	Exposure Point Concentration C _{PLANT}	Exposure Point Concentration C _{FISH}	Ingestion Dose	Toxicity Reference Value	Ecological Hazard
COPEC	(mg/kg)	(mg/kg)	(mg/L)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg-day)	
Aluminum	9.850	0	0	4.7	0	1.7E-06	5.8E+01	0.00000030
Arsenic	15	0	0.017	0.06	0	2.3E-08	1.1E+00	0.00000022
Barium	0	0	0.012	0	0	8.1E-14	1.1E+01	0.0000000000000072
Cadmium	3.4	0	0	0.15	0	5.5E-08	1.3E+00	0.000000042
Chromium	43	0	0.016	0	0	1.1E-13	9.7E-01	0.0000000000011
Lead	196	0	0.065	1.1	0	3.9E-07	2.1E+00	0.00000018
Manganese	164	0	0	4.9	0	1.8E-06	5.7E+02	0.000000032
Mercury	0.31	0	0	0.0	0	0.0E+00	2.6E-01	0
Mercury, Dissolved	0	0	0.00038	0	0	2.6E-15	2.6E-01	0.00000000000010
Nickel	50	0	0.041	0.19	0	7.1E-08	7.1E+01	0.000000010
Silver, Dissolved	2.0	0	0	0.10	0	3.5E-08	1.6E+02	0.0000000022
Thallium	0	0	0.0024	0	0	1.6E-14	1.7E-01	0.000000000
Thallium, Dissolved	0	0	0.0012	0	0	8.1E-15	1.7E-01	0.00000000000048
Zinc	42	0	0	0.0000000000060	0	2.2E-18	1.4E+02	0.0000000000000000000000000000000000000
Bromomethane	0.18	0	0	0.19	0	7.0E-08	na	na
4-Methylphenol (p-Cresol)	3.9	0	0	1.4	0	5.1E-07	na	na
PCB-1260 (Aroclor 1260)	1.6	0	0	0.0019	0	7.1E-10	2.0E-01	0.000000036
1,2,3,4,6,7,8,9-Octachlorodibenzofuran	0.00052	0	0	0.00000041	0	1.5E-13	1.1E-01	0.000000000014
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin	0.020	0	0.0000052	0.000013	0	5.0E-12	1.1E-01	0.00000000047
1,2,3,4,6,7,8-Heptachlorodibenzofuran	0.00016	0	0	0.00000013	0	4.6E-14	1.1E-03	0.00000000043
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	0.0011	0	0.00000071	0.00000074	0	2.7E-13	1.1E-02	0.00000000026
1,2,3,4,7,8-Hexachlorodibenzofuran	0.000020	0	0	0.00000016	0	5.8E-15	1.1E-04	0.00000000054
1,2,3,6,7,8-Hexachlorodibenzofuran	0.000011	0	0	0.000000084	0	3.1E-15	1.1E-04	0.00000000029
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	0.000030	0	0	0.000000020	0	7.5E-15	1.1E-03	0.0000000000070
1,2,3,7,8,9-Hexachlorodibenzofuran	0.00000040	0	0	0.0000000031	0	1.2E-16	1.1E-04	0.000000000011
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.000031	0	0	0.000000021	0	7.7E-15	1.1E-04	0.000000000072
2,3,4,6,7,8-Hexachlorodibenzofuran	0.0000089	0	0	0.0000000070	0	2.6E-15	1.1E-04	0.00000000024
2,3,4,7,8-Pentachlorodibenzofuran	0.000012	0	0	0.000000094	0	3.5E-15	1.1E-05	0.0000000032
2,3,7,8-Tetrachlorodibenzofuran	0.000029	0	0	0.00000023	0	8.4E-15	1.1E-05	0.0000000078
Total Heptachlorodibenzofurans (HpCDF)	0.00053	0	0	na	na	na	na	na
Total Heptachlorodibenzo-p-dioxins (HpCDD)	0.0022	0	0.0000014	na	na	na	na	na
Total Hexachlorodibenzofurans (HxCDF)	0.00019	0	0	na	na	na	na	na
Total Hexachlorodibenzo-p-dioxins (HxCDD)	0.00034	0	0	na	na	na	na	na

### ECOLOGICAL HAZARD CALCULATIONS FOR GLAUCOUS-WINGED GULL Site 6 & 7 Combined

NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	<b>Exposure Point</b>		Toxicity					
	Concentration	Concentration	Concentration	Concentration	Concentration	Ingestion	Reference	
	C _{SOIL}	C _{SEDIMENT}	CWATER	C _{PLANT}	C _{FISH}	Dose	Value	Ecological Hazard
COPEC	(mg/kg)	(mg/kg)	(mg/L)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg-day)	
Total Pentachlorodibenzofurans (PeCDF)	0.00011	0	0	na	na	na	na	na
Total Tetrachlorodibenzofurans (TCDF)	0.00015	0	0	na	na	na	na	na
Total Tetrachlorodibenzo-p-dioxins (TCDD)	0.000039	0	0	na	na	na	na	na
Diesel Range Organics	102,000	0	12	5,324	0	na	na	na
Diesel Range Organics, Aliphatic	81,600	0	9.6	4,259	0	1.6E-03	4.3E-01	0.0037
Diesel Range Organics, Aromatic	40,800	0	4.8	2,130	0	7.9E-04	4.3E-01	0.0018
Residual Range Organics	8,500	0	0	11.3	0	na	na	na
Residual Range Organics, Aliphatic	7,650	0	0	10.2	0	3.76E-06	5.41E-01	0.0000070
Residual Range Organics, Aromatic	2,550	0	0	3.4	0	1.25E-06	5.41E-01	0.0000023
							Max HQ	0.0037

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

# ECOLOGICAL HAZARD CALCULATIONS FOR TUNDRA VOLE

# Site 9 - Housing and Operations Lanfill NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

СОРЕС	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard HQ
		0	0.24	1 25 01		0.021
Antimony	14	0	0.34	1.3E-01	4.2E+00	0.031
Arsenic	17	0	0.073	9.4E-02	4.9E+00	0.019
Barium	0	0.015	0	2.0E-09	8.2E-01	0.000000024
Cadmium	4.1	0	0	5.4E-02	1.6E+00	0.034
Chromium	29	0	0.026	1.4E-01	5.6E+00	0.025
Copper	98	0	4.7	1.4E+00	2.5E+01	0.055
Lead	276	0	1.5	1.6E+00	1.3E+01	0.12
Mercury	0.21	0	0.00095	1.2E-03	2.1E+00	0.00056
Nickel	27	0	0.10	1.5E-01	8.0E+01	0.0018
Selenium	1.0	0	0.0019	5.1E-03	6.6E-02	0.077
Zinc	459	0.0600	0.000000000066	2.2E+00	9.0E+00	0.24
1,2-Dibromoethane	0.000010	0	na	na	na	na
1,2-Dichlorobenzene	0.025	0	na	na	na	na
1,3-Dichlorobenzene	0.068	0	na	na	na	na
1,3-Dichloropropane	0.000097	0	na	na	na	na
2,2-Dichloropropane	0.00000092	0	na	na	na	na
2-Chloroethyl vinyl ether	0.0000026	0	na	na	na	na
2-Chlorotoluene	0.0000045	0	na	na	na	na
2-Hexanone	0.0000087	0	0.0000064	1.3E-06	4.0E+01	0.00000032
4-Bromophenyl phenyl ether	0.0000024	0	na	na	na	na
4-Chlorophenyl phenyl ether	0.0000029	0	na	na	na	na
4-Isopropyltoluene	0.0000047	0	na	na	na	na
Bromomethane	0.36	0	0	7.6E-02	4.3E+01	0.0017
2,4-Dichlorophenol	0.0000015	0	na	na	na	na
2,4-Dimethylphenol	0.0000014	0	na	na	na	na

# ECOLOGICAL HAZARD CALCULATIONS FOR TUNDRA VOLE

# Site 9 - Housing and Operations Lanfill NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

СОРЕС	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard HQ
2,4-Dinitrotoluene	0.0000016	0	na	na	na	na
2,6-Dinitrotoluene	0.0000016	0	na	na	na	na
2-Methyl-4,6-dinitrophenol	0.0000037	0	na	na	na	na
3,3-Dichlorobenzidine	0.00000068	0	na	na	na	na
3-Nitroaniline	0.0000019	0	na	na	na	na
4-Chloroaniline	0.000030	0	0.000012	2.5E-06	1.7E+00	0.0000015
4-Chlorotoluene	0.025	0	na	na	na	na
4-Methylphenol (o-Cresol)	0.00000035	0	0.00000012	2.6E-08	4.6E+02	0.000000000056
4-Nitroaniline	0.00013	0	na	na	na	na
PCB-1260 (Aroclor 1260)	0.13	0	0	6.4E-04	2.9E-01	0.0022
1,2,3,4,6,7,8,9-Octachlorodibenzofuran	0.00012	0	0	5.8E-07	1.6E-02	0.000036
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin	0.0011	0.0000000037	0	5.3E-06	1.6E-03	0.0033
1,2,3,4,6,7,8-Heptachlorodibenzofuran	0.000030	0	0	1.5E-07	1.6E-04	0.00091
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	0.00012	0	0	5.8E-07	1.6E-04	0.0036
1,2,3,4,7,8-Hexachlorodibenzofuran	0.0000066	0	0	3.2E-08	1.6E-05	0.0020
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.0000079	0	0	3.8E-08	1.6E-05	0.0024
2,3,7,8-Tetrachlorodibenzofuran	0.0000066	0	0	3.2E-08	1.6E-06	0.020
2,3,7,8-Tetrachlorodibenzo-p-dioxin	0.0000014	0	0	6.7E-09	1.6E-06	0.0041
Total Heptachlorodibenzofurans (HpCDF)	0.000095	0	na	na	na	na
Total Heptachlorodibenzo-p-dioxins (HpCDD)	0.00018	0	na	na	na	na
Total Tetrachlorodibenzofurans (TCDF)	0.000010	0	na	na	na	na
Diesel Range Organics	462	0	24	na	na	na
Diesel Range Organics, Aliphatic	370	0	19	5.5E+00	8.0E+01	0.069
Diesel Range Organics, Aromatic	185	0	10	2.8E+00	8.0E+01	0.034
Residual Range Organics	1,539	0	2	na	na	na

#### ECOLOGICAL HAZARD CALCULATIONS FOR TUNDRA VOLE

# Site 9 - Housing and Operations Lanfill NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard HQ
Residual Range Organics, Aliphatic Residual Range Organics, Aromatic	1,385 462	0 0	2 1	6.9E+00 2.3E+00	8.69E+01 8.69E+01 <b>Max HQ</b>	0.079 0.026 <b>0.24</b>

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

# ECOLOGICAL HAZARD CALCULATIONS FOR CROSS FOX Site 9 - Housing and Operations Lanfill NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	C _{HERB} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
A	14	0	0.24	0.014	1 (E 04	2 4E 01	0.00064
Anumony	14	0	0.34	0.014	1.0E-04	2.4E-01	0.00064
Arsenic	17	0	0.075	0.034	1.0E-04	2.8E-01	0.00004
	0	0.015	0	0 0024	8.0E-12	4.7E-02	0.000000018
Cadmium	4.1	0	0	0.0024	4.8E-05	9.3E-02	0.00052
Chromium	29	0	0.026	0.160	3.4E-04	3.2E-01	0.00105
Copper	98	0	4.7	1.0	1.5E-03	1.4E+00	0.0010
Lead	276	0	1.5	0.083	2.8E-03	7.4E-01	0.0038
Mercury	0.21	0	0.00095	0.053	1.9E-05	1.2E-01	0.00016
Nickel	27	0	0.10	0.16	3.2E-04	4.6E+00	0.000070
Selenium	1.0	0	0.0019	0.015	1.5E-05	3.8E-03	0.0039
Zinc	459	0.060	0.00000000066	46	1.9E-02	5.2E-01	0.037
1,2-Dibromoethane	0.000010	0	na	na	na	na	na
1,2-Dichlorobenzene	0.025	0	na	na	na	na	na
1,3-Dichlorobenzene	0.068	0	na	na	na	na	na
1,3-Dichloropropane	0.000097	0	na	na	na	na	na
2,2-Dichloropropane	0.00000092	0	na	na	na	na	na
2-Chloroethyl vinyl ether	0.0000026	0	na	na	na	na	na
2-Chlorotoluene	0.0000045	0	na	na	na	na	na
2-Hexanone	0.0000087	0	0.0000064	0.000000000000041	3.1E-10	2.3E+00	0.0000000014
4-Bromophenyl phenyl ether	0.0000024	0	na	na	na	na	na
4-Chlorophenyl phenyl ether	0.0000029	0	na	na	na	na	na
4-Isopropyltoluene	0.0000047	0	na	na	na	na	na
Bromomethane	0.36	0	0.38	0.000000013	1.7E-05	2.5E+00	0.0000068
2,4-Dichlorophenol	0.0000015	0	na	na	na	na	na
2,4-Dimethylphenol	0.0000014	0	na	na	na	na	na
2,4-Dinitrotoluene	0.0000016	0	na	na	na	na	na
2.6-Dinitrotoluene	0.0000016	0	na	na	na	na	na
2-Methyl-4,6-dinitrophenol	0.0000037	0	na	na	na	na	na
3,3-Dichlorobenzidine	0.0000068	0	na	na	na	na	na

# ECOLOGICAL HAZARD CALCULATIONS FOR CROSS FOX Site 9 - Housing and Operations Lanfill NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Exposure Point Concentration C _{SOIL}	Exposure Point Concentration C _{WATER}	Exposure Point Concentration C _{PLANT}	C _{HERB}	Ingestion Dose	Toxicity Reference Value	Ecological Hazard
COPEC	(mg/kg)	(mg/L)	(mg/kg)	( <b>mg/kg</b> )	(mg/kg)	(mg/kg-day)	
3-Nitroaniline	0.0000019	0	na	na	na	na	na
4-Chloroaniline	0.000030	0	0.000012	0.0000000000023	7.3E-10	9.7E-02	0.000000075
4-Chlorotoluene	0.0250	0	na	na	na	na	na
4-Methylphenol (o-Cresol)	0.0000035	0	0.00000012	0.0000000000000030	7.8E-12	2.7E+01	0.0000000000030
4-Nitroaniline	0.00013	0	na	na	na	na	na
PCB-1260 (Aroclor 1260)	0.13	0	0.00016	0.0000014	1.3E-06	1.7E-02	0.000077
1,2,3,4,6,7,8,9-Octachlorodibenzofuran	0.00012	0	0.00000094	0.000000026	1.2E-09	9.3E-04	0.0000013
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin	0.0011	0.0000000037	0.00000074	0.00000031	1.1E-08	9.3E-05	0.00012
1,2,3,4,6,7,8-Heptachlorodibenzofuran	0.000030	0	0.00000023	0.0000000065	3.0E-10	9.3E-06	0.000032
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	0.00012	0	0.00000081	0.000000033	1.2E-09	9.3E-06	0.00013
1,2,3,4,7,8-Hexachlorodibenzofuran	0.0000066	0	0.0000000052	0.0000000014	6.6E-11	9.3E-07	0.000071
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.0000079	0	0.0000000053	0.0000000022	7.8E-11	9.3E-07	0.000084
2,3,7,8-Tetrachlorodibenzofuran	0.0000066	0	0.000000052	0.0000000014	6.6E-11	9.3E-08	0.00071
2,3,7,8-Tetrachlorodibenzo-p-dioxin	0.0000014	0	0.0000000011	0.00000000030	1.4E-11	9.3E-08	0.00015
Total Heptachlorodibenzofurans (HpCDF)	0.000095	0	na	na	na	na	na
Total Heptachlorodibenzo-p-dioxins (HpCDD)	0.00018	0	na	na	na	na	na
Total Tetrachlorodibenzofurans (TCDF)	0.000010	0	na	na	na	na	na
Diesel Range Organics	462	0	24	0.000021	na	na	na
Diesel Range Organics, Aliphatic	370	0	19	0.000017	4.3E-03	4.6E+00	0.00094
Diesel Range Organics, Aromatic	185	0	10	0.0000086	2.2E-03	4.6E+00	0.00047
Residual Range Organics	1,539	0	2.0	0.014	na	na	na
Residual Range Organics, Aliphatic	1,385	0	1.8	0.012	1.38E-02	5.01E+00	0.0028
Residual Range Organics, Aromatic	462	0	0.61	0.0041	4.60E-03	5.01E+00	0.00092
						Max HQ	0.037

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

# ECOLOGICAL HAZARD CALCULATIONS FOR CROSS FOX Site 9 - Housing and Operations Lanfill NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Exposure Point Concentration	Exposure Point Concentration	Exposure Point Concentration		Ingestion	Toxicity Reference	
COPEC	C _{SOIL}	$C_{WATER}$	$C_{PLANT}$	C _{HERB}	Dose (mg/kg)	Value	Ecological Hazard
COLEC	(ing/kg)	(IIIg/L)	(ing/kg)	(ing/kg)	(IIIg/Kg)	(ing/kg-uay)	

mg/kg - d - Milligrams per kilogram per day. na - not applicable PCB - Polychlorinated Biphenyls.

#### ECOLOGICAL HAZARD CALCULATIONS FOR GLAUCOUS-WINGED GULL

#### Site 9 - Housing and Operations Lanfill NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

СОРЕС	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{SEDIMENT} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Exposure Point Concentration C _{FISH} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
Antimony	14	0	0	0.34	0	4.6E-08	1.1E+00	0.00000044
Arsenic	17	0	0	0.073	0	1.0E-08	1.1E+00	0.00000010
Barium	0	0	0.015	0	0	3.8E-14	1.1E+01	0.000000000000033
Cadmium	4.1	0	0	0.18	0	2.5E-08	1.3E+00	0.00000019
Chromium	29	0	0	0.026	0	3.6E-09	9.7E-01	0.0000000370
Copper	98	0	0	4.7	0	6.5E-07	2.5E+01	0.00000025
Lead	276	0	0	1.5	0	2.0E-07	2.1E+00	0.00000010
Mercury	0.21	0	0	0.00095	0	1.3E-10	2.6E-01	0.0000000051
Nickel	27	0	0	0.10	0	1.4E-08	7.1E+01	0.0000000020
Selenium	1.0	0	0	0.0019	0	2.6E-10	4.6E-01	0.0000000058
Zinc	459	0	0.060	0.00000000066	0	1.5E-13	1.4E+02	0.000000000000011
1,2-Dibromoethane	0.000010	0	0	na	0	na	na	na
1,2-Dichlorobenzene	0.025	0	0	na	0	na	na	na
1,3-Dichlorobenzene	0.068	0	0	na	0	na	na	na
1,3-Dichloropropane	0.000097	0	0	na	0	na	na	na
2,2-Dichloropropane	0.00000092	0	0	na	0	na	na	na
2-Chloroethyl vinyl ether	0.0000026	0	0	na	0	na	na	na
2-Chlorotoluene	0.0000045	0	0	na	0	na	na	na
2-Hexanone (MIBK)	0.0000087	0	0	0.0000064	0	8.9E-13	na	na
4-Bromophenyl phenyl ether	0.0000024	0	0	na	0	na	na	na
4-Chlorophenyl phenyl ether	0.0000029	0	0	na	0	na	na	na
4-Isopropyltoluene	0.0000047	0	0	na	0	na	na	na
2,4-Dichlorophenol	0.0000015	0	0	na	0	na	na	na
2,4-Dimethylphenol	0.0000014	0	0	na	0	na	na	na
2,4-Dinitrotoluene	0.0000016	0	0	na	0	na	na	na
2,6-Dinitrotoluene	0.0000016	0	0	na	0	na	na	na
2-Methyl-4,6-dinitrophenol	0.0000037	0	0	na	0	na	na	na
3,3-Dichlorobenzidine	0.0000068	0	0	na	0	na	na	na
3-Nitroaniline	0.0000019	0	0	na	0	na	na	na
4-Chloroaniline	0.000030	0	0	0.000012	0	1.7E-12	1.9E-01	0.000000000087
4-Chlorotoluene	0.025	0	0	na	0	na	na	na
4-Methylphenol (o-Cresol)	0.00000035	0	0	0.00000012	0	1.7E-14	na	na

#### ECOLOGICAL HAZARD CALCULATIONS FOR GLAUCOUS-WINGED GULL

# Site 9 - Housing and Operations Lanfill

NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Exposure Point Concentration C _{SOIL}	Exposure Point Concentration C _{SEDIMENT}	Exposure Point Concentration C _{WATER}	Exposure Point Concentration C _{PLANT}	Exposure Point Concentration C _{FISH}	Ingestion Dose	Toxicity Reference Value	Ecological Hazard
COPEC	(mg/kg)	(mg/kg)	(mg/L)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg-day)	
4 Nitesseiling	0.000120	0	0	20	0	20	***	20
4-Nitroamine DCD 1260 (Arealar 1260)	0.000150	0	0	lia 0.00016	0	11a	11a	Ila 0.0000000011
PCB-1260 (Arocior 1260)	0.15	0	0	0.00016	0	2.1E-11	2.0E-01	0.000000011
1,2,3,4,6,7,8,9-Octachlorodibenzoturan	0.00012	0	0	0.00000094	0	1.3E-14	1.1E-01	0.0000000000012
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin	0.0011	0	0.0000000037	0.00000074	0	1.0E-13	1.1E-01	0.000000000010
1,2,3,4,6,7,8-Heptachlorodibenzofuran	0.000030	0	0	0.00000023	0	3.2E-15	1.1E-03	0.000000000030
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	0.00012	0	0	0.00000081	0	1.1E-14	1.1E-02	0.0000000000010
1,2,3,4,7,8-Hexachlorodibenzofuran	0.0000066	0	0	0.000000052	0	7.1E-16	1.1E-04	0.000000000066
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	0.0000079	0	0	0.0000000053	0	7.3E-16	1.1E-04	0.000000000068
2,3,7,8-Tetrachlorodibenzofuran	0.0000066	0	0	0.0000000052	0	7.1E-16	1.1E-05	0.00000000066
2,3,7,8-Tetrachlorodibenzo-p-dioxin	0.0000014	0	0	0.000000011	0	1.5E-16	1.1E-05	0.00000000014
Total Heptachlorodibenzofurans (HpCDF)	0.000095	0	0	na	na	na	na	na
Total Heptachlorodibenzo-p-dioxins (HpCDD)	0.00018	0	0	na	na	na	na	na
Total Tetrachlorodibenzofurans (TCDF)	0.000010	0	0	na	na	na	na	na
Diesel Range Organics	462	0	0	24	0	na	na	na
Diesel Range Organics, Aliphatic	370	0	0	19	0	2.7E-06	4.3E-01	0.0000062
Diesel Range Organics, Aromatic	185	0	0	9.6	0	1.3E-06	4.3E-01	0.0000031
Residual Range Organics	1,539	0	0	2.0	0	na	na	na
Residual Range Organics, Aliphatic	1,385	0	0	1.8	0	2.53E-07	5.41E-01	0.00000047
Residual Range Organics, Aromatic	462	0	0	0.61	0	8.44E-08	5.41E-01	0.00000016
						ľ	Max HQ	0.0000062

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter. mg/kg - d - Milligrams per kilogram per day.

na - not applicable

#### ECOLOGICAL HAZARD CALCULATIONS FOR TUNDRA VOLE

# Site 21 - Wastewater Treatment Facility NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard HQ
Aluminum	21 708	0	10	$1.0E \pm 0.2$	3 1E+00	34
Antimony	97	0	0.23	9.1E-02	3.12+00 4 2E+00	0.022
Arsenic	28	0.0020	0.23	).1E-02 1.6E-01	4.2E+00	0.022
Barium	1/1	0.0020	2.5	1.02-01 1.2E+00	4.9E+00 8.2E-01	1 /
Cadmium	5	0.010	0.22	6.6E-02	1.6E±00	0.041
Chromium	14	0	0.22	0.0E-02 2.1E-01	5.6E+00	0.038
Copper	63	0	3.0	2.1E 01 8 9E-01	2.5E+0.1	0.035
Manganese	0	0.69	0	9.2E-01	1.4E+02	0.000
Mercury	0.80	0.05	0 004	2.2E-00 4 5E-03	2.1E+00	0.0000000000
Selenium	2.0	0	0.004	4.5E-05 1.0E-02	2.1E+00	0.15
Silver	2.0	0	0.0050	3.0E-02	3 3E-01	0.091
Vanadium	56	0	0.10	2.8E-01	3.5E 01 3.4E+00	0.084
Zinc	480	0	0.10	2.0201 2.3E+00	9.0E+00	0.25
4-Chloroaniline	5 5	0	2.00	2.5E+00 4 6E-01	1.7E+00	0.25
PCB-1254 (Aroclor 1254)	0.14	0	0	4.0E 01	2.9E-01	0.0024
PCB-1260 (Aroclor 1260)	2 4	0	0	0.9E 04 1 2E-02	2.9E-01	0.0024
Diesel Range Organics	3 800	0.47	198	na	2.9E 01	na
Diesel Range Organics Aliphatic	3,000	0.38	159	45E+01	8.0E+01	0.56
Diesel Range Organics, Aromatic	1 520	0.19	79	2.3E+01	8 0E+01	0.28
Residual Range Organics	2.384	0	3.2	na	na	na
Residual Range Organics, Aliphatic	2,146	ů 0	2.9	1.06E+01	8.69E+01	0.12
Residual Range Organics, Aromatic	715	ů 0	1.0	3.55E+00	8.69E+01	0.041
		-			Max HQ	34

Notes:

HQ - Hazard Quotient

#### ECOLOGICAL HAZARD CALCULATIONS FOR TUNDRA VOLE

# Site 21 - Wastewater Treatment Facility NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Exposure Point Concentration	Exposure Point Concentration	Exposure Point Concentration	Ingestion	Toxicity Reference	
	C _{SOIL}	<b>C</b> _{WATER}	C _{PLANT}	Dose	Value	Ecological Hazard
COPEC	(mg/kg)	(mg/L)	(mg/kg)	(mg/kg)	(mg/kg-day)	HQ

mg/kg - Milligrams per kilogram. mg/L - Milligrams per liter. mg/kg - d - Milligrams per kilogram per day. na - not applicable PCB - Polychlorinated Biphenyls.

### ECOLOGICAL HAZARD CALCULATIONS FOR CROSS FOX

# Site 21 - Wastewater Treatment Facility NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	C _{HERB} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
Aluminum	21,708	0	10	33	1.2E-01	1.8E-01	0.65
Antimony	9.7	0	0.23	0.010	5.5E-05	2.4E-01	0.00023
Arsenic	28	0.0020	0.12	0.056	1.5E-04	2.8E-01	0.00054
Barium	141	0.010	2.5	0.022	7.7E-04	4.7E-02	0.016
Cadmium	5	0	0.22	0.0029	3.0E-05	9.3E-02	0.0003
Chromium	44	0	0.040	0.24	2.6E-04	3.2E-01	0.00081
Copper	63	0	3.0	0.66	4.8E-04	1.4E+00	0.00033
Manganese	0	0.69	0	0	2.0E-10	8.2E+00	0.00000000025
Mercury	0.80	0	0.004	0.20	3.7E-05	1.2E-01	0.00031
Selenium	2.0	0	0.0038	0.030	1.5E-05	3.8E-03	0.0040
Silver	2.1	0	0.10	0.0066	1.4E-05	1.9E-02	0.00072
Vanadium	56	0	0.10	0.14	3.1E-04	1.9E-01	0.0016
Zinc	480	0	0	48	1.0E-02	5.2E-01	0.020
4-Chloroaniline	5.5	0	2.2	0.00000041	6.8E-05	9.7E-02	0.00070
PCB-1254 (Aroclor 1254)	0.14	0	0.00017	0.0000015	7.1E-07	1.7E-02	0.000042
PCB-1260 (Aroclor 1260)	2.4	0	0.0029	0.00003	1.2E-05	1.7E-02	0.00073
Diesel Range Organics	3,800	0.47	198	0.00018	na	na	na
Diesel Range Organics, Aliphatic	3,040	0.38	159	0.00014	1.8E-02	4.6E+00	0.0040
Diesel Range Organics, Aromatic	1,520	0.19	79	0.000071	9.2E-03	4.6E+00	0.0020
Residual Range Organics	2,384	0	3.2	0.021	na	na	na
Residual Range Organics, Aliphatic	2,146	0	2.9	0.019	1.10E-02	5.01E+00	0.0022
Residual Range Organics, Aromatic	715	0	1.0	0.0063	3.65E-03	5.01E+00	0.00073
						Max HQ	0.65

Notes:

DRO -Diesel Range Organics.

#### ECOLOGICAL HAZARD CALCULATIONS FOR CROSS FOX

# Site 21 - Wastewater Treatment Facility NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Exposure Point Concentration	Exposure Point Concentration	Exposure Point Concentration		Ingestion	Toxicity Reference	
CODEC	C _{SOIL}	C _{WATER}	C _{PLANT}	C _{HERB}	Dose	Value	Ecological Hazard
СОРЕС	(mg/kg)	(mg/L)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg-day)	

GRO - Gasoline Range Organics. HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

PCB - Polychlorinated Biphenyls.

RRO - Residual Range Organics.

#### ECOLOGICAL HAZARD CALCULATIONS FOR GLAUCOUS-WINGED GULL

# Site 21 - Wastewater Treatment Facility

NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{SEDIMENT} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Exposure Point Concentration C _{FISH} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
Aluminum	21,708	0	0	10	0	7.3E-07	5.8E+01	0.000000013
Antimony	9.7	0	0	0.23	0	1.6E-08	1.1E+00	0.000000015
Arsenic	28	0	0.0020	0.12	0	8.5E-09	1.1E+00	0.00000008
Barium	141	0	0.010	2.5	0	1.8E-07	1.1E+01	0.00000016
Cadmium	5	0	0	0.22	0	1.5E-08	1.3E+00	0.00000012
Chromium	44	0	0	0.040	0	2.8E-09	9.7E-01	0.000000029
Copper	63	0	0	3.0	0	2.1E-07	2.5E+01	0.000000084
Manganese	0	0	0.69	0	0	8.8E-13	5.7E+02	0.000000000000016
Mercury	0.80	0	0	0.0036	0	2.5E-10	2.6E-01	0.000000010
Selenium	2.0	0	0	0.0038	0	2.7E-10	4.6E-01	0.0000000059
Silver	2.1	0	0	0.10	0	7.1E-09	1.6E+02	0.0000000004
Vanadium	56	0	0	0.10	0	7.1E-09	1.0E+01	0.0000000070
Zinc	480	0	0	0.000000000069	0	4.9E-18	1.4E+02	0.00000000000000000035
4-Chloroaniline	5.5	0	0	2.2	0	1.6E-07	1.9E-01	0.00000081
PCB-1254 (Aroclor 1254)	0.14	0	0	0.00017	0	1.2E-11	1.6E-01	0.00000000076
PCB-1260 (Aroclor 1260)	2.4	0	0	0.0029	0	2.0E-10	2.0E-01	0.000000010
Diesel Range Organics	3,800	0	0.47	198	0	na	na	na
Diesel Range Organics, Aliphatic	3,040	0	0.38	159	0	1.1E-05	4.3E-01	0.000026
Diesel Range Organics, Aromatic	1,520	0	0.19	79	0	5.6E-06	4.3E-01	0.000013
Residual Range Organics	2,384	0	0	3.2	0	na	na	na
Residual Range Organics, Aliphatic	2,146	0	0	2.9	0	2.01E-07	5.41E-01	0.0000037
Residual Range Organics, Aromatic	715	0	0	1.0	0	6.70E-08	5.41E-01	0.00000012
							Max HQ	0.000026

Notes:

DRO -Diesel Range Organics.

GRO - Gasoline Range Organics.

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

### ECOLOGICAL HAZARD CALCULATIONS FOR GLAUCOUS-WINGED GULL Site 21 - Wastewater Treatment Facility NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	<b>Exposure Point</b>	<b>Exposure Point</b>	<b>Exposure Point</b>	<b>Exposure Point</b>	<b>Exposure Point</b>		Toxicity	
	Concentration	Concentration	Concentration	Concentration	Concentration	Ingestion	Reference	
	C _{SOIL}	<b>C</b> _{SEDIMENT}	CWATER	CPLANT	C _{FISH}	Dose	Value	Ecological Hazard
COPEC	(mg/kg)	(mg/kg)	(mg/L)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg-day)	

RRO - Residual Range Organics.

# ECOLOGICAL HAZARD CALCULATIONS FOR TUNDRA VOLE

# Site 22 - Water Wells and Water Supply Building NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard HQ
Antimony	34	0	0.82	3.2E-01	4.2E+00	0.076
Lead	497	0	2.7	2.9E+00	1.3E+01	0.22
Zinc	160	0	0.00000000023	7.5E-01	9.0E+00	0.083
Di-n-butyl phthalate	3.5	0	0.030	2.2E-02	4.8E+02	0.000047
Benzo(a)pyrene	0.079	0	0.00011	3.9E-04	8.7E+01	0.0000045
Benzo(b)fluoranthene	0.20	0	0.00024	9.9E-04	8.7E+01	0.000011
Chrysene	0.77	0	0.0017	4.0E-03	8.7E+01	0.000045
Naphthalene	1.2	0	0.063	1.8E-02	8.0E+01	0.00022
Phenanthrene	0.21	0	0.0023	1.4E-03	8.7E+01	0.000016
Diesel Range Organics	4,070	0	212	na	na	na
Diesel Range Organics, Aliphatic	3,256	0	170	4.9E+01	8.0E+01	0.60
Diesel Range Organics, Aromatic	1,628	0	85	2.4E+01	8.0E+01	0.30
Gasoline Range Organics	38	0	10	na	na	na
Gasoline Range Organics, Aliphatic	27	0	7.2	1.53E+00	2.30E+01	0.067
Gasoline Range Organics, Aromatic	19	0	5.1	1.09E+00	2.30E+01	0.048
Residual Range Organics	3,815	0	5.1	na	na	na
Residual Range Organics, Aliphatic	3,434	0	4.6	1.70E+01	8.69E+01	0.20
Residual Range Organics, Aromatic	1,145	0	1.5	5.67E+00	8.69E+01	0.065
					Max HQ	0.60

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

### ECOLOGICAL HAZARD CALCULATIONS FOR TUNDRA VOLE

# Site 22 - Water Wells and Water Supply Building NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Exposure Point Concentration	Exposure Point Concentration	Exposure Point Concentration	Ingestion	Toxicity Reference	
	C _{SOIL}	C _{WATER}	C _{PLANT}	Dose	Value	Ecological Hazard
COPEC	(mg/kg)	( <b>mg/L</b> )	(mg/kg)	(mg/kg)	(mg/kg-day)	HQ

### ECOLOGICAL HAZARD CALCULATIONS FOR CROSS FOX

# Site 22 - Water Wells and Water Supply Building NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	C _{HERB} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
	24	0	0.02	0.025	2 05 05	<b>2 (F</b> 01	0.00000
Antimony	34	0	0.82	0.035	2.0E-05	2.4E-01	0.000082
Lead	497	0	2.7	0.15	2.7E-04	7.4E-01	0.00036
Zinc	160	0	0.00000000023	16	3.5E-04	5.2E-01	0.00068
Di-n-butyl phthalate	3.5	0	0.030	0.0000016	1.9E-06	2.8E+01	0.00000068
Benzo(a)pyrene	0.08	0	0.00011	0.00000070	4.2E-08	5.0E+00	0.000000083
Benzo(b)fluoranthene	0.20	0	0.00024	0.0000021	1.1E-07	5.0E+00	0.00000021
Chrysene	0.77	0	0.0017	0.0000029	4.1E-07	5.0E+00	0.00000081
Naphthalene	1.2	0	0.063	0.000000056	7.4E-07	4.6E+00	0.00000016
Phenanthrene	0.21	0	0.0023	0.00000067	1.1E-07	5.0E+00	0.00000023
Diesel Range Organics	4,070	0	212	0.00019	na	na	na
Diesel Range Organics, Aliphatic	3,256	0	170	0.00015	2.0E-03	4.6E+00	0.00044
Diesel Range Organics, Aromatic	1,628	0	85	0.000076	1.0E-03	4.6E+00	0.00022
Gasoline Range Organics	38	0	10	0.00000040	na	na	na
Gasoline Range Organics, Aliphatic	27	0	7.2	0.0000028	2.73E-05	1.32E+00	0.000021
Gasoline Range Organics, Aromatic	19	0	5.1	0.00000020	1.95E-05	1.32E+00	0.000015
Residual Range Organics	3,815	0	5.1	0.034	na	na	na
Residual Range Organics, Aliphatic	3,434	0	4.6	0.030	1.80E-03	5.01E+00	0.00036
Residual Range Organics, Aromatic	1,145	0	1.5	0.010	6.01E-04	5.01E+00	0.00012
						Max HQ	0.00068

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

### ECOLOGICAL HAZARD CALCULATIONS FOR CROSS FOX

# Site 22 - Water Wells and Water Supply Building NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	<b>Exposure Point</b>	<b>Exposure Point</b>	<b>Exposure Point</b>			Toxicity	
	Concentration	Concentration	Concentration		Ingestion	Reference	
	C _{SOIL}	<b>C</b> _{WATER}	C _{PLANT}	C _{HERB}	Dose	Value	Ecological Hazard
COPEC	(mg/kg)	(mg/L)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg-day)	

### ECOLOGICAL HAZARD CALCULATIONS FOR GLAUCOUS-WINGED GULL Site 22 - Water Wells and Water Supply Building NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{SEDIMENT} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Exposure Point Concentration C _{FISH} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
Antimony	34	0	0	0.82	0	5.9E-09	1.1E+00	0.000000056
Lead	497	0	0	2.7	0	1.9E-08	2.1E+00	0.000000092
Zinc	160	0	0	0.00000000023	0	1.7E-19	1.4E+02	0.0000000000000000000000000000000000000
Di-n-butyl phthalate	3.5	0	0	0.030	0	2.2E-10	6.3E-02	0.000000035
Benzo(a)pyrene	0.079	0	0	0.00011	0	7.6E-13	5.4E-01	0.000000000014
Benzo(b)fluoranthene	0.20	0	0	0.00024	0	1.8E-12	5.4E-01	0.000000000032
Chrysene	0.77	0	0	0.0017	0	1.2E-11	5.4E-01	0.00000000023
Naphthalene	1.2	0	0	0.063	0	4.5E-10	4.3E-01	0.000000011
Phenanthrene	0.21	0	0	0.0023	0	1.7E-11	5.4E-01	0.00000000031
Diesel Range Organics	4,070	0	0	212	0	na	na	na
Diesel Range Organics, Aliphatic	3,256	0	0	170	0	1.2E-06	4.3E-01	0.0000029
Diesel Range Organics, Aromatic	1,628	0	0	85	0	6.2E-07	4.3E-01	0.0000014
Gasoline Range Organics	38	0	0	10	0	na	na	na
Gasoline Range Organics, Aliphatic	27	0	0	7.2	0	5.2E-08	4.3E-01	0.00000012
Gasoline Range Organics, Aromatic	19	0	0	5.1	0	3.7E-08	4.3E-01	0.00000087
Residual Range Organics	3,815	0	0	5.1	0	na	na	na
Residual Range Organics, Aliphatic	3,434	0	0	4.6	0	3.31E-08	5.41E-01	0.00000061
Residual Range Organics, Aromatic	1,145	0	0	1.5	0	1.10E-08	5.41E-01	0.00000020
							Max HQ	0.0000029

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

# ECOLOGICAL HAZARD CALCULATIONS FOR TUNDRA VOLE

# Site 28 - Drainage Basin NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

СОРЕС	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard HQ
Antimony	0	0	0.0030	5.9E-04	4.2E+00	0.00014
Arsenic	0	0	1.6	3.1E-01	4.9E+00	0.064
Barium	0	0	40	7.8E+00	8.2E-01	9.6
Beryllium	1.5	0	0.0018	7.4E-03	1.1E+00	0.0070
Cadmium	0	0	0.47	9.2E-02	1.6E+00	0.057
Chromium	0	0.015	24	4.6E+00	5.6E+00	0.82
Copper	0	0.040	3.6	7.0E-01	2.5E+01	0.028
Lead or Lead Dissolved	0	0.86	11	2.2E+00	1.3E+01	0.17
Mercury or Mercury Dissolved	0	0	0.11	2.1E-02	2.1E+00	0.010
Nickel	0	0	3.4	6.7E-01	8.0E+01	0.0083
Selenium	0	0	0.23	4.5E-02	6.6E-02	0.68
Silver	0	0	0.033	6.4E-03	3.3E-01	0.020
Vanadium	0	0	6.8	1.3E+00	3.4E+00	0.39
Zinc	0	0.62	58	1.1E+01	9.0E+00	1.3
Zinc, Dissolved	0	0.23	0	3.1E-08	9.0E+00	0.000000034
2-Methylnaphthalene	0	0	0.012	2.3E-03	8.7E+01	0.000027
Acenaphthene	0	0	0.029	5.7E-03	8.7E+01	0.000065
Anthracene	1.1	0	0.013	7.7E-03	8.7E+01	0.000089
Benzo(a)anthracene	4.4	0	0.088	3.8E-02	1.5E+02	0.00026
Benzo(a)pyrene	2.3	0	0.11	3.2E-02	8.7E+01	0.00037
Benzo(b)fluoranthene	2.6	0	0.089	3.0E-02	8.7E+01	0.00034
Benzo(g,h,i)pervlene	0	0	0.055	1.1E-02	8.7E+01	0.00012
Benzo(k)fluoranthene	2.7	0	0.20	5.2E-02	8.7E+01	0.00060
Chrysene	5.5	0	0.18	6.1E-02	8.7E+01	0.00070
Fluoranthene	0.89	0	0.73	1.5E-01	8.7E+01	0.0017

### ECOLOGICAL HAZARD CALCULATIONS FOR TUNDRA VOLE

# Site 28 - Drainage Basin NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard HQ
Fluorene	0	0	0.027	5.3E-03	8.7E+01	0.000061
Indeno(1,2,3-cd)pyrene	0	0	0.11	2.2E-02	8.7E+01	0.00025
Naphthalene	0	0	0.015	2.9E-03	8.0E+01	0.000037
Phenanthrene	4.1	0	0.59	1.3E-01	8.7E+01	0.0015
Pyrene	7.5	0	0.53	1.4E-01	8.7E+01	0.0016
PCB-1254 (Aroclor 1254)	0.47	0	3.0	5.9E-01	2.9E-01	2.0
PCB-1260 (Aroclor 1260)	0	0.00081	0.61	1.2E-01	2.9E-01	0.41
Diesel Range Organics	92,650	46	4,836	na	na	na
Diesel Range Organics, Aliphatic	74,120	37	3,869	1.1E+03	8.0E+01	14
Diesel Range Organics, Aromatic	29,648	15	1,548	4.4E+02	8.0E+01	5.5
Gasoline Range Organics	120	0.57	32	na	na	na
Gasoline Range Organics, Aliphatic	84	0.40	23	4.84E+00	2.30E+01	0.21
Gasoline Range Organics, Aromatic	60	0.28	16	3.46E+00	2.30E+01	0.15
Residual Range Organics	2,073	0	2.8	na	na	na
Residual Range Organics, Aliphatic	1,866	0	2.5	9.25E+00	8.69E+01	0.11
Residual Range Organics, Aromatic	622	0	0.83	3.08E+00	8.69E+01	0.035
					Max HQ	14

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

### ECOLOGICAL HAZARD CALCULATIONS FOR CROSS FOX

# Site 28 - Drainage Basin NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	C _{HERB} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
A	0	0	0.0020	0.0000020	4.05.07	2 45 01	0.0000017
Antimony	0	0	0.0030	0.000030	4.0E-07	2.4E-01	0.000017
Arsenic	0	0	1.6	0.0032	2.2E-04	2.8E-01	0.00076
Barium	0	0	40	0.0060	5.3E-03	4./E-02	0.11
Beryllium	1.5	0	0.0018	0.0015	5.8E-05	6.1E-02	0.00095
Cadmium	0	0	0.47	0.00026	6.3E-05	9.3E-02	0.00068
Chromium	0	0.015	24	0.13	3.3E-03	3.2E-01	0.010
Copper	0	0.040	3.6	0.036	5.2E-04	1.4E+00	0.00036
Lead/Dissolved	0	0.86	11	0.0033	1.5E-03	7.4E-01	0.0020
Mercury/Dissolved	0	0	0.11	0.027	4.7E-05	1.2E-01	0.00039
Nickel	0	0	3.4	0.020	4.8E-04	4.6E+00	0.00010
Selenium	0	0	0.23	0.0035	3.5E-05	3.8E-03	0.0091
Silver	0	0	0.033	0.00010	4.5E-06	1.9E-02	0.00024
Vanadium	0	0	6.8	0.017	9.3E-04	1.9E-01	0.0048
Zinc	0	0.62	58	5.8	1.5E-02	5.2E-01	0.028
Zinc/Dissolved	0	0.23	0	0	5.0E-10	5.2E-01	0.000000010
2-Methylnaphthalene	0	0	0.012	0	1.6E-06	5.0E+00	0.0000032
Acenaphthene	0	0	0.029	0.000000062	3.9E-06	5.0E+00	0.00000077
Anthracene	1.1	0	0.013	0.00000029	4.3E-05	5.0E+00	0.0000085
Benzo(a)anthracene	4.4	0	0.088	0.000024	1.8E-04	8.4E+00	0.000021
Benzo(a)pyrene	2.3	0	0.11	0.000058	1.0E-04	5.0E+00	0.000020
Benzo(b)fluoranthene	2.6	0	0.089	0.000062	1.1E-04	5.0E+00	0.000022
Benzo(g.h.i)pervlene	0	0	0.055	0.000071	7.4E-06	5.0E+00	0.0000015
Benzo(k)fluoranthene	2.7	0	0.20	0.00011	1.3E-04	5.0E+00	0.000025
Chrysene	5.5	0	0.18	0.00004	2.3E-04	5.0E+00	0.000046
Fluoranthene	0.89	0 0	0.73	0.000023	1.3E-04	5.0E+00	0.000026
Fluorene	0	õ	0	0.00000010	3.6E-06	5.0E+00	0.00000072

#### ECOLOGICAL HAZARD CALCULATIONS FOR CROSS FOX

# Site 28 - Drainage Basin NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	C _{HERB} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
		0	0.44				
Indeno(1,2,3-cd)pyrene	0	0	0.11	0.00023	1.5E-05	5.0E+00	0.0000030
Naphthalene	0	0	0.015	0	2.0E-06	4.6E + 00	0.00000043
Phenanthrene	4.1	0	0.59	0.0000063	2.3E-04	5.0E+00	0.000046
Pyrene	7.5	0	0.53	0.000018	3.5E-04	5.0E+00	0.000070
PCB-1254 (Aroclor 1254)	0.47	0	3.0	0.0013	4.2E-04	1.7E-02	0.025
PCB-1260 (Aroclor 1260)	0	0.00081	0.61	0.00025	8.2E-05	1.7E-02	0.0048
Diesel Range Organics	92,650	46	4,836	0.0043	na	na	na
Diesel Range Organics, Aliphatic	74,120	37	3,869	0.0034	3.3E+00	4.6E+00	0.71
Diesel Range Organics, Aromatic	29,648	15	1,548	0.0014	1.3E+00	4.6E+00	0.28
Gasoline Range Organics	120	0.57	32	0.0000012	na	na	na
Gasoline Range Organics, Aliphatic	84	0.40	23	0.0000087	6.16E-03	1.32E+00	0.0047
Gasoline Range Organics, Aromatic	60	0.28	16	0.00000062	4.40E-03	1.32E+00	0.0033
Residual Range Organics	2,073	0	2.8	0.018	na	na	na
Residual Range Organics, Aliphatic	1,866	0	2.5	0.016	6.99E-02	5.01E+00	0.014
Residual Range Organics, Aromatic	622	0	0.83	0.0055	2.33E-02	5.01E+00	0.0046
						Max HQ	0.71

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

#### ECOLOGICAL HAZARD CALCULATIONS FOR GLAUCOUS-WINGED GULL

### Site 28 - Drainage Basin NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{SEDIMENT} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Exposure Point Concentration C _{FISH} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
Antimony	0	0	0	0.0030	0.0070	7.0E-08	1.1E+00	0.00000066
Arsenic	0	0	0	1.6	0.080	1.6E-06	1.1E+00	0.0000015
Barium	0	0	0	40	1.1	3.1E-05	1.1E+01	0.0000028
Beryllium	1.5	0	0	0.0018	0	9.3E-10	1.1E+01	0.00000000083
Cadmium	0	0	0	0.47	0.0080	3.2E-07	1.3E+00	0.0000024
Chromium	0	28	0.015	24	0	4.0E-05	9.7E-01	0.000041
Copper	0	0	0.040	3.6	1.2	1.4E-05	2.5E+01	0.00000054
Lead/Dissolved	0	7.4	0.86	11	0.028	1.3E-05	2.1E+00	0.0000063
Mercury/Dissolved	0	0	0	0.11	0.098	1.0E-06	2.6E-01	0.0000040
Nickel	0	0	0	3.4	1.1	1.3E-05	7.1E+01	0.00000018
Selenium	0	0	0	0.23	0.16	1.7E-06	4.6E-01	0.0000037
Silver, Dissolved	0	0	0	0.033	0	1.7E-08	1.6E+02	0.0000000010
Vanadium	0	0	0	6.8	0.11	4.6E-06	1.0E+01	0.00000046
Zinc	0	26	0.62	58	51	5.6E-04	1.4E+02	0.0000040
Zinc/Dissolved	0	0	0.23	0	0	2.2E-12	1.4E+02	0.000000000000015
Ethylbenzene	0	1.8	0	0	0	1.8E-06	na	na
Toluene	0	0.37	0	0	0	3.7E-07	na	na
Xylenes	0	0.78	0	0	0	7.7E-07	na	na
Dibenzofuran	0	4.5	0	0	0	4.5E-06	1.1E-01	0.000042
2-Methylnaphthalene	0	500	0	0.012	0.19	5.0E-04	5.4E-01	0.00092
Acenaphthene	0	14	0	0.029	0.026	1.4E-05	5.4E-01	0.000026
Acenaphthylene	0	0.047	0	0	0	4.6E-08	5.4E-01	0.00000085
Anthracene	1.1	1.8	0	0.013	0	1.8E-06	5.4E-01	0.0000033
Benzo(a)anthracene	4.4	1.5	0	0.088	0	1.6E-06	4.3E-01	0.0000037
Benzo(a)pyrene	2.3	1.4	0	0.11	0	1.4E-06	5.4E-01	0.0000026
Benzo(b)fluoranthene	2.6	1.5	0	0.089	0	1.5E-06	5.4E-01	0.0000028
Benzo(g.h.i)pervlene	0	0.91	Õ	0.055	0.0043	9.7E-07	5.4E-01	0.0000018
Benzo(k)fluoranthene	2.7	1.5	0	0.20	0	1.6E-06	7.6E-02	0.000021
Chrysene	5.5	1.8	0	0.18	0	1.9E-06	5.4E-01	0.0000035

#### ECOLOGICAL HAZARD CALCULATIONS FOR GLAUCOUS-WINGED GULL

# Site 28 - Drainage Basin NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{SEDIMENT} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Exposure Point Concentration C _{FISH} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
Dibenzo(a b)anthracene	0	0.015	0	0.014	0	2 2E-08	2 1E-01	0.0000010
Fluoranthene	0.89	2.8	0	0.73	0.0037	3 1E-06	5.4E-01	0.0000058
Fluorene	0	20	Õ	0.027	0.067	2.0E-05	5.4E-01	0.000038
Indeno(1,2,3-cd)pyrene	0	1.2	Ő	0.11	0	1.2E-06	5.4E-01	0.0000023
Naphthalene	õ	175	õ	0.015	0.068	1.7E-04	4.3E-01	0.00041
Phenanthrene	4.1	21	Õ	0.59	0.018	2.1E-05	5.4E-01	0.000039
Pvrene	7.5	9.5	0	0.53	0.0023	9.7E-06	5.4E-01	0.000018
PCB-1242 (Aroclor 1242)	0	0.10	0	0	0	9.8E-08	2.6E-01	0.0000038
PCB-1254 (Aroclor 1254)	0.47	0.16	0	3.0	0	1.7E-06	1.6E-01	0.000011
PCB-1260 (Aroclor 1260)	0	0.52	0.0	0.61	0.14	2.2E-06	2.0E-01	0.000011
4,4'-DDD	0	1.2	0	0	0	1.1E-06	4.8E+02	0.000000024
beta-BHC	0	0.010	0	0	0	9.9E-09	5.2E+00	0.000000019
Endosulfan sulfate	0	0.0086	0	0	0	8.5E-09	7.3E+00	0.000000012
gamma-BHC (Lindane)	0	0.0065	0	0	0	6.4E-09	5.2E+00	0.000000012
Heptachlor	0	0.0046	0	0	0	4.5E-09	3.7E+01	0.0000000012
Diesel Range Organics	92,650	98,654	46	4,836	0	na	na	na
Diesel Range Organics, Aliphatic	74,120	78,923	37	3,869	0	8.0E-02	4.3E-01	0.19
Diesel Range Organics, Aromatic	29,648	31,569	15	1,548	0	3.2E-02	4.3E-01	0.075
Gasoline Range Organics	120	220	0.57	32	0	na	na	na
Gasoline Range Organics, Aliphatic	84	154	0.40	23	0	1.6E-04	4.3E-01	0.00038
Gasoline Range Organics, Aromatic	60	110	0.28	16	0	1.2E-04	4.3E-01	0.00027
Residual Range Organics	2,073	3,634	0	2.8	0	na	na	na
Residual Range Organics, Aliphatic	1,866	3,271	0	2.5	0	3.23E-03	5.41E-01	0.0060
Residual Range Organics, Aromatic	622	1,090	0	1	0	1.08E-03	5.41E-01	0.0020
						P	Max HQ	0.19

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

#### ECOLOGICAL HAZARD CALCULATIONS FOR GLAUCOUS-WINGED GULL

# Site 28 - Drainage Basin NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Exposure Point Concentration	Ingestion	Toxicity Reference					
	C _{SOIL}	C _{SEDIMENT}	C _{WATER}	C _{PLANT}	C _{FISH}	Dose	Value	Ecological Hazard
COPEC	(mg/kg)	(mg/kg)	(mg/L)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg-day)	

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

#### ECOLOGICAL HAZARD CALCULATIONS FOR TUNDRA VOLE

# Site 29 - Suqitughneq River NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard HQ
	0	0.040	0	5 35 00	0.15 00	0.000000017
Aluminum	0	0.040	0	5.3E-09	3.1E+00	0.000000017
Barium	0	0.0050	0	6.6E-10	8.2E-01	0.0000000081
Silver/Dissolved	0	0.020	0	2.7E-09	3.3E-01	0.000000082
Diesel Range Organics	0	0.16	0	na	na	na
Diesel Range Organics, Aliphatic	0	0.13	0	1.7E-08	8.0E+01	0.0000000021
Diesel Range Organics, Aromatic	0	0.064	0	8.5E-09	8.0E+01	0.0000000011
Gasoline Range Organics	0	0.29	0	na	na	na
Gasoline Range Organics, Aliphatic	0	0.20	0	2.70E-08	2.30E+01	0.000000012
Gasoline Range Organics, Aromatic	0	0.15	0	1.93E-08	2.30E+01	0.0000000084
					Max HQ	0.0000000082

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

#### ECOLOGICAL HAZARD CALCULATIONS FOR CROSS FOX

# Site 29 - Suqitughneq River NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	C _{HERB} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
Aluminum	0	0.040	0	0	8.7E-11	1.8E-01	0.0000000048
Barium	0	0.0050	0	0	1.1E-11	4.7E-02	0.0000000023
Silver/Dissolved	0	0.020	0	0	4.3E-11	1.9E-02	0.000000023
Diesel Range Organics	0	0.160	0	0	na	na	na
Diesel Range Organics, Aliphatic	0	0.13	0	0	2.8E-10	4.6E+00	0.000000000060
Diesel Range Organics, Aromatic	0	0.064	0	0	1.4E-10	4.6E+00	0.00000000030
Gasoline Range Organics	0	0.29	0	0	na	na	na
Gasoline Range Organics, Aliphatic	0	0.20	0	0	4.40E-10	1.32E+00	0.0000000033
Gasoline Range Organics, Aromatic	0	0.15	0	0	3.14E-10	1.32E+00	0.0000000024
						Max HQ	0.000000023

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

# ECOLOGICAL HAZARD CALCULATIONS FOR GLAUCOUS-WINGED GULL

### Site 29 - Suqitughneq River NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{SEDIMENT} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Exposure Point Concentration C _{FISH} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
Aluminum	0	15,900	0.040	0	0	1.6E-02	5.8E+01	0.00027
Antimony	0	0	0	0	0.0083	8.1E-08	1.1E+00	0.00000077
Arsenic	0	5.7	0	0	0.65	1.2E-05	1.1E+00	0.000011
Barium	0	115	0.0050	0	0.22	1.2E-04	1.1E+01	0.000010
Beryllium	0	1.1	0	0	0	1.1E-06	1.1E+01	0.00000010
Cadmium	0	0	0	0	0.021	2.1E-07	1.3E+00	0.00000016
Cobalt	0	7.0	0	0	0	6.9E-06	1.1E+00	0.0000062
Copper	0	0	0	0	1.7	1.7E-05	2.5E+01	0.0000066
Lead	0	0	0	0	0.0069	6.8E-08	2.1E+00	0.00000032
Manganese	0	114	0	0	0	1.1E-04	5.7E+02	0.00000020
Mercury, Dissolved	0	0.050	0	0	0.017	2.2E-07	2.6E-01	0.0000084
Nickel	0	0	0	0	0.49	4.8E-06	7.1E+01	0.00000068
Selenium	0	0	0	0	0.28	2.7E-06	4.6E-01	0.0000060
Silver/Dissolved	0	0	0.020	0	0.021	2.1E-07	1.6E+02	0.000000013
Vanadium	0	35	0	0	0.082	3.5E-05	1.0E+01	0.0000035
Zinc	0	0	0	0	24	2.4E-04	1.4E+02	0.0000017
m,p-Xylene (Sum of Isomers)	0	0.0032	0	0	0	3.2E-09	na	na
2-Methylnaphthalene	0	0.072	0	0	0.0038	1.1E-07	5.4E-01	0.0000020
Acenaphthylene	0	0	0	0	0.0038	3.7E-08	5.4E-01	0.00000069
Anthracene	0	0.016	0	0	0.0041	5.6E-08	5.4E-01	0.000000103
Benzo(a)anthracene	0	0	0	0	0.0043	4.2E-08	4.3E-01	0.00000010
Benzo(a)pyrene	0	0	0	0	0.0037	3.6E-08	5.4E-01	0.00000067
Benzo(b)fluoranthene	0	0	0	0	0.0032	3.1E-08	5.4E-01	0.000000058
Benzo(g,h,i)perylene	0	0	0	0	0.0040	3.9E-08	5.4E-01	0.00000073
Benzo(k)fluoranthene	0	0	0	0	0.0057	5.6E-08	7.6E-02	0.0000074
Chrysene	0	0	0	0	0.0044	4.3E-08	5.4E-01	0.00000080
Dibenzo(a,h)anthracene	0	0	0	0	0.0032	3.1E-08	2.1E-01	0.00000015
Fluoranthene	0	0	0	0	0.0047	4.6E-08	5.4E-01	0.00000085
Fluorene	0	0.020	0	0	0.0043	6.2E-08	5.4E-01	0.000000115

#### ECOLOGICAL HAZARD CALCULATIONS FOR GLAUCOUS-WINGED GULL

### Site 29 - Suqitughneq River NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{SEDIMENT} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Exposure Point Concentration C _{FISH} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
Indeno(1,2,3-cd)pyrene	0	0	0	0	0.0026	2.6E-08	5.4E-01	0.00000047
Naphthalene	0	0.031	0	0	0.0032	6.2E-08	4.3E-01	0.00000014
Phenanthrene	0	0.025	0	0	0.0048	7.2E-08	5.4E-01	0.00000013
Pyrene	0	0.016	0	0	0.0050	6.5E-08	5.4E-01	0.00000012
PCB-1254 (Aroclor 1254)	0	0	0	0	0.019	1.9E-07	1.6E-01	0.0000012
PCB-1260 (Aroclor 1260)	0	0	0	0	0.012	1.2E-07	2.0E-01	0.00000059
Diesel Range Organics	0	1,859	0.16	0	0	na	na	na
Diesel Range Organics, Aliphatic	0	1,487	0.13	0	0	1.5E-03	4.3E-01	0.0034
Diesel Range Organics, Aromatic	0	744	0.064	0	0	7.3E-04	4.3E-01	0.0017
Gasoline Range Organics	0	0	0.29	0	0	na	na	na
Gasoline Range Organics, Aliphatic	0	0	0.20	0	0	1.9E-12	4.3E-01	0.000000000045
Gasoline Range Organics, Aromatic	0	0	0.15	0	0	1.4E-12	4.3E-01	0.000000000032
Residual Range Organics	0	1,000	0	0	0	na	na	na
Residual Range Organics, Aliphatic	0	900	0	0	0	8.88E-04	5.41E-01	0.0016
Residual Range Organics, Aromatic	0	300	0	0	0	2.96E-04	5.41E-01	0.0005
						I	Max HQ	0.0034

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable
### ECOLOGICAL HAZARD CALCULATIONS FOR TUNDRA VOLE

# Sites 28 & 29 Combined NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

СОРЕС	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard HQ
	0	0	0.0000			0.00014
Antimony	0	0	0.0030	5.9E-04	4.2E+00	0.00014
Arsenic	0	0	1.6	3.1E-01	4.9E+00	0.064
Barium	0	0.0050	40	7.8E+00	8.2E-01	9.6
Beryllium	1.5	0	0.0018	7.4E-03	1.1E+00	0.0070
Cadmium	0	0	0.47	9.2E-02	1.6E+00	0.057
Chromium	0	0.015	24	4.6E+00	5.6E+00	0.82
Copper	0	0.040	3.6	7.0E-01	2.5E+01	0.028
Lead or Lead Dissolved	0	0.86	11	2.2E+00	1.3E+01	0.17
Mercury or Mercury Dissolved	0	0	0.11	2.1E-02	2.1E+00	0.010
Nickel	0	0	3.4	6.7E-01	8.0E+01	0.0083
Selenium	0	0	0.23	4.5E-02	6.6E-02	0.68
Silver	0	0.020	0.033	6.4E-03	3.3E-01	0.020
Vanadium	0	0	6.8	1.3E+00	3.4E+00	0.39
Zinc	0	0.62	58	1.1E+01	9.0E+00	1.3
Zinc, Dissolved	0	0.23	0.00	3.1E-08	9.0E+00	0.000000034
2-Methylnaphthalene	0	0	0.012	2.3E-03	8.7E+01	0.000027
Acenaphthene	0	0	0.029	5.7E-03	8.7E+01	0.000065
Anthracene	1.1	0	0.013	7.7E-03	8.7E+01	0.000089
Benzo(a)anthracene	4.4	0	0.088	3.8E-02	1.5E+02	0.00026
Benzo(a)pyrene	2.3	0	0.11	3.2E-02	8.7E+01	0.00037
Benzo(b)fluoranthene	2.6	0	0.089	3.0E-02	8.7E+01	0.00034
Benzo(g,h,i)perylene	0	0	0.055	1.1E-02	8.7E+01	0.00012
Benzo(k)fluoranthene	2.7	0	0.20	5.2E-02	8.7E+01	0.00060
Chrysene	5.5	0	0.18	6.1E-02	8.7E+01	0.00070
Fluoranthene	0.89	0	0.73	1.5E-01	8.7E+01	0.0017

### ECOLOGICAL HAZARD CALCULATIONS FOR TUNDRA VOLE

# Sites 28 & 29 Combined NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard HQ
Fluorene	0	0	0.027	5.3E-03	8.7E+01	0.000061
Indeno(1,2,3-cd)pyrene	0	0	0.11	2.2E-02	8.7E+01	0.00025
Naphthalene	0	0	0.015	2.9E-03	8.0E+01	0.000037
Phenanthrene	4.1	0	0.59	1.3E-01	8.7E+01	0.0015
Pyrene	7.5	0	0.53	1.4E-01	8.7E+01	0.0016
PCB-1254 (Aroclor 1254)	0.47	0	3.0	5.9E-01	2.9E-01	2.0
PCB-1260 (Aroclor 1260)	0	0.00081	0.61	1.2E-01	2.9E-01	0.41
Diesel Range Organics	92,650	46	4,836	na	na	na
Diesel Range Organics, Aliphatic	74,120	37	3,869	1.1E+03	8.0E+01	14
Diesel Range Organics, Aromatic	37,060	18	1,934	5.5E+02	8.0E+01	6.9
Gasoline Range Organics	120	0.57	32	na	na	na
Gasoline Range Organics, Aliphatic	84	0.40	23	4.84E+00	2.30E+01	0.21
Gasoline Range Organics, Aromatic	60	0.28	16	3.46E+00	2.30E+01	0.15
Residual Range Organics	2,073	0	2.8	na	na	na
Residual Range Organics, Aliphatic	1,866	0	2.5	9.25E+00	8.69E+01	0.11
Residual Range Organics, Aromatic	622	0	0.83	3.08E+00	8.69E+01	0.035
					Max HQ	14

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

# ECOLOGICAL HAZARD CALCULATIONS FOR CROSS FOX

# Sites 28 & 29 Combined NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	C _{HERB} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
Antimony	0	0	0.0020	0.000020	9 1E 07	2 4E 01	0.000022
Anumony	0	0	0.0050	0.0000050	8.1E-07	2.4E-01	0.0000055
Arsenic	0	0	1.0	0.0052	4.3E-04	2.8E-01	0.0015
Barlum Demillion	0	0.0050	40	0.0060	1.1E-02	4.7E-02	0.23
Gedericere	1.5	0	0.0018	0.0015	1.2E-04	0.1E-02	0.0019
Charming	0	0	0.47	0.00026	1.3E-04	9.3E-02	0.0014
Chromium	0	0.015	24	0.13	0.0E-03	3.2E-01	0.020
Copper	0	0.040	3.6	0.036	1.0E-03	1.4E+00	0.00072
Lead/Dissolved	0	0.86	11	0.0033	2.9E-03	7.4E-01	0.0040
Mercury/Dissolved	0	0	0.11	0.027	9.4E-05	1.2E-01	0.00078
Nickel	0	0	3.4	0.020	9.5E-04	4.6E+00	0.00021
Selenium	0	0	0.23	0.0035	7.0E-05	3.8E-03	0.018
Silver	0	0.020	0.033	0.00010	9.0E-06	1.9E-02	0.00048
Vanadium	0	0	6.8	0.017	1.9E-03	1.9E-01	0.0095
Zinc	0	0.62	58	5.8	2.9E-02	5.2E-01	0.056
Zinc/Dissolved	0	0.23	0	0	1.0E-09	5.2E-01	0.000000019
2-Methylnaphthalene	0	0	0.012	0.00000042	3.2E-06	5.0E+00	0.0000064
Acenaphthene	0	0	0.029	0.00000062	7.7E-06	5.0E+00	0.0000015
Anthracene	1.1	0	0.013	0.00000029	8.6E-05	5.0E+00	0.000017
Benzo(a)anthracene	4.4	0	0.088	0.000024	3.5E-04	8.4E+00	0.000042
Benzo(a)pyrene	2.3	0	0.11	0.000058	2.0E-04	5.0E+00	0.0000
Benzo(b)fluoranthene	2.6	0	0.089	0.000062	2.2E-04	5.0E+00	0.000043
Benzo(g,h,i)perylene	0	0	0.055	0.000071	1.5E-05	5.0E+00	0.0000030
Benzo(k)fluoranthene	2.7	0	0.20	0.00011	2.5E-04	5.0E+00	0.000051
Chrysene	5.5	0	0.18	0.000044	4.6E-04	5.0E+00	0.000091
Dibenzo(a,h)anthracene	0	0	0.014	0.000013	3.8E-06	1.9E-01	0.000020
Fluoranthene	0.89	0	0.73	0.000023	2.6E-04	5.0E+00	0.000052

### ECOLOGICAL HAZARD CALCULATIONS FOR CROSS FOX

# Sites 28 & 29 Combined NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	C _{HERB} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
	<u>^</u>	<u>^</u>	0 0 <b>0-</b>	2 00000010			0.000001.4
Fluorene	0	0	0.027	0.00000010	7.2E-06	5.0E+00	0.0000014
Indeno(1,2,3-cd)pyrene	0	0	0.11	0.00023	3.0E-05	5.0E+00	0.0000060
Naphthalene	0	0	0.015	0.000000009	4.0E-06	4.6E+00	0.0000086
Phenanthrene	4.1	0	0.59	0.0000063	4.6E-04	5.0E+00	0.000092
Pyrene	7.5	0	0.53	0.000018	7.0E-04	5.0E+00	0.00014
PCB-1254 (Aroclor 1254)	0.5	0	3.0	0.0013	8.4E-04	1.7E-02	0.050
PCB-1260 (Aroclor 1260)	0	0.00081	0.61	0.00025	1.6E-04	1.7E-02	0.0097
Diesel Range Organics	92,650	46	4,836	0.0043	na	na	na
Diesel Range Organics, Aliphatic	74,120	37	3,869	0.0034	6.6E+00	4.6E+00	1.4
Diesel Range Organics, Aromatic	37,060	18	1,934	0.0017	3.3E+00	4.6E+00	0.71
Gasoline Range Organics	120	0.57	32	0.0000012	na	na	na
Gasoline Range Organics, Aliphatic	84	0.40	23	0.0000087	1.23E-02	1.32E+00	0.0093
Gasoline Range Organics, Aromatic	60	0.28	16	0.00000062	8.80E-03	1.32E+00	0.0066
Residual Range Organics	2,073	0	2.8	0.018	na	na	na
Residual Range Organics, Aliphatic	1,866	0	2.5	0.016	1.40E-01	5.01E+00	0.028
Residual Range Organics, Aromatic	622	0	0.83	0.0055	4.66E-02	5.01E+00	0.0093
						Max HQ	1.4

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

#### ECOLOGICAL HAZARD CALCULATIONS FOR GLAUCOUS-WINGED GULL

# Sites 28 & 29 Combined NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{SEDIMENT} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Exposure Point Concentration C _{FISH} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
	0	15 000	0.040	0	0	0.15.00		0.00055
Aluminum	0	15,900	0.040	0	0	3.1E-02	5.8E+01	0.00055
Antimony	0	0	0	0.0030	0.0083	1./E-0/	1.1E+00	0.0000016
Arsenic	0	5.7	0	1.6	0.65	2.6E-05	1.1E+00	0.000024
Barium	0	115	0.0050	40	1.1	2.9E-04	1.1E+01	0.000026
Beryllium	1.5	0	0	0.0018	0	1.9E-09	1.1E+01	0.0000000017
Cadmium	0	0	0	0.47	0.0080	6.4E-07	1.3E+00	0.00000048
Chromium	0	28	0.015	24	0	8.0E-05	9.7E-01	0.000082
Cobalt	0	7.0	0	0	0	1.4E-05	1.1E+00	0.0000123
Copper	0	0	0.040	3.6	1.7	3.7E-05	2.5E+01	0.00000146
Lead/Dissolved	0	7.4	0.86	11	0.028	2.7E-05	2.1E+00	0.0000125
Manganese	0	114	0.11	0	0	2.2E-04	5.7E+02	0.00000040
Mercury/Dissolved	0	0.050	0	0.11	0.098	2.1E-06	2.6E-01	0.0000083
Nickel	0	0	0	3.4	1.1	2.5E-05	7.1E+01	0.00000035
Selenium	0	0	0	0.23	0.28	5.7E-06	4.6E-01	0.000012
Silver, Dissolved	0	0	0.020	0.033	0.02	4.5E-07	1.6E+02	0.000000027
Vanadium	0	35	0	6.8	0.11	7.8E-05	1.0E+01	0.0000078
Zinc	0	26	0.62	58	51	1.1E-03	1.4E+02	0.0000079
Zinc/Dissolved	0	0	0.23	0	0	4.3E-12	1.4E+02	0.000000000000031
Ethylbenzene	0	1.8	0	0	0	3.6E-06	na	na
m,p-Xylene (Sum of Isomers)	0	0.0032	0	0	0	6.3E-09	na	na
Toluene	0	0.050	0	0	0	9.9E-08	na	na
Xylenes	0	0.78	0	0	0	1.5E-06	na	na
Dibenzofuran	0	4.5	0	0	0	9.0E-06	1.1E-01	0.000084
2-Methylnaphthalene	0	500	0	0.012	0.19	9.9E-04	5.4E-01	0.0018
Acenaphthene	0	14	0	0.029	0.026	2.8E-05	5.4E-01	0.000052
Acenaphthylene	0	0.047	0	0	0	9.2E-08	5.4E-01	0.00000017
Anthracene	1.1	1.8	0	0.013	0.0041	3.6E-06	5.4E-01	0.0000067
Benzo(a)anthracene	4.4	1.5	0	0.088	0.0043	3.2E-06	4.3E-01	0.0000075
Benzo(a)pyrene	2	1.4	0	0.11	0.0047	2.9E-06	5.4E-01	0.0000053

#### ECOLOGICAL HAZARD CALCULATIONS FOR GLAUCOUS-WINGED GULL

# Sites 28 & 29 Combined NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{SEDIMENT} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Exposure Point Concentration C _{FISH} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
Benzo(b)fluoranthene	2.6	1.5	0	0.089	0.0032	3.1E-06	5.4E-01	0.0000057
Benzo(g,h,i)perylene	0	0.9	0	0.055	0.0043	1.9E-06	5.4E-01	0.0000036
Benzo(k)fluoranthene	2.7	1.5	0	0.20	0.0057	3.3E-06	7.6E-02	0.000043
Chrysene	5.5	1.8	0	0.18	0.0044	3.8E-06	5.4E-01	0.0000071
Dibenzo(a,h)anthracene	0	0.015	0	0.014	0.0032	1.1E-07	2.1E-01	0.00000051
Fluoranthene	0.89	2.8	0	0.73	0.0047	6.3E-06	5.4E-01	0.000012
Fluorene	0	20	0	0.027	0.067	4.1E-05	5.4E-01	0.000075
Indeno(1,2,3-cd)pyrene	0	1.2	0	0.11	0.0026	2.5E-06	5.4E-01	0.0000047
Naphthalene	0	175	0	0.015	0.068	3.5E-04	4.3E-01	0.00081
Phenanthrene	4.1	21	0	0.59	0.018	4.2E-05	5.4E-01	0.000078
Pyrene	7.5	9.5	0	0.53	0.0050	1.9E-05	5.4E-01	0.000036
PCB-1242 (Aroclor 1242)	0	0.10	0	0	0	2.0E-07	2.6E-01	0.00000076
PCB-1254 (Aroclor 1254)	0.47	0.16	0	3.0	0.0050	3.5E-06	1.6E-01	0.000023
PCB-1260 (Aroclor 1260)	0	0.52	0.0	0.61	0.14	4.4E-06	2.0E-01	0.000022
4,4'-DDD	0	1.2	0	0	0	2.3E-06	4.8E+02	0.000000048
beta-BHC	0	0.010	0	0	0	2.0E-08	5.2E+00	0.000000038
Endosulfan sulfate	0	0.0086	0	0	0	1.7E-08	7.3E+00	0.000000023
gamma-BHC (Lindane)	0	0.0065	0	0	0	1.3E-08	5.2E+00	0.000000025
Heptachlor	0	0.0046	0	0	0	9.1E-09	3.7E+01	0.0000000024
Diesel Range Organics	92,650	98,654	46	4,836	0	na	na	na
Diesel Range Organics, Aliphatic	74,120	78,923	37	3,869	0	1.6E-01	4.3E-01	0.37
Diesel Range Organics, Aromatic	37,060	39,462	18	1,934	0	8.0E-02	4.3E-01	0.19
Gasoline Range Organics	120	220	0.57	32	0	na	na	na
Gasoline Range Organics, Aliphatic	84	154	0.40	23	0	3.3E-04	4.3E-01	0.00077
Gasoline Range Organics, Aromatic	60	110	0.28	16	0	2.3E-04	4.3E-01	0.00055
Residual Range Organics	2.073	3.634	0	2.8	0	na	na	na
Residual Range Organics, Aliphatic	1.866	3.271	Õ	2.5	Õ	6.46E-03	5.41E-01	0.012
Residual Range Organics, Aromatic	622	1,090	0	0.83	0	2.15E-03	5.41E-01	0.0040
		,				r	Max HQ	0.37

#### ECOLOGICAL HAZARD CALCULATIONS FOR GLAUCOUS-WINGED GULL

# Sites 28 & 29 Combined NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

	Exposure Point	Exposure Point	Exposure Point	Exposure Point	Exposure Point	<b>.</b>	Toxicity	
	Concentration	Concentration	Concentration	Concentration	Concentration	Ingestion	Reference	
	C _{SOIL}	<b>C</b> _{SEDIMENT}	C _{WATER}	C _{PLANT}	C _{FISH}	Dose	Value	Ecological Hazard
COPEC	(mg/kg)	(mg/kg)	(mg/L)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg-day)	

Notes:

HQ - Hazard Quotient mg/kg - Milligrams per kilogram. mg/L - Milligrams per liter. mg/kg - d - Milligrams per kilogram per day.

na - not applicable

### ECOLOGICAL HAZARD CALCULATIONS FOR TUNDRA VOLE

# Site 31 - White Alice Site NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard HQ
Barium	0	0.0030	0	4.0E-10	8.2E-01	0.0000000049
Manganese	0	0.0050	0	6.6E-10	1.4E+02	0.0000000000047
PCB-1260 (Aroclor 1260)	22	0	0.026	1.1E-01	2.9E-01	0.37
Diesel Range Organics	8,307	0	434	na	na	na
Diesel Range Organics, Aliphatic	6,646	0	347	9.9E+01	8.0E+01	1.2
Diesel Range Organics, Aromatic	3,323	0	173	5.0E+01	8.0E+01	0.62
Residual Range Organics	2,165	0	2.9	na	na	na
Residual Range Organics, Aliphatic	1,949	0	2.6	9.66E+00	8.69E+01	0.11
Residual Range Organics, Aromatic	650	0	0.86	3.22E+00	8.69E+01	0.04
					Max HQ	1.2

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

#### ECOLOGICAL HAZARD CALCULATIONS FOR CROSS FOX

# Site 31 - White Alice Site NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	C _{HERB} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
Barium	0	0.0030	0	0	87E13	4 7E 02	0.00000000018
Manganese	0	0.0050	0	0	1.5E-12	4.7E-02 8.2E+00	0.000000000018
PCB-1260 (Aroclor 1260)	22	0.0050	0.026	0.00023	1.1E-04	1.7E-02	0.0065
Diesel Range Organics	8.307	0	434	0.00039	na	na	na
Diesel Range Organics. Aliphatic	6,646	0	347	0.00031	3.9E-02	4.6E+00	0.0085
Diesel Range Organics, Aromatic	3,323	0	173	0.00015	2.0E-02	4.6E+00	0.0043
Residual Range Organics	2,165	0	2.9	0.019	na	na	na
Residual Range Organics, Aliphatic	1,949	0	2.6	0.017	9.78E-03	5.01E+00	0.0020
Residual Range Organics, Aromatic	650	0	0.86	0.0057	3.26E-03	5.01E+00	0.00065
						Max HQ	0.0085

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

#### ECOLOGICAL HAZARD CALCULATIONS FOR GLAUCOUS-WINGED GULL

### Site 31 - White Alice Site NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{SEDIMENT} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Exposure Point Concentration C _{FISH} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
Barium	0	0	0.0030	0	0	3.8E-15	1.1E+01	0.00000000000000034
Manganese	0	0	0.0050	0	0	6.3E-15	5.7E+02	0.00000000000000011
PCB-1260 (Aroclor 1260)	22	0	0	0.026	0	1.8E-09	2.0E-01	0.000000091
Diesel Range Organics	8,307	0	0	434	0	na	na	na
Diesel Range Organics, Aliphatic	6,646	0	0	347	0	2.4E-05	4.3E-01	0.000056
Diesel Range Organics, Aromatic	3,323	0	0	173	0	1.2E-05	4.3E-01	0.000028
Residual Range Organics	2,165	0	0	2.9	0	na	na	na
Residual Range Organics, Aliphatic	1,949	0	0	2.6	0	1.79E-07	5.41E-01	0.00000033
Residual Range Organics, Aromatic	650	0	0	0.86	0	5.98E-08	5.41E-01	0.00000011
							Max HQ	0.000056

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

### ECOLOGICAL HAZARD CALCULATIONS FOR TUNDRA VOLE

# Site 32 - Lower Tram Terminal NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard HQ
PCB-1260 (Aroclor 1260)	0.89	0	0.0011	4.4E-03	2.9E-01	0.015
Diesel Range Organics	13,000	0	679	na	na	na
Diesel Range Organics, Aliphatic	10,400	0	543	1.6E+02	8.0E+01	1.9
Diesel Range Organics, Aromatic	5,200	0	271	7.8E+01	8.0E+01	0.97
Residual Range Organics	3,600	0	4.8	na	na	na
Residual Range Organics, Aliphatic	3,240	0	4.3	1.61E+01	8.69E+01	0.18
Residual Range Organics, Aromatic	1,080	0	1.4	5.35E+00	8.69E+01	0.062
					Max HQ	1.9

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

# ECOLOGICAL HAZARD CALCULATIONS FOR CROSS FOX

# Site 32 - Lower Tram Terminal NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	C _{HERB} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
DCD 1260 (A 1 1260)	0.90	0	0.0011	0.0000002	1.75.06	175.02	0.00010
PCB-1260 (Arocior 1260)	0.89	0	0.0011	0.0000093	1./E-06	1./E-02	0.00010
Diesel Range Organics	13,000	0	679	0.00060	na	na	na
Diesel Range Organics, Aliphatic	10,400	0	543	0.00048	2.4E-02	4.6E+00	0.0051
Diesel Range Organics, Aromatic	5,200	0	271	0.00024	1.2E-02	4.6E+00	0.0026
Residual Range Organics	3,600	0	4.8	0.032	na	na	na
Residual Range Organics, Aliphatic	3,240	0	4.3	0.029	6.29E-03	5.01E+00	0.0013
Residual Range Organics, Aromatic	1,080	0	1.4	0.010	2.10E-03	5.01E+00	0.00042
						Max HQ	0.0051

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

#### ECOLOGICAL HAZARD CALCULATIONS FOR GLAUCOUS-WINGED GULL

# Site 32 - Lower Tram Terminal NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{SEDIMENT} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Exposure Point Concentration C _{FISH} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
PCB-1260 (Aroclor 1260)	0.89	0	0	0.0011	0	2.9E-11	2.0E-01	0.0000000014
Diesel Range Organics	13,000	0	0	679	0	na	na	na
Diesel Range Organics, Aliphatic	10,400	0	0	543	0	1.5E-05	4.3E-01	0.000034
Diesel Range Organics, Aromatic	5,200	0	0	271	0	7.3E-06	4.3E-01	0.000017
Residual Range Organics	3,600	0	0	4.8	0	na	na	na
Residual Range Organics, Aliphatic	3,240	0	0	4.3	0	1.15E-07	5.41E-01	0.00000021
Residual Range Organics, Aromatic	1,080	0	0	1.4	0	3.84E-08	5.41E-01	0.00000071
							Max HQ	0.000034

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

### ECOLOGICAL HAZARD CALCULATIONS FOR TUNDRA VOLE

# Site 33 - Upper Tram Terminal NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard HQ
Diesel Range Organics	660	0	34	na	na	na
Diesel Range Organics, Aliphatic	528	0	28	7.9E+00	8.0E+01	0.098
Diesel Range Organics, Aromatic	264	0	14	3.9E+00	8.0E+01	0.049
Residual Range Organics	2,100	0	2.8	na	na	na
Residual Range Organics, Aliphatic	1,890	0	2.5	9.37E+00	8.69E+01	0.11
Residual Range Organics, Aromatic	630	0	0.84	3.12E+00	8.69E+01	0.04
					Max HQ	0.11

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

# ECOLOGICAL HAZARD CALCULATIONS FOR CROSS FOX

# Site 33 - Upper Tram Terminal NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

СОРЕС	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	C _{HERB} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
Diesel Range Organics	660	0	34	0.00	na	na	na
Diesel Range Organics, Aliphatic	528	0	28	0.00	1.3E-03	4.6E+00	0.00029
Diesel Range Organics, Aromatic	264	0	14	0.00	6.7E-04	4.6E+00	0.00015
Residual Range Organics	2,100	0	2.8	0.02	na	na	na
Residual Range Organics, Aliphatic	1,890	0	2.5	0.02	4.08E-03	5.01E+00	0.00081
Residual Range Organics, Aromatic	630	0	0.84	0.01	1.36E-03	5.01E+00	0.00027
						Max HQ	0.00081

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

#### ECOLOGICAL HAZARD CALCULATIONS FOR GLAUCOUS-WINGED GULL

# Site 33 - Upper Tram Terminal NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

СОРЕС	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{SEDIMENT} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Exposure Point Concentration C _{FISH} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
Diesel Range Organics	660	0	0	34	0	na	na	na
Diesel Range Organics, Aliphatic	528	0	0	28	0	8.2E-07	4.3E-01	0.0000019
Diesel Range Organics, Aromatic	264	0	0	14	0	4.1E-07	4.3E-01	0.0000010
Residual Range Organics	2,100	0	0	2.8	0	na	na	na
Residual Range Organics, Aliphatic	1,890	0	0	2.5	0	7.49E-08	5.41E-01	0.00000014
Residual Range Organics, Aromatic	630	0	0	0.84	0	2.50E-08	5.41E-01	0.00000046
							Max HQ	0.0000019

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

### ECOLOGICAL HAZARD CALCULATIONS FOR TUNDRA VOLE

# Site 34 - Upper Camp NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard HQ
$PCB_{-}1254$ (Aroclor 1254)	0.59	0	0.00071	2 9E-03	2 9E-01	0.010
PCB-1260 (Aroclor 1260)	0.47	0	0.00056	2.3E-03	2.9E-01	0.008
Diesel Range Organics	1,100	0	57	na	na	na
Diesel Range Organics, Aliphatic	880	0	46	1.3E+01	8.0E+01	0.16
Diesel Range Organics, Aromatic	440	0	23	6.6E+00	8.0E+01	0.082
Residual Range Organics	1,162	0	1.5	na	na	na
Residual Range Organics, Aliphatic	1,046	0	1.4	5.18E+00	8.69E+01	0.060
Residual Range Organics, Aromatic	349	0	0.46	1.73E+00	8.69E+01	0.020
					Max HQ	0.16

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

### ECOLOGICAL HAZARD CALCULATIONS FOR CROSS FOX

# Site 34 - Upper Camp NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	C _{HERB} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
PCB-1254 (Aroclor 1254)	0.59	0	0.00071	0.0000062	4.3E-06	1.7E-02	0.00026
PCB-1260 (Aroclor 1260)	0.47	0	0.00056	0.0000049	3.4E-06	1.7E-02	0.00020
Diesel Range Organics	1,100	0	57	0.00005	na	na	na
Diesel Range Organics, Aliphatic	880	0	46	0.0000	7.6E-03	4.6E+00	0.0016
Diesel Range Organics, Aromatic	440	0	23	0.000020	3.8E-03	4.6E+00	0.00082
Residual Range Organics	1,162	0	1.5	0.010	na	na	na
Residual Range Organics, Aliphatic	1,046	0	1.4	0.0092	7.68E-03	5.01E+00	0.0015
Residual Range Organics, Aromatic	349	0	0.46	0.0031	2.56E-03	5.01E+00	0.00051
						Max HQ	0.0016

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

#### ECOLOGICAL HAZARD CALCULATIONS FOR GLAUCOUS-WINGED GULL

# Site 34 - Upper Camp NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{SEDIMENT} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Exposure Point Concentration C _{FISH} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
PCB-1254 (Aroclor 1254)	0.59	0	0	0.00071	0	7.2E-11	1.6E-01	0.0000000046
PCB-1260 (Aroclor 1260)	0.47	0	0	0.00056	0	5.7E-11	2.0E-01	0.0000000029
Diesel Range Organics	1,100	0	0	57	0	na	na	na
Diesel Range Organics, Aliphatic	880	0	0	46	0	4.6E-06	4.3E-01	0.000011
Diesel Range Organics, Aromatic	440	0	0	23	0	2.3E-06	4.3E-01	0.0000054
Residual Range Organics	1,162	0	0	1.5	0	na	na	na
Residual Range Organics, Aliphatic	1,046	0	0	1.4	0	1.41E-07	5.41E-01	0.00000026
Residual Range Organics, Aromatic	349	0	0	0.46	0	4.69E-08	5.41E-01	0.00000009
						ł	Max HQ	0.000011

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

### ECOLOGICAL HAZARD CALCULATIONS FOR TUNDRA VOLE

# Sites 33 & 34 Combined NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard HQ
DCD = 1254 (Arcolor 1254)	0.50	0	0.00071	2 OF 02	2 OF 01	0.010
PCB-1254 (Aroclor 1254) PCB-1260 (Aroclor 1260)	0.39	0	0.00056	2.3E-03	2.9E-01	0.008
Diesel Range Organics	1,100	ů 0	57	na	na	na
Diesel Range Organics, Aliphatic	880	0	46	1.3E+01	8.0E+01	0.16
Diesel Range Organics, Aromatic	440	0	23	6.6E+00	8.0E+01	0.082
Residual Range Organics	2,100	0	2.8	na	na	na
Residual Range Organics, Aliphatic	1,890	0	2.5	9.37E+00	8.69E+01	0.108
Residual Range Organics, Aromatic	630	0	0.84	3.12E+00	8.69E+01	0.036
					Max HQ	0.16

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

# ECOLOGICAL HAZARD CALCULATIONS FOR CROSS FOX

# Sites 33 & 34 Combined NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

СОРЕС	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	C _{HERB} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
DCD 1254 (Arcolog 1254)	0.50	0	0.00071	0.000062	5 6E 06	1 7E 02	0.00022
PCB-1254 (Aroclor 1254)	0.39	0	0.00071	0.0000002	J.0E-00	1.7E-02	0.00035
PCB-1200 (Afocior 1200)	0.47	0	0.00056	0.0000049	4.5E-06	1./E-02	0.00026
Diesel Range Organics	1,100	0	57	0.00005	na	na	na
Diesel Range Organics, Aliphatic	880	0	46	0.0000	9.9E-03	4.6E + 00	0.0021
Diesel Range Organics, Aromatic	440	0	23	0.000020	4.9E-03	4.6E+00	0.0011
Residual Range Organics	2,100	0	2.8	0.019	na	na	na
Residual Range Organics, Aliphatic	1,890	0	2.5	0.0167	1.80E-02	5.01E+00	0.0036
Residual Range Organics, Aromatic	630	0	0.84	0.0056	5.99E-03	5.01E+00	0.0012
						Max HQ	0.0036

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

#### ECOLOGICAL HAZARD CALCULATIONS FOR GLAUCOUS-WINGED GULL

# Sites 33 & 34 Combined NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

COPEC	Exposure Point Concentration C _{SOIL} (mg/kg)	Exposure Point Concentration C _{SEDIMENT} (mg/kg)	Exposure Point Concentration C _{WATER} (mg/L)	Exposure Point Concentration C _{PLANT} (mg/kg)	Exposure Point Concentration C _{FISH} (mg/kg)	Ingestion Dose (mg/kg)	Toxicity Reference Value (mg/kg-day)	Ecological Hazard
DCD 1054 (A 1 1054)	0.50	0	0	0.00071	0	0.25.11	1 (5.01	0.00000000000
PCB-1254 (Aroclor 1254)	0.59	0	0	0.00071	0	9.3E-11	1.6E-01	0.00000000060
PCB-1260 (Aroclor 1260)	0.47	0	0	0.00056	0	7.4E-11	2.0E-01	0.0000000037
Diesel Range Organics	1,100	0	0	57	0	na	na	na
Diesel Range Organics, Aliphatic	880	0	0	46	0	6.0E-06	4.3E-01	0.000014
Diesel Range Organics, Aromatic	440	0	0	23	0	3.0E-06	4.3E-01	0.0000070
Residual Range Organics	2,100	0	0	2.8	0	na	na	na
Residual Range Organics, Aliphatic	1,890	0	0	2.5	0	3.29E-07	5.41E-01	0.00000061
Residual Range Organics, Aromatic	630	0	0	0.84	0	1.10E-07	5.41E-01	0.0000020
							Max HQ	0.000014

Notes:

HQ - Hazard Quotient

mg/kg - Milligrams per kilogram.

mg/L - Milligrams per liter.

mg/kg - d - Milligrams per kilogram per day.

na - not applicable

# **APPENDIX I**

Exposure Point Concentrations for Environmental Media



#### Table I-1 Human Health Summary Statistics and Derived 95% UCLs Northeast Cape, St. Lawrence Island, Alaska Site 3

	Nun	nber of								Z-sco	ore Plots	_		
	Samples	Detections	Max Detect	Min Result	Stdev	Mean	CV	Shapiro- Wilkes Test	D'Agostino's Test	Normal r ²	Lognormal r ²	Assumed Distribution	95% UCL	FPC
S-# CODC	Samples	Dettetions	(IIIg/Kg)	(ing/kg)	Stuct	Witcan		Winkes Test	1650	-	1	Distribution	5570 CCL	LIC
Son COPC														
Lead	3	3	119	27	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	119
Methylene chloride	1	1	0.0093	0.0093	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.0093
Naphthalene	4	1	51	< 0.005	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	51
DRO	6	5	3,760	< 0.0549	1,420	1,419	1.0	Normal	na	0.92	0.66	Normal	2,587	2,587
Subsurface Water COI	PC													
DRO	4	4	14	1.8	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	14
RRO	3	3	8.1	1.3	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	8.1

Notes:

95% UCL - 95 percent upper confidence limit (UCL) on the mean concentration

COPC - Chemical of Potential Concern.

CV - coefficient of variation

DRO - Diesel range organics.

EPC - Exposure point concentration

Lognormal r² - Correlation coefficient for the lognormal plot

na - Not applicable.

mg/kg - milligrams per kilogram

Normal r² - Correlation coefficient for the normal plot

RRO - Residual range organics.

Stdev - standard deviation

#### Table I-2 Human Health Summary Statistics and Derived 95% UCLs Northeast Cape, St. Lawrence Island, Alaska Site 4

Nun	aber of								Z-sco	ore Plots			
Samples	Detections	Max Detect (mg/kg)	Min Result (mg/kg)	Stdev	Mean	CV	Shapiro- Wilkes Test	D'Agostino's Test	Normal r ²	Lognormal r ²	Assumed Distribution	95% UCL	EPC
2	2	160	7.4	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	160
4	3	5,300	150	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	5,300
1	1	3,420	3,420	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	3,420
C													
4	4	3.7	0.96	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	3.7
3	3	6.5	2.6	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	6.5
-	2 4 1 C 4 3	Samples         Detections           2         2           4         3           1         1           C         4         4           3         3         3	Number of         Max Detect           Samples         Detections         Max Detect           2         2         160           4         3         5,300           1         1         3,420           C         4         4         3.7           3         3         6.5	Number of         Max Detect         Min Result (mg/kg)           2         2         160         7.4           4         3         5,300         150           1         1         3,420         3,420           C         4         4         3.7         0.96           3         3         6.5         2.6	Number of         Max Detect         Min Result           Samples         Detections         (mg/kg)         (mg/kg)         Stdev           2         2         160         7.4         na ^a 4         3         5,300         150         na ^a 1         1         3,420         3,420         na ^a °C         4         4         3.7         0.96         na ^a 3         3         6.5         2.6         na ^a	Number of         Max Detect         Min Result (mg/kg)         Stdev         Mean           2         2         160         7.4         na a         na a           4         3         5,300         150         na a         na a           1         1         3,420         3,420         na a         na a           C         4         4         3.7         0.96         na a         na a           3         3         6.5         2.6         na a         na a	Name         Max Detect         Min Result (mg/kg)         Stdev         Mean         CV           2         2         160         7.4         na ^a na ^a na ^a 4         3         5,300         150         na ^a na ^a na ^a 1         1         3,420         3,420         na ^a na ^a na ^a C         4         4         3.7         0.96         na ^a na ^a na ^a 3         3         6.5         2.6         na ^a na ^a na ^a	Number ofSamplesDetectionsMax DetectMin Result (mg/kg)StdevMeanCVShapiro- Wilkes Test221607.4na ana ana ana a435,300150na ana ana ana a113,4203,420na ana ana ana aC	Number ofMax DetectMin ResultStdevMeanCVShapiro- Wilkes TestD'Agostino's Test221607.4na ana ana ana ana a435,300150na ana ana ana ana a113,4203,420na ana ana ana ana aC443.70.96na ana ana ana ana a336.52.6na ana ana ana ana a	Number ofSamplesDetectionsMin Result (mg/kg)StdevMeanCVShapiro- Wilkes TestD'Agostino'sNormal r²221607.4na ^a na ^a na ^a na ^a na ^a na ^a na ^a 435,300150na ^a na ^a na ^a na ^a na ^a na ^a 113,4203,420na ^a na ^a na ^a na ^a na ^a C443.70.96na ^a na ^a na ^a na ^a na ^a 336.52.6na ^a na ^a na ^a na ^a na ^a na ^a	DetectionDetectionDetectionMax DetectMin ResultStdevMeanCVShapiro- Wilkes TestD'Agostino'sNormal r²Lognormal r²221607.4na ^a na ^a na ^a na ^a na ^a na ^a na ^a 435,300150na ^a na ^a na ^a na ^a na ^a na ^a na ^a 113,4203,420na ^a na ^a na ^a na ^a na ^a na ^a C443.70.96na ^a na ^a na ^a na ^a na ^a na ^a 336.52.6na ^a na ^a na ^a na ^a na ^a na ^a na ^a	Number ofDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetectionDetecti	Number of Max DetectMin Result (mg/kg)Max DetectMin Result (mg/kg)Shapiro- MeanShapiro- VD'Agostino'sNormal NormalLognormal Lognormal Pice to trainAssumed Pice to train95% UCL221607.4nananananananaanaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Notes:

95% UCL - 95 percent upper confidence limit (UCL) on the mean concentration

COPC - Chemical of Potential Concern.

CV - coefficient of variation

DRO - Diesel range organics.

EPC - Exposure point concentration

Lognormal r² - Correlation coefficient for the lognormal plot

mg/kg - milligrams per kilogram

na - Not applicable.

Normal r² - Correlation coefficient for the normal plot

RRO - Residual range organics.

Stdev - standard deviation

#### Table I-3 Human Health Summary Statistics and Derived 95% UCLs Northeast Cape, St. Lawrence Island, Alaska

Site 6

	Num	ber of								Z-sco	ore Plots			
	Samples	Detections	Max Detect (mg/kg)	Min Result (mg/kg)	Stdev	Mean	CV	Shapiro- Wilkes Test	D'Agostino's Test	Normal r ²	Lognormal r ²	Assumed Distribution	95% UCL	EPC
Soil COPC														
Aluminum	2	2	9,850	7,790	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	9,850
Beryllium	13	3	1.3	0.60	0.64	1.1	0.55	Inconclusive	na	0.60	0.80	Normal	1.4	1.3
Cobalt	2	2	5.1	2.0	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	5.1
Manganese	2	2	164	72.7	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	164
m,p-Xylene	5	2	0.044	< 0.005	0.018	0.011	1.7	Inconclusive	na ^a	0.70	0.77	Lognormal	0.52	0.044
Methylene chloride	3	3	0.0079	0.0044	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.0079
o-Xylene	5	2	0.014	< 0.005	0.0054	0.0045	1.2	Lognormal	na ^a	0.66	0.84	Lognormal	0.049	0.014
DRO	17	17	102,000	12	27,008	16,359	1.7	Lognormal	na	0.66	0.94	Lognormal	14,716,131	102,000
RRO	6	6	8,500	220	3,127	3,200	1.0	Inconclusive	na	0.90	0.96	Lognormal	122,317	8,500

#### Notes:

95% UCL - 95 percent upper confidence limit (UCL) on the mean concentration

COPC - Chemical of Potential Concern.

CV - coefficient of variation

DRO - Diesel range organics.

EPC - Exposure point concentration

Lognormal r² - Correlation coefficient for the lognormal plot

mg/kg - milligrams per kilogram

na - Not applicable.

Normal r² - Correlation coefficient for the normal plot

RRO - Residual range organics.

Stdev - standard deviation

#### Table I-4 Human Health Summary Statistics and Derived 95% UCLs Northeast Cape, St. Lawrence Island, Alaska

Site 7

	Nun	nber of								Z-sc	ore Plots	-		
	~ -		Max Detect	Min Result			~	Shapiro-Wilkes	D'Agostino's	Normal	Lognormal	Assumed		
	Samples	Detections	(mg/kg)	(mg/kg)	Stdev	Mean	CV	Test	Test	r2	r2	Distribution	95% UCL	EPC
Soil COPC														
Aluminum	5	5	12,000	3,640	3,522	9,888	0.36	Inconclusive	na	0.65	0.61	Normal	13,246	12,000
Arsenic	18	18	50	2.0	12.32	9.3	1.3	Lognormal	na	0.58	0.84	Lognormal	15	15
Cadmium	19	9	4.1	1.0	2.5	2.5	1.0	Inconclusive	na	0.61	0.78	Lognormal	3.4	3.4
Chromium	19	18	100	5.0	27	27	1.0	Lognormal	na	0.70	0.91	Lognormal	43	43
Cobalt	5	5	19	2.0	8.3	12	0.71	Inconclusive	na	0.83	0.83	Lognormal	258	19
Lead	20	20	460	10	143	96	1.5	Inconclusive	na	0.62	0.86	Lognormal	196	196
Manganese	5	5	694	55	294	382	0.77	Inconclusive	na	0.87	0.82	Normal	662	662
Mercury	18	4	0.56	0.10	0.18	0.17	1.1	Inconclusive	na	0.80	0.82	Lognormal	0.31	0.31
Nickel	19	16	280	5.0	62	30.0	2.1	Lognormal	na	0.39	0.90	Lognormal	50	50
Thallium	2	2	1.2	0.28	na ^a	1.2								
1,1,1-Trichloroethane	10	3	0.28	< 0.0053	0.10	0.072	1.4	Inconclusive	na	0.79	0.86	Lognormal	4.7	0.28
Acetone	10	4	1.4	< 0.011	0.50	0.36	1.4	Lognormal	na	0.77	0.90	Lognormal	105	1.4
Bromoethane	10	5	0.40	< 0.0053	0.13	0.11	1.3	Inconclusive	na	0.82	0.81	Normal	0.18	0.18
m,p-Xylene	10	1	0.13	< 0.0053	0.047	0.039	1.2	Inconclusive	na	0.84	0.85	Normal	0.066	0.066
Methylene chloride	9	4	0.013	< 0.0058	0.11	0.086	1.3	Lognormal	na	0.79	0.92	Lognormal	2.7	0.13
4-Methylphenol (p-Cresol)	14	3	3.9	< 0.33	6.4	2.7	2.4	Inconclusive	na	0.41	0.86	Lognormal	13	3.9
PCB-1260 (Aroclor 1260)	22	4	13	< 0.05	2.8	0.8	3.5	Inconclusive	na	0.30	0.81	Lognormal	1.6	1.6
1,2,3,4,6,7,8,9-Octachlorodibenzofuran	13	4	0.00052	0.0000011	0.00019	0.000084	2.3	Inconclusive	na	0.46	0.88	Lognormal	0.031	0.00052
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin	13	12	0.020	0.00000091	0.0055	0.0016	3.4	Lognormal	na	0.30	0.96	Lognormal	1.54	0.020
1,2,3,4,6,7,8-Heptachlorodibenzofuran	12	4	0.00016	0.00000043	0.000046	0.000016	2.9	Inconclusive	na	0.37	0.80	Lognormal	0.00094	0.00016
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	13	8	0.0011	0.00000047	0.00030	0.00010	3.2	Lognormal	na	0.33	0.88	Lognormal	0.017	0.0011
1,2,3,4,7,8,9-Heptachlorodibenzofuran	13	1	0.0000013	0.0000013	0.0000019	0.0000011	1.7	Lognormal	na	0.58	0.88	Lognormal	0.000004	0.0000013
1,2,3,4,7,8-Hexachlorodibenzofuran	13	4	0.000027	0.00000012	0.0000002	1.2E-07	2.6	Inconclusive	na	0.40	0.85	Lognormal	0.00002	0.00002
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	13	1	0.0000020	< 0.0000015	0.0000016	0.0000011	1.5	Lognormal	na	0.66	0.90	Lognormal	0.000015	0.000002
1,2,3,6,7,8-Hexachlorodibenzofuran	13	1	0.000011	< 0.00000075	0.0000033	0.0000016	2.0	Inconclusive	na	0.54	0.88	Lognormal	0.000015	0.000011
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	13	4	0.000046	< 0.00000145	0.000013	0.0000043	2.9	Inconclusive	na	0.35	0.84	Lognormal	0.00003	0.00003
1,2,3,7,8,9-Hexachlorodibenzofuran	13	1	0.00000040	< 0.00000085	0.00000057	0.00000043	1.3	Lognormal	na	0.68	0.95	Lognormal	0.0000012	0.0000004
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	13	2	0.000031	0.0000051	0.0000088	0.0000036	2.5	Lognormal	na	0.43	0.88	Lognormal	0.000041	0.000031
1,2,3,7,8-Pentachlorodibenzofuran	13	1	0.0000045	< 0.000001	0.0000016	0.0000010	1.6	Inconclusive	na	0.66	0.87	Lognormal	0.0000056	0.0000045
1,2,3,7,8-Pentachlorodibenzo-p-dioxin	13	1	0.0000015	< 0.00000015	0.0000010	0.0000007	1.4	Inconclusive	na	0.67	0.92	Lognormal	0.0000020	0.0000015
2,3,4,6,7,8-Hexachlorodibenzofuran	13	8	0.000019	0.00000041	0.0000052	0.0000026	2.0	Inconclusive	na	0.50	0.83	Lognormal	0.0000089	0.0000089
2,3,4,7,8-Pentachlorodibenzofuran	13	1	0.000012	< 0.0000008	0.0000035	0.0000018	2.0	Inconclusive	na	0.58	0.87	Lognormal	0.000016	0.000012
2,3,7,8-Tetrachlorodibenzofuran	13	6	0.000029	< 0.000002	0.0000086	0.0000037	2.3	Inconclusive	na	0.49	0.88	Lognormal	0.000031	0.000029
2,3,7,8-Tetrachlorodibenzo-p-dioxins (TEQ) ^b	na	na	na	na	na	na	na	na	na	na	na	na	na	0.000043
Total Heptachlorodibenzofurans (HpCDF)	3	1	0.00053	< 0.00001	na ^a	0.00053								
Total Heptachlorodibenzo-p-dioxins (HpCDD)	3	2	0.0022	< 0.0000185	na ^a	0.0022								
Total Hexachlorodibenzofurans (HxCDF)	3	1	0.00019	< 0.000004	na ^a	0.00019								
Total Hexachlorodibenzo-p-dioxins (HxCDD)	3	1	0.00034	< 0.0000061	na ^a	0.00034								
Total Pentachlorodibenzofurans (PeCDF)	3	1	0.00011	< 0.0000088	na ^a	0.00011								
Total Tetrachlorodibenzofurans (TCDF)	3	1	0.00015	0.00015	na ^a	0.00015								
Soil COPC (continued)														

#### Table I-4 Human Health Summary Statistics and Derived 95% UCLs Northeast Cape, St. Lawrence Island, Alaska

Site 7

	Nun	nber of								Z-sc	ore Plots	-		
	Samples	Detections	Max Detect (mg/kg)	Min Result (mg/kg)	Stdev	Mean	cv	Shapiro-Wilkes Test	D'Agostino's Test	Normal r2	Lognormal r2	Assumed Distribution	95% UCL	EPC
Total Tetrachlorodibenzo-p-dioxins (TCDD) Diesel Range Organics (DRO)	3 24	1 21	0.000039	<0.0000069	na ^a 6 454	na ^a 1 826	na ^a 35	na ^a Lognormal	na ^a	na ^a 0 25	na ^a 0 92	na ^a Lognormal	na ^a 32,222	0.000039
Residual Range Organics (RRO)	7	7	3,900	620	1,396	2,423	0.58	Inconclusive	na	0.91	0.86	Normal	3,448	3,448
Subsurface Water COPC														
Aluminum	3	3	26	11	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	26
Barium	3	3	0.13	0.13	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.13
Cobalt	3	3	0.064	0.004	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.064
Lead	4	4	0.04	0.005	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.040
Manganese	3	3	0.593	0.060	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.59
Nickel	4	1	3.5	3.5	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	3.5
Zinc	4	3	2.5	0.02	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	2.5
Benzene	5	1	0.0021	0.0021	0.00072	0.00082	0.87	Inconclusive	na	na	na	na	na	0.0021
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin	1	1	0.00000023	0.00000023	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.00000023
2,3,7,8-Tetrachlorodibenzo-p-dioxins (TEQ) ^b	na	na	na	na	na	na	na	na	na	na	na	na	na	0.00000000023
DRO	4	3	0.66	0.39	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.66
RRO	3	3	2.7	1.1	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	2.7

Notes:

95% UCL - 95 percent upper confidence limit (UCL) on the mean concentration COPC - Chemical of Potential Concern.
CV - coefficient of variation
DRO - Diesel range organics.
EPC - Exposure point concentration
Lognormal r² - Correlation coefficient for the lognormal plot mg/kg - milligrams per kilogram na - Not applicable.
Normal r² - Correlation coefficient for the normal plot

RRO - Residual range organics. Stdev - standard deviation

^a Consistent with methods described by ADEC (ADEC, 2003) and USEPA (USEPA, 2002b), less than 5 samples in a data set are inadequate to calculate a meaningful 95% UCL. In this case, the maximum concentration was used for the EPC value.

^b Toxicity Equivalent Factors (TEFs) and subsequent Toxicity Equivalent Quotients (TEQs) derived from Draft Dioxin Reassessment, USEPA 2000c (Table 9-2).

#### Table I-5 Human Health Summary Statistics and Derived 95% UCLs Northeast Cape, St. Lawrence Island, Alaska Site 9

											_				
ImageUnit but with the sameUnit with with with with with with with wi		Nun	nber of								Z-sco	ore Plots			
Sample         Beter Game         (mpRe)         (mp				Max Detect	Min Result				Shapiro-	D'Agostino's	Normal	Lognormal	Assumed		
Set COPC Animony 5 1 1 0.000006 0000006 35 4.0 4.7 Nereal a 0.88 0.57 Nereal 8.3 0000006 3. Animony 6 15 7 0.0 4.6 5.2 4.0 1.3 Logannal a 0.88 0.57 Nereal 1.7 7 Calminin 15 4.4 7.0 0.75 2.1 2.2 0.98 Logannal a 0.99 0.91 Logannal 17 7 Calminin 15 4.4 7.0 0.75 2.1 2.2 0.98 Logannal a 0.97 0.93 Logannal 2.9 2.9 Cohine 15 1.4 39 0.0 1.5 1.4 19 0.00006 1.0 Logannal a 0.77 0.93 Logannal 2.9 2.9 Cohine 15 1.4 39 0.0 1.1 1.4 1.1 1.4 Logannal a 0.77 0.93 Logannal 2.9 2.9 Cohine 15 1.4 39 0.0 1.1 1.4 1.1 1.4 Logannal a 0.47 0.93 Logannal 2.9 1.9 Cohine 15 1.4 2.9 0.01 1.4 1.9 0.00006 1.0 Logannal 1.4 1.9 0.00006 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		Samples	Detections	(mg/kg)	(mg/kg)	Stdev	Mean	CV	Wilkes Test	Test	r ²	$\mathbf{r}^2$	Distribution	95% UCL	EPC
Anamamic         5         1         0.000036         0.35         4.9         0.72         Normal         na         0.93         0.95         Lagoncal         1.7         0.000036         0.000036           Arsning         15         7         20         0.05         5.2         2.0         9.8         Lognormal         na         0.76         0.93         Lognormal         1.7         1.7           Cabrain         15         14         0.0         5.2         2.0         9.8         Lognormal         na         0.76         0.93         Lognormal         na         0.76         0.91         Lognormal         1.7         3.8           Cobat         15         14         0.0         0.71         0.7         1.7         3.8         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7	Sail COBC														
		5	1	0.0000026	0.0000026	25	4.0	0.72	Normal		0.00	0.57	Normal	0.2	0.0000026
Anomany         15         1         1         1         1         5         1         1         0         1         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1<		5	1	0.0000056	0.0000050	5.5	4.9	0.72	INOTITIAL	na	0.88	0.37	Normai	8.5 20	0.0000036
Contamin         15         1         0         0.03         5.2         1.5         1.00         1.01         1.00         1.01         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.1         1.	America	15	1	14	<10	6.7 5.2	13	0.08	Inconclusive	na	0.95	0.90	Logiorinal	20	14
Laminania 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Arsenic	15	/	20	<0.6	5.2	4.0	1.5	Lognormal	na	0.69	0.91	Lognormal	17	17
Labolium         15         14         00         2.0         14         19         00         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05         10.05	Cadmium	15	4	7.0	0.75	2.1	2.2	0.98	Lognormal	na	0.78	0.94	Lognormal	4.1	4.1
	Chromium	15	14	60	5.0	14	19	0.70	Lognormal	na	0.77	0.93	Lognormal	29	29
	Cobalt	5	4	38	<2	15	11	1.4	Lognormal	na	0.65	0.91	Lognormal	717	38
Lad         15         14         630         -100         160         105         15         Logormal         na         0.57         0.92         Logormal         1.266         970           Mercury         15         1         0.00         -0.11         0.15         0.13         0.11         1.1         10.0         0.57         0.60         0.40         0.67         0.98         Logormal         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         1.0         0.20         0.21         1.0         0.20         0.21         1.0         0.22         0.20         0.22         0.20         0.20         0.21         1.0         0.20         0.21         1.0         0.21         1.0         0.21         1.0         0.21         1.0         0.21         1.0         0.21         1.0         0.21         1.0         0.21         1.0         0.21         1.0         0.21         0.20	Copper	15	15	429	6.0	106	53	2.0	Lognormal	na	0.40	0.89	Lognormal	98	98
Marganese         5         5         970         51         380         302         13         Lognormal         na         0.67         0.93         Lognormal         0.26         970           Nickel         15         11         100         <5	Lead	15	14	630	<10	160	105	1.5	Lognormal	na	0.57	0.92	Lognormal	276	276
Mercury         15         1         0.60         <0.1         0.15         0.15         0.11         Inconclusive         na         0.03         0.98         Lognormal         0.21         0.21           Schrinim         15         11         1.0         <5	Manganese	5	5	970	51	380	302	1.3	Lognormal	na	0.67	0.93	Lognormal	1,626	970
Nickel1511110 $< 5$ 2617157Inconclusivena0.400.82Legronmal272727Thallium210.280.28na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na*na* <th< td=""><td>Mercury</td><td>15</td><td>1</td><td>0.60</td><td>&lt; 0.1</td><td>0.15</td><td>0.13</td><td>1.1</td><td>Inconclusive</td><td>na</td><td>0.73</td><td>0.98</td><td>Lognormal</td><td>0.21</td><td>0.21</td></th<>	Mercury	15	1	0.60	< 0.1	0.15	0.13	1.1	Inconclusive	na	0.73	0.98	Lognormal	0.21	0.21
Selarium         15         1         0.0         <5         9.0         6.0         1.49         Inconclusive         na         na, ³ na ³ <td>Nickel</td> <td>15</td> <td>11</td> <td>110</td> <td>&lt;5</td> <td>26</td> <td>17</td> <td>1.57</td> <td>Inconclusive</td> <td>na</td> <td>0.40</td> <td>0.82</td> <td>Lognormal</td> <td>27</td> <td>27</td>	Nickel	15	11	110	<5	26	17	1.57	Inconclusive	na	0.40	0.82	Lognormal	27	27
Thaliam210.280.28n ¹ n ² 1.21.2Tinc1.51.51.7901.54.6321.81.01.01.01.00.000010.00010.000011.01.00.000010.000010.000010.000011.01.00.000010.000010.000010.000011.01.00.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.000010.00001	Selenium	15	1	1.0	<5	9.0	6.0	1.49	Inconclusive	na	0.80	0.94	Lognormal	73	1.0
$I_1$ $I_1$ $I_5$ $I_6$ $I_6$ $I_6$ $I_6$ $I_1$ $I_6$ <th< td=""><td>Thallium</td><td>2</td><td>1</td><td>0.28</td><td>0.28</td><td>na ^a</td><td>na ^a</td><td>na ^a</td><td>na ^a</td><td>na ^a</td><td>na ^a</td><td>na ^a</td><td>na ^a</td><td>na ^a</td><td>0.28</td></th<>	Thallium	2	1	0.28	0.28	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.28
1,1,1-Trichlonochane810.2 $\cdot 0.008$ 0.0880.0841.1Normalma0.950.88Normal0.140.141,2-Dibromochane1570.0000170.00000700.0310.0122.66Lognormal2.0670.0000171,2-Dibromochane850.0000700.00000700.0780.0451.3Inconclusivema0.430.97Lognormal87.8512.2-Dichlonopropuse810.00000700.000000520.0780.0460.421.1Normalma0.82Normal87.8510.00000752.2-Dichlonophorpuse820.00000130.0450.0460.421.1Normalma0.88Normal0.880.00000352-Chorechyl blenyl cher1020.00000130.0450.331.1Inconclusivema0.75Normal0.450.00000354-Ekorophorphenyl blenyl cher1020.00000170.0460.391.1Inconclusivema0.760.64Normal0.550.00000174-Ekorophorphenyl blenyl cher1626.0<0.0000021	Zinc	15	15	1.790	15	463	218	2.1	Inconclusive	na	0.44	0.84	Lognormal	459	459
12-Dibromovename       8       2       0.0000197       0.078       0.045       1.7       Legnormal       na       0.68       0.92       Legnormal       2.067.000         13-Dechaloropropane       8       5       0.0000070       0.031       0.078       0.012       2.6       Legnormal       na       0.43       0.97       Legnormal       87.81       0.0000072         2-Dihorophynpane       8       1       0.00000026       0.00000054       0.46       0.42       1.3       Inconclusive       na       0.82       0.83       Legnormal       87.864-00       0.0000026         2-Chinorophynpane       8       2       0.0000007       0.000007       0.031       1.5       Legnormal       na       0.82       0.75       Normal       0.45       0.0000027         2-Hicxanor       8       2       0.0000027       0.0000077       0.44       0.33       1.1       Inconclusive       na       0.75       Normal       0.45       0.0000024         4-Horophynphynelytehy       1.91       1.91       1.90       1.92       Legnormal       na       0.75       Normal       0.45       0.0000024       0.0000024       0.0000024       0.0000024       0.0000024       0.0000024 <td>1.1.1-Trichloroethane</td> <td>8</td> <td>1</td> <td>0.2</td> <td>&lt; 0.005</td> <td>0.088</td> <td>0.084</td> <td>1.1</td> <td>Normal</td> <td>na</td> <td>0.95</td> <td>0.88</td> <td>Normal</td> <td>0.14</td> <td>0.14</td>	1.1.1-Trichloroethane	8	1	0.2	< 0.005	0.088	0.084	1.1	Normal	na	0.95	0.88	Normal	0.14	0.14
1.3-Dickloroberzone       15       7       0.068       0.0000075       0.073       0.055       1.3       Inconclusive Lognormal       na       0.43       0.97       Lognormal       87,851       0.000097         2.2-Dichlorophynpine       8       1       0.0000072       0.000079       0.031       0.012       2.6       Lognormal       na       0.43       0.97       Lognormal       87,851       0.0000072         2.2-Dichlorophynpine       8       1       0.0000025       0.0000034       0.46       0.42       1.1       Normal       na       0.80       0.0000045       0.46       0.42       1.1       Normal       na       na <td< td=""><td>1 2-Dibromoethane</td><td>8</td><td>2</td><td>0.000010</td><td>0.0000097</td><td>0.078</td><td>0.045</td><td>17</td><td>Lognormal</td><td>na</td><td>0.68</td><td>0.92</td><td>Lognormal</td><td>2.06E+08</td><td>0.00001</td></td<>	1 2-Dibromoethane	8	2	0.000010	0.0000097	0.078	0.045	17	Lognormal	na	0.68	0.92	Lognormal	2.06E+08	0.00001
1.3-Dickloropropane       8       5       0.000097       0.001       2.6       Lognormal       na       0.43       0.97       Lognormal       87.851       0.0000097         2.2-Dichlorophynpane       8       1       0.0000092       0.00000492       0.00000492       0.011       1.1       Normal       na       0.82       0.83       Lognormal       87.861-09       0.0000026         2-Chlorotolptene       8       2       0.0000027       0.000013       0.045       0.031       1.5       Lognormal       na       nc	1.3-Dichlorobenzene	15	- 7	0.068	0.00000025	0.074	0.055	13	Inconclusive	na	0.74	0.94	Normal	0.12	0.068
2.2-Dicklorpropane         8         1         0.0000092         0.0000092         0.078         0.059         1.3         Inconclusive         na         0.82         0.83         Lognormal         8.76E+09         0.0000022           2-Chlorotoblene         8         2         0.0000026         0.0000078         0.23         1.0         Normal         na         nc         nc<	1.3-Dichloropropage	8	5	0.00097	0.00000020	0.031	0.012	2.6	Lognormal	na	0.43	0.97	Lognormal	87 851	0.000097
$ \begin{array}{c} 2-Chilorethyl ving there & 5 & 2 & 0.0000025 & 0.000 & 0.000013 & 0.042 & 1.1 & Mormal & ma & 0.05 & 0.05 & Degramal & 0.061 & 0.0000013 \\ 2-Chilorethyl ving there & 8 & 2 & 0.00000018 & 0.046 & 0.042 & 1.1 & Mormal & na & nc & nc & nc & nc & nc & 0.0000014 \\ 4-Bromophenyl phenyl ether & 10 & 2 & 0.0000024 & 0.0000017 & 0.033 & 1.1 & Inconclusive & na & 0.75 & 0.64 & Normal & 0.45 & 0.0000024 \\ 4-Chilorophenyl phenyl ether & 10 & 2 & 0.0000024 & 0.0000077 & 0.044 & 0.039 & 1.1 & Inconclusive & na & 0.75 & 0.64 & Normal & 0.45 & 0.0000024 \\ 4-Chilorophenyl phenyl ether & 10 & 2 & 0.00000077 & 0.046 & 0.026 & 1.8 & Lognormal & na & 0.64 & 0.92 & Lognormal & 1.9E+15 & 0.0000047 \\ 4-Chilorophenyl phenyl ether & 8 & 3 & 0.0000047 & 0.0000077 & 0.046 & 0.026 & 1.8 & Lognormal & na & 0.64 & 0.92 & Lognormal & 1.1 & 1.1 \\ Dromomethane & 8 & 1 & 0.36 & -0.005 & 0.13 & 0.10 & 1.2 & Inconclusive & na & 0.30 & 0.89 & Normal & 1.1 & 1.1 \\ 2-Methyl-4.6-dinitrophenol & 10 & 3 & 0.0000019 & 0.0000003 & 1.5 & 1.5 & 1.0 & Inconclusive & na & 0.36 & 0.89 & Normal & 2.3 & 0.000019 \\ 4-Nitrophenol & 10 & 2 & 0.0000019 & 0.0000003 & 1.5 & 1.5 & 1.0 & Inconclusive & na & 0.36 & 0.89 & Normal & 2.3 & 0.000019 \\ 4-Nitrophenol & 10 & 1 & 0.000003 & 0.00003 & 1.8 & 2.0 & 0.2 & Lognormal & na & 0.76 & 0.80 & Lognormal & 2.3 & 0.000019 \\ 4-Nitrophenol & 10 & 1 & 0.000030 & 0.00003 & 1.8 & 2.0 & 0.2 & Lognormal & na & 0.76 & 0.80 & Lognormal & 1.8E+14 & 0.0025 \\ 4-Nitrophenol & 10 & 1 & 0.000030 & 0.00003 & 0.18 & 2.0 & 0.2 & Lognormal & na & 0.76 & 0.80 & Lognormal & 1.8E+14 & 0.000013 \\ 1.2.3.4.6.7.8+Octachlorodihenzo-futran & 10 & 7 & 0.00001 & 0.0000005 & 0.000030 & 1.4 & Lognormal & na & 0.76 & 0.80 & Lognormal & 0.0015 & 0.000013 \\ 1.2.3.4.6.7.8+Hepachlorodihenzo-futran & 10 & 7 & 0.00003 & 0.0000005 & 0.000003 & 1.4 & Lognormal & na & 0.76 & 0.97 & Lognormal & 0.0011 \\ 1.2.3.4.6.7.8+Hepachlorodihenzo-futran & 10 & 7 & 0.00003 & 0.0000005 & 0.000003 & 1.4 & Lognormal & na & 0.76 & 0.95 & Lognormal & 0.00013 \\ 1.2.3.4.6.7.8+Hep$	2.2-Dichloropropane	8	1	0.0000000	0.0000070	0.078	0.059	1.3	Inconclusive	na	0.45	0.83	Lognormal	8 76E±09	0.0000000
$ \begin{array}{c} 2-\text{Linbrokingy trajecturel} & 5 & 2 & 0.0000025 & 0.0000013 & 0.045 & 0.011 & 1.5 & 1.01 mm m & 0.05 & 0.70 & 1.01 mm & 0.05 & 0.0000024 & 0.00000024 & 0.00000024 & 0.0000007 & 0.0000027 & 0.044 & 0.03 & 1.1 & Inconclusive ma & 0.75 & 0.64 & Normal & 1.05 & 0.0000024 & 0.0000007 & 0.044 & 0.026 & 1.8 & Lognormal na & 0.64 & 0.92 & Lognormal & 1.05 & 0.0000017 & 0.0000007 & 0.0000007 & 0.0000022 & 1.5 & 0.42 & 3.5 & Inconclusive ma & 0.76 & 0.80 & Lognormal & 4.91 mm & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 & 1.1 $	2 Chloroethyl vinyl ether	5	2	0.000000000	0.00000052	0.076	0.037	1.5	Normal	na	0.02	0.05	Normal	0.86	0.000000000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2 Chlorotolyano	0	2	0.0000020	0.0000000000000000000000000000000000000	0.40	0.42	1.1	Lognormal	na	0.90	0.78	Norman	0.80	0.0000020
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2-Chiofotoluene	0 5	2	0.0000043	0.0000013	0.043	0.031	1.5	Normal	na	0.87	0.75	IIC Normal	0.45	0.0000043
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4. Descend a based other	5	2	0.0000087	0.0000078	0.23	0.23	1.0	INOTITIAL	na	0.87	0.73	Normai	0.43	0.0000087
4-Loncorpheny pinety enter         10         2         0.0000029         0.0000047         0.44         0.39         1.1         inconclusive         na         0.79         0.72         Normal         1.04         0.0000047           4-Isopropriutolene         8         1         0.36         <0.000017         0.046         0.22         I.S         Inconclusive         na         0.44         0.91         0.92         Lognormal         1.19E+15         0.0000047           Bronomethane         8         1         0.36         <0.000022         1.5         0.42         3.5         Inconclusive         na         0.46         0.92         Lognormal         1.9E+15         0.0000037           2-Methyl-4.6-dinitrophenol         10         2         0.0000047         0.042         2.15         1.2         1.3         Inconclusive         na         0.76         0.80         Lognormal         5.76E+13         0.0025           4-Chorotolnene         8         4         0.020         0.000030         1.8         2.0         0.92         Inconclusive         na         0.76         0.80         Lognormal         3.0         0.00037           1.23,46.7,8-9         0.00012         0.000030         0.000038	4-Bromophenyl phenyl ether	10	2	0.0000024	0.0000012	0.38	0.33	1.1	Inconclusive	na	0.75	0.64	Normal	0.55	0.0000024
$  \begin{array}{c c c c c c c c c c c c c c c c c c c $	4-Chlorophenyl phenyl ether	10	2	0.0000029	0.00000064	0.44	0.39	1.1	Inconclusive	na	0.79	0.72	Normal	0.64	0.0000029
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4-isopropyltoluene	8	3	0.0000047	0.00000077	0.046	0.026	1.8	Lognormal	na	0.64	0.92	Lognormal	1.19E+15	0.0000047
1010tene162 $6.0$ $< 0.0025$ $1.5$ $0.42$ $5.5$ $1.0$ $na$ $0.30$ $0.89$ Normal $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ <td>Bromomethane</td> <td>8</td> <td>1</td> <td>0.36</td> <td>&lt;0.005</td> <td>0.13</td> <td>0.10</td> <td>1.2</td> <td>Inconclusive</td> <td>na</td> <td>0.91</td> <td>0.92</td> <td>Lognormal</td> <td>56</td> <td>0.36</td>	Bromomethane	8	1	0.36	<0.005	0.13	0.10	1.2	Inconclusive	na	0.91	0.92	Lognormal	56	0.36
2-Methyl-4,6-dmitrophenol         10         3         0.0000037         0.00000022         1.5         1.2         1.3         Inconclusive         na         0.76         0.80         Lognormal         4.9E+26         0.0000019           3-Nitroaniline         10         2         0.0000019         0.000008         1.5         1.0         Inconclusive         na         0.47         0.94         Lognormal         5.76E+13         0.025           4-Nitrophenol         10         1         0.000030         0.000038         1.8         2.0         0.92         Inconclusive         na         0.91         0.60         Normal         3.0         0.00013           1.2,3,4,6,7,8.9-Octachlorodibenzofuran         10         6         0.00012         0.000038         0.00028         1.3         Lognormal         na         0.71         0.96         Lognormal         0.00021         0.00013           1.2,3,4,6,7,8.9-Octachlorodibenzo-p-dioxin         10         7         0.000030         0.0000055         1.3         Lognormal         na         0.76         0.95         Lognormal         0.00021         0.000031           1.2,3,4,6,7.8-Heptachlorodibenzofuran         10         7         0.000023         0.0000025         0.0000015	Toluene	16	2	6.0	<0.0025	1.5	0.42	3.5	Inconclusive	na	0.30	0.89	Normal	1.1	1.1
$  \frac{3}{2} - \text{Nitroaniline} \\ 3 - \text{Nitroaniline} \\ 3 - \text{Control bluene} \\ 3 - \text{Chlorotol bluene} \\ 3 - \text{Chlorotol bluene} \\ 4 - \text{Chlorotol bluene} \\ 3 - \text{Chlorotol bluene} \\ 4 - \text{Nitroaniline} \\ 10 - 1 & 0.000030 & 0.000030 & 1.8 & 2.0 & 0.92 & \text{Inconclusive} \\ 1 - \text{Conclusive} \\ 3 - \text{Conclusive} \\ 1 - \text{Conormal} \\ 1 - \text{Conclusive} \\ 1 - \text{Conclusive} \\ 1 - Conclusive$	2-Methyl-4,6-dinitrophenol	10	3	0.0000037	0.00000022	1.5	1.2	1.3	Inconclusive	na	0.76	0.80	Lognormal	4.9E+26	0.0000037
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3-Nitroaniline	10	2	0.0000019	0.0000008	1.5	1.5	1.0	Inconclusive	na	0.85	0.70	Normal	2.3	0.0000019
	4-Chlorotoluene	8	4	0.025	0.00000043	0.077	0.032	2.4	Lognormal	na	0.47	0.94	Lognormal	5.76E+13	0.025
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4-Nitroaniline	10	1	0.000030	0.000030	1.8	2.0	0.92	Inconclusive	na	0.91	0.60	Normal	3.0	0.000030
1,2,3,4,6,7,8,9-Octachlorodibenzofuran       10       6       0.00012       0.0000038       0.000038       0.000036       1.4       Lognormal       na       0.71       0.96       Lognormal       0.00099       0.00012         1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin       10       9       0.0011       0.0000070       0.000080       1.4       Lognormal       na       0.73       0.96       Lognormal       0.015       0.0011         1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin       10       7       0.0000025       0.000012       0.0000080       1.4       Lognormal       na       0.73       0.96       Lognormal       0.0012       0.000030         1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin       10       8       0.00012       0.0000023       0.0000025       0.0000068       1.0       Lognormal       na       0.76       0.97       Lognormal       0.000067       0.0000066         1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin       10       4       0.0000066       0.0000012       0.64       Inconclusive       na       0.76       0.97       Lognormal       0.0000067       0.0000016         1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin       10       4       0.0000059       0.000012       0.64       Inconclusive       na <td< td=""><td>4-Nitrophenol</td><td>10</td><td>3</td><td>0.00013</td><td>0.0000088</td><td>1.5</td><td>1.2</td><td>1.3</td><td>Inconclusive</td><td>na</td><td>0.76</td><td>0.80</td><td>Lognormal</td><td>1.18E+14</td><td>0.00013</td></td<>	4-Nitrophenol	10	3	0.00013	0.0000088	1.5	1.2	1.3	Inconclusive	na	0.76	0.80	Lognormal	1.18E+14	0.00013
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,2,3,4,6,7,8,9-Octachlorodibenzofuran	10	6	0.00012	0.0000038	0.000043	0.000030	1.4	Lognormal	na	0.71	0.96	Lognormal	0.00099	0.00012
1,2,3,4,6,7,8-Heptachlorodibenzofuran107 $0.000030$ $0.0000025$ $0.000011$ $0.0000080$ $1.4$ $Lognormal$ $na$ $0.73$ $0.96$ $Lognormal$ $0.00021$ $0.000030$ $1,2,3,4,6,7,8$ -Heptachlorodibenzo-p-dioxin108 $0.00012$ $0.0000059$ $0.000005$ $1.3$ $Lognormal$ $na$ $0.76$ $0.95$ $Lognormal$ $0.0016$ $0.00012$ $1,2,3,4,7,8$ -Pettachlorodibenzofuran91 $0.0000023$ $0.0000023$ $0.0000059$ $1.0000058$ $1.0$ $Lognormal$ $na$ $0.76$ $0.97$ $Lognormal$ $0.0000018$ $1,2,3,4,7,8$ -Hetxachlorodibenzofuran104 $0.0000023$ $0.0000015$ $1.4$ $Lognormal$ $na$ $0.76$ $0.97$ $Lognormal$ $0.0000017$ $1,2,3,4,7,8$ -Hetxachlorodibenzofuran104 $0.0000029$ $0.000015$ $0.44$ $Inconclusive$ $na$ $0.88$ $0.87$ $Normal$ $0.0000017$ $0.0000017$ $1,2,3,6,7,8$ -Hetxachlorodibenzofuran102 $0.000014$ $0.0000059$ $0.0000130$ $1.1$ $Inconclusive$ $na$ $0.78$ $0.97$ $Lognormal$ $0.0000028$ $0.0000015$ $1,2,3,7,8,9$ -Hetxachlorodibenzofuran101 $0.0000038$ $0.0000055$ $0.00000130$ $1.1$ $Inconclusive$ $na$ $0.78$ $0.97$ $Lognormal$ $0.0000068$ $1,2,3,7,8,9$ -Hetxachlorodibenzo-p-dioxin104 $0.0000038$ $0.0000055$ $0.0000055$ $0.0000055$ $0.0000055$ $0.0000$	1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin	10	9	0.0011	0.0000070	0.00036	0.00028	1.3	Lognormal	na	0.79	0.96	Lognormal	0.015	0.0011
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin       10       8       0.00012       0.0000059       0.0000035       1.3       Lognormal       na       0.76       0.95       Lognormal       0.0016       0.000018         1,2,3,4,7,8,9-Heptachlorodibenzofuran       9       1       0.0000023       0.0000023       0.0000020       0.0000015       1.4       Lognormal       na       0.76       0.97       Lognormal       0.000007       0.0000066         1,2,3,4,7,8-Hexachlorodibenzofuran       10       4       0.0000066       0.0000023       0.0000012       0.64       Inconclusive       na       0.88       0.87       Normal       0.0000017       0.0000017       0.0000017       0.0000017       0.0000017       0.0000017       0.0000017       0.0000017       0.0000017       0.0000018       0.0000016       0.0000016       0.0000017       0.93       Inconclusive       na       0.88       0.87       Normal       0.0000028       0.0000016       0.0000017       0.93       Inconclusive       na       0.89       0.96       Lognormal       0.0000028       0.0000016       0.0000016       0.0000016       0.0000016       0.0000016       0.0000016       0.0000016       0.0000016       0.0000016       0.0000016       0.0000016       0.0000003       0.00	1,2,3,4,6,7,8-Heptachlorodibenzofuran	10	7	0.000030	0.00000025	0.000011	0.0000080	1.4	Lognormal	na	0.73	0.96	Lognormal	0.00021	0.000030
1,2,3,4,7,8,9-Heptachlorodibenzofuran91 $0.0000023$ $0.0000023$ $0.0000069$ $0.0000069$ $1.0$ Lognormalna $0.76$ $0.97$ Lognormal $0.000018$ $1,2,3,4,7,8$ -Hexachlorodibenzofuran104 $0.0000066$ $0.0000023$ $0.000015$ $1.4$ Lognormalna $0.70$ $0.97$ Lognormal $0.0000067$ $0.0000066$ $1,2,3,4,7,8$ -Hexachlorodibenzo-p-dioxin104 $0.0000029$ $0.0000011$ $0.0000012$ $0.64$ Inconclusivena $0.88$ $0.87$ Normal $0.0000017$ $0.0000017$ $1,2,3,6,7,8$ -Hexachlorodibenzofuran102 $0.0000016$ $0.0000014$ $0.0000015$ $0.00000112$ $0.64$ Inconclusivena $0.89$ $0.96$ Lognormal $0.0000028$ $0.0000016$ $1,2,3,5,7,8-Hexachlorodibenzofuran-p-dioxin920.00000450.00000150.00000131.1Inconclusivena0.780.97Lognormal0.0000080.00000381,2,3,7,8,9-Hexachlorodibenzofuran1010.0000038<0.000000550.000000250.000000251.2Lognormalna0.780.97Lognormal0.00000180.00000381,2,3,7,8,9-Hexachlorodibenzofuran1040.00000280.00000250.00000251.2Lognormalna0.780.97Lognormal0.00000381,2,3,7,8,9-Hexachlorodibenzo-p-dioxin910.00000280.00000250.0000003$	1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	10	8	0.00012	0.00000059	0.000045	0.000035	1.3	Lognormal	na	0.76	0.95	Lognormal	0.0016	0.00012
1,2,3,4,7,8-Hexachlorodibenzofuran104 $0.0000066$ $0.0000023$ $0.000015$ $1.4$ Lognormalna $0.70$ $0.97$ Lognormal $0.0000067$ $0.0000066$ $1,2,3,4,7,8$ -Hexachlorodibenzo-p-dioxin104 $0.0000029$ $0.000011$ $0.0000012$ $0.64$ Inconclusivena $0.88$ $0.87$ Normal $0.0000017$ $0.0000017$ $1,2,3,6,7,8$ -Hexachlorodibenzofuran102 $0.000016$ $0.0000016$ $0.0000017$ $0.93$ Inconclusivena $0.89$ $0.96$ Lognormal $0.0000028$ $0.0000016$ $1,2,3,6,7,8$ -Hexachlorodibenzofuran92 $0.0000045$ $0.0000059$ $0.00000130$ $1.1$ Inconclusivena $0.78$ $0.97$ Lognormal $0.000008$ $0.0000045$ $1,2,3,7,8,9$ -Hexachlorodibenzofuran101 $0.0000038$ $<0.00000055$ $0.00000043$ $1.3$ Inconclusivena $0.58$ $0.92$ Lognormal $0.0000038$ $1,2,3,7,8,9$ -Hexachlorodibenzofuran104 $0.0000028$ $0.0000025$ $0.00000043$ $1.3$ Inconclusivena $0.81$ $0.97$ Lognormal $0.0000038$ $1,2,3,7,8,9$ -Hexachlorodibenzo-p-dioxin104 $0.0000028$ $0.0000025$ $0.99$ Lognormal $na$ $0.81$ $0.97$ Lognormal $0.0000038$ $1,2,3,7,8,9$ -Pentachlorodibenzo-p-dioxin91 $0.0000035$ $0.0000035$ $0.0000033$ $0.39$ Inconclusivena $0.94$ $0.98$ Lognormal<	1,2,3,4,7,8,9-Heptachlorodibenzofuran	9	1	0.0000023	0.0000023	0.00000069	0.00000068	1.0	Lognormal	na	0.76	0.97	Lognormal	0.0000018	0.0000018
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin104 $0.0000029$ $0.000011$ $0.0000078$ $0.000012$ $0.64$ Inconclusivena $0.88$ $0.87$ Normal $0.000017$ $0.000017$ $1,2,3,6,7,8$ -Hexachlorodibenzofuran102 $0.000016$ $0.0000014$ $0.0000015$ $0.0000017$ $0.93$ Inconclusivena $0.89$ $0.96$ Lognormal $0.0000028$ $0.0000016$ $1,2,3,6,7,8$ -Hexachlorodibenzofuran-p-dioxin92 $0.0000045$ $0.00000150$ $0.00000130$ $1.1$ Inconclusivena $0.78$ $0.97$ Lognormal $0.0000068$ $0.0000045$ $1,2,3,7,8,9$ -Hexachlorodibenzofuran101 $0.0000038$ $<0.00000055$ $0.00000043$ $1.3$ Inconclusivena $0.58$ $0.92$ Lognormal $0.0000013$ $0.0000079$ $1,2,3,7,8,9$ -Hexachlorodibenzo-p-dioxin104 $0.0000023$ $0.0000025$ $0.0000005$ $0.98$ Lognormalna $0.81$ $0.95$ Lognormal $0.0000019$ $1,2,3,7,8,9$ -Hexachlorodibenzo-p-dioxin91 $0.0000035$ $0.0000005$ $0.98$ Lognormalna $0.81$ $0.95$ Lognormal $0.0000019$ $0.0000019$ $1,2,3,7,8,9$ -Hexachlorodibenzo-p-dioxin91 $0.0000035$ $0.00000035$ $0.00000033$ $0.39$ Inconclusivena $0.81$ $0.95$ Lognormal $0.0000019$ $0.0000019$ $1,2,3,7,8,9$ -Pentachlorodibenzo-p-dioxin91 $0.00000035$ $0.00000033$ $0.39$ <td< td=""><td>1,2,3,4,7,8-Hexachlorodibenzofuran</td><td>10</td><td>4</td><td>0.0000066</td><td>0.00000023</td><td>0.0000020</td><td>0.0000015</td><td>1.4</td><td>Lognormal</td><td>na</td><td>0.70</td><td>0.97</td><td>Lognormal</td><td>0.0000067</td><td>0.0000066</td></td<>	1,2,3,4,7,8-Hexachlorodibenzofuran	10	4	0.0000066	0.00000023	0.0000020	0.0000015	1.4	Lognormal	na	0.70	0.97	Lognormal	0.0000067	0.0000066
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	10	4	0.0000029	0.0000011	0.00000078	0.0000012	0.64	Inconclusive	na	0.88	0.87	Normal	0.0000017	0.0000017
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,2,3,6,7,8-Hexachlorodibenzofuran	10	2	0.0000016	0.0000014	0.00000066	0.00000071	0.93	Inconclusive	na	0.89	0.96	Lognormal	0.0000028	0.0000016
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1,2,3,6,7,8-Hexachlorodibenzofuran-p-dioxin	9	2	0.0000045	0.00000059	0.00000150	0.00000130	1.1	Inconclusive	na	0.78	0.97	Lognormal	0.0000068	0.0000045
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin104 $0.0000083$ $< 0.0000025$ $0.0000025$ $1.2$ Lognormalna $0.70$ $0.97$ Lognormal $0.0000079$ $0.0000079$ $1,2,3,7,8$ -Pentachlorodibenzofuran103 $0.0000021$ $0.0000022$ $0.0000063$ $0.0000065$ $0.98$ Lognormalna $0.81$ $0.95$ Lognormal $0.0000079$ $0.0000019$ $1,2,3,7,8$ -Pentachlorodibenzo-p-dioxin91 $0.0000035$ $0.0000035$ $0.0000013$ $0.39$ Inconclusivena $0.94$ $0.98$ Lognormal $0.0000045$ $0.0000035$ $2,3,4,6,7,8$ -Hexachlorodibenzofuran104 $0.0000032$ $0.0000010$ $0.0000101$ $1.0$ Lognormalna $0.84$ $0.97$ Lognormal $0.0000029$ $2,3,4,7,8$ -Pentachlorodibenzofuran103 $0.0000025$ $<0.00000074$ $0.00000074$ $0.00000010$ $1.0$ Lognormalna $0.84$ $0.97$ Lognormal $0.0000029$ $2,3,4,7,8$ -Pentachlorodibenzofuran103 $0.0000025$ $<0.00000074$ $0.00000074$ $0.00000078$ $1.1$ Lognormalna $0.75$ $0.97$ Lognormal $0.0000029$ $2,3,4,7,8$ -Pentachlorodibenzofuran103 $0.0000025$ $<0.00000074$ $0.00000074$ $0.00000078$ $0.0000020$ $0.0000020$ $2,3,7,7,8$ -Pentachlorodibenzofuran10 $3$ $0.0000025$ $<0.00000074$ $0.00000068$ $1.1$ Lognormalna $0.75$ $0.97$ Lognormal	1.2.3.7.8.9-Hexachlorodibenzofuran	10	1	0.00000038	< 0.0000008	0.00000055	0.00000043	1.3	Inconclusive	na	0.58	0.92	Lognormal	0.0000013	0.00000038
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.2.3.7.8.9-Hexachlorodibenzo-p-dioxin	10	4	0.0000083	< 0.0000004	0.0000025	0.0000020	1.2	Lognormal	na	0.70	0.97	Lognormal	0.0000079	0.0000079
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.2.3.7.8-Pentachlorodibenzofuran	10	3	0.0000021	0.00000022	0.00000063	0.00000065	0.98	Lognormal	na	0.81	0.95	Lognormal	0.0000019	0.0000019
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 3 7 8-Pentachlorodibenzo-n-dioxin	9	1	0.00000035	0.00000035	0.00000013	0.00000033	0.39	Inconclusive	na	0.94	0.98	Lognormal	0.00000045	0.00000035
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 3 4 6 7 8-Hexachlorodibenzofuran	10	4	0.00000032	0.0000000000000000000000000000000000000	0.0000010	0.0000000000000000000000000000000000000	1.0	Lognormal	na	0.84	0.97	Lognormal	0.0000029	0.0000000000000000000000000000000000000
$2_{1,277,7,0}$ curaching output interms 10 5 0.0000025 0.0000000 1.1 Logini IIIa II $0.75$ 0.77 Logini IIIa 0.000020 0.0000020 0.0000000 1.1 Logini IIIa 0.75 0.77 0.02 0.0000020 0.0000020 0.0000020 0.0000000 1.1 Logini IIIa 0.75 0.77 0.02 0.0000020 0.0000020 0.0000000 0.0000000 0.0000000 0.000000	2.3.4.7 8 Pentachlorodibenzofuran	10	7	0.0000032	<0.00000000	0.0000010	0.0000010	1.0	Lognormal	na	0.04	0.97	Lognormal	0.0000029	0.0000029
-2.5 ( $h$ -relacionormal na $-1.7$ $-0.93$ $-1.000005$ $-1.000005$ $-1.000005$ $-1.000005$ $-1.000005$ $-1.000005$ $-1.000005$ $-1.000005$ $-1.000005$ $-1.000005$ $-1.000005$ $-1.000005$ $-1.000005$ $-1.000005$ $-1.000005$ $-1.000005$ $-1.000005$ $-1.000005$ $-1.000005$ $-1.000005$ $-1.000005$ $-1.000005$ $-1.000005$ $-1.000005$ $-1.0000005$ $-1.000005$ $-1.000005$ $-1.000005$ $-1.000005$ $-1.000005$ $-1.000005$ $-1.000005$ $-1.000005$ $-1.000005$ $-1.0000005$ $-1.000005$ $-1.000005$ $-1.000005$ $-1.0000005$ $-1.000005$ $-1.0000005$ $-1.0000005$ $-1.0000005$ $-1.0000005$ $-1.0000005$ $-1.0000005$ $-1.000000000000000000000000000000000000$	2.3.7.8-Tetrachlorodibenzofuran	10	7	0.0000025	0.0000002	0.00000074	0.0000000	13	Lognormal	na	0.75	0.93	Lognormal	0.000015	0.0000020

#### Table I-5 Human Health Summary Statistics and Derived 95% UCLs Northeast Cape, St. Lawrence Island, Alaska Site 9

	N	1 6								7				
	Nur	nber of	May Dataat	Min Docult				Chanina	D! A gostinola	Z-sc Normal	Lognormal	Assumed		
	Samples	Detections	(mg/kg)	(mg/kg)	Stdev	Mean	CV	Wilkes Test	D Agostino s Test	r ²	r ²	Distribution	95% UCL	EPC
Soil COPC (continued)														
2,3,7,8-Tetrachlorodibenzo-p-dioxin	10	3	0.0000017	< 0.0000001	0.00000057	0.00000045	1.3	Lognormal	na	0.66	0.90	Lognormal	0.0000014	0.0000014
2,3,7,8-Tetrachlorodibenzo-p-dioxins (TEQ) ^b	na	na	na	na	na	na	na	na	na	na	na	na	na	0.0000085
Total Heptachlorodibenzofurans (HpCDF)	3	1	0.000095	na ^a	na ^a	na ^a	na ^a	na ^a	0.0001					
Total Heptachlorodibenzo-p-dioxins (HpCDD)	3	2	0.00018	na ^a	na ^a	na ^a	na ^a	na ^a	0.00018					
Total Tetrachlorodibenzofurans (TCDF)	3	2	0.000010	na ^a	na ^a	na ^a	na ^a	na ^a	0.00001					
Diesel Range Organics (DRO)	16	16	510	8.9	150	170	0.88	Inconclusive	na	0.89	0.95	Lognormal	462	462
Residual Range Organics (RRO)	6	6	2,100	53	705	959	0.74	Inconclusive	na	0.97	0.82	Normal	1,539	1,539
Subsurface Water COPC														
Aluminum	2	2	164	49	na ^a	na ^a	na ^a	na ^a	na ^a	164				
Antimony	5	1	0.12	< 0.05	0.036	0.059	0.61	Inconclusive	na	0.88	0.99	Lognormal	0.15	0.12
Barium	2	2	1.2	0.27	na ^a	na ^a	na ^a	na ^a	na ^a	1.2				
Cobalt	2	2	0.037	0.12	na ^a	na ^a	na ^a	na ^a	na ^a	0.037				
Lead	5	5	0.30	0.019	0.12	0.092	1.3	Lognormal	na	0.64	0.87	Lognormal	1.2	0.30
Manganese	2	2	2.2	0.33	na ^a	na ^a	na ^a	na ^a	na ^a	2.2				
Nickel	5	2	0.11	< 0.05	0.040	0.053	0.75	Normal	na	0.79	0.77	Normal	0.091	0.091
Vanadium	2	2	0.15	0.10	na ^a	na ^a	na ^a	na ^a	na ^a	0.15				
Benzene	8	1	0.0012	< 0.001	0.00025	0.00059	0.42	Inconclusive	na	nc	nc	nc	nc	0.00075
1,2,3,4,6,7,8,9-Octachlorodibenzofuran	2	2	0.000000060	0.000000044	na ^a	na ^a	na ^a	na ^a	na ^a	0.00000060				
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin	2	2	0.0000010	0.00000031	na ^a	na ^a	na ^a	na ^a	na ^a	0.0000010				
1,2,3,4,6,7,8-Heptachlorodibenzofuran	2	1	0.00000037	< 0.00000019	na ^a	na ^a	na ^a	na ^a	na ^a	0.00000037				
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	2	2	0.00000013	0.00000048	na ^a	na ^a	na ^a	na ^a	na ^a	0.00000013				
2,3,7,8-Tetrachlorodibenzofuran	2	1	0.00000036	< 0.00000002	na ^a	na ^a	na ^a	na ^a	na ^a	0.00000036				
2,3,7,8-Tetrachlorodibenzo-p-dioxins (TEQ) ^b	na	na	na	na	na	na	na	na	na	na	na	na	na	0.000000054
DRO	6	5	7.7	< 0.25	2.9	1.8	1.6	Lognormal	na	0.57	0.89	Lognormal	49	7.7
GRO	2	1	4.2	4.2	na ^a	na ^a	na ^a	na ^a	na ^a	4.2				

Notes:

95% UCL - 95 percent upper confidence limit (UCL) on the mean concentration COPC - Chemical of Potential Concern. CV - coefficient of variation

DRO - Diesel range organics.

EPC - Exposure point concentration

Lognormal r² - Correlation coefficient for the lognormal plot

mg/kg - milligrams per kilogram

na - not applicable

nc - not calculated due to low variance in values.

Normal r² - Correlation coefficient for the normal plot

RRO - Residual range organics.

Stdev - standard deviation

^a Consistent with methods described by ADEC (ADEC, 2003) and USEPA (USEPA, 2002b), less than 5 samples in a data set are inadequate to calculate a meaningful 95% UCL. In this case, the maximum concentration was used for the EPC value.

^b Toxicity Equivalent Factors (TEFs) and subsequent Toxicity Equivalent Quotients (TEQs) derived from Draft Dioxin Reassessment, USEPA 2000c (Table 9-2).

#### Table I-6 Human Health Summary Statistics and Derived 95% UCLs Northeast Cape, St. Lawrence Island, Alaska Site 10

	Nun	nber of								Z-sc	ore Plots	_		
	Samples	Detections	Max Detect (mg/kg)	Min Result (mg/kg)	Stdev	Mean	CV	Shapiro- Wilkes Test	D'Agostino's Test	Normal r ²	Lognormal r ²	Assumed Distribution	95% UCL	EPC
Soil COPC														
Thallium	1	1	0.34	0.34	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.34
DRO	11	11	26,500	59	11,129	8,952	1.2	Lognormal	na	0.71	0.92	Lognormal	730,658	26,500
DRO_Aromatic	1	1	38	38.0	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	38

#### Notes:

95% UCL - 95 percent upper confidence limit (UCL) on the mean concentration

COPC - Chemical of Potential Concern.

CV - coefficient of variation

DRO - Diesel range organics.

EPC - Exposure point concentration

Lognormal  $r^2$  - Correlation coefficient for the lognormal plot

mg/kg - milligrams per kilogram

na - Not applicable.

Normal  $\boldsymbol{r}^2$  - Correlation coefficient for the normal plot

Stdev - standard deviation

#### Table I-7 Human Health Summary Statistics and Derived 95% UCLs Northeast Cape, St. Lawrence Island, Alaska Site 11

	Nun	nber of								Z-sco	ore Plots			
			Max Detect	Min Result				Shapiro-	D'Agostino's	Normal	Lognormal	Assumed		
	Samples	Detections	(mg/kg)	(mg/kg)	Stdev	Mean	CV	Wilkes Test	Test	$\mathbf{r}^2$	$\mathbf{r}^2$	Distribution	95% UCL	EPC
Soil COPC														
Ethylbenzene	9	1	0.85	0.85	0.28	0.096	3.0	Inconclusive	na	na	na	na	na	0.85
DRO	9	9	69,100	11	23,195	10,306	2.3	Lognormal	na	0.54	0.91	Lognormal	##########	69,100
GRO	9	1	192	192	64	22	2.9	Inconclusive	na	na	na	na	na	192
Subsurface Water COPC														
Benzene	4	1	0.010	0.010	na ^a	0.010								
Methylene chloride	2	1	0.011	0.011	na ^a	0.011								
n-Propylbenzene	2	1	0.016	0.016	na ^a	0.016								
Naphthalene	2	1	0.39	0.39	na ^a	0.39								
DRO	4	4	45	0.34	na ^a	45								
GRO	2	1	1.1	1.1	na ^a	1.1								

#### Notes:

95% UCL - 95 percent upper confidence limit (UCL) on the mean concentration

COPC - Chemical of Potential Concern.

CV - coefficient of variation

DRO - Diesel range organics.

EPC - Exposure point concentration

GRO - Gasoline Range Organics

Lognormal r² - Correlation coefficient for the lognormal plot

mg/kg - milligrams per kilogram

na - Not applicable.

Normal r² - Correlation coefficient for the normal plot

RRO - Residual range organics.

Stdev - standard deviation

#### Table I-8 Human Health Summary Statistics and Derived 95% UCLs Northeast Cape, St. Lawrence Island, Alaska Site 13

	Nun	nber of								Z-sco	ore Plots			
			Max Detect	Min Result				Shapiro-	D'Agostino's	Normal	Lognormal	Assumed		
	Samples	Detections	(mg/kg)	(mg/kg)	Stdev	Mean	CV	Wilkes Test	Test	$\mathbf{r}^2$	$\mathbf{r}^2$	Distribution	95% UCL	EPC
Soil COPC	20	2	0.042	0.010	0.0075	0.0000	0.07	x 1 ·		0.00	0.01	x 1	0.010	0.012
Benzene	29	3	0.043	0.018	0.0075	0.0089	0.85	Inconclusive	na	0.60	0.81	Lognormal	0.012	0.012
Ethylbenzene	29	12	1.4	0.11	0.46	0.30	1.5	Inconclusive	na	0.69	0.95	Lognormal	2.7	1.4
m,p,-Xylene	24	13	4.0	0.13	1.2	0.72	1.6	Lognormal	na	0.67	0.92	Lognormal	6.0	4.0
o-Xylene	24	13	1.5	0.010	0.41	0.24	1.7	Inconclusive	na	0.61	0.89	Lognormal	0.80	0.80
Toluene	29	7	0.86	0.018	0.029	0.028	1.0	Inconclusive	na	0.65	0.86	Lognormal	0.80	0.80
PCB-1260 (Aroclor 1260)	33	23	115	0.0065	29	14	2.1	Inconclusive	na	0.54	0.94	Lognormal	586	115
Naphthalene	24	19	15	0.0037	4.4	2.9	1.5	Inconclusive	na	0.71	0.84	Lognormal	4,196	15
DRO	29	29	12,000	21	3,620	3,096	1.2	Lognormal	na	0.82	0.95	Lognormal	17,222	12,000
GRO	29	20	294	3.0	81	68	1.2	Inconclusive	na	0.83	0.90	Lognormal	1,001	294
RRO	24	24	3,400	7.4	767	379	2.0	Lognormal	na	0.47	0.98	Lognormal	1,072	1,072
Subsurface Water COPC														
Arsenic	2	2	0.073	0.036	na ^a	0.073								
Copper	2	2	0.21	0.14	na ^a	0.21								
Lead	2	2	0.45	0.33	na ^a	0.45								
Lead, dissolved	2	1	0.015	0.015	na ^a	0.015								
Nickel	2	2	0.17	0.12	na ^a	0.17								
Benzene	8	5	0.12	0.0012	0.041	0.020	2.1	Lognormal	na	0.53	0.95	Lognormal	21	0.12
Ethylbenzene	8	8	0.15	0.018	0.041	0.068	0.61	Inconclusive	na	0.92	0.98	Lognormal	0.14	0.14
Toluene	8	5	0.17	0.00011	0.068	0.037	1.8	Lognormal	na	0.61	0.87	Lognormal	946	0.17
DRO	8	8	100	6.1	33	35	0.92	Lognormal	na	0.81	0.97	Lognormal	117	100
GRO	6	6	4.0	0.52	1.4	2.0	0.72	Inconclusive	na	0.86	0.03	Lognormal	7.4	4.0
RRO	5	4	2.3	0.18	0.18	2.2	2.2	Inconclusive	na	0.16	0.00029	Lognormal	518	2.3
												0		

#### Notes:

95% UCL - 95 percent upper confidence limit (UCL) on the mean concentration

COPC - Chemical of Potential Concern.

CV - coefficient of variation

DRO - Diesel range organics.

EPC - Exposure point concentration

GRO - Gasoline range organics.

Lognormal r² - Correlation coefficient for the lognormal plot

mg/kg - milligrams per kilogram

na - Not applicable.

Normal r² - Correlation coefficient for the normal plot

RRO - Residual range organics.

Stdev - standard deviation

#### Table I-9 Human Health Summary Statistics and Derived 95% UCLs Northeast Cape, St. Lawrence Island, Alaska Site 15

	Nun	iber of								Z-sco	ore Plots			
	Samples	Detections	Max Detect (mg/kg)	Min Result (mg/kg)	Stdev	Mean	CV	Shapiro- Wilkes Test	D'Agostino's Test	Normal r ²	Lognormal r ²	Assumed Distribution	95% UCL	EPC
Soil COPC														
Ethylbenzene	4	2	1.0	0.025	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	1.0
m,p-Xylene	2	2	1.8	0.043	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	1.8
o-Xylene	2	1	0.015	0.015	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.015
Naphthalene	2	2	28	0.90	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	28
DRO	4	4	16,000	2,190	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	16,000
GRO	4	2	110	60	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	110
Subsurface Water COPC														
Arsenic	1	1	0.11	0.11	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.11
Arsenic, Dissolved	1	1	0.006	0.006	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.006
Lead	1	1	0.68	0.68	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.68
Nickel	1	1	0.20	0.20	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.20
DRO	2	2	960	9.3	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	960
RRO	1	1	3.8	3.8	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	3.8

Notes:

95% UCL - 95 percent upper confidence limit (UCL) on the mean concentration

COPC - Chemical of Potential Concern.

CV - coefficient of variation

DRO - Diesel range organics.

EPC - Exposure point concentration

GRO - Gasoline range organics.

Lognormal r² - Correlation coefficient for the lognormal plot

mg/kg - milligrams per kilogram

na - Not applicable.

Normal  $\boldsymbol{r}^2$  - Correlation coefficient for the normal plot

Stdev - standard deviation

#### Table I-10 Human Health Summary Statistics and Derived 95% UCLs Northeast Cape, St. Lawrence Island, Alaska Site 16

										7				
	Nun	iber of						<i>.</i>		Z-sco	ore Plots	<u>.</u>		
	Commiss	Detections	Max Detect	Min Result	Stdow	Moon	CV	Shapiro- Willion Toot	D'Agostino's Test	normai " ²	Lognorman "2	Assumed	059/ UCI	FDC
	Samples	Detections	(mg/kg)	(mg/kg)	Stuev	Mean	CV	wilkes Test	Test	Г	ſ	Distribution	95% UCL	EFC
Soil COPC														
Antimony	13	2	21	14	5.1	6.7	0.76	Inconclusive	na	0.82	0.99	Lognormal	9.6	9.6
Arsenic	13	13	12	3.3	2.2	5.3	0.42	Lognormal	na	0.70	0.87	Lognormal	6.4	6.4
Beryllium	13	2	1.2	1.1	0.060	1.0	0.1	Inconclusive	na	0.97	0.98	Lognormal	1.1	1.1
Cadmium	13	4	7.2	1.4	1.7	1.6	1.1	Inconclusive	na	0.56	0.89	Lognormal	2.4	2.4
Chromium	13	13	147	8.9	40	38	1.1	Lognormal	na	0.70	0.92	Lognormal	69	69
Lead	15	15	822	18	231	178	1.3	Lognormal	na	0.70	0.97	Lognormal	530	530
Thallium	13	2	0.26	0.19	3.7	8.5	0.43	Inconclusive	na	0.97	0.98	Lognormal	36	0.26
Zinc	13	13	12,100	41	3,315	1,081	3.1	Inconclusive	na	0.32	0.76	Lognormal	3,521	3,521
Methylene chloride	4	2	0.0072	0.0061	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.0072
PCB-1260 (Aroclor 1260)	15	6	1.4	0.019	0.41	0.22	1.9	Inconclusive	na	0.58	0.79	Lognormal	0.78	0.78
Subsurface Water COPC														
Beryllium	3	2	0.04	0.02	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.04
Cadmium	3	1	0.06	0.06	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.06
Copper	3	3	0.50	0.16	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.50
Lead	5	5	0.67	0.0029	0.28	0.26	1.1	Inconclusive	na	0.93	0.91	Normal	0.53	0.53
Lead, Dissolved	3	1	0.004	0.004	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.004
Nickel	3	3	0.42	0.11	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.42
Zinc	3	3	1.5	0.54	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	1.5
4-Isopropyltoluene	5	1	0.0066	0.0066	0.0027	0.0017	1.6	Inconclusive	na	na	na	na	na	0.0066
n-Propylbenzene	5	2	0.00490	0.00430	0.0023	0.0021	1.1	Inconclusive	na	0.95	0.92	Normal	0.0043	0.0043
sec-Butylbenzene	5	1	0.0040	0.0040	0.00045	0.0048	0.093	Inconclusive	na	nc	nc	nc	nc	0.0040
Trichloroethene	5	1	0.0033	0.0033	0.0013	0.0011	1.2	Inconclusive	na	0.53	0.53	Lognormal	0.0058	0.0033
bis-(2-ethylhexyl)phthalate	5	3	0.025	0.0014	0.0098	0.0078	0.1	Inconclusive	na	0.40	0.15	Normal	0.017	0.017

#### Notes:

95% UCL - 95 percent upper confidence limit (UCL) on the mean concentration COPC - Chemical of Potential Concern. CV - coefficient of variation EPC - Exposure point concentration Lognormal  $r^2$  - Correlation coefficient for the lognormal plot mg/kg - milligrams per kilogram na - Not applicable. nc - Not calculated due to low variance in values. Normal  $r^2$  - Correlation coefficient for the normal plot Stdev - standard deviation

#### Table I-11 Human Health Summary Statistics and Derived 95% UCLs Northeast Cape, St. Lawrence Island, Alaska Site 19

	Nur	nber of								Z-sc	ore Plots			
			Max Detect	Min Result				Shapiro-	D'Agostino's	Normal	Lognormal	Assumed		
	Samples	Detections	(mg/kg)	(mg/kg)	Stdev	Mean	CV	Wilkes Test	Test	r ²	$\mathbf{r}^2$	Distribution	95% UCL	EPC
Soil COPC				• •							<b>-</b>			
Cadmium	8	2	3.2	2.9	1	2	0.63	Inconclusive	na	0.98	0.97	Normal	2.2	2.2
Chromium	16	16	59	4.4	14	18	0.80	Lognormal	na	0.77	0.97	Lognormal	27	27
Lead	16	16	329	14	77	54	1.4	Inconclusive	na	0.49	0.88	Lognormal	86	86
Benzene	15	1	0.74	0.74	0.36	0.14	2.6	Inconclusive	na	0.47	0.8	Lognormal	1.2	0.74
Ethylbenzene	15	2	3.0	0.22	0.81	0.31	2.6	Inconclusive	na	0.47	0.93	Lognormal	14	3.0
m,p-Xylene	8	1	0.20	0.20	0.065	0.041	1.6	Inconclusive	na	0.45	0.64	Lognormal	0.11	0.11
Toluene	15	1	3.1	3.1	0.84	0.30	2.8	Inconclusive	na	0.44	0.89	Lognormal	7.4	3.1
Xylenes	7	2	17	8.0	6.7	3.6	1.9	Inconclusive	na	0.97	0.96	Normal	8.6	8.6
DRO	16	14	13,300	7.0	3.401	1.670	2.0	Lognormal	na	0.53	0.59	Lognormal	380.682	13,300
GRO	16	5	6,650	4.9	1,657	450	3.7	Inconclusive	na	0.28	0.80	Lognormal	14,173	6,650
Subsurface Water COPC														
Copper	2	2	0.20	0.04	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.20
Lead	2	2	0.42	0.14	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.42
Benzene	8	4	0.025	0.006	0.0087	0.0036	2.4	Inconclusive	na	0.43	0.69	Lognormal	0.032	0.025
Ethane	4	1	0.0017	0.0017	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.0017
DRO	4	1	24	0.0017	14	12	1.0	Inconclusivo	na	0.01	0.04	Lognormal	607	24
CDO	0	0	54	0.71	14	15	1.0	L a ser a ser s 1	11a	0.91	0.94	Lognormal	0.524	54
	6	4	0.1	0.024	2.4	1.1	2.2	Lognormal	na	0.51	0.79	Lognormal	9,534	0.1
KKU	6	5	1.5	0.22	0.51	0.65	0.79	Inconclusive	na	0.90	0.95	Lognormal	5.2	1.3

#### Notes:

95% UCL - 95 percent upper confidence limit (UCL) on the mean concentration COPC - Chemical of Potential Concern.
CV - coefficient of variation
DRO - Diesel range organics.
EPC - Exposure point concentration
GRO - Gasoline range organics.
Lognormal r² - Correlation coefficient for the lognormal plot mg/kg - milligrams per kilogram na - Not applicable
Normal r² - Correlation coefficient for the normal plot RRO - Residual range organics.
Stdev - standard deviation
	Nun	nber of								Z-sco	ore Plots			
			Max Detect	Min Result				Shapiro-	D'Agostino's	Normal	Lognormal	Assumed		
	Samples	Detections	(mg/kg)	(mg/kg)	Stdev	Mean	CV	Wilkes Test	Test	$\mathbf{r}^2$	$\mathbf{r}^2$	Distribution	95% UCL	EPC
Soil COPC														
Aluminum	10	10	33,100	3.975	7.678	17.258	0.44	Inconclusive	na	0.91	0.81	Normal	21,708	21,708
Antimony	19	1	38	38	7.9	7.6	1.0	Inconclusive	na	0.53	0.82	Lognormal	9.7	9.7
Arsenic	19	19	170	2.8	38	18	2.0	Lognormal	na	0.38	0.87	Lognormal	28	28
Barium	10	10	193	56.5	37	120	0.31	Normal	na	0.95	0.93	Normal	141	141
Cadmium	19	8	69	0.40	16	4.5	3.5	Lognormal	na	0.26	0.74	Lognormal	5.2	5.2
Chromium	19	19	93	4.0	21	27	0.76	Inconclusive	na	0.83	0.96	Lognormal	44	44
Cobalt	10	10	14	2.5	4.0	7.4	0.54	Inconclusive	na	0.93	0.97	Lognormal	12	12
Manganese	10	10	786	77	269	405	0.66	Inconclusive	na	0.92	0.92	Normal	561	561
Mercury	19	6	4.8	0.07	1.3	0.48	2.6	Lognormal	na	0.42	0.72	Lognormal	0.76	0.76
Selenium	19	3	2.0	1.0	4.1	3.7	1.1	Inconclusive	na	0.87	0.95	Lognormal	15	2.0
Silver	19	3	6.7	0.90	1.7	1.2	1.4	Lognormal	na	0.58	0.94	Lognormal	2.1	2.1
Thallium	19	1	0.53	0.53	3.7	7.6	0.48	Inconclusive	na	0.97	0.83	Normal	9.1	0.53
Vanadium	10	10	81	8.5	19	45	0.43	Normal	na	0.93	0.76	Normal	56	56
Zinc	19	19	1,130	24	280	252	1.1	Lognormal	na	0.69	0.97	Lognormal	480	480
1,2,4-Trimethylbenzene	4	2	0.19	0.032	na ^a	0.19								
m,p-Xylene	14	7	0.096	0.007	0.024	0.017	1.4	Lognormal	na	0.64	0.97	Lognormal	0.048	0.048
Methylene chloride	4	1	0.006	0.006	na ^a	0.006								
n-Butylbenzene	4	1	0.062	0.062	na ^a	0.062								
n-Propylbenzene	4	1	0.04	0.04	na ^a	0.04								
o-Xylene	14	1	0.006	0.006	0.0042	0.0048	0.88	Inconclusive	na	0.23	0.19	Normal	0.007	0.006
sec-Butylbenzene	4	1	0.036	0.036	na ^a	0.036								
4-Chloroaniline	9	1	5.5	5.5	1.7	1.2	1.4	Lognormal	na	0.66	0.98	Lognormal	5.6	5.5
PCB-1260 (Aroclor 1260)	19	4	3	0.15	2.9	0.91	3.2	Inconclusive	na	0.33	0.72	Lognormal	2.4	2.4
DRO	19	16	3,800	46	859	514	1.7	Inconclusive	na	0.52	0.82	Lognormal	13,909	3,800
RRO	10	10	3,700	25	1,121	1,735	0.65	Normal	na	0.93	0.72	Normal	2,384	2,384
Subsurface Water COPC														
Arsenic	2	2	0.072	0.041	na ^a	0.072								
Copper	2	2	0.26	0.10	na ^a	0.26								
Lead	2	2	0.26	0.10	na ^a	0.26								
Mercury	2	1	0.0006	0.0006	na ^a	0.0006								
Nickel	2	2	0.18	0.10	na ^a	0.18								
Zinc	2	2	5.1	0.65	na ^a	5.1								
n-Propylbenzene	2	1	0.0011	0.0011	na ^a	0.0011								
DRO	2	2	1.0	0.59	na ^a	1.0								

Number of								Z-sco	ore Plots			
	Max Detect	Min Result				Shapiro-	D'Agostino's	Normal 2	Lognormal	Assumed		
Samples Detections	(mg/kg)	(mg/kg)	Stdev	Mean	CV	Wilkes Test	Test	r	r	Distribution	95% UCL	EPC

# Notes:

95% UCL - 95 percent upper confidence limit (UCL) on the mean concentration
COPC - Chemical of Potential Concern.
CV - coefficient of variation
DRO - Diesel range organics.
EPC - Exposure point concentration
Lognormal r² - Correlation coefficient for the lognormal plot
mg/kg - milligrams per kilogram
na - Not applicable.
Normal r² - Correlation coefficient for the normal plot
RRO - Residual range organics.
Stdev - standard deviation
a Consistent with methods described by ADEC (ADEC, 2003) and USEPA (USEPA, 2002b), less than 5 samples in a data set are inadequate to calculate a meaningful 95% UCL. In this case, the maximum concentration was used for the EPC value.

# Table I-13 Human Health Summary Statistics and Derived 95% UCLs Northeast Cape, St. Lawrence Island, Alaska Site 22

	Nun	nber of								Z-sco	ore Plots			
			Max Detect	Min Result				Shapiro-	D'Agostino's	Normal	Lognormal	Assumed		
	Samples	Detections	(mg/kg)	(mg/kg)	Stdev	Mean	CV	Wilkes Test	Test	$\mathbf{r}^2$	$\mathbf{r}^2$	Distribution	95% UCL	EPC
Soil COPC														
Lead	9	9	497	5.4	152	102	1.5	Lognormal	na	0.57	0.91	Lognormal	597	497
o-Xylene	8	3	0.37	0.15	0.13	0.11	1.2	Inconclusive	na	0.75	0.80	Lognormal	0.81	0.37
Benzo(a)pyrene	11	1	0.35	0.35	0.10	0.035	3.0	Inconclusive	na	0.33	0.40	Lognormal	0.079	0.079
DRO	10	5	4,070	284	1,619	1,232	1.3	Inconclusive	na	0.83	0.86	Lognormal	93,037,525	4,070
GRO	10	3	38	24	14	10	1.4	Lognormal	na	0.72	0.88	Lognormal	135	38
RRO	8	7	3,815	5.4	1,313	576	2.3	Lognormal	na	0.46	0.96	Lognormal	159,483	3,815
Subsurface Water COPC														
Manganese	3	3	0.20	0.12	na ^a	0.20								
Manganese, Dissolved	3	3	0.17	0.09	na ^a	0.17								
DRO	4	2	1.4	0.28	na ^a	1.4								
RRO	3	1	2.8	2.8	na ^a	2.8								

# Notes:

95% UCL - 95 percent upper confidence limit (UCL) on the mean concentration

COPC - Chemical of Potential Concern.

CV - coefficient of variation

DRO - Diesel range organics.

EPC - Exposure point concentration

GRO - Gasoline range organics.

Lognormal  $\boldsymbol{r}^2$  - Correlation coefficient for the lognormal plot

mg/kg - milligrams per kilogram

na - Not applicable.

Normal r² - Correlation coefficient for the normal plot

RRO - Residual range organics.

Stdev - standard deviation

# Table I-14 Human Health Summary Statistics and Derived 95% UCLs Northeast Cape, St. Lawrence Island, Alaska Site 27

	Nun	nber of								Z-sco	ore Plots			
	Samples	Detections	Max Detect (mg/kg)	Min Result (mg/kg)	Stdev	Mean	cv	Shapiro- Wilkes Test	D'Agostino's Test	Normal r ²	Lognormal r ²	Assumed Distribution	95% UCL	EPC
Soil COPC														
Benzene	30	11	0.80	< 0.0025	0.16	0.089	1.8	Lognormal	na	0.54	0.97	Lognormal	0.28	0.28
Ethylbenzene	30	19	8.09	< 0.0025	1.7	0.93	1.8	Lognormal	na	0.59	0.96	Lognormal	14	8.1
m,p-Xylene	25	21	25	0.068	5.8	3.7	1.6	Lognormal	na	0.67	0.96	Lognormal	48	25
o-Xylene	25	21	16	0.010	3.8	3.0	1.3	Inconclusive	na	0.76	0.91	Lognormal	83	16
Toluene	30	11	7.6	< 0.0025	1.7	0.80	2.1	Lognormal	na	0.54	0.95	Lognormal	10	7.6
Naphthalene	25	23	191	0.0011	43	25	1.7	Inconclusive	na	0.62	0.93	Lognormal	159,536	191
DRO	35	35	51,000	11	14,364	10,125	1.4	Inconclusive	na	0.74	0.94	Lognormal	293,675	51,000
GRO	30	23	491	2.3	132	140	1.3	Inconclusive	na	0.79	0.94	Lognormal	1,235	491
RRO	25	23	9,100	16	2,453	2,620	0.94	Inconclusive	na	0.89	0.88	Normal	3,459	3,459
Subsurface Water COPC														
Lead	1	1	0.19	0.19	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.19
Lead, Dissolved	1	1	0.0020	0.0020	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.0020
Manganese	1	1	0.20	0.20	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.20
Benzene	3	2	0.030	< 0.001	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.03
Ethylbenzene	3	2	0.12	< 0.001	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.12
DRO	3	3	64	1.4	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	64
GRO	3	2	1.7	< 0.1	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	1.7
RRO	1	1	1.6	1.6	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	1.6

# Notes:

95% UCL - 95 percent upper confidence limit (UCL) on the mean concentration COPC - Chemical of Potential Concern. CV - coefficient of variation DRO - Diesel range organics. EPC - Exposure point concentration GRO - Gasoline range organics. Lognormal  $r^2$  - Correlation coefficient for the lognormal plot mg/kg - milligrams per kilogram na - Not applicable. Normal  $r^2$  - Correlation coefficient for the normal plot RRO - Residual range organics. Stdev - standard deviation

# Table I-15 Human Health Summary Statistics and Derived 95% UCLs Northeast Cape, St. Lawrence Island, Alaska Site 28

	Num	iber of								Z-sco	ore Plots			
			Max Detect	Min Result				Shapiro-	D'Agostino's	Normal	Lognormal	Assumed		
	Samples	Detections	(mg/kg)	(mg/kg)	Stdev	Mean	CV	Wilkes Test	Test	$r^2$	$\mathbf{r}^2$	Distribution	95% UCL	EPC
Soil COPC														
Beryllium	11	1	1.8	1.8	0.43	1.3	0.34	Inconclusive	na	0.95	0.98	Normal	1.5	1.5
Thallium	11	1	0.26	0.26	5.2	11	0.48	Inconclusive	na	0.82	0.56	Normal	14	0.26
Ethylbenzene	10	1	1.1	1.1	0.34	0.12	2.9	Inconclusive	na	0.43	0.86	Lognormal	9.0	1.1
Methylene chloride	5	4	0.16	0.0071	0.065	0.050	1.3	Inconclusive	na	0.79	1.0	Lognormal	21	0.16
PCB-1254 (Aroclor 1254)	19	4	1.5	0.20	0.39	0.21	1.9	Inconclusive	na	0.55	0.82	Lognormal	0.47	0.47
Benzo(a)anthracene	8	1	4.4	4.4	1.5	1.0	1.5	Lognormal	na	0.70	0.91	Lognormal	2,030	4.4
Benzo(a)pyrene	8	1	2.3	2.3	0.82	0.74	1.1	Inconclusive	na	0.87	0.87	Lognormal	850	2.3
Benzo(b)fluoranthene	8	1	2.6	2.6	0.91	0.78	1.2	Inconclusive	na	0.85	0.88	Lognormal	1,072	2.6
DRO	21	20	92,650	7.9	27,349	18,613	1.5	Lognormal	na	0.72	0.92	Lognormal	7,516,257	92,650
DRO_aromatic	2	1	59	59	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	59
GRO	10	4	120	3.7	49	28	1.7	Inconclusive	na	0.71	0.85	Lognormal	8,202	120
RRO	6	6	2,200	1,200	413	1,733	0.24	Inconclusive	na	0.94	0.92	Normal	2,073	2,073
RRO_aromatic	2	2	360	230	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	360
Sadimant CODC														
Chromium	69	67	640	-1	77	20	26	20	Inconclusive	0.16	0.70	Lognormal	28	20
Lood	68	55	4 500	<4	551	29	2.0	na	Inconclusive	0.10	0.79	Lognormal	20	20
Zina	68	55	4,390	4.0	590	93 160	2.7	na	Inconclusive	0.70	0.01	Lognormal	7.4	7.4
Demons	00	00	4,810	-0.0025	0.042	0.021	5.7	lia La an anna 1	mediciusive	0.87	0.93	Logiiofillai	20	20
Ethylhonzono	8	1	0.050	< 0.0025	0.042	0.051	1.4	Lognormal	na	0.85	1.0	Lognormal	3.3 219	0.030
DCD 1254 (Anaplan 1254)	0 70	2	1.0	<0.0023	0.02	0.25	2.5	Logiioimai	lla In con chucius	0.40	1.0	Logiiofillai	0.16	1.0
PCB-1254 (Aroclor 1254)	79	14	2.8	0.038	1.4	0.29	5.0	па	Inconclusive	0.15	0.79	Lognormal	0.16	0.16
PCB-1260 (Arocior 1260)	/9	27	5.4	<0.041	1.5	0.40	3.8	na In con clusion	Inconclusive	0.21	0.90	Lognormal	0.52	0.52
Deta-BHC	10	2	0.012	0.0036	0.0050	0.0040	0.79	Inconclusive	па	0.88	0.98	Lognormal	0.010	0.010
Dihangafunan	13	26	0.0065	0.0029	5.9	1.8	2.1	Inconclusive	na Leenenuel	0.55	0.72	Lognormal	32,009	0.0065
2 Methodren https://www.	08	20	5.0	<0.0077	1.2	25	1.0	па	Lognormai	0.00	0.94	Lognormal	4.5	4.5
2-Methylnaphthalene	71	38	300	<0.0077	95	22	2.0	па	na	0.40	0.96	Lognormal	1,291	500
Benzo(a)anthracene	/1	5	1.9	<0.0062	0.57	0.38	1.5	na	Inconclusive	0.71	0.94	Lognormal	1.5	1.5
Benzo(a)pyrene	/1	4	1.4	<0.0062	0.52	0.35	1.5	na	Inconclusive	0.70	0.95	Lognormal	1.4	1.4
Benzo(b)fluorantnene	71	5	1.6	<0.0062	0.54	0.37	1.5	na	Inconclusive	0.72	0.94	Lognormal	1.5	1.5
Ideno(1,2,3-cd)pyrene	/1	3	1.2	<0.0062	0.51	0.34	1.5	na	Inconclusive	0.69	0.95	Lognormal	1.3	1.2
Naphthalene	/1	55	220	<0.0077	36	13	2.8	na	Lognormal	0.37	0.97	Lognormal	1/5	1/5
DRO	83	83	150,000	22.00	26,815	17,557	1.5	na	Inconclusive	0.68	0.96	Lognormal	98,564	98,564
DRO_Aromatic	3	I z	60	<12	na	na	na	na	na	na	na	na	na	60
DRO_ Aliphatic	5	5	150,000	26	64,389	36,541	1.8	Lognormal	na	0.67	0.94	Lognormal	2.9E+20	150,000
GKO	5	2	220	<1	95	55	1.7	Lognormal	na	0.75	0.98	Lognormal	8.3E+09	220
RKO	69	66	14,000	69	3,012	2,615	1.2	na	Lognormal	0.69	0.97	Lognormal	3,634	3,634
RRO_Aliphatic	5	4	11,000	58	4,715	2,622	1.8	Lognormal	na	0.63	0.93	Lognormal	5.3E+08	11,000
RRO_Aromatic	5	5	500	64	169	269	0.6	Inconclusive	na	0.98	0.94	na	430	430

# Table I-15 Human Health Summary Statistics and Derived 95% UCLs Northeast Cape, St. Lawrence Island, Alaska Site 28

	Nun	nber of								Z-sco	ore Plots	_		
			Max Detect	Min Result				Shapiro-	D'Agostino's	Normal	Lognormal	Assumed		
	Samples	Detections	(mg/kg)	(mg/kg)	Stdev	Mean	CV	Wilkes Test	Test	r ²	$\mathbf{r}^2$	Distribution	95% UCL	EPC
Ephemeral Surface Water CO	PC													
Chromium	3	1	0.015	0.015	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.015
Copper	3	1	0.040	< 0.02	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.040
Lead	3	1	0.086	< 0.002	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.086
Lead, Dissolved	3	1	0.011	< 0.002	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.011
Zinc	3	1	0.62	<0.05	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.62
Zine Dissolved	2	1	0.02	<0.05	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na a	0.02
DCD 1260 (America 1260)	5	1	0.23	<0.05	11a	11a	11a	lia Tanana la char	па	11a	11a	lla Les menuel	118	0.25
PCB-1260 (Aroclor 1260)	15	2	0.0019	<0.0005	0.00044	0.00061	0.72	Inconclusive	na	0.62	0.77	Lognormal	0.00081	0.00081
DRO	17	17	326	0.39	78	22	3.6	Inconclusive	na	0.27	0.83	Lognormal	46	46
GRO	5	1	0.57	< 0.05	0.24	0.13	1.8	Inconclusive	na	1.0	1.0	Lognormal	13	0.57
Subsurface Water COPC														
Arsenic	1	1	0.039	0.039	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.039
Copper	2	1	0.18	< 0.02	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.18
Lead	2	2	0.20	0.008	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.20
Nickel	2	1	0.16	<0.05	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.16
DRO	2	2	3.2	0.49	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	3.2
2110	-	-	0.2	0115	in	iiu				nu	ina	inte		0.2
Plant Tissue COPC														
Antimony	1	1	0.0030	0.003	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.0030
Arsenic	5	1	0.55	< 0.06	0.20	0.19	1.1	Lognormal	na	0.75	0.94	Lognormal	3.1	0.55
Barium	5	5	40	0.45	15	22	0.67	Normal	na	0.96	0.70	Normal	36	36
Cadmium	5	5	1.1	0.0020	0.47	0.30	1.6	Lognormal	na	0.71	0.98	Lognormal	919,651	1.1
Chromium	5	4	10	< 0.06	4.1	2.4	1.7	Lognormal	na	0.65	0.98	Lognormal	188,442	9.6
Copper	5	5	3.4	0.58	1.1	2.1	0.52	Normal	na	0.95	0.86	Normal	3.2	3.2
Lead	5	5	5.0	0.065	2.1	1.4	1.5	Lognormal	na	0.73	0.99	Lognormal	2,102	5.0
Mercury	5	4	0.027	< 0.004	0.011	0.013	0.86	Inconclusive	na	0.92	0.97	Lognormal	0.22	0.027
Nickel	5	5	3.7	0.060	1.5	1.2	1.2	Lognormal	na	0.78	0.94	Lognormal	551	3.7
Selenium	5	1	0.050	<0.025	0.019	0.044	0.45	Normai	na	0.93	0.80	Normal	0.062	0.050
Vanadium	5	2 5	0.025	< 0.002	0.0087	0.0095	0.95	Lognormal	na	0.91	0.97	Lognormal	0.37	0.025
Valladiulli Zine	5	5	5.1 76	0.010	20	22	2.0	Normal	na	0.39	0.90	Normal	55,464	5.1
2 Mathylnanhthalana	5	3	0.014	-0.005	0.0052	52 0.0070	0.94	Inconclusivo	na	0.93	0.89	Normal	0.013	0.013
	5	4	0.014	0.0038	0.0032	0.0079	1.3	Inconclusive	na	0.70	0.39	Lognormal	0.013	0.013
Anthracene	5	4	0.052	<0.0056	0.021	0.0084	0.62	Normal	na	0.75	0.63	Normal	0.013	0.032
Benzo(a)anthracene	5	4	0.11	0.0045	0.0052	0.038	13	Inconclusive	na	0.00	0.05	Normal	0.013	0.013
Benzo(a)pyrene	5	2	0.17	<0.0045	0.075	0.055	1.5	Inconclusive	na	0.78	0.70	Normal	0.000	0.13
Plant Tissue COPC (continued	)	4	0.17	.0.005	0.075	0.055	1.7	inconclusive	114	0.70	0.12	1 tollingi	0.15	0.15
Benzo(b)fluoranthene	5	4	0.15	0.0037	0.065	0.043	1.5	Inconclusive	na	0.73	0.80	Lognormal	153	0.15

# Table I-15 Human Health Summary Statistics and Derived 95% UCLs Northeast Cape, St. Lawrence Island, Alaska Site 28

	Nun	iber of								Z-sco	ore Plots			
	Samples	Detections	Max Detect (mg/kg)	Min Result (mg/kg)	Stdev	Mean	CV	Shapiro- Wilkes Test	D'Agostino's Test	Normal r ²	Lognormal r ²	Assumed Distribution	95% UCL	EPC
Benzo(g,h,i)perylene	5	3	0.099	0.0031	0.044	0.034	1.3	Inconclusive	na	0.77	0.64	Normal	0.075	0.075
Benzo(k)fluoranthene	5	2	0.16	< 0.005	0.072	0.056	1.3	Inconclusive	na	0.78	0.70	Normal	0.12	0.12
Chrysene	5	4	0.21	0.005	0.094	0.068	1.4	Inconclusive	na	0.78	0.77	Normal	0.16	0.16
Dibenz(a,h,)anthracene	5	3	0.033	0.0035	0.014	0.0135	1.0	Normal	na	0.73	0.60	Normal	0.027	0.027
Fluoranthene	5	4	0.50	< 0.005	0.25	0.21	1.2	Normal	na	0.75	0.53	Normal	0.44	0.44
Fluorene	5	4	0.041	< 0.005	0.017	0.018	0.98	Normal	na	0.77	0.66	Normal	0.034	0.034
Ideno(1,2,3-cd)pyrene	5	4	0.19	0.0027	0.083	0.059	1.4	Inconclusive	na	0.79	0.82	Lognormal	3,555	0.19
Naphthalene	5	4	0.022	0.0043	0.0080	0.0093	0.86	Normal	na	0.73	0.64	Normal	0.017	0.017
Phenanthrene	5	5	0.56	0.0027	0.23	0.19	1.2	Normal	na	0.78	0.50	Normal	0.42	0.42
Pyrene	5	4	0.48	< 0.005	0.20	0.17	1.2	Normal	na	0.84	0.64	Normal	0.36	0.36
PCB-1254 (Aroclor 1254)	5	5	0.22	0.0049	0.094	0.090	1.0	Normal	na	0.92	0.88	Normal	0.18	0.18
PCB-1260 (Aroclor 1260)	5	5	0.099	0.0049	0.044	0.040	1.1	Inconclusive	na	0.83	0.88	Lognormal	7.6	0.099

# Notes:

95% UCL - 95 percent upper confidence limit (UCL) on the mean concentration COPC - Chemical of Potential Concern.
CV - coefficient of variation DRO - Diesel range organics.
EPC - Exposure point concentration GRO-Gasoline range organics.
Lognormal r² - Correlation coefficient for the lognormal plot mg/kg - milligrams per kilogram na - Not applicable.
Normal r² - Correlation coefficient for the normal plot RRO - Residual range organics.
Stdev - standard deviation
a Consistent with methods described by ADEC (ADEC 2003) and USEPA (USE

# Table I-16 Human Health Summary Statistics and Derived 95% UCLs Northeast Cape, St. Lawrence Island, Alaska Site 29

	Nun	nber of								Z-sco	ore Plots			
			Max Detect	Min Result				Shapiro-	D'Agostino's	Normal	Lognormal	Assumed		
	Samples	Detections	(mg/kg)	(mg/kg)	Stdev	Mean	CV	Wilkes Test	Test	$r^2$	$r^2$	Distribution	95% UCL	EPC
Freshwater Sediment COPC														
Aluminum	4	4	15,900	4,820	na ^a	15,900								
Arsenic	4	4	5.7	2.8	na ^a	5.7								
Barium	4	4	115	40	na ^a	115								
Cobalt	4	4	7.0	2.0	na ^a	7.0								
Manganese	4	4	114	80	na ^a	114								
Mercury	4	1	0.05	0.05	na ^a	0.050								
Vanadium	4	4	35	17	na ^a	35								
m,p-Xylene	4	1	0.0032	0.0032	na ^a	0.0032								
Dibenzofuran	16	1	0.0086	0.0086	0.040	0.014	2.8	Inconclusive	na	0.29	0.73	Lognormal	0.020	0.0086
DRO	26	24	25,000	9.3	4,883	1,096	4.5	Lognormal	na	0.20	0.92	Lognormal	1,859	1,859
Fresh Surface Water COPC														
Aluminum	4	4	0.04	0.04	na ^a	0.04								
Barium	4	4	0.005	0.005	na ^a	0.005								
Manganese	4	4	0.027	0.017	na ^a	0.027								
Silver, Dissolved	1	1	0.02	0.02	na ^a	0.02								
Zinc	5	1	0.008	< 0.006	0.0095	0.0084	1.1	Lognormal	na	0.87	1.0	Lognormal	0.071	0.0080
DRO	13	1	0.33	< 0.1	0.077	0.73	0.73	Inconclusive	na	0.86	1.0	Lognormal	0.16	0.16
DRO_ Aliphatic	1	1	0.33	0.33	na ^a	0.33								
GRO	11	2	0.41	< 0.05	0.12	0.13	0.93	Lognormal	na	0.75	0.91	Lognormal	0.29	0.29
Fish Tissue COPC														
Arsenic	8	8	0.78	0.50	0.10	0.64	0.16	Inconclusive	na	0.92	0.91	Normal	0.71	0.71
Barium	8	8	0.049	0.015	0.012	0.030	0.39	Inconclusive	na	0.97	0.98	Lognormal	0.043	0.043
Cadmiun	8	4	0.0090	0.0060	0.00095	0.0069	0.14	Lognormal	na	0.85	0.90	Lognormal	0.0075	0.0075
Copper	8	8	0.98	0.55	0.13	0.70	0.18	Lognormal	na	0.82	0.88	Lognormal	0.79	0.79
Lead	8	5	0.012	0.003	0.0032	0.0049	0.65	Lognormal	na	0.79	0.93	Lognormal	0.0080	0.0080
Mercury	8	8	0.022	0.014	0.0026	0.018	0.15	Inconclusive	na	0.99	0.97	Normal	0.020	0.020
Nickel	8	3	0.1	0.03	0.026	0.036	0.71	Lognormal	na	0.60	0.70	Lognormal	0.054	0.054
Selenium	8	8	0.17	0.12	0.015	0.14	0.11	Inconclusive	na	0.95	0.97	Lognormal	0.15	0.15
Vanadium	8	8	0.06	0.017	0.012	0.043	0.28	Normal	na	0.84	0.71	Normal	0.051	0.051
Zinc	8	8	7.1	5.6	0.59	6.5	0.091	Inconclusive	na	0.93	0.92	Normal	6.9	6.9
2-Methylnaphthalene	8	1	0.0065	< 0.005	0.0014	0.0030	0.47	nc	nc	nc	nc	nc	nc	0.0065
Acenaphthene	8	2	0.0067	0.0013	0.0016	0.0029	0.56	Inconclusive	na	0.55	0.66	Lognormal	0.0042	0.0042
Fish Tissue COPC (continued)												-		

# Table I-16 Human Health Summary Statistics and Derived 95% UCLs Northeast Cape, St. Lawrence Island, Alaska Site 29

	Nun	nber of								Z-sco	ore Plots			
			Max Detect	Min Result				Shapiro-	D'Agostino's	Normal	Lognormal	Assumed		
	Samples	Detections	(mg/kg)	(mg/kg)	Stdev	Mean	CV	Wilkes Test	Test	$r^2$	$\mathbf{r}^2$	Distribution	95% UCL	EPC
Anthracene	8	2	0.0072	0.0017	0.0017	0.0030	0.58	Lognormal	na	0.73	0.86	Lognormal	0.0042	0.0042
Benzo(a)anthracene	8	2	0.0082	0.0014	0.0021	0.0031	0.68	Lognormal	na	0.74	0.92	Lognormal	0.0047	0.0047
Benzo(a)pyrene	8	2	0.0059	0.0021	0.0012	0.0029	0.43	Lognormal	na	0.68	0.75	Lognormal	0.0037	0.0037
Benzo(b)fluoranthene	8	2	0.0040	0.0012	0.0007	0.0025	0.30	Inconclusive	na	1.00	0.97	Normal	0.0030	0.0030
Benzo(g,h,i)perylene	8	3	0.0064	0.0034	0.0014	0.0033	0.42	Lognormal	na	0.89	0.96	Lognormal	0.0043	0.0043
Benzo(k)fluoranthene	8	3	0.012	0.0024	0.0033	0.0038	0.87	Lognormal	na	0.56	0.64	Lognormal	0.0064	0.0064
Chrysene	8	2	0.0084	0.0025	0.0021	0.0032	0.64	nc	nc	nc	nc	nc	nc	0.0084
Dibenz(a,h,)anthracene	8	1	0.0041	0.0041	0.00057	0.0027	0.21	nc	nc	nc	nc	nc	nc	0.0041
Fluoranthene	8	3	0.0093	0.0017	0.0025	0.0032	0.77	Lognormal	na	0.59	0.71	Lognormal	0.0050	0.0050
Fluorene	8	3	0.0076	0.0012	0.0020	0.0029	0.69	Lognormal	na	0.73	0.94	Lognormal	0.0046	0.0046
Ideno(1,2,3-cd)pyrene	8	3	0.0027	0.00074	0.00076	0.0021	0.36	Normal	na	0.80	0.77	Normal	0.0026	0.0026
Naphthalene	8	3	0.0047	0.0018	0.00089	0.0026	0.34	Lognormal	na	0.79	0.90	Lognormal	0.0033	0.0033
Phenanthrene	8	4	0.0086	0.0015	0.0023	0.0031	0.74	Lognormal	na	0.59	0.75	Lognormal	0.0048	0.0048
Pvrene	8	3	0.010	0.0026	0.0026	0.0036	0.74	Inconclusive	na	0.62	0.69	Lognormal	0.0054	0.0054
PCB-1254 (Aroclor 1254)	8	8	0.016	0.0061	0.0034	0.012	0.30	Normal	na	0.97	0.95	Normal	0.014	0.014
PCB-1260 (Aroclor 1260)	8	1	0.0045	<0.002	0.0012	0.0014	0.86	nc	nc	nc	nc	nc	nc	0.0045
	0	1	0.0045	<0.002	0.0012	0.0014	0.00	lie	lie	ne	ne	ne	ne	0.0045

# Notes:

95% UCL - 95 percent upper confidence limit (UCL) on the mean concentration

COPC - Chemical of Potential Concern.

CV - coefficient of variation

DRO - Diesel range organics.

EPC - Exposure point concentration

Lognormal r² - Correlation coefficient for the lognormal plot

mg/kg - milligrams per kilogram

na - not applicable

nc - not calculated due to low variance in values.

Normal r² - Correlation coefficient for the normal plot

RRO - Residual range organics.

Stdev - standard deviation

# Table I-17 Human Health Summary Statistics and Derived 95% UCLs Northeast Cape, St. Lawrence Island, Alaska Site 30

	Nur	nber of								Z-sc	ore Plots			
			Max Detect	Min Result				Shapiro-	D'Agostino's	Normal	Lognormal	Assumed		
	Samples	Detections	(mg/kg)	(mg/kg)	Stdev	Mean	CV	Wilkes Test	Test	r ²	r ²	Distribution	95% UCL	EPC
Fish Tissue COPC														
Arsenic	5	5	0.94	0.33	0.23	0.66	0.34	Inconclusive	na	0.96	0.89	Normal	0.88	0.88
Barium	5	5	0.061	0.024	0.014	0.039	0.36	Inconclusive	na	0.92	0.97	Lognormal	0.059	0.059
Cadmium	5	3	0.008	0.0070	0.00071	0.0070	0.10	Inconclusive	na	nc	nc	nc	nc	0.0080
Copper	5	5	1.2	0.59	0.22	0.79	0.28	Inconclusive	na	0.88	0.93	Lognormal	1.1	1.1
Lead	5	5	0.004	0.0020	0.001	0.003	0.34	Inconclusive	na	nc	nc	nc	nc	0.004
Mercury	5	5	0.034	0.0090	0.011	0.022	0.50	Inconclusive	na	0.94	0.95	Lognormal	0.057	0.034
Nickel	5	4	0.05	0.030	0.011	0.039	0.29	Inconclusive	na	0.98	0.98	Lognormal	0.057	0.050
Selenium	5	5	0.19	0.13	0.022	0.16	0.14	Inconclusive	na	0.95	0.97	Lognormal	0.18	0.18
Vanadium	5	5	0.08	0.046	0.013	0.062	0.21	Inconclusive	na	0.99	0.99	Normal	0.075	0.075
Zinc	5	5	14	5.9	3.4	8.6	0.39	Inconclusive	na	0.85	0.88	Lognormal	14	14
Fluoranthene	5	1	0.0015	0.0015	0.00045	0.0023	0.19	Inconclusive	na	nc	nc	nc	nc	0.0015
PCB-1254 (Aroclor 1254)	5	5	0.011	0.0062	0.0020	0.010	0.21	Inconclusive	na	0.84	0.79	Normal	0.011	0.011
Plant Tissue COPC														
Arsenic	2	1	0.56	< 0.21	na ^a	0.56								
Barium	2	2	21	12	na ^a	21								
Cadmium	2	2	0.88	0.18	na ^a	0.88								
Chromium	2	2	9.0	1.0	na ^a	9.0								
Copper	2	2	2.8	2.2	na ^a	2.8								
Lead	2	2	3.5	0.68	na ^a	3.5								
Mercury	2	2	0.021	0.008	na ^a	0.021								
Nickel	2	2	4.2	1.1	na ^a	4.2								
Selenium	2	1	0.050	0.050	na ^a	0.050								
Silver	2	2	0.019	0.011	na ^a	0.019								
Vanadium	2	2	3.6	0.36	na ^a	3.6								
Zinc	2	2	57	28	na ^a	57								
2-Methylnaphthalene	2	1	0.0076	< 0.005	na ^a	0.0076								
Acenaphthene	2	2	0.013	0.0037	na ^a	0.013								
Anthracene	2	1	0.049	< 0.005	na ^a	0.049								
Benzo(a)anthracene	2	2	0.075	0.0025	na ^a	0.075								
Benzo(a)pyrene	2	2	0.021	0.0027	na ^a	0.021								
Benzo(b)fluoranthene	2	2	0.053	0.0045	na ^a	0.053								
Benzo(g,h,i)perylene	2	2	0.013	0.0019	na ^a	0.013								
Benzo(k)fluoranthene	2	2	0.046	0.0045	na ^a	0.046								

### Table I-17 Human Health Summary Statistics and Derived 95% UCLs Northeast Cape, St. Lawrence Island, Alaska Site 30

	Nun	nber of	_							Z-sco	ore Plots			
			Max Detect	Min Result				Shapiro-	D'Agostino's	Normal	Lognormal	Assumed		
	Samples	Detections	(mg/kg)	(mg/kg)	Stdev	Mean	CV	Wilkes Test	Test	r ²	r ²	Distribution	95% UCL	EPC
Plant Tissue COPC (continued)														
Chrysene	2	2	0.087	0.0037	na ^a	0.087								
Dibenz(a,h)anthracene	2	2	0.013	0.0019	na ^a	0.013								
Fluoranthene	2	2	0.38	0.0083	na ^a	0.38								
Fluorene	2	2	0.022	0.0025	na ^a	0.022								
Indeno(1,2,3-cd)pyrene	2	2	0.024	0.0041	na ^a	0.024								
Naphthalene	2	2	0.0078	0.0019	na ^a	0.0078								
Phenanthrene	2	2	0.29	0.013	na ^a	0.29								
Pyrene	2	2	0.28	0.0073	na ^a	0.28								
PCB-1254 (Aroclor 1254)	2	2	0.011	0.0097	na ^a	0.011								
PCB-1260 (Aroclor 1260)	2	2	0.0095	0.0050	na ^a	0.0095								

# Notes:

95% UCL - 95 percent upper confidence limit (UCL) on the mean concentration COPC - Chemical of Potential Concern. CV - coefficient of variation EPC - Exposure point concentration Lognormal r² - Correlation coefficient for the lognormal plot

mg/kg - milligrams per kilogram

na - not applicable

nc - not calculated due to low variance in values.

Normal r² - Correlation coefficient for the normal plot

Stdev - standard deviation

# Table I-18 Human Health Summary Statistics and Derived 95% UCLs Northeast Cape, St. Lawrence Island, Alaska Site 31

	Nun	nber of	_							Z-sco	ore Plots	_		
	Samples	Detections	Max Detect (mg/kg)	Min Result (mg/kg)	Stdev	Mean	CV	Shapiro- Wilkes Test	D'Agostino's Test	Normal r ²	Lognormal r ²	Assumed Distribution	95% UCL	EPC
Soil COPC														
m,p-Xylene	4	2	0.017	0.0066	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.017
o-Xylene	4	1	0.0053	0.0053	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.0053
PCB-1260 (Aroclor 1260)	8	6	22	0.36	7.2	5.3	1.4	Lognormal	na	0.70	0.90	Lognormal	6054	22
DRO	24	24	11,000	11	2,298	1,273	1.8	Lognormal	na	0.53	0.98	Lognormal	8,307	8,307
RRO	24	12	9,600	12	2,817	1,179	2.4	Inconclusive	na	0.45	0.85	Normal	2,165	2,165

# Notes:

95% UCL - 95 percent upper confidence limit (UCL) on the mean concentration COPC - Chemical of Potential Concern.
CV - coefficient of variation
DRO - Diesel range organics.
EPC - Exposure point concentration
Lognormal r² - Correlation coefficient for the lognormal plot mg/kg - milligrams per kilogram
na - Not applicable.
Normal r² - Correlation coefficient for the normal plot RRO - Residual range organics.
Stdev - standard deviation

	Nun	nber of	Max Detect	Min Result				Shaniro-	D'Agostino's	Z-sco Normal	ore Plots Lognormal	Assumed		
	Samples	Detections	(mg/kg)	(mg/kg)	Stdev	Mean	CV	Wilkes Test	Test	$r^2$	$\mathbf{r}^2$	Distribution	95% UCL	EPC
Soil COPC														
DRO	5	5	13,000	230	5,647	4,486	1.26	Inconclusive	na	0.82	0.94	Lognormal	7,091,847	13,000
RRO	5	3	3,600	110	1,132	1,580	0.7	Inconclusive	na	0.65	0.71	Lognormal	3,898	3,600

# Notes:

95% UCL - 95 percent upper confidence limit (UCL) on the mean concentration COPC - Chemical of Potential Concern.

CV - coefficient of variation

DRO - Diesel range organics. EPC - Exposure point concentration

Lognormal  $r^2$  - Correlation coefficient for the lognormal plot na - Not applicable.

mg/kg - milligrams per kilogram

	Nu	mber of	Max Detect	Min Result				Shapiro-	D'Agostino's	Z-sco Normal	ore Plots Lognormal	Assumed		
	Samples	Detections	(mg/kg)	(mg/kg)	Stdev	Mean	CV	Wilkes Test	Test	r ²	$r^2$	Distribution	95% UCL	EPC
Soil COPC														
DRO	3	3	660	150	na ^a	na ^a	na ^a	660						
RRO	3	3	2,100	270	na ^a	na ^a	na ^a	2,100						

Notes:

95% UCL - 95 percent upper confidence limit (UCL) on the mean concentration
COPC - Chemical of Potential Concern.
CV - coefficient of variation
DRO - Diesel range organics.
EPC - Exposure point concentration
Lognormal r² - Correlation coefficient for the lognormal plot
mg/kg - milligrams per kilogram
na - Not applicable.
Normal r² - Correlation coefficient for the normal plot
RRO - Residual range organics.
Stdev - standard deviation

	Nu	mber of								Z-sco	ore Plots			
			Max Detect	Min Result				Shapiro-	D'Agostino's	Normal	Lognormal	Assumed		
	Samples	Detections	(mg/kg)	(mg/kg)	Stdev	Mean	CV	Wilkes Test	Test	$r^2$	$r^2$	Distribution	95% UCL	EPC
Soil COPC														
Diesel Range Organics (DRO)	9	9	1,100	13	419	327	1.3	Lognormal	na	0.75	0.94	Lognormal	9,959	1,100
Residual Range Organics (RRO)	9	8	1,200	58	387	290	1.3	Lognormal	na	0.59	0.86	Lognormal	1,162	1,162

Notes:

95% UCL - 95 percent upper confidence limit (UCL) on the mean concentration CV - coefficient of variation EPC - Exposure point concentration Lognormal  $r^2$  - Correlation coefficient for the lognormal plot na - Not applicable. mg/kg - milligrams per kilogram Normal  $r^2$  - Correlation coefficient for the normal plot Stdev - standard deviation

	Nun	nber of								Z-sco	ore Plots			
	Samples	Detections	Max Detect (mg/kg)	Min Result (mg/kg)	Stdev	Mean	CV	Shapiro- Wilkes Test	D'Agostino's Test	Normal r ²	Lognormal r ²	Assumed Distribution	95% UCL	EPC
Soil COPEC														
Lead	3	3	119	27	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	119
PCB-1260	2	2	0.75	0.29	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.75
Antrhacene	3	1	10.3	10	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	10.3
Naphthalene	4	1	50.8	51	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	50.8
DRO	6	5	3,760	314	1,420	1,419	1.0	Normal	na	0.92	0.66	Normal	2,587	2,587
Subsurface Water CO	PEC													
Xylenes	1	1	0.54	0.54	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.54
DRO	4	4	14	1.8	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	14
RRO	3	3	8.1	1.3	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	8.1

# Notes:

95% UCL - 95 percent upper confidence limit (UCL) on the mean concentration COPEC - Chemical of Potential Ecological Concern.
CV - coefficient of variation
DRO - Diesel range organics.
EPC - Exposure point concentration
Lognormal r² - Correlation coefficient for the lognormal plot mg/kg - milligrams per kilogram
na - Not applicable.
Normal r² - Correlation coefficient for the normal plot RRO - Residual range organics.
Stdev - standard deviation

	Nun	nber of								Z-sco	ore Plots			
	Samples	Detections	Max Detect (mg/kg)	Min Result (mg/kg)	Stdev	Mean	CV	Shapiro- Wilkes Test	D'Agostino's Test	Normal r ²	Lognormal r ²	Assumed Distribution	95% UCL	EPC
Soil COPC														
Anthracene	1	1	14	14	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	14
Chrysene	1	1	11	11	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	11
Fluorene	1	1	13	13	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	13
DRO	4	4	5,300	150	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	5,300
RRO	1	1	3,420	3,420	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	3,420
Subsurface Water COPC														
Xylenes	1	1	0.0069	0.0069	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.0069
DRO	4	4	3.7	0.96	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	3.7
RRO	3	3	6.5	2.6	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	6.5

# Notes:

95% UCL - 95 percent upper confidence limit (UCL) on the mean concentration COPC - Chemical of Potential Concern.
CV - coefficient of variation
DRO - Diesel range organics.
EPC - Exposure point concentration
Lognormal r² - Correlation coefficient for the lognormal plot mg/kg - milligrams per kilogram
na - Not applicable.
Normal r² - Correlation coefficient for the normal plot RRO - Residual range organics.
Stdev - standard deviation

	Num	iber of								Z-sco	ore Plots			
	Samples	Detections	Max Detect (mg/kg)	Min Result (mg/kg)	Stdev	Mean	CV	Shapiro- Wilkes Test	D'Agostino's Test	Normal r ²	Lognormal r ²	Assumed Distribution	95% UCL	EPC
Soil COPEC														
Aluminum	2	2	9,850	7,790	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	9,850
Manganese	2	2	164	73	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	164
Zinc	13	13	172	20	48	72	0.66	Inconclusive	na	0.91	0.98	Lognormal	106	106
DRO	17	17	102,000	12	27,008	16,359	1.7	Lognormal	na	0.66	0.94	Lognormal	14,716,131	102,000
RRO	6	6	8,500	220	3,127	3,200	0.98	Inconclusive	na	0.90	0.96	Lognormal	122,317	8,500
Ephemeral Surface Water COPE	C													
DRO	3	1	1.8	0.050	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	1.8

Notes:

95% UCL - 95 percent upper confidence limit (UCL) on the mean concentration

COPEC - Chemical of Potential Ecological Concern.

CV - coefficient of variation

DRO - Diesel range organics.

EPC - Exposure point concentration

Lognormal r² - Correlation coefficient for the lognormal plot

mg/kg - milligrams per kilogram

na - Not applicable.

Normal r² - Correlation coefficient for the normal plot

RRO - Residual range organics.

Stdev - standard deviation

	Nun	nber of								Z-sco	ore Plots			
			Max Detect	Min Result				Shapiro-	D'Agostino's	Normal	Lognormal	Assumed		
	Samples	Detections	(mg/kg)	(mg/kg)	Stdev	Mean	CV	Wilkes Test	Test	r ²	$\mathbf{r}^2$	Distribution	95% UCL	EPC
Soil Tundra COPEC														
Arsenic	18	18	50	2.0	12 32	93	13	Lognormal	na	0.58	0.84	Lognormal	15	15
Chromium	19	18	100	5.0	27	27	1.0	Lognormal	na	0.70	0.91	Lognormal	43	43
Cadmium	19	9	4.1	1.0	2.5	2.5	1.0	Inconclusive	na	0.61	0.78	Lognormal	3.4	3.4
Copper	19	19	320	6.6	75	44	1.7	Inconclusive	na	0.52	0.84	Lognormal	8.3	8.3
Lead	20	20	460	10	143	96	1.5	Inconclusive	na	0.62	0.86	Lognormal	196	196
Mercury	18	4	0.56	0.10	0.18	0.17	1.1	Inconclusive	na	0.80	0.82	Lognormal	0.31	0.31
Nickel	19	16	280	5.0	62	30.0	2.1	Lognormal	na	0.39	0.90	Lognormal	50	50
Silver	19	2	2.0	2.0	2.6	2.1	1.3	Inconclusive	na	0.60	0.86	Lognormal	3.0	2.0
Bromomethane	10	5	0.40	< 0.0053	0.13	0.11	1.3	Inconclusive	na	0.82	0.81	Normal	0.18	0.18
4-Methylphenol (p-Cresol)	14	3	3.9	< 0.33	6.4	2.7	2.4	Inconclusive	na	0.41	0.86	Lognormal	13	3.9
PCB-1260 (Aroclor 1260)	22	4	13	< 0.05	2.8	0.8	3.5	Inconclusive	na	0.30	0.81	Lognormal	1.6	1.6
1,2,3,4,6,7,8,9-Octachlorodibenzofuran	13	4	0.00052	0.0000011	0.00019	0.000084	2.3	Inconclusive	na	0.46	0.88	Lognormal	0.031	0.00052
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin	13	12	0.02	0.00000091	0.0055	0.0016	3.4	Lognormal	na	0.30	0.96	Lognormal	1.54	0.020
1,2,3,4,6,7,8-Heptachlorodibenzofuran	12	4	0.00016	0.00000043	0.000046	0.000016	2.9	Inconclusive	na	0.37	0.80	Lognormal	0.00094	0.00016
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	13	8	0.0011	0.00000047	0.00030	0.00010	3.2	Lognormal	na	0.33	0.88	Lognormal	0.017	0.0011
1,2,3,4,7,8-Hexachlorodibenzofuran	13	4	0.000027	< 0.0000015	0.0000074	0.0000028	2.6	Inconclusive	na	0.40	0.85	Lognormal	0.000020	0.000020
1,2,3,6,7,8-Hexachlorodibenzofuran	13	1	0.000011	< 0.00000075	0.0000033	0.0000016	2.0	Inconclusive	na	0.54	0.88	Lognormal	0.000015	0.000011
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	13	4	0.000046	< 0.00000145	0.000013	0.0000043	2.9	Inconclusive	na	0.35	0.84	Lognormal	0.00003	0.00003
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	13	2	0.000031	0.0000051	0.00000057	0.00000043	1.3	Lognormal	na	0.68	0.95	Lognormal	0.0000012	0.0000012
2,3,4,6,7,8-Hexachlorodibenzofuran	13	8	0.000019	0.00000041	0.0000052	0.0000026	2.0	Inconclusive	na	0.50	0.83	Lognormal	0.0000089	0.0000089
2,3,4,7,8-Pentachlorodibenzofuran	13	1	0.000012	< 0.0000008	0.0000035	0.0000018	2.0	Inconclusive	na	0.58	0.87	Lognormal	0.000016	0.000012
2,3,7,8-Tetrachlorodibenzofuran	13	6	0.000029	< 0.0000002	0.0000086	0.0000037	2.3	Inconclusive	na	0.49	0.88	Lognormal	0.000031	0.000029
Total Heptachlorodibenzofurans (HpCDF)	3	1	0.00053	< 0.00001	na ^a	0.00053								
Total Heptachlorodibenzo-p-dioxins (HpCDD)	3	2	0.0022	< 0.0000185	na ^a	0.0022								
Total Hexachlorodibenzofurans (HxCDF)	3	1	0.00019	< 0.000004	na ^a	0.00019								
Total Hexachlorodibenzo-p-dioxins (HxCDD)	3	1	0.00034	< 0.0000061	na ^a	0.00034								
Total Pentachlorodibenzofurans (PeCDF)	3	1	0.00011	< 0.000088	na ^a	0.00011								
Total Tetrachlorodibenzofurans (TCDF)	3	1	0.00015	0.00015	na ^a	0.00015								
Total Tetrachlorodibenzo-p-dioxins (TCDD)	3	1	0.000039	< 0.0000069	na ^a	0.000039								
DRO	24	21	32,000	11	6,454	1,826	3.5	Lognormal	na	0.25	0.92	Lognormal	32,222	32,000
RRO	7	7	3,900	620	1,396	2,423	0.58	Inconclusive	na	0.19	0.18	Normal	3,448	3,448
Ephemeral Surface Water COPEC														
Arsenic	5	1	0.017	0.017	0.0068	0.0045	1.5	Lognormal	na	0.75	0.99	Lognormal	0.81	0.017
Barium	2	2	0.012	0.008	na ^a	0.012								
Chromium	5	1	0.02	0.02	0.0072	0.009	0.80	Inconclusive	na	0.98	0.97	Normal	0.016	0.016
Lead	5	5	0.065	0.002	0.027	0.016	1.7	Lognormal	na	0.60	0.80	Lognormal	1.2	0.065
Maraury Dissolved	2	1	0.00038	0.00038	no ^a	no ^a	no a	no ^a	no ^a	no ^a	no ^a	ro ^a	no ^a	0.00038
Nickel	5	1	0.00038	0.00038	0.020	0.023	0.87	Inconclusive	na	0.98	0.96	Normal	0.041	0.00038
Thallium	5	1	0.0024	0.0024	0.054	0.023	13	Inconclusive	na	na	na	na	na	0.0024
Thellium Disselued	2	1	0.0012	0.0012	aa	a- a	1.5 a	a a		a	- a	- ^a	- a	0.0012
i nanium, Dissolved	5	1	0.0012	0.0012	na	0.0012								
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin	3	1	0.0000052	< 0.0000027	na ^a	na ^a	na ª	na ^a	0.0000052					

Site 7

	Nu	mber of								Z-sc	ore Plots	_		
	Samples	s Detections	Max Detect (mg/kg)	Min Result (mg/kg)	Stdev	Mean	CV	Shapiro- Wilkes Test	D'Agostino's Test	Normal r ²	Lognormal r ²	Assumed Distribution	95% UCL	EPC
	Sumpres	Detections	(	(	Statt		0.	Trinico I cor	1050			Distribution	2010 0 02	210
Ephemeral Surface Water COPEC (continued)														
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	3	1	0.00000071	< 0.00000051	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.00000071
Total Heptachlorodibenzo-p-dioxins (HpCDD)	3	1	0.0000014	< 0.00000051	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.0000014
DRO	5	2	12	0.2	5.1	2.4	2.1	na	na	na	na	na	na	12

#### Notes:

95% UCL - 95 percent upper confidence limit (UCL) on the mean concentration

COPEC - Chemical of Potential Ecological Concern.

CV - coefficient of variation

DRO - Diesel range organics.

EPC - Exposure point concentration

Lognormal  $r^2$  - Correlation coefficient for the lognormal plot mg/kg - milligrams per kilogram

na - Not applicable.

Normal  $r^2$  - Correlation coefficient for the normal plot

RRO - Residual range organics.

Stdev - standard deviation

										_				
	Nun	nber of	-							Z-sc	ore Plots			
			Max Detect	Min Result				Shaniro.	D'Agostino's	Normal	Lognormal	Assumed		
	Samples	Detections	(mg/L)	(mg/L)	Stdev	Mean	CV	Wilkes Test	Test	$\mathbf{r}^2$	r ²	Distribution	95% UCL	EPC
Seil COREC														
Antimony	15	1	14	14	87	13	0.68	Inconclusive	<b>n</b> 9	0.03	0.96	Lognormal	20	14
Arcanic	15	7	20	3.6	5.7	10	1.3	Lognormal	na	0.95	0.90	Lognormal	17	14
Cadmium	15	1	20	0.75	2.1	4.0	0.08	Lognormal	na	0.09	0.91	Lognormal	4.1	4.1
Chromium	15	4	60	5.0	14	10	0.98	Lognormal	na	0.78	0.94	Lognormal	4.1 20	20
Copper	15	14	429	5.0	106	53	2.0	Lognormal	na	0.77	0.95	Lognormal	08	08
Lead	15	14	630	<10	160	105	1.5	Lognormal	na	0.57	0.92	Lognormal	276	276
Mercury	15	1	0.60	<0.1	0.15	0.13	1.5	Inconclusive	na	0.73	0.92	Lognormal	0.21	0.21
Nickel	15	11	110	<5	26	17	1.1	Inconclusive	na	0.75	0.98	Lognormal	27	27
Selenium	15	1	1.0	<0.5	0.33	0.44	0.73	Inconclusive	na	0.40	0.02	Lognormal	11	10
Zinc	15	15	1 790	15	463	218	21	Inconclusive	na	0.25	0.84	Lognormal	459	459
PCB-1260 (Aroclor 1260)	15	1	0.13	0.13	0.061	0.079	0.77	Inconclusive	na	0.44	0.97	Lognormal	0.14	0.13
1 2-Dibromoethane	8	2	0.000010	0.0000097	0.078	0.045	17	Lognormal	na	0.50	0.92	Lognormal	2.06F+08	0.00001
1.2-Dichlorobenzene	15	7	0.025	0.00000000	0.27	0.12	23	Lognormal	na	0.00	0.95	Lognormal	6 974 525	0.025
1 3-Dichlorobenzene	15	, 7	0.025	0.00000025	0.074	0.055	13	Inconclusive	na	0.10	0.95	Normal	0.12	0.068
1 3-Dichloropropane	8	5	0.000097	0.0000070	0.031	0.012	2.6	Lognormal	na	0.43	0.97	Lognormal	87 851	0.000097
2.2-Dichloropropane	8	1	0.0000092	0.00000092	0.078	0.059	13	Inconclusive	na	0.45	0.83	Lognormal	8 76E+09	0.0000092
2-Chloroethyl vinyl ether	5	2	0.0000026	0.00000054	0.46	0.42	1.0	Normal	na	0.90	0.05	Normal	0.86	0.0000026
2-Chlorotoluene	8	2	0.0000045	0.0000013	0.045	0.031	1.5	Lognormal	na	nc	nc	nc	nc	0.0000045
2-Hexanone	5	2	0.0000043	0.0000078	0.23	0.23	1.0	Normal	na	0.87	0.75	Normal	0.45	0.0000087
4-Bromophenyl phenyl ether	10	2	0.0000024	0.0000012	0.38	0.33	1.0	Inconclusive	na	0.75	0.75	Normal	0.55	0.0000024
4-Chlorophenyl phenyl ether	10	2	0.0000029	0.00000012	0.50	0.39	1.1	Inconclusive	na	0.79	0.72	Normal	0.64	0.0000029
4-Isopropyltoluene	8	3	0.0000027	0.00000077	0.046	0.026	1.1	Lognormal	na	0.64	0.92	Lognormal	1 19F+15	0.0000047
Bromomethane	8	1	0.36	<0.005	0.13	0.10	1.0	Inconclusive	na	0.91	0.92	Lognormal	56	0.36
2 4-Dichlorophenol	10	2	0.0000015	0.0000034	0.15	0.39	1 13	Inconclusive	na	0.79	0.72	Normal	0.64	0.0000015
2.4-Dimethylphenol	10	1	0.0000014	0.00000014	0.42	0.44	0.95	Inconclusive	na	0.87	0.59	Normal	0.69	0.0000013
2.4-Dinitrotoluene	10	1	0.0000016	0.0000016	1.5	17	0.85	Inconclusive	na	0.32	0.41	Lognormal	2 427F+10	0.0000014
2,4 Dinitrotoluene	10	1	0.0000016	0.0000016	0.36	0.39	0.05	Inconclusive	na	0.90	0.59	Normal	0.60	0.0000016
2-Methyl-4 6-dinitrophenol	10	3	0.0000037	0.00000022	1.5	1.2	13	Inconclusive	na	0.76	0.80	Lognormal	4 9F+26	0.0000037
2-Methylphenol (o-Cresol)	10	1	0.00000035	0.00000022	0.42	0.44	0.95	Inconclusive	na	0.70	0.57	Normal	0.69	0.00000035
3 3-Dichlorobenzidine	10	1	0.00000055	0.00000068	0.71	0.78	0.90	Inconclusive	na	0.93	0.57	Normal	1.2	0.00000068
3-Nitroaniline	10	2	0.0000019	0.0000008	15	1.5	1.0	Inconclusive	na	0.85	0.20	Normal	2.3	0.0000019
4-Chloroaniline	10	2	0.000030	0.000030	1 800	2.0	0.92	Lognormal	na	0.91	0.60	Lognormal	3.0	0.000030
4-Chlorotoluene	8	1	0.025	0.00000043	0.077	0.032	2.4	Inconclusive	na	0.47	0.94	Normal	5 76E+13	0.025
4-Nitroaniline	10	1	0.00013	0.0000088	15	1.2	13	Inconclusive	na	0.76	0.80	Lognormal	1 18E+14	0.00013
1 2 3 4 6 7 8 9-Octachlorodibenzofuran	10	6	0.00012	0.0000038	0.000043	0.000030	1.5	Lognormal	na	0.70	0.96	Lognormal	0.00099	0.00012
1 2 3 4 6 7 8 9-Octachlorodibenzo-n-dioxin	10	9	0.00012	0.00000000	0.00036	0.00028	13	Lognormal	na	0.79	0.96	Lognormal	0.015	0.0011
1 2 3 4 6 7 8-Heptachlorodibenzofuran	10	7	0.000030	0.00000025	0.000011	0.000020	1.5	Lognormal	na	0.73	0.96	Lognormal	0.00021	0.000030
1 2 3 4 6 7 8-Heptachlorodibenzo-p-dioxin	10	8	0.00012	0.00000059	0.000045	0.000035	13	Lognormal	na	0.76	0.95	Lognormal	0.0016	0.00012
1 2 3 4 7 8-Hexachlorodibenzofuran	10	4	0.0000066	0.00000023	0.0000020	0.0000015	14	Lognormal	na	0.70	0.97	Lognormal	0.0000067	0.0000066
1 2 3 7 8 9-Hexachlorodibenzo-p-dioxin	10	4	0.0000083	<0.00000023	0.0000025	0.0000020	1.2	Lognormal	na	0.70	0.97	Lognormal	0.0000079	0.0000079
2.3.7.8-Tetrachlorodibenzofuran	10	7	0.00000005	0.00000004	0.0000023	0.0000019	13	Lognormal	na	0.77	0.93	Lognormal	0.000015	0.000015
2,3,7,8 Tetrachlorodibenzo-n-dioxin	10	3	0.0000017	<0.00000020	0.00000024	0.00000045	13	Lognormal	na	0.66	0.90	Lognormal	0.0000014	0.0000014
Total Heptachlorodibenzofurans (HpCDF)	3	1	0.000095	na ^a	na a	0.000095								

	Nun	nber of	_							Z-sc	ore Plots			
	Samples	Detections	Max Detect (mg/L)	Min Result (mg/L)	Stdev	Mean	CV	Shapiro- Wilkes Test	D'Agostino's Test	Normal r ²	Lognormal r ²	Assumed Distribution	95% UCL	EPC
Soil COPEC (continued)														
Total Heptachlorodibenzo-p-dioxins (HpCDD)	3	2	0.00018	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.00018
Total Tetrachlorodibenzofurans (TCDF)	3	2	0.000010	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.000010
DRO	16	16	510	8.9	150	170	0.88	Inconclusive	na	0.89	0.95	Lognormal	462	462
RRO	6	6	2,100	53	705	959	0.74	Inconclusive	na	0.97	0.82	Normal	1,539	1,539
Ephemeral Surface Water COPEC														
Barium	6	6	0.020	0.005	0.006	0.0078333	0.76	Inconclusive	na	0.66	0.74	Lognormal	0.015	0.015
Zinc, Dissolved	3	1	0.060	0.060	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.060
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin	3	1	0.0000037	< 0.0000024	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.0000037

Notes:

95% UCL - 95 percent upper confidence limit (UCL) on the mean concentration COPEC - Chemical of Potential Ecological Concern.
CV - coefficient of variation
DRO - Diesel range organics.
EPC - Exposure point concentration
Lognormal r² - Correlation coefficient for the lognormal plot mg/kg - milligrams per kilogram na - Not applicable.
nc- Not calculated.
Normal r² - Correlation coefficient for the normal plot RRO - Residual range organics.
Stdev - standard deviation

	Nun	nber of								Z-sco	ore Plots			
			Max Detect	Min Result				Shapiro-	D'Agostino's	Normal	Lognormal	Assumed		
	Samples	Detections	(mg/kg)	(mg/kg)	Stdev	Mean	CV	Wilkes Test	Test	r ²	r ²	Distribution	95% UCL	EPC
Soil COPEC														
Aluminum	10	10	33 100	3 975	7 678	17 258	0 44	Inconclusive	na	0.91	0.81	Normal	21 708	21 708
Antimony	19	1	38	<6	79	7.6	1.0	Inconclusive	na	0.53	0.82	Lognormal	97	97
Arsenic	19	19	170	28	38	18	2.0	Lognormal	na	0.38	0.87	Lognormal	28	28
Barium	10	10	193	57	37	120	0.31	Inconclusive	na	0.95	0.93	Normal	141	141
Cadmium	19	8	69	<03	16	4 5	3 5	Lognormal	na	0.26	0.74	Lognormal	5	5
Chromium	19	19	93	4.0	21	27	0.76	Inconclusive	na	0.83	0.96	Lognormal	44	44
Copper	19	19	130	4.0	32	37	0.87	Lognormal	na	0.82	0.98	Lognormal	63	63
Mercury	19	6	4.8	<0.06	1.3	0.48	2.6	Lognormal	na	0.42	0.72	Lognormal	0.76	0.76
Selenium	19	3	2.0	1.0	4.1	3.7	1.1	Inconclusive	na	0.87	0.95	Lognormal	15	2.0
Silver	19	3	6.7	<0.4	1.7	1.2	1.4	Lognormal	na	0.58	0.94	Lognormal	2.1	2.1
Vanadium	10	10	81	8.5	19	45	0.43	Normal	na	0.93	0.76	Normal	56	56
Zinc	19	19	1,130	24	280	252	1.1	Lognormal	na	0.69	0.97	Lognormal	480	480
4-Chloroaniline	9	1	5.5	< 0.33	1.7	1.2	1.4	Lognormal	na	0.66	0.98	Lognormal	5.6	5.5
PCB-1254 (Aroclor 1254)	19	2	0.14	< 0.39	2.9	0.72	3.6	Inconclusive	na	0.24	0.64	Lognormal	0.67	0.14
PCB-1260 (Aroclor 1260)	19	4	3.1	< 0.39	2.9	0.91	3.2	Lognormal	na	0.33	0.72	Lognormal	2.4	2.4
DRO	19	16	3,800	46	859	514	1.7	Inconclusive	na	0.52	0.82	Lognormal	13,909	3,800
RRO	10	10	3,700	25	1,121	1,735	0.65	Normal	na	0.93	0.72	Normal	2,384	2,384
Ephemeral Surface Water COPEC	!													
Arsenic	4	2	0.002	0.002	na ^a	0.002								
Barium	2	2	0.010	0.050	na ^a	0.010								
Manganese	2	2	0.69	0.49	na ^a	0.69								
Diesel Range Organics (DRO)	4	3	0.47	0.20	na ^a	0.47								

# Notes:

95% UCL - 95 percent upper confidence limit (UCL) on the mean concentration COPEC - Chemical of Potential Ecological Concern.
CV - coefficient of variation
DRO - Diesel range organics.
EPC - Exposure point concentration
Lognormal r² - Correlation coefficient for the lognormal plot mg/kg - milligrams per kilogram na - Not applicable.
Normal r² - Correlation coefficient for the normal plot RRO - Residual range organics.
Stdev - standard deviation

	Nun	nber of								Z-sco	ore Plots			
			Max Detect	Min Result				Shapiro-	D'Agostino's	Normal	Lognormal	Assumed		
	Samples	Detections	(mg/kg)	(mg/kg)	Stdev	Mean	CV	Wilkes Test	Test	$\mathbf{r}^2$	$\mathbf{r}^2$	Distribution	95% UCL	EPC
Soil COPEC														
Antimony	1	1	34	34	na ^a	34								
Lead	9	9	497	5.4	152	102	1.5	Lognormal	na	0.57	0.91	Lognormal	597	497
Zinc	5	5	169	60	44	93	0.47	Inconclusive	na	0.76	0.86	Lognormal	160	160
Di-n-butyl phthalate	1	1	3.5	3.5	na ^a	3.5								
Benzo(a)pyrene	11	1	0.35	< 0.0053	0.10	0.035	3.0	Inconclusive	na	0.33	0.40	Lognormal	0.079	0.079
Benzo(b)fluoranthene	11	4	0.42	0.00035	0.13	0.041	3.1	Inconclusive	na	0.32	0.66	Lognormal	0.20	0.20
Chrysene	11	7	0.77	0.00020	0.23	0.079	2.9	Lognormal	na	0.36	0.93	Lognormal	6.3	0.77
Naphthalene	11	8	1.2	0.00031	0.42	0.25	1.7	Lognormal	na	0.68	0.93	Lognormal	2,875	1.2
Phenanthrene	11	8	0.21	0.00022	0.12	0.071	1.7	Lognormal	na	0.68	0.94	Lognormal	53	0.21
DRO	10	5	4,070	<4	1,619	1,232	1.3	Inconclusive	na	0.83	0.86	Lognormal	93,037,525	4,070
GRO	10	3	38	<1	14	10	1.4	Lognormal	na	0.72	0.88	Lognormal	135	38
RRO	8	7	3,815	5.4	1,313	576	2.3	Lognormal	na	0.46	0.96	Lognormal	159,483	3,815

### Notes:

95% UCL - 95 percent upper confidence limit (UCL) on the mean concentration COPEC - Chemical of Potential Ecological Concern. CV - coefficient of variation DRO - Diesel range organics. EPC - Exposure point concentration

GRO - Gasoline range organics.

Lognormal r² - Correlation coefficient for the lognormal plot

mg/kg - milligrams per kilogram

na - Not applicable.

Normal r² - Correlation coefficient for the normal plot

RRO - Residual range organics.

Stdev - standard deviation

[														
	Nur	nber of								Z-sco	ore Plots			
			Max Detect	Min Result				Shapiro-	D'Agostino's	Normal	Lognormal	Assumed		
	Samples	Detections	(mg/kg)	(mg/kg)	Stdev	Mean	CV	Wilkes Test	Test	$r^2$	$\mathbf{r}^2$	Distribution	95% UCL	EPC
Sell CODEC														
Borulium	11	1	1.9	1.9	0.42	12	0.24	Inconclusivo	20	0.05	0.08	Normal	1.5	15
BCP 1254 (Arcolor 1254)	10	1	1.0	-0.042	0.45	0.21	1.0	Inconclusive	na	0.95	0.98	Lognormal	0.47	0.47
Anthracene	8	+ 2	1.5	0.016	0.39	0.21	1.9	Inconclusive	na	0.55	0.82	Normal	1.1	1.1
Banzo(a)anthracana	8	1	1.9	<0.010	1.5	1.0	1.0	Lognormal	na	0.89	0.80	Lognormal	2.030	1.1
Benzo(a)nyrene	8	1	4.4	<0.018	0.82	0.74	1.5	Inconclusive	na	0.70	0.91	Lognormal	2,030	4.4
Benzo(b)fluoranthene	8	1	2.5	<0.018	0.02	0.74	1.1	Inconclusive	na	0.87	0.87	Lognormal	1.072	2.5
Benzo(k)fluoranthene	8	1	2.0	<0.018	0.91	0.78	1.2	Inconclusive	na	0.83	0.88	Lognormal	1,072	2.0
Chrysene	8	1	5.5	<0.018	1.8	1.1	1.2	Lognormal	na	0.64	0.00	Lognormal	3 354	5.5
Elucrenthene	8	2	0.3	<0.025	0.52	0.54	1.0	Inconclucius	na	0.04	0.91	Normal	0.80	0.80
Phenonthrene	8	2	9.5	<0.025	1.4	0.54	1.0	Lognormal	na	0.89	0.87	Lognormal	303	0.89
Durane	8	2	4.1	0.010	2.5	1.4	1.4	Lognormal	na	0.72	0.90	Lognormal	1.692	4.1
DRO	21	20	92.650	7.9	2.3	1.4	1.6	Lognormal	na	0.37	0.93	Lognormal	7.516.257	92.650
DRO Aromatic	2	1	59	59	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	59
DRO_Alinhatia	-	2	400	50	na a	na a	na a	na ^a	na ^a	na a	na ^a	no ^a	na ^a	400
CPO	10	2	490	30	10	112	17	Ila Ta con chucino	па	na 0.71	112	na Loomonuol	11a 8 202	490
BRO	10	4	120	3.7	49	28	1.7	Inconclusive	na	0.71	0.85	Lognormal	8,202	120
RKO	0	0	2,200	1,200	415	1,755	0.24	inconclusive	112	0.94	0.92	Normai	2,075	2,075
RRO_Aromatic	2	2	360	230	na "	na "	na "	na "	na "	na "	na "	na "	na "	360
Sediment COPEC														
Chromium	68	67	649	<4	77	29	2.6	na	Inconclusive	0.16	0.79	Lognormal	28	28
Lead	68	55	4 590	40	554	93	59	na	Inconclusive	0.76	0.81	Lognormal	74	74
Zinc	68	68	4 810	12	589	160	37	na	Inconclusive	0.87	0.93	Lognormal	26	26
Ethylbenzene	8	2	1.8	<0.0025	0.62	0.25	2.5	Lognormal	na	0.46	0.96	Lognormal	318	1.8
Toluene	8	3	0.37	<0.0025	0.13	0.074	17	Lognormal	na	0.62	0.98	Lognormal	18	0.37
Xylenes	8	3	0.78	<0.0025	0.26	0.16	1.6	Lognormal	na	0.67	0.89	Lognormal	442	0.78
PCB-1242	79	1	0.12	< 0.04	2.8	0.37	7.5	na	Inconclusive	0.09	0.67	Lognormal	0.10	0.10
PCB-1254 (Aroclor 1254)	79	14	2.8	0.038	14	0.29	5.0	na	Inconclusive	0.15	0.79	Lognormal	0.16	0.16
PCB-1260 (Aroclor 1260)	79	27	5.4	0.063	1.5	0.40	3.8	na	Inconclusive	0.21	0.90	Lognormal	0.52	0.52
4.4'-DDD	13	6	1.2	< 0.00715	3.8	2.0	1.9	Lognormal	na	0.60	0.91	Lognormal	2.635	1.2
beta-BHC	10	2	0.012	0.0036	0.0036	0.0046	0.79	Inconclusive	na	0.88	0.98	Lognormal	0.010	0.010
Endosulfan sulfate	10	1	0.0086	< 0.0053	0.0085	0.0093	0.92	Lognormal	na	0.79	0.93	Lognormal	0.020	0.0086
gamma-BHC (Lindane)	13	2	0.0065	< 0.00215	3.9	1.8	2.1	Inconclusive	na	0.55	0.72	Lognormal	32.009	0.0065
Heptaclor	13	2	0.0046	< 0.00215	3.9	1.8	2.0	Inconclusive	na	0.56	0.72	Lognormal	34,339	0.0046
Dibenzofuran	68	26	5.6	< 0.0077	1.2	0.77	1.6	na	Lognormal	0.66	0.94	Lognormal	4.5	4.5
2-Methylnaphthalene	71	58	500	< 0.0077	93	35	2.6	na	na	0.40	0.96	Lognormal	1.291	500
Acenaphthene	70	40	14	< 0.0077	3.0	1.8	1.7	na	Lognormal	0.61	0.94	Lognormal	15	14
Acenaphthylene	71	1	0.047	< 0.0062	0.49	0.32	1.5	na	Inconclusive	0.67	0.95	Lognormal	1.2	0.047
Anthracene	71	7	1.8	< 0.0062	0.56	0.38	1.5	na	Inconclusive	0.71	0.94	Lognormal	1.8	1.8
Benzo(a)anthracene	71	5	1.9	0.10	0.57	0.38	1.5	na	Inconclusive	0.71	0.94	Lognormal	1.5	1.5
Benzo(a)pyrene	71	4	1.4	0.13	0.52	0.35	1.5	na	Inconclusive	0.70	0.95	Lognormal	1.4	1.4
Benzo(b)fluoranthene	71	5	1.6	0.10	0.54	0.37	1.5	na	Inconclusive	0.72	0.94	Lognormal	1.5	1.5
Benzo(g,h,I)perylene	71	2	0.91	< 0.0062	0.50	0.33	1.5	Lognormal	na	0.68	0.95	Lognormal	1.2	0.91
Benzo(k)fluoranthene	71	4	1.9	0.19	0.55	0.36	1.5	na	Inconclusive	0.72	0.94	Lognormal	1.5	1.5
Chrysene	71	7	2.6	< 0.0062	0.67	0.43	1.6	na	Inconclusive	0.67	0.96	Lognormal	1.8	1.8
Dibenzo(a,h)anthracene	71	1	0.015	0.0062	0.49	0.32	1.5	na	Inconclusive	0.67	0.95	Lognormal	1.1	0.015

	Nu	nber of								Z-sc	ore Plots	_		
			Max Detect	Min Result				Shapiro-	D'Agostino's	Normal	Lognormal	Assumed		
	Samples	Detections	(mg/kg)	(mg/kg)	Stdev	Mean	CV	Wilkes Test	Test	$\mathbf{r}^2$	$\mathbf{r}^2$	Distribution	95% UCL	EPC
Sadimont COPEC (continued)														
Eluoranthene	71	12	14	<0.0062	2.1	0.70	27	na	Lognormal	0.37	0.97	Lognormal	28	28
Fluorene	71	47	20	<0.0002	4.8	27	1.8	na	Lognormal	0.57	0.97	Lognormal	33	2.8
Ideno(1,2,3-cd)pyrene	71	3	1.2	0.05	0.51	0.34	1.5	na	Inconclusive	0.69	0.95	Lognormal	1.3	1.2
Naphthalene	71	55	220	0.024	36	13	2.8	na	Lognormal	0.37	0.97	Lognormal	175	175
Phenanthrene	71	42	21	< 0.0077	3.9	1.9	2.1	na	Lognormal	0.52	0.95	Lognormal	26	21
Pyrene	71	11	9.5	< 0.0062	1.5	0.64	2.3	na	Lognormal	0.44	0.97	Lognormal	24	9.5
DRO	83	83	150,000	22	26,815	17,557	1.5	na	Inconclusive	0.68	0.96	Lognormal	98,564	98,564
DRO Aromatic	3	1	60	<12	na ^a	60								
DRO_Aliphatic	5	5	150,000	26	64,389	36,541	1.8	Lognormal	na	0.67	0.94	Lognormal	2.87E+20	150,000
GRO	5	2	220	<1	95	55	1.7	Lognormal	na	0.75	0.98	Lognormal	8.25E+09	220
RRO	69	66	14,000	69	3,012	2,615	1.2	na	Lognormal	0.69	0.97	Lognormal	3,634	3,634
RRO_Aliphatic	5	4	11,000	58	4,715	2,622	1.8	Lognormal	na	0.63	0.93	Lognormal	530,973,047	11,000
RRO_Aromatic	5	5	500	64	170	269	0.6	Normal	na	0.98	0.94	Normal	430	430
Ephemeral Surface Water COPEC														
Chromium	3	1	0.015	0.015	na ^a	0.015								
Copper	3	1	0.040	0.040	na ^a	0.040								
Lead	3	1	0.086	0.086	na ^a	0.086								
Load dissolved	3	1	0.000	0.000	na ^a	0.000								
Lead, dissolved	3	1	0.011	0.011	na	0.011								
Zinc	3	1	0.62	0.62	na "	0.62								
Zinc, dissolved	3	1	0.23	0.23	na "	na ^a	0.23							
PCB-1260 (Aroclor 1260)	15	2	0.0019	0.0015	0.00044	0.00061	0.72	Lognormal	na	0.62	0.77	Lognormal	0.00081	0.00081
DRO	17	17	326	0.39	78	22	3.6	Inconclusive	na	0.27	0.83	Lognormal	46	46
GRO	5	I	0.57	0.025	0.24	0.13	1.8	Inconclusive	na	1.0	1.0	na	na	0.57
Fish Tissue COPC														
Antimony	3	3	0.007	0.005	na ^a	0.007								
Arsenic	3	3	0.08	0.06	na ^a	0.08								
Barium	3	3	1.1	1.0	na ^a	1.1								
Cadmium	3	3	0.008	0.008	na ^a	0.008								
Copper	3	3	1.2	0.64	na ^a	1.2								
Lead	3	3	0.028	0.011	na ^a	0.028								
Mercury	3	3	0.098	0.076	na ^a	0.098								
Niekol	3	3	1.1	0.63	no ^a	no ^a	no ^a	na ^a	na ^a	no ^a	na ^a	na ^a	na ^a	1.1
	3	3	1.1	0.03	na a	iia a	iia a	a	a	na a	a	a	a	1.1
Selenium	3	3	0.16	0.13	na	0.16								
Vanadium	3	3	0.11	0.099	na "	0.11								
Zinc	3	3	51	43	na ^a	51								
2-Methylnaphthalene	4	4	0.19	0.0053	na ^a	0.19								
Acenaphthene	4	4	0.026	0.0063	na ^a	0.026								
Benzo(g,h,i)perlyene	4	1	0.0043	0.0043	na ^a	0.0043								

	Nu	nber of								Z-sco	ore Plots			
	<i>a</i> .		Max Detect	Min Result	<i>a</i>			Shapiro-	D'Agostino's	Normal	Lognormal 2	Assumed		TRO
	Samples	Detections	(mg/kg)	(mg/kg)	Stdev	Mean	CV	Wilkes Test	Test	r	r	Distribution	95% UCL	EPC
Fish Tissue COPC (continued)														
Fluoranthene	4	2	0.0037	0.0015	na ^a	0.0037								
Fluorene	4	4	0.067	0.011	na ^a	0.067								
Naphthalene	4	3	0.068	0.016	na ^a	0.068								
Phenanthrene	4	4	0.018	0.0062	na ^a	0.018								
Pyrene	4	2	0.0023	0.0018	na ^a	0.0023								
PCB-1260 (Aroclor 1260)	4	4	0.14	0.06	na ^a	0.14								
Plant Tissue COPC														
Antimony	1	1	0.003	0.003	na	0.003								
Arsenic	17	10	2.4	0.06	0.74	0.54	1.4	Lognormal	na	0.68	0.97	Lognormal	1.6	1.6
Barium	17	17	40	0.45	12	15	0.78	Inconclusive	na	0.94	0.90	Normal	45	40
Cadmium	17	17	1.1	0.002	0.26	0.13	2.0	Lognormal	na	0.41	0.90	Lognormal	0.47	0.47
Chromium	17	16	78	0.12	19	6.1	3.0	Lognormal	na	0.31	0.91	Lognormal	24	24
Copper	17	17	6.9	0.54	1.9	2.3	0.80	Lognormal	na	0.79	0.97	Lognormal	3.6	3.6
Lead	17	17	11	0.065	3.6	2.6	1.4	Lognormal	na	0.70	0.98	Lognormal	13	11
Mercury	17	16	0.16	0.003	0.046	0.037	1.2	Lognormal	na	0.74	0.98	Lognormal	0.11	0.11
Nickel	17	17	8.6	0.060	2.1	1.3	1.6	Lognormal	na	0.56	0.97	Lognormal	3.4	3.4
Selenium	17	11	0.99	0.020	0.23	0.12	2.0	Lognormal	na	0.44	0.93	Lognormal	0.23	0.23
Silver	17	8	0.058	0.007	0.014	0.012	1.2	Lognormal	na	0.73	0.98	Lognormal	0.033	0.033
Vanadium	17	17	7.3	0.016	1.9	1.1	1.7	Lognormal	na	0.60	0.98	Lognormal	6.8	6.8
Zinc	17	17	76	1.3	21	25	0.84	Lognormal	na	0.86	0.93	Lognormal	58	58
2-Methylnaphthalene	17	12	0.026	0.0028	0.0058	0.0085	0.69	Lognormal	na	0.80	0.97	Lognormal	0.012	0.012
Acenaphthene	17	13	0.075	0.0017	0.020	0.015	1.2	Lognormal	na	0.63	0.96	Lognormal	0.029	0.029
Anthracene	17	11	0.05	0.0019	0.011	0.0086	1.3	Lognormal	na	0.53	0.91	Lognormal	0.013	0.013
Benzo(a)anthracene	17	11	0.24	0.0028	0.061	0.03	2.1	Inconclusive	na	0.50	0.85	Lognormal	0.088	0.088
Benzo(a)pyrene	17	9	0.30	0.0022	0.080	0.038	2.1	Inconclusive	na	0.50	0.83	Lognormal	0.11	0.11
Benzo(b)fluoranthene	17	14	0.24	0.0018	0.064	0.034	1.9	Lognormal	na	0.51	0.93	Lognormal	0.089	0.089
Benzo(g,h,i)perylene	17	10	0.15	0.0018	0.042	0.022	1.9	Inconclusive	na	0.54	0.84	Lognormal	0.055	0.055
Benzo(k)fluoranthene	17	11	0.34	0.0031	0.088	0.050	1.7	Lognormal	na	0.60	0.94	Lognormal	0.20	0.20
Chrysene	17	15	0.42	0.002	0.11	0.056	1.9	Lognormal	na	0.52	0.95	Lognormal	0.18	0.18
Dibenz(a,h,)anthracene	17	7	0.043	0.0017	0.012	0.0094	1.3	Inconclusive	na	0.67	0.88	Lognormal	0.014	0.014
Fluoranthene	17	16	1.0	0.0072	0.26	0.16	1.6	Lognormal	na	0.60	0.98	Lognormal	0.73	0.73
Fluorene	17	16	0.077	0.002	0.019	0.016	1.2	Lognormal	na	0.63	0.95	Lognormal	0.027	0.027
Ideno(1,2,3-cd)pyrene	17	13	0.21	0.0013	0.066	0.034	1.9	Inconclusive	na	0.53	0.85	Lognormal	0.11	0.11
Naphthalene	17	13	0.042	0.0027	0.010	0.010	0.97	Lognormal	na	0.67	0.95	Lognormal	0.015	0.015
Phenanthrene	17	17	1.0	0.0027	0.25	0.17	1.5	Lognormal	na	0.59	0.92	Lognormal	0.59	0.59
Pyrene	17	16	0.93	0.0048	0.24	0.13	1.8	Lognormal	na	0.54	0.96	Lognormal	0.53	0.53
PCB-1254 (Aroclor 1254)	16	16	9.3	0.0049	2.3	0.68	3.4	Lognormal	na	0.28	0.92	Lognormal	3.0	3.0
PCB-1260 (Aroclor 1260)	16	15	0.92	0.0049	0.26	0.15	1.7	Lognormal	na	0.58	0.97	Lognormal	0.61	0.61

Number of								Z-sco	ore Plots			
	Max Detect	Min Result				Shapiro-	D'Agostino's	Normal	Lognormal	Assumed		
Samples Detections	(mg/kg)	(mg/kg)	Stdev	Mean	CV	Wilkes Test	Test	$r^2$	$r^2$	Distribution	95% UCL	EPC

Notes:

95% UCL - 95 percent upper confidence limit (UCL) on the mean concentration
COPEC - Chemical of Potential Ecological Concern.
CV - coefficient of variation
DRO - Diesel range organics.
EPC - Exposure point concentration
Lognormal r² - Correlation coefficient for the lognormal plot
na - Not applicable.
mg/kg - milligrams per kilogram
Normal r² - Correlation coefficient for the normal plot
RRO - Residual range organics.
Stdev - standard deviation
^a Consistent with methods described by ADEC (ADEC, 2003) and USEPA (USEPA, 2002b), less than 5 samples in a data set are inadequate to calculate a meaningful 95% UCL. In this case, the maximum concentration was used for the EPC value.

	Nun	iber of								Z-sco	ore Plots			
			Max Detect	Min Result				Shapiro-	D'Agostino's	Normal	Lognormal	Assumed		
	Samples	Detections	(mg/kg)	(mg/kg)	Stdev	Mean	CV	Wilkes Test	Test	r ²	$\mathbf{r}^2$	Distribution	95% UCL	EPC
Freshwater Sediment COPEC														
Aluminum	4	4	15 000	4 820	no ^a	15 000								
Aluminum	4	4	15,900	4,820	na	na	na	па	na	na	па	na	na	15,900
Arsenic	4	4	5.7	2.8	na "	5.7								
Barium	4	4	115	40	na ^a	115								
Beryllium	5	4	1.3	0.20	0.46	0.70	0.66	Inconclusive	na	0.96	0.94	Normal	1.1	1.1
Cobalt	4	4	7.0	2.0	na ^a	7.0								
Manganese	4	4	114	80	na ^a	114								
Mercury	4	1	0.05	0.05	na ^a	0.05								
Vanadium	4	4	35	17	na ^a	35								
m,p-Xylene	4	1	0.0032	0.0032	na ^a	0.0032								
2-Methylnaphthalene	21	4	0.23	< 0.0022	0.060	0.031	2.1	Inconclusive	na	0.50	0.82	Lognormal	0.072	0.072
Acenaphthylene	21	1	0.010	< 0.0022	0.035	0.012	2.9	Inconclusive	na	0.26	0.75	Lognormal	0.014	0.010
Anthracene	21	1	0.023	< 0.0022	0.035	0.013	2.7	Inconclusive	na	0.29	0.78	Lognormal	0.016	0.016
Fluorene	21	3	0.022	< 0.0022	0.035	0.014	2.5	Inconclusive	na	0.31	0.86	Lognormal	0.020	0.020
Naphthalene	21	3	0.11	< 0.0022	0.040	0.018	2.2	Inconclusive	na	0.42	0.82	Lognormal	0.031	0.031
Phenanthrene	21	4	0.037	< 0.0022	0.035	0.016	2.3	Inconclusive	na	0.37	0.89	Lognormal	0.025	0.025
Pyrene	21	2	0.020	< 0.0022	0.035	0.013	2.7	Inconclusive	na	0.29	0.79	Lognormal	0.016	0.016
DRO	26	24	25,000	9.3	4,883	1,096	4.5	Lognormal	na	0.20	0.92	Lognormal	1,859	1,859
RRO	18	17	1,000	10	354	308	1.1	Lognormal	na	0.80	0.96	Lognormal	1,757	1,000
RRO, Aromatic	6	6	137	53	33	87	0.38	Inconclusive	na	0.92	0.93	Lognormal	133	133
									na					
Fresh Surface Water COPEC									na					
Aluminum	4	4	0.04	0.04	na ^a	0.04								
Barium	4	4	0.005	0.005	na ^a	0.005								
Silver, Dissolved	1	1	0.02	0.02	na ^a	0.02								
DRO	13	1	0.33	0.33	0.077	0.73	0.73	Inconclusive	na	0.86	1.0	Lognormal	0.16	0.16
DRO Aliphatic	1	1	0.33	0.33	na ^a	0.33								
GRO	11	2	0.41	0.33	0.12	0.13	0.93	Lognormal	na	0.75	0.91	Lognormal	0.29	0.29
		_							na		• • • •			
Fish Tissue COPEC														
Antimony	15	1	0.010	0.010	0.001	0.0076	0.2	Inconclusive	na	0.89	0.91	Lognormal	0.0083	0.0083
Arsenic	15	15	0.780	0.210	0.187	0.5600	0.3	Normal	na	0.91	0.83	Normal	0.65	0.65
Barium	15	15	0.466	0.015	0.141	0.1040	1.4	Lognormal	na	0.63	0.90	Lognormal	0.22	0.22
Cadmiun	15	11	0.044	0.0060	0.013	0.0149	0.9	Inconclusive	na	0.89	0.68	Normal	0.021	0.021
Copper	15	15	3.01	0.550	0.910	1.2333	0.7	Inconclusive	na	0.70	0.82	Lognormal	1.7	1.7
Lead	15	10	0.012	0.0030	0.003	0.0052	0.6	Lognormal	na	0.85	0.95	Lognormal	0.0069	0.0069
Mercury	15	15	0.022	0.0040	0.006	0.0141	0.4	Normal	na	0.93	0.80	Normal	0.017	0.017
Nickel	15	7	1.12	0.030	0.363	0.1940	1.9	Inconclusive	na	0.56	0.78	Lognormal	0.49	0.49

	Nun	iber of								Z-sco	ore Plots			
			Max Detect	Min Result				Shapiro-	D'Agostino's	Normal	Lognormal	Assumed		
	Samples	Detections	(mg/kg)	(mg/kg)	Stdev	Mean	CV	Wilkes Test	Test	$r^2$	$r^2$	Distribution	95% UCL	EPC
Selenium	15	15	0.52	0.120	0.137	0.2133	0.6	Inconclusive	na	0.68	0.77	Lognormal	0.28	0.28
Silver	15	5	0.036	0.011	0.011	0.0098	1.2	Inconclusive	na	0.80	0.85	Lognormal	0.021	0.021
Vanadium	15	15	0.142	0.017	0.031	0.0615	0.5	Lognormal	na	0.84	0.91	Lognormal	0.082	0.082
Zinc	15	15	36.9	5.56	10.631	15.1807	0.7	Inconclusive	na	0.84	0.84	Lognormal	24	24
2-Methylnaphthalene	16	4	0.009	0.0026	0.002	0.0032	0.6	Inconclusive	na	0.33	0.35	Lognormal	0.0038	0.0038
Acenaphthene	16	5	0.0092	0.0013	0.002	0.0031	0.6	Inconclusive	na	0.70	0.84	Lognormal	0.0038	0.0038
Anthracene	16	5	0.011	0.0017	0.002	0.0033	0.7	Inconclusive	na	0.73	0.84	Lognormal	0.0041	0.0041
Benzo(a)anthracene	16	6	0.012	0.0014	0.003	0.0034	0.8	Inconclusive	na	0.61	0.77	Lognormal	0.0043	0.0043
Benzo(a)pyrene	16	4	0.009	0.0021	0.002	0.0031	0.6	Inconclusive	na	0.64	0.73	Lognormal	0.0037	0.0037
Benzo(b)fluoranthene	16	6	0.0073	0.0012	0.001	0.0027	0.5	Inconclusive	na	0.71	0.93	Lognormal	0.0032	0.0032
Benzo(g,h,i)pervlene	16	6	0.0089	0.0025	0.002	0.0033	0.5	Inconclusive	na	0.78	0.87	Lognormal	0.0040	0.0040
Benzo(k)fluoranthene	16	6	0.018	0.0024	0.004	0.0043	1.0	Inconclusive	na	0.59	0.71	Lognormal	0.0057	0.0057
Chrysene	16	6	0.012	0.0019	0.003	0.0035	0.8	Inconclusive	na	0.63	0.76	Lognormal	0.0044	0.0044
Dibenz(a,h.)anthracene	16	3	0.0068	0.0016	0.001	0.0028	0.4	Inconclusive	na	0.79	0.93	Lognormal	0.0032	0.0032
Fluoranthene	16	6	0.013	0.0017	0.003	0.0037	0.8	Inconclusive	na	0.61	0.76	Lognormal	0.0047	0.0047
Fluorene	15	6	0.011	0.0012	0.003	0.0033	0.8	Inconclusive	na	0.63	0.83	Lognormal	0.0043	0.0043
Ideno(1.2.3-cd)pyrene	16	7	0.0043	0.0007	0.001	0.0022	0.4	Inconclusive	na	0.91	0.90	Normal	0.0026	0.0026
Nanhthalene	16	7	0.0015	0.002	0.001	0.0022	1.8	Inconclusive	na	0.66	0.90	Lognormal	0.0020	0.0020
Phenanthrene	15	9	0.0000	0.0014	0.003	0.0027	0.8	Inconclusive	na	0.63	0.83	Lognormal	0.0032	0.0032
Durana	15	7	0.012	0.0026	0.003	0.0035	0.0	Inconclusive	na	0.65	0.05	Lognormal	0.0040	0.0050
$\frac{1}{254} (A \operatorname{realer} 1254)$	16	15	0.014	0.0020	0.003	0.0040	0.0	Inconclusive	na	0.05	0.78	Lognormal	0.0050	0.0050
PCD = 1234 (Aroclor 1234)	10	15	0.050	0.0001	0.007	0.0140	0.5	Inconclusive	118	0.92	0.94	Lognormal	0.019	0.019
PCB-1200 (Afocior 1260)	16	3	0.160	0.16	0.040	0.0114	3.5	inconclusive	па	0.51	0.84	Lognormal	0.012	0.012

# Notes:

95% UCL - 95 percent upper confidence limit (UCL) on the mean concentration COPEC - Chemical of Potential Ecological Concern.
CV - coefficient of variation
DRO - Diesel range organics.
EPC - Exposure point concentration
Lognormal r² - Correlation coefficient for the lognormal plot mg/kg - milligrams per kilogram na - Not applicable.
Normal r² - Correlation coefficient for the normal plot
RRO - Residual range organics.
Stdev - standard deviation
^a Consistent with methods described by ADEC (ADEC 2003) and USEPA (USEPA)

	Nur	nber of								Z-sco	ore Plots			
	Samples	Detections	Max Detect (mg/kg)	Min Result (mg/kg)	Stdev	Mean	CV	Shapiro- Wilkes Test	D'Agostino's Test	Normal r ²	Lognormal r ²	Assumed Distribution	95% UCL	EPC
PCB-1260 (Aroclor 1260)	8	6	22	0.36	7.2	5.3	1.4	Lognormal	na	0.70	0.90	Lognormal	6054	22
DRO	24	24	11,000	11	2,298	1,273	1.8	Lognormal	na	0.53	0.98	Lognormal	8,307	8,307
RRO	24	12	9,600	12	2,817	1,179	2.4	Inconclusive	na	0.45	0.85	Normal	2,165	2,165
Ephemeral Surface Water CO	PEC													
Barium	2	1	0.003	0.003	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.003
Manganese	2	2	0.005	0.001	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.005

Notes:

95% UCL - 95 percent upper confidence limit (UCL) on the mean concentration

COPEC - Chemical of Potential Ecological Concern.

CV - coefficient of variation

DRO - Diesel range organics.

EPC - Exposure point concentration

Lognormal r² - Correlation coefficient for the lognormal plot

mg/kg - milligrams per kilogram

na - Not applicable.

Normal  $r^2$  - Correlation coefficient for the normal plot

RRO - Residual range organics.

Stdev - standard deviation

	Number of									Z-sc	ore Plots	_		
	Samples	Detections	Max Detect (mg/kg)	Min Result (mg/kg)	Stdev	Mean	CV	Shapiro- Wilkes Test	D'Agostino's Test	Normal r ²	Lognormal r ²	Assumed Distribution	95% UCL	EPC
Soil COPEC														
PCB-1260 (Aroclor 1260)	3	2	0.89	< 0.0043	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	na ^a	0.89
DRO	5	5	13,000	230	5,647	4,486	1.26	Inconclusive	na	0.82	0.94	Lognormal	7,091,847	13,000
RRO	5	3	3,600	1,100	1,132	1,580	0.7	Inconclusive	na	0.65	0.71	Lognormal	3,898	3,600

Notes:

95% UCL - 95 percent upper confidence limit (UCL) on the mean concentration COPEC - Chemical of Potential Ecological Concern.
CV - coefficient of variation
DRO - Diesel range organics.
EPC - Exposure point concentration
Lognormal r² - Correlation coefficient for the lognormal plot mg/kg - milligrams per kilogram na - Not applicable.
Normal r² - Correlation coefficient for the normal plot RRO - Residual range organics.
Stdev - standard deviation

	Number of		Max Detect	Min Result				Shapiro-	D'Agostino's	Z-sco Normal	ore Plots Lognormal	Assumed		
	Samples	Detections	(mg/kg)	(mg/kg)	Stdev	Mean	CV	Wilkes Test	Test	$\mathbf{r}^2$	$\mathbf{r}^2$	Distribution	95% UCL	EPC
Soil COPEC														
DRO	3	3	660	150	na ^a	na ^a	na ^a	660						
RRO	3	3	2,100	270	na ^a	na ^a	na ^a	2,100						

Notes:

95% UCL - 95 percent upper confidence limit (UCL) on the mean concentration

COPEC - Chemical of Potential Ecological Concern.

CV - coefficient of variation

DRO - Diesel range organics.

EPC - Exposure point concentration

Lognormal  $r^2$  - Correlation coefficient for the lognormal plot

mg/kg - milligrams per kilogram

na - Not applicable.

Normal  $\boldsymbol{r}^2$  - Correlation coefficient for the normal plot

RRO - Residual range organics.

Stdev - standard deviation

^a Consistent with methods described by ADEC (ADEC, 2003) and USEPA (USEPA, 2002b), less than 5 samples in a data set are inadequate to calculate a meaningful 95% UCL.

In this case, the maximum concentration was used for the EPC value.

	Nun	Number of								Z-sco	ore Plots	_		
	Samples	Detections	Max Detect (mg/kg)	Min Result (mg/kg)	Stdev	Mean	cv	Shapiro- Wilkes Test	D'Agostino's Test	Normal r ²	Lognormal r ²	Assumed Distribution	95% UCL	EPC
Soil COPEC														
PCB-1254 (Aroclor 1254)	8	5	0.59	0.020	0.19	0.16	1.2	Lognormal	na	0.76	0.91	Lognormal	1.6	0.59
PCB-1260 (Aroclor 1260)	8	4	0.47	0.019	0.15	0.099	1.6	Lognormal	na	0.56	0.84	Lognormal	0.47	0.47
DRO	9	9	1,100	13	419	327	1.3	Lognormal	na	0.75	0.94	Lognormal	9,959	1,100
RRO	9	8	1,200	58	387	290	1.3	Lognormal	na	0.59	0.86	Lognormal	1,162	1,162

Notes:

95% UCL - 95 percent upper confidence limit (UCL) on the mean concentration COPEC - Chemical of Potential Ecological Concern.

COPEC - Chemical of Potential Ecolo CV - coefficient of variation

DRO - Diesel range organics.

EPC - Exposure point concentration

Lognormal  $r^2$  - Correlation coefficient for the lognormal plot

mg/kg - milligrams per kilogram

na - Not applicable.

Normal r² - Correlation coefficient for the normal plot

RRO - Residual range organics.

Stdev - standard deviation



DEPARTMENT OF THE ARMY U.S. ARMY ENGINEER DISTRICT, ALASKA P.O. BOX 6898 ELMENDORF AFB, ALASKA 99506-6898

April 13, 2004

Programs and Project Management Division Civil Projects Management Branch

«Title» «FirstName» «LastName» «JobTitle» «Company» «Address1» «City», «State» «PostalCode»

Dear «Title» «LastName»:

Enclosed for your files is a copy of the Final Human Health and Ecological Risk Assessment, Northeast Cape Installation, St. Lawrence Island, Alaska, submitted to the Corps by Montgomery Watson -Harza (MWH). This two-volume report is intended to evaluate potential impacts of site-related chemicals on public health and on the environment.

Since this is a final report, there is no mandated review period. Nonetheless, the U.S. Army Corps of Engineers is interested to know whether you feel your previous comments have been fully addressed. Therefore, upon reading the document, if you believe your concerns have not been satisfactorily responded to, please let me know. If you submitted written comments, a copy of your comments with a response is included. All comments will be supplied to the Information Repositories.

Please note, attached to the back inside cover of Volume I are comments from the US Army Center for Health Promotion and Preventive Medicine (CHPPM) regarding the Technical Memorandum, *Background Determination for Risk Assessment, Derivation of Ambient Concentrations for Abiotic Media Associated with the Northeast Cape Installation, St. Lawrence Island, Alaska*, May 2003. These comments were not sought until after the Technical Memorandum was finalized and could not be captured in the final document. Certain comments in this attachment are appropriate to the Risk Assessment as well.

This letter has also been furnished to the following individuals and organizations:

Honorable Fritz Waghiyi, President, Native Village of Savoonga
Honorable Jesse Gologergen, Mayor, Mayor of Savoonga
Mr. Job Koonooka, President, Sivuqaq, Inc.
Mr. Morris Toolie, Jr., President, Savoonga Native Corporation
Mr. Morris Toolie, Jr., RAB Community Co-chair, Savoonga
Information Repository

Gambell Information Repository Mr. Jeff Brownlee, Alaska Department of Environmental Conservation Ms. June Martin, SLI Coordinator, Alaska Community Action on Toxics Mr. Jerald Reichlin, Fortier and Mikko Dr. Ron Scrudato, State University of New York, TAPP Grant National Parks Service, Nome Information Repository ARLIS, Anchorage Information Repository Ms. Ronie Shackelford, USACHPPM

If you have any questions, please contact me at (907) 753-2689, or by e-mail at <u>carey.c.cossaboom@poa02.usace.army.mil</u>.

Sincerely,

Carey Cossaboom Project Manager

Enclosures

- -

G:\PM-P\FUDS Program\Carey\NE Cape\transmittal letter_Final MWH Risk.doc Merge with G:\PM-P\FUDS Program\Carey\NE Cape\ ne cape data source April 2004
۵.	LastName Brownlee	<b>JobTitle</b> Project Manager	<b>Company</b> Alaska Department of	Address1 555 Cordova	City Anchorage	<b>State</b> AK	<b>PostalCode</b> 99501	<b>FirstName</b> Jeff	M.
		mager	Environmental Conservation	St., 2 nd floor					
Ь.	Waghiyi	President	Native Village of Savoonga	P.O. Box 120	Savoonga	AK	99769	Fritz	H
с.	Koonooka	President	Sivuqaq, Inc.	P.O. Box 101	Gambell	AK	99742	Job	<b>M</b> .
d,	Toolie, Jr.	President	Savoonga Native Corporation	P.O. Box 160	Savoonga	AK	99769	Morris	M
€,	Martin	Project Coordinator	Alaska Community Action on Toxics	505 W. Northern Lights Blvd., #205	Anchorage	AK	99503	June	N.
11 4 1	Reichlin	Attorney	Fortier and Mikko	101 W. Benson Blvd, Suite 304	Anchorage	AK	99503	Jerald	M.
		Gambell Information Repository	Sivuqaq Corporation Building	P.O. Box 101	Gambell	AK	99742		
57	Selig	St. Lawrence Island FUDS Information Repository	National Parks Service	179 Front St, Suite 121	Nome	AK	99762	Leigh	N.
h,	Lawrence Island FUDS	Anchorage Information Repository	Alaska Resource Library and Information Services (ARLIS)	3150 C Street, Suite 100	Anchorage	AK	99503		Sı
ί,	Scrudato		. ,	54 Sunset Bluff	Oswego	NY	13126	Ronald	D
・ 、	Toolie, Jr.	RAB Community Co-Chair		P.O. Box 157	Savoonga	Alaska	99769	Morris	<b>M</b> .
k.	Gologergen	Mayor	Village of Savoonga	P.O. Box 120	Savoonga	AK	99769	Jesse	Н
١.	Shackelford	USACHPP M	MCHB-TS- REH	Building 1675	Aberdeen Proving Grounds	MD	21010-5422	Ronie	N

ی ب



#### DEPARTMENT OF THE ARMY U.S. ARMY ENGINEER DISTRICT, ALASKA P.O. BOX 6898 ELMENDORF AFB, ALASKA 99506-6898

April 19, 2004

Programs and Project Management Division Civil Projects Management Branch

Mr. Terry Walker U.S. Army Corps of Engineers HTRW CX (ATTN: Document Distribution) 12565 West Center Road Omaha, NE 68144-3869

Dear Mr. Walker:

Enclosed for your files is a copy of the Final Human Health and Ecological Risk Assessment, Northeast Cape Installation, St. Lawrence Island, Alaska, submitted to the Corps by Montgomery Watson Harza (MWH). This two-volume report is intended to evaluate potential impacts of siterelated chemicals on public health and on the environment.

Since this is a final report, there is no mandated review period. Nonetheless, the U.S. Army Corps of Engineers is interested to know whether you feel your previous comments have been fully addressed. Therefore, upon reading the document, if you believe your concerns have not been satisfactorily responded to, please let me know. If you submitted written comments, a copy of your comments with a response is included. All comments will be supplied to the Information Repositories.

Please note, attached to the back inside cover of Volume I are comments from the US Army Center for Health Promotion and Preventive Medicine (CHPPM) regarding the Technical Memorandum, *Background Determination for Risk Assessment, Derivation of Ambient Concentrations for Abiotic Media Associated with the Northeast Cape Installation, St. Lawrence Island, Alaska*, May 2003. These comments were not sought until after the Technical Memorandum was finalized and could not be captured in the final document. Certain comments in this attachment are appropriate to the Risk Assessment as well.

This letter has also been furnished to the following individuals and organizations:

Honorable Fritz Waghiyi, President, Native Village of Savoonga
Honorable Jesse Gologergen, Mayor, Mayor of Savoonga
Mr. Job Koonooka, President, Sivuqaq, Inc.
Mr. Morris Toolie, Jr., President, Savoonga Native Corporation
Mr. Morris Toolie, Jr., RAB Community Co-chair, Savoonga
Information Repository
Gambell Information Repository

Mr. Jeff Brownlee, Alaska Department of Environmental Conservation Ms. June Martin, SLI Coordinator, Alaska Community Action on Toxics Mr. Jerald Reichlin, Fortier and Mikko Dr. Ron Scrudato, State University of New York, TAPP Grant National Parks Service, Nome Information Repository ARLIS, Anchorage Information Repository Ms. Ronie Shackelford, USACHPPM

If you have any questions, please contact me at (907) 753-2689, or by e-mail at <u>carey.c.cossaboom@poa02.usace.army.mil</u>.

Sincerely,

Carey Cossaboom Project Manager

Enclosures

G:\PM-P\FUDS Program\Carey\NE Cape\transmittal letter Final MWH Risk_CX.doc



### DEPARTMENT OF THE ARMY U.S. ARMY ENGINEER DISTRICT, ALASKA P.O. BOX 6898 ELMENDORF AFB, ALASKA 99506-6898

## April 19, 2004

Programs and Project Management Division Civil Works Management Branch

«Title» «FirstName» «LastName» «Company» «Address1» «City», «State» «PostalCode»

### Dear «Title» «LastName»:

Three Final Reports were recently delivered to your local Information Repository. These reports are: 1) the Gambell NALEMP Removal Action Report submitted to the Corps by Montgomery Watson Harza (MWH); 2) the Gambell Feasibility Study for FUDS sites; and 3) the Final Human Health and Ecological Risk Assessment, Northeast Cape Installation, St. Lawrence Island, Alaska, submitted to the Corps by Montgomery Watson Harza (MWH). The NALEMP report describes the debris removal activities at Sites 6 and 7 that took place in Gambell last summer. The Feasibility Study evaluates alternatives for future remedial actions at selected sites in Gambell. The two-volume Risk Assessment at NE Cape is intended to evaluate potential impacts of site-related chemicals on public health and on the environment.

Since these reports are final, there is no formal review period. Nonetheless, the U.S. Army Corps of Engineers is interested to know whether you feel your previous comments have been fully addressed. Therefore, upon reading the document, if you believe the Corps has not satisfactorily responded to your concerns, please let me know. If you submitted written comments, a copy of your comments with a response is included. All comments will be supplied to the Information Repositories.

This letter has been furnished to the following RAB Members:

Mr. Alex Akeya Ms. Peggy Akeya Mr. Leonard Apangalook, Sr. Mr. Paul Apangalook Mr. Melvin Apassingok Mr. Merle Apassingok Mr. Jerome Apatiki Ms. Lucy Apatiki Mr. Jesse Gologergan Ms. Linda Gologergan Ms. Jeanette Iya Ms. C. Jane Kava Mr. Christopher Koonooka Mr. Job Koonooka Mr. Merlin Koonooka Ms. June Martin Ms. Pam Miller Mr. George Noongwook Mr. Conrad Oozeva Mr. Jerry Reichlin Mr. Paul Rookok, Sr. Mr. Morris Toolie, Jr. Ms. Viola Waghiyi Mr. Kevin Zweifel

Call me at (907) 753-2689, or e-mail me at: carey.c.cossaboom@poa02.usace.army.mil, if you have any questions.

Sincerely,

Carey Cossaboom Project Manager

G:\PM-P\FUDS Program\Carey\Gambell\RAB transmittal letter_3 Report Finals.doc Merge with G:\PM-P\FUDS Program\Carey\NE Cape\RAB data source_Nov03

a.,	<b>Title</b> Mr.	<b>FirstName</b> Alex	<b>LastName</b> Akeya	Company	Address1 P.O. Box	<b>City</b> Savoonga	<b>State</b> AK	Comments	<b>PostalCode</b> 99769
Ь.	Ms.	Peggy	Akeya		108 P.O. Box 192	Savoonga	AK		99769
С,	Mr.	Leonard	Apangalook, Sr.		P.O. Box 93	Gambell	AK		99742
đ,	Mr.	Paul	Apangalook		General Delivery	Gambell	AK	Confirm mailing address	99742
€.	Mr.	Melvin	Apassingok		P.O. Box 91	Gambell	AK		99742
Ł.	Mr.	Merle	Apassingok		P.O. Box 182	Gambell	AK		99742
9.	Mr.	Jerome	Apatiki		P.O. Box 12	Gambell	AK		99742
h,	Ms.	Lucy	Apatiki		P.O. Box 138	Gambell	AK	ACAT	99742
i,	Mr.	Jeff	Brownlee	ADEC	555 Cordova St., 2 nd Floor	Anchorage	AK		99501
3.	Mr.	Jesse	Gologergan		P.O. Box 105	Savoonga	AK	Confirm mailing address	99769
K.	Ms.	Linda	Gologergan		P.O. Box 1688	Nome	AK		99762
annoona	Ms.	Jeanette	Iya	Savoonga IRA Building	P.O. Box 120	Savoonga	AK		99769
m,	Ms.	C. Jane	Kava	e e	P.O. Box 154	Savoonga	AK	ACAT and Mayor of Savoonga	99769
'n,	Mr.	Christopher	Koonooka		P.O. Box 123	Gambell	AK		99742
О,	Mr.	Job	Koonooka		P.O. Box 123	Gambell	AK		99742
p.	Mr.	Merlin	Koonooka		P.O. Box 67	Gambell	AK		99742
q.	Ms.	June	Martin	Alaska Community Action on Toxics	505 W. Northern Lights Blvd., #205	Anchorage	AK		99503
<i>f</i> . ;	Ms.	Pam	Miller	Alaska Community Action on Toxics	505 W. Northern Lights Blvd. #205	Anchorage	AK		99503
ξ,	Mr.	George	Noongwook		P.O. Box 81	Savoonga	AK		99769

.

ت و بر مع چ



# SIVUQAQ INCORPORATED

P.O. BOX 101 GAMBELL, ALASKA 99742-0101 (907) 985-5826

MEMORANDUM TO: Mr. Carey Cossaboom FROM: Morgan Apatiki WLA DATE: December 22, 2003 Enclosed, please find my review comments on the HH&ERA, NEC., AK. I will be sending the original copies. Thank You! pures, includ

gravel-lodging-birdwatching-tourism-land protection-development



# SIVUQAQ INCORPORATED

P.O. BOX 101 GAMBELL, ALASKA 99742-0101 (907) 985-5826

- TO: Mr. Carey Cossaboom FUDS Project Manager
- FROM: Mr. Morgan Apatiki MLA Local Liaison
- DATE: December 22, 2003
- SUBJECT: HH&ERA/NEC. PROJECT

Enclosed, please find my Review and Comments on the Human Health and Ecological Risk Assessment, Northeast Cape Installation, St. Lawrence Island, Alaska: Draft Final, October 2003, prepared by: MWH.

If you have any questions and comments, please feel free to call or contact me.

Thank You! for the services and your time efforts that you provided to the St. Lawrence Island, Communities.

Sincerely,

TAISON

SIVUQAQ INCORPORATED

CC: SIVUQAQ INCORPORATED Board of Directors ACAT Anchorage, Alaska

### **REVIEW COMMENTS** Human Health and Ecological Risk Assessment Northeast Cape Installation, St. Lawrence Island, Alaska DRAFT FINAL, October 2003

### REVIEWER

.

Morgan Apatiki Liaison Sivuqaq, Inc.

ITEM REF COMMENTS

1.	1.1.2 Page 1-2	Locals have specified that there is presence of the asbestos and asbestos containing mate- rial in and surrounding the military burial Sites. Some of the burial sites that have or- ganic compounds and has been indicated as- Inert and yet are indicated as "No Further Action".
		The metallic forms, when layed or buried und- erground, can produce Arsenic.
		The organic compounds can produce Chloroform.
		Questions:
		-What will you do with the Sites that are in- dicated for "no further action"?
		-What will be the outcome of the liability damage done to those Areas?
		In accordance with CERCLA, the environmental- ly damaged (Disturb) Areas, are responsibili- ty of the "Party" and should be compensated for its liability act, accordingly.
2.	2-1 2-2 Page X	Sections listed on the left, are statements of Drainage Basin.
	1 1 2	Oil spills or organic, when grounded or basi-
	Site 28 Page 1-3	outer appearance of the drainage may be degr- aded, but the core remains active. The run- off or the migration of the spills, either on ground surface or subsurface should be evalu- ated accordingly.

### Page 2 of 1

ITEM REF COMMENTS

2. 1.1.2 Site 28 Page 1-3 The pits, pockets, and bays of the streams, and rivers, especially in rocky points, shou-Id be evaluated thoroughly for remains of the RRO or sediments. Ref., Sec. 1.2, Page 1-4.

> Locals have knowledge of the types of Petroleum Products, other than organic elements, associated with military activities that have been spilled, both in the village of Gambell, and Northeast Cape, St. Lawrence Island, Alaska.

> They also acknowledge the radiation from those Sites, specifically, during the warm climate, the stench from it can be smelled from a certain distance.

> Since the drainage basin do not seem to appear or proposed for the remedial cleanup removal, ever since the performances of the Geophysical Survey and Remedial Investigations conducted back in the early 1980's, but it is apparently stated in the Site History and Previous Investigations. Ref. 1.4, Page 1-5.

There are several local concerns and questions regarding the possible flood and migration from the drainage basin in the following sections:

- -People would like to know the specific total amounts of the extent quantity contained in the drainage basin?
- -What human health risk factor is related in this kind of situation?
- -People are aware of the Human Ecology and Consumption that is contaminated by the presence of Formerly Utilized Defense Sites, Hazardous Toxic Radioactive Wastes. And the Inhalant Volatile from the Sites.
- -The condition of the Environmental Impact on the Island should be evaluated accordingly, and Promptly.

ITEM REF COMMENTS

3. 1.2 There are two factors of the saturated soils. Page 1-4 One that is being proposed for the Soil Class

One that is being proposed for the Soil Cleanup Criteria-18 AAC 75, Ref. 1.2, Page 1-4.

The other saturated soil is coming from the drainage basin. Organics that soaked into the soil and have possibly migrated to the surrounding environment, linked to the streams and the Run-Offs of the Contaminant migrates to Streams, Rivers, and the rivers run-out to the Sea.

There are several questions and comments about the removal of the soil:

- -One of the local laborers from Gambell Residence, who worked during the Nugget Construction, Incorporated, Soil Cleanup in Summer of 2001, reported that the operation of the performance was ceased and was reburied for some reason. Was this action reported to-USACE, Alaska District?
- -Is there a proposal for continuation of this project or was this project part of the proposed soil cleanup criteria stated in this section?
- -The recommendation from the community, that there may not be accurate remedial minimization of the soil cleanup, unless the drainage basin that flows to the areas, has been drained-out and removed from the Site!
- 4. 1.4 Page 1-5 The documents, entitled: Final Report; Geophysical Survey Investigation; St. Lawrence Island, Alaska, USA: Prepared by: Golder Associates, Anchorage, Alaska, prepared for: Montgomery Watson, Anchorage, Alaska, Dated November 2, 1994, is not included in this section.
- 5. 1.4 Page 1-6 In Page 1-6 Can you be more specific stating the Phase I RI, conducted at the installation since-1994? What are the proper titles for these Documents?

ITEM REF COMMENTS

6. 1.5.1 The St. Lawrence Island, subartic maritime Page 1-7 Climate, in most cases, is Unpredictable. Specifically, at the farthermost Tips on the Island.

> One in vicinity of Gambell at Northwest tip and Northeast Cape at the other end of the tip. Most likely, Gambell has high winds, while it is moderate over at Northeast Cape. Also, Gambell is cold, wet, windy, while moderate over at Savoonga, and warm, dry at Northeast Cape, Alaska.

The annual precipitation varies also. During the winter, there is less snow at Northeast Cape, while plenty at Savoonga, and the snow is soft and fluffy, due to the calm wind. Gambell's snowfall is unpredictable at most. The snow is hardpacked and driven-off by the high wind.

The diversity of the overall climate on the Island, may be reversed. Basically, depending upon the yearly basis. In some years, there is diverse cycle of the climate on the Island.

7. 1.5.4 Page 1-8 There is water seepage, most like year round when there is plenty of rainfall in the Summer and snowfall during winter. The water drips and seeps through out the winter and snowmelt during Spring and accasional rainfall or heavy rain during summer will continuously deposit aquafer and feeds the Groundwater and Deep Groundwater (Pockets). And is capable of consistently supporting aquatic life throughout the whole year.

The aquatic life is also supported by fog and obscure weather and the environmental climate stays wet during the summer.

8. 1.5.5 Page 1-9 The life of the aquafer becomes ephemeral, depending on the temperature and humidity. during the spring and summer, when the temperature is warm, the flow of water from the snowmelt will be in fast pace. When the temperature is cold, the runoff will be at a slow pace.

ITEM REF COMMENTS

- 8 1.5.5 When we experienced dry weather with no rain-Page 1-9 fall, the land becomes ephemeral. But with continuous rainfall during the summer, and plenty of snowmelt during winter, there will be aquatic life, throughout the year. The whole "Island" is a "Wet-Land" in which we call the'Tundra".
- 9. 1.6 The groundwater regime, may be caused by the recurring currents from North and South Directions, occurring once during the day. The groundwater level can be elevated by high-tides. Especially, during the High Wind that cause the high tides rise and flood the area.

It actually could be caused by lack of rain during the summer and snowfall during thewinter. During the summer, the groundwater is degrading and drop beyond the permafrost. And can be elevated coming winter and fill the ground surface trenches.

During the summer, the temperature is hot and dry that makes the groundwater level drop fast to low level and below the permafrost level.

The average depth measurement of the groundwater level in mid-summer is about 10-12 feet below the ground surface.

The deep groundwater deposits, Ref. 1.6.1, Page 1-10, may also be called: Subsurface Pure Water Drainage Basin. There are other pockets in the surrounding habitual soil structure that are discrepant in Depth Measurements. The pockets are continuously fueled from the Winter Solstice and Summer Solstice Environment.

What can be done or how can you deal with the insufficient subsurface water Sampling?

The permafrost in Gambell is about 12 feet below the subsurface that is currently in cold climate and about 15-20 feet below level at Northeast Cape, that is currently in warmer climate.

ITEM REF COMMENTS

9. 1.6 Page 1-9 Since the residents in Gambell had experienes of DRO, etc., on top of the permafrost that has been encountered by the constructionscrew, while lining-up the mains of the community. They also suspect similar situations at Northeast Cape, that DRO, or the Drainage Basined at several locations, are on top of the Permafrost.

> The condition of the environmental structure and atmosphere, could not be determined by MWH's, within their 10 years study of the geophysical survey and remedial investigations.

10. 1.6 Page 1-9 The monitoring wells should be appropriated (Installed) in accordance with the direction of the groundwater flow and should not be set beyond the groundwater flow.

How deep were the piping, in feet, set in the wells?

- 11. Sec. 2 Page 1-1 Did you evaluate all of the Geophysical DATA Check's beginning from the previous investigations to present time and overview all of the Statements of Work were met?
- 12. GENERAL The Community of Gambell appreciates the continuous effort on the Cleanup Projects on the Island. Thank You!