

# SECOND FIVE-YEAR REVIEW REPORT FOR NORTHEAST CAPE FORMERLY USED DEFENSE SITE FUDS NO. F10AK0969-03 ST. LAWRENCE ISLAND, ALASKA



Commanding

U.S. Army Corps of Engineers Alaska District Anchorage, Alaska

# **FINAL**

| Approved by:                |              |
|-----------------------------|--------------|
|                             | FEB 2 0 2020 |
| Phillip J. Borders          | Date         |
| Colonel, Corps of Engineers |              |

F10AK096903\_07.11\_0511\_a 1200C PERM

## **TABLE OF CONTENTS**

| LIST  | OF ABBREVIATIONS & ACRONYMS                           | 111 |
|-------|-------------------------------------------------------|-----|
| I.    | INTRODUCTION                                          | 1   |
|       | SITE BACKGROUND                                       | 2   |
|       | FIVE-YEAR REVIEW SUMMARY FORM                         | 4   |
| II.   | RESPONSE ACTION SUMMARY FOR SITE 21-WASTEWATER TANK   | 4   |
|       | BASIS FOR TAKING ACTION                               | 4   |
|       | RESPONSE ACTIONS                                      | 5   |
|       | STATUS OF IMPLEMENTATION                              | 7   |
|       | PROGRESS SINCE THE LAST REVIEW                        | 7   |
| III.  | FIVE-YEAR REVIEW PROCESS                              | 10  |
|       | COMMUNITY NOTIFICATION, INVOLVEMENT & SITE INTERVIEWS | 10  |
|       | DATA REVIEW                                           | 10  |
|       | SITE INSPECTION                                       | 11  |
| IV.   | TECHNICAL ASSESSMENT                                  | 12  |
| V.    | ISSUES/RECOMMENDATIONS                                | 13  |
|       | OTHER FINDINGS                                        | 13  |
| VI.   | PROTECTIVENESS STATEMENT                              | 14  |
| VII.  | NEXT REVIEW                                           | 14  |
| VIII. | RESPONSE ACTION SUMMARY FOR SITE 28 – DRAINAGE BASIN  | 14  |
|       | BASIS FOR TAKING ACTION                               | 14  |
|       | RESPONSE ACTIONS                                      | 15  |
|       | STATUS OF IMPLEMENTATION                              | 16  |
|       | PROGRESS SINCE THE LAST REVIEW                        | 18  |
| IX.   | FIVE-YEAR REVIEW PROCESS                              |     |
|       | COMMUNITY NOTIFICATION, INVOLVEMENT & SITE INTERVIEWS | 18  |
|       | DATA REVIEW                                           | 19  |
|       | SITE INSPECTION                                       | 22  |
| X.    | TECHNICAL ASSESSMENT                                  | 22  |
| XI.   | ISSUES/RECOMMENDATIONS                                | 28  |
|       | OTHER FINDINGS                                        | 28  |
| XII.  | PROTECTIVENESS STATEMENT                              | 30  |
| VIII  | NEVT DEVIEW                                           | 20  |

## **TABLES**

| Table 1 | Site 21 Multi-Site DD COCs                                            | 5  |
|---------|-----------------------------------------------------------------------|----|
| Table 2 | Site 21 Multi-Site DD Cleanup Levels                                  | 6  |
| Table 3 | Protectiveness Determinations/Statements from the 2014 FYR            | 8  |
| Table 4 | Status of Recommendations from the 2014 FYR                           | 8  |
| Table 5 | Sitewide Multi-Site DD Sediment Cleanup Levels                        | 16 |
| Table 6 | Protectiveness Determinations/Statements from the 2014 FYR            | 18 |
| Table 7 | Evaluation of Changes in Chemical-Specific Standards                  | 24 |
| Table 8 | Comparison of Multi-Site DD Cleanup Levels and Risk-Based Benchmarks. | 26 |

# **APPENDICES**

| Appendix A | Reference List                                  |
|------------|-------------------------------------------------|
| Appendix B | Figures                                         |
| Appendix C | Site Characteristics and Chronology             |
| Appendix D | Site 21 Arsenic in Soil Assessment              |
| Appendix E | Second Five-Year Review Field Documentation     |
| Appendix F | Site 28 Sediment Mapping and Sampling Report    |
| Appendix G | Public Notices, Interviews, and Public Comments |
| Appendix H | Response to Comments                            |

#### LIST OF ABBREVIATIONS & ACRONYMS

**ADEC** Alaska Department of Environmental Conservation

**AOC** area of concern

ARAR applicable or relevant and appropriate requirements

**AUF** area use factor

bgs below ground surface

**CERCLA** Comprehensive Environmental Response, Compensation, and Liability Act

COC contaminant of concern DD **Decision Document DRO** diesel-range organics

**EcoPRG** ecological preliminary remedial goals **EPA** U.S. Environmental Protection Agency

EqP equilibrium partitioning

**FRMD** FUDS Record Management Database

**FUDS** Formerly Used Defense Site

Five-Year Review **FYR** 

**HPAH** high molecular weight polycyclic aromatic hydrocarbons

**HTRW** Hazardous, Toxic, and Radioactive Waste

LANL Los Alamos National Laboratory

**LPAH** low molecular weight polycyclic aromatic hydrocarbons

**LUC** land use control

mg/kg milligrams per kilogram **MOC** Main Operations Complex

**NEC** Northeast Cape

**NPL National Priorities List** 

**PAH** polycyclic aromatic hydrocarbon

**PCB** polychlorinated biphenyl **POL** petroleum, oil, and lubricants **RAO** remedial action objective **RRO** residual-range organics **SSCL** site-specific cleanup level

Suqitughneq River Suqi River

UU/UE unlimited use/unrestricted exposure **USACE** U.S. Army Corps of Engineers **UVOST** Ultraviolet Optical Screening Tool WAC Washington Administrative Code

iii **FINAL** 

(intentionally blank)

#### I. INTRODUCTION

The purpose of a Five-Year Review (FYR) is to evaluate the implementation and performance of a remedy in order to determine if the remedy is and will continue to be protective of human health and the environment. The methods, findings, and conclusions of reviews are documented in FYR reports such as this one. In addition, FYR reports identify issues found during the review, if any, and document recommendations to address them.

The U.S. Army Corps of Engineers (USACE) is preparing this FYR pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Section 121, consistent with the National Contingency Plan (40 Code of Federal Regulations Section 300.430(f)(4)(ii)) and considering U.S. Environmental Protection Agency (EPA), U.S. Department of Defense, and Formerly Used Defense Site (FUDS) policy.

This is the second FYR for the Northeast Cape (NEC) FUDS on St. Lawrence Island, Alaska (Figure B-2). The triggering action for this statutory review is the completion date of the previous FYR. This FYR has been prepared because hazardous substances, pollutants, or contaminants remain at the site above levels that allow for unlimited use and unrestricted exposure. The EPA site ID number is AK9799F2999. The NEC FUDS is not listed on the National Priorities List (NPL).

The NEC FUDS consisted of five sites that were managed under CERCLA authority (Site 13, Site 16, Site 21, Site 28, and Site 31). Sites 21 and Site 28 will be addressed in this FYR (Figure B-4 and Figure B-5). Site 13 and Site 16 are not addressed in this report as CERCLA action is complete at these sites (having met unlimited use/unrestricted exposure [UU/UE] for all CERCLA contaminants during the first FYR) and the only remaining contamination is attributed to petroleum, oil, and lubricants (POL) in groundwater. Site 13 and Site 16 are included in a separate Periodic Review report specific to POL sites. Site 31 is not included in this report because remedial action achieved a condition that allows for UU/UE and the site was recommended for No Further Action by USACE in the first FYR (USACE 2015b).

Site 3, Site 6, Site 7, Site 8, Site 9, Site 10, Site 11, Site 13, Site 15, Site 16, Site 19, Site 27, and Site 32 are not addressed in this FYR because of the CERCLA petroleum exclusion; however, separate Periodic Review report(s) will be prepared for these sites because petroleum contamination remains above cleanup levels. For more information regarding NEC FUDS sites not addressed in this FYR, refer to Appendix C, "Site Chronology".

The NEC FUDS FYR participants included: Andrea Elconin, USACE Project Manager; Aaron Shewman, USACE Technical Lead; Lori Verbrugge, USACE Risk Assessor; Andy Larson, Project Manager; Kevin Maher, Chemist; and Haley Huff, Geologist. Relevant entities such as the ADEC and community members were notified of the initiation of the FYR. This review began on 11 April 2018 and was conducted with data available from the NEC FUDS information repository as of 1 September 2018.

#### SITE BACKGROUND

The NEC FUDS is located on St. Lawrence Island, Alaska in the western portion of the Bering Sea, approximately 135 air-miles southwest of Nome (Figure B-1). It is located at latitude 63.310278 and longitude -168.965272. The NEC property originally encompassed approximately 4,800 acres (7.5 square miles). The NEC FUDS is only accessible by air, water, or all-terrain vehicle trails. The Village of Savoonga, the closest community, is located approximately 60 miles to the northwest (Figure B-1). The NEC FUDS consists mainly of rolling tundra, extending from the Bering Sea toward the base of the Kinipaghulghat Mountains. The Kinipaghulghat Mountains rise abruptly to an elevation of approximately 1,800 feet above sea level, approximately 3 miles from the coastline.

The NEC FUDS was constructed as an Aircraft Control and Warning Station during 1950 and 1951 to provide radar coverage and surveillance for the Alaskan Air Command, and later for the North American Air Defense Command, as part of the Alaska Early Warning System. The site was activated in 1952 and a White Alice Communications System station was added to the site in 1954. Facility operations were supported by 212 personnel and termination of operations occurred in 1969 (Aircraft Control and Warning Station) and 1972 (White Alice

Communications System), respectively. Most military personnel were removed from the site by the end of 1969.

The NEC FUDS included areas for housing site personnel, power plant facilities, fuel storage tanks, distribution lines, maintenance shops, wastewater treatment facilities, and landfills. The buildings and majority of furnishings and equipment were abandoned in place initially due to the high cost of off-island transport. Demolition of the buildings and other structures were completed between 1994 and 2003. The runway, improved gravel roads, and concrete slabs of some of the former structures remain intact.

The main sources of contamination at the NEC FUDS are attributed to spills and leaks of fuel products associated with aboveground storage tanks, underground storage tanks, and associated piping. Other sources of contamination include electrical transformers, waste stored in 55-gallon drums, metal debris, and organic chemicals from paint, solvents, and other miscellaneous facility activities.

St. Lawrence Island residents from the villages of Gambell and Savoonga participate in subsistence fishing, hunting, and gathering at the NEC FUDS area year-round. Local subsistence fishing camp structures are located in the area and are occupied seasonally. There are currently no permanent residents in the NEC area; however, representatives of the Native Village of Savoonga have shown a desire to re-establish a permanent residential community at the site in the future.

#### FIVE-YEAR REVIEW SUMMARY FORM

| SITE IDENTIFICATION                                                                     |                                                 |                                                   |  |  |
|-----------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------|--|--|
| Site Name: Northeast Cape                                                               | Site Name: Northeast Cape (St. Lawrence Island) |                                                   |  |  |
| <b>EPA ID</b> : AK9799F2999                                                             |                                                 |                                                   |  |  |
| Region: 10                                                                              | State: AK                                       | City/County: St. Lawrence Island                  |  |  |
|                                                                                         |                                                 | SITE STATUS                                       |  |  |
| NPL Status: Non-NPL                                                                     |                                                 |                                                   |  |  |
| Multiple Projects?<br>Yes                                                               |                                                 | Has the site achieved construction completion? No |  |  |
|                                                                                         |                                                 | REVIEW STATUS                                     |  |  |
| Lead agency: Other Federal Agency [If "Other Federal Agency", enter Agency name]: USACE |                                                 |                                                   |  |  |
| Author name (Federal or State Project Manager): Federal Project Manager Andrea Elconin  |                                                 |                                                   |  |  |
| Author affiliation: USACE, Alaska District                                              |                                                 |                                                   |  |  |
| Review period: 4/11/2018 - 9/1/2018                                                     |                                                 |                                                   |  |  |
| Date of site inspection: 8/1/2018                                                       |                                                 |                                                   |  |  |
| Type of review: Statutory                                                               |                                                 |                                                   |  |  |
| Review number: 2                                                                        |                                                 |                                                   |  |  |
| Triggering action date: 2/24/2015                                                       |                                                 |                                                   |  |  |
| Due date (five years after triggering action date): 2/20/2020                           |                                                 |                                                   |  |  |

# II. RESPONSE ACTION SUMMARY FOR SITE 21-WASTEWATER TANK

Site 21 is located west of the Main Operations Complex (MOC) perimeter road and contained the wastewater treatment system for the main housing and operations complex (Figure B-2 and Figure B-3). The infrastructure consisted of a concrete septic settling tank and attached piping enclosed in a wooden utilidor that discharged approximately 450 feet west (Figure B-4) of the settling tank. The tank compartments, utility corridor from the main complex, and the wooden utilidor outfall line were removed in 2003 (USACE 2009).

#### **BASIS FOR TAKING ACTION**

Site investigation data showed arsenic in soil was above the 11 milligrams per kilogram (mg/kg) sitewide arsenic background level (12 of 27 locations), and to a lesser extent, total polychlorinated biphenyls (PCBs) in soil were above the 1 mg/kg regulatory cleanup level (2 of

27 locations). Sitewide cleanup levels for PCBs and arsenic in soil were applied to Site 21. PCB contamination was suspected to originate from the septic system and arsenic contamination was thought to be naturally occurring (USACE 2009); however, arsenic became a soil contaminant of concern (COC) due to one surface soil result near the septic tank outfall with an arsenic concentration of 170 mg/kg. The 2009 multi-site Decision Document (DD) identified COCs and media for Site 21 are listed in Table 1.

Table 1
Site 21 Multi-Site DD COCs

| CONTAMINANT | MEDIA                        |
|-------------|------------------------------|
| Arsenic     | Surface Soil <sup>1</sup>    |
| PCBs        | Surface Soil <sup>1</sup>    |
| PCDS        | Subsurface Soil <sup>2</sup> |

#### Notes:

<sup>1</sup> Surface soils considered 0 to 2 feet depth (USACE 2009).

COC = contaminant of concern

DD = Decision Document

PCB = polychlorinated biphenyl

The human health and ecological risk assessment completed prior to the multi-site DD (USACE 2004a) identified that some site media posed unacceptable risk to potential human receptors of concern (future seasonal resident, future site visitor, and future permanent resident) and one potential ecological indicator receptor of concern (tundra vole).

#### RESPONSE ACTIONS

One response action occurred at Site 21 prior to the multi-site DD. In 2003, surface features associated with the wastewater treatment system (tanks, associated piping, and the outfall pipe wooden enclosure) were removed (USACE 2004b).

<sup>&</sup>lt;sup>2</sup> Subsurface soils considered > 2 feet depth (USACE 2009).

There are no Site 21-specific remedial action objectives (RAOs) listed in the multi-site DD (USACE 2009). Sitewide RAOs were applied to Site 21 because the sitewide soil cleanup levels established in the multi-site DD were determined to be appropriate and protective at Site 21:

- Prevent current and future exposure to humans by ingestion, inhalation, and dermal contact with contaminated soil at levels above applicable or relevant and appropriate requirements (ARARs) for PCBs or pertinent risk-based standards for petroleum hydrocarbons.
- Prevent exposure to ecological receptors by direct contact with contaminated soil above risk-based cleanup levels.
- Prevent ingestion of groundwater containing contaminants at levels above state drinking water standards and pertinent risk-based standards for petroleum hydrocarbons.

The remedy for Site 21 is described in the multi-site DD as follows:

- Excavation and removal of PCB-contaminated soil at Sites 13, 16, 21, and 31.
- Excavation and removal of arsenic-contaminated soil at the Site 21 Wastewater Treatment Tank.
- Land use controls (LUCs) to limit future drinking water uses for groundwater at the MOC (Sites 10-22, 26, and 27).

The sitewide soil cleanup levels listed in the multi-site DD applying to Site 21 are provided in Table 2.

Table 2
Site 21 Multi-Site DD Cleanup Levels

| CONTAMINANT | MEDIA | CLEANUP LEVEL |
|-------------|-------|---------------|
| Arsenic     | Soil  | 11 mg/kg      |
| PCBs        | Soil  | 1 mg/kg       |

#### Notes:

mg/kg = milligrams per kilogram PCB = polychlorinated biphenyl

Groundwater LUCs are applied to the MOC, which is adjacent to Site 21. Groundwater associated with the MOC is separate and distinct from groundwater associated with all Site 21 areas of concern (AOCs). No groundwater contamination exists at Site 21 and LUCs to limit the use of Site 21 groundwater are not needed; however, Site 21 is included in the multi-site

DD list of MOC sites requiring groundwater LUCs. It is recommended an explanation of significant differences be prepared to clarify groundwater LUCs are not needed at Site 21.

#### STATUS OF IMPLEMENTATION

The selected soil remedy for Site 21 is excavation. Excavation of PCB-contaminated soil began and ended in 2010 and resulted in the excavation of 10.4 tons of soil (USACE 2011). Excavation confirmation samples found that PCB concentrations were less than the 1 milligram per kilogram (mg/kg) cleanup level (Figure B-4) at two PCB excavation locations (east end of the outfall pipe next to the former wastewater tank and at the west end of the outfall pipe). Excavation of arsenic-contaminated soil began in 2012 and ended in 2014 and resulted in the removal of 547.35 tons of soil (USACE 2012, 2015a) (Figure B-4). One soil boring sample (13NC21SS17-0.5) containing arsenic at 14 mg/kg, collected outside the extent of any excavation, was not removed due to active surface water flow (USACE 2016a) and one excavation sidewall sample containing arsenic at 13 mg/kg was left in place (USACE 2015a). Although the sample exceeded the site-specific cleanup level (SSCL) of 11 mg/kg, it was below the targeted removal concentration of 17 mg/kg.

Site-impacted media have reached UU/UE, and in the case of arsenic, reached levels which are naturally occurring.

#### PROGRESS SINCE THE LAST REVIEW

This section includes the protectiveness determinations and statements from the last FYR (Table 3) and the status of recommendations from the last FYR (Table 4). Protectiveness statements, issues, and recommendations made in the previous FYR were based upon remedies applied prior to May 2014.

Table 3 Protectiveness Determinations/Statements from the 2014 FYR

| SITE | PROTECTIVENESS DETERMINATION | PROTECTIVENESS STATEMENT                                                                                                                                                                                                                                              |
|------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21   | Will be Protective           | The remedy at Site 21 is expected to be protective of human health and the environment upon completion. In the interim, remedial activities completed to date have adequately addressed all exposure pathways that could result in unacceptable risks in these areas. |

Table 4 Status of Recommendations from the 2014 FYR

| Issue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Recommendations                                                                                | Current<br>Status                    | Current<br>Implementation<br>Status Description                             | Completion<br>Date (if<br>applicable) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------|---------------------------------------|
| Issue: Current remedial activities are focused on arsenic removal around the highest historical result at the utilidor outfall but are not addressing locations along the former utilidor route with concentrations greater than the cleanup level.                                                                                                                                                                                                                                                                                                                                                                   | Continue remedy implementation at all site locations that exceed the arsenic cleanup level.    | Completed                            | All locations along<br>the utilidor route<br>were removed by<br>excavation. | 9/14/2014                             |
| Issue: The following LUCs have not been formally implemented:  • Prevent the use of the aquifer for drinking water purposes until cleanup levels are met at Sites 10, 11, 13, 15, 16, 19, 21, and 27 (not applicable to Site 28).  • Designate areas unsuitable for drinking water at Sites 3, 6, and 9. (not applicable to Site 21 or Site 28).  • Prevent construction of buildings on top of landfills¹ at Site 9 (not applicable to Site 21 or Site 28).  • Designate areas unsuitable for residential land use without additional investigation and/or cleanup at Site 8 (not applicable to Site 21 or Site 28). | Implement LUCs, as described in the DD, following completion of the remedial action fieldwork. | Considered<br>But Not<br>Implemented | Site 21 groundwater<br>LUCs are not<br>implemented.                         | NA                                    |

Notes:
DD = Decision Document

FYR = Five-Year Review

LUC = land use control

NA = not applicable

Site 21 groundwater LUCs were not implemented because there is no groundwater contamination associated with Site 21 and no groundwater COCs are listed in the multi-site

<sup>&</sup>lt;sup>1</sup> The issue presented in the 2014 FYR erroneously referenced "landfills" at Site 9. Only one landfill is present at Site 9.

DD. Site 21 was inadvertently grouped with MOC sites in one place in the multi-site DD description of MOC groundwater LUCs.

The ADEC Guidance for Evaluating Metals at Contaminated Sites (ADEC 2018a) addresses arsenic, chromium, and many other metals that are naturally occurring throughout Alaska. Anthropogenic sources of arsenic typically include naturally occurring arsenic altered or disturbed by human activity, mobilization from soil to groundwater via another introduced contaminant, and manufactured products. Naturally occurring arsenic (e.g., organic arsenic and inorganic arsenic) is released into the environment by volcanoes and through weathering of arsenic-containing minerals and ores. Sources for arsenic in the environment at contaminated sites can result from natural sources, unknown or unconfirmed sources, and known anthropogenic sources. A lines of evidence approach was assessed to determine whether remaining arsenic levels in soil at Site 21 are naturally occurring. The lines of evidence considered for Site 21 included the following:

- There is no record of a potential metal related release and/or historical usage, or site activity related to metals
- Post excavation site data do not show any well-defined pattern of concentrations indicative of a release of the metal
- The metal is solely associated with shallow soil near site features

Statistical analysis was performed using ProUCL to evaluate a Site 21 soil dataset, including samples collected in 2012, 2013, and 2014. Results of the t-test found that the central tendency of the arsenic concentration for the excavation confirmation sample population was less than or equal to the SSCL. Additionally, a 95 percent students-t upper confidence limit was calculated for the Site 21 excavation confirmation samples (6.618 mg/kg), which was lower than the SSCL of 11 mg/kg (Appendix D).

#### III. FIVE-YEAR REVIEW PROCESS

#### COMMUNITY NOTIFICATION, INVOLVEMENT & SITE INTERVIEWS

A public notice was published in the Nome Nugget on 29 March 2018 announcing the FYR and inviting the public to submit any comments to the USACE. Additionally, flyers and mailed notices were sent out and a public meeting was held on the 11 April 2018. The results of the review and the report will be made available at the site information repositories located at Savoonga City Hall and Gambell Sivuqaq Lodge.

During the FYR process, interviews were conducted to document any perceived problems or successes with the remedy that has been implemented to date. The complete interviews, public comments, and USACE responses to comments are included in Appendix G. There were no specific comments made about Site 21; however, general comments about NEC FUDS sites and the cleanup process were recorded.

A public meeting, to be held in Savoonga, is planned to discuss the results of the FYR with interested community members after the final report is added to the site information repositories.

#### **DATA REVIEW**

The data review for Site 21 primarily focused on data that were generated after the 2014 FYR. The 2014 remedial action report (USACE 2015a) is the only new document which contained Site 21 data. The new data included details of the 2014 excavation, confirmation sample results, and sample results associated with the site-specific arsenic background samples. The USACE initiated arsenic removal in successive stages from 2012 through 2014 as described in the remedial action reports from 2012 (USACE 2013b), 2013 (USACE 2015a), and 2014 (USACE 2016a). The excavation footprint reached a size of approximately 3,300 square feet as sporadic, marginal, and unrelated exceedances of the 11 mg/kg arsenic cleanup level in confirmation samples were pursued. A statistical analysis of all excavation confirmation results and an observational comparison to other data collected in 2014 is provided in Appendix D.

final 10

A review of excavation confirmation samples found that all confirmation samples along the utilidor route and all floor samples from the outfall area excavation are below 11 mg/kg for arsenic. At the outfall area excavation, one confirmation sidewall sample (out of 24 confirmation samples in 2014) exceeded the 11 mg/kg arsenic cleanup level specified in the multi-site DD at 13 mg/kg.

A sampling effort took place in 2014 during which 147 soil samples were collected from 49 boring locations to assess Site 21-specific arsenic background levels. The 49 boring locations were established outside of the outfall excavation area in a grid pattern; samples were collected from multiple depths in each boring ranging from 1 to 4 feet below ground surface (bgs).

At the end of the 2014 fieldwork, one outfall area excavation sidewall sample, 14NC21SS0004, had arsenic results above the 11 mg/kg multi-site DD clean up level at 13 mg/kg. There were six additional samples outside of the excavation area that appear to be unrelated to Site 21 activities where arsenic was reported above the 11 mg/kg multi-site DD cleanup level: 14NC21SS012-3 (12 mg/kg), 14NC21SS015-2 (12 mg/kg), 13NEC21SS017-0.5 (14 mg/kg), 14NC21SS018-3 (17 mg/kg), 14NC21SS023-1 (23 mg/kg)/14NC21SS023-2 (12 mg/kg), and 14NC21SS024-3 (17 mg/kg). There was no evident connection between the arsenic exceedances at these sample locations and the wastewater tank outfall, such as a concentration gradient or direct proximity. As a result, the residual arsenic concentrations above the multi-site DD cleanup level of 11 mg/kg are considered naturally occurring based on the statistical analysis of excavation confirmation samples and the spatial analysis of the samples outside of the excavation area.

### **SITE INSPECTION**

The site inspection was conducted on 2 August 2018 by Haley Huff. Curtis Dunkin (ADEC) and Sean Benjamin (USACE) inspected the site on 7 August 2018 following the Jacobs Engineering Group Inc. site inspection. The purpose of the inspection was to assess the protectiveness of the remedy. The inspection did not identify any issues at Site 21 and no visible signs of contamination were present. Vegetation was present and the areas where excavation

occurred were not noticeable. The site inspection checklist completed during the site visit is provided in Appendix E.

#### IV. TECHNICAL ASSESSMENT

**QUESTION A:** Is the remedy functioning as intended by the Decision Documents?

Answer = Yes.

### **Question A Summary:**

The remedy selected for Site 21 (excavation) for PCB- and arsenic-contaminated soil functioned as intended and satisfied the sitewide RAO to prevent current and future exposure to humans by ingestion, inhalation, and dermal contact with contaminated soil at levels above ARARs or pertinent risk-based standards for petroleum hydrocarbons. Confirmation soil sample results after excavation at the removal areas identified in the multi-site DD near the former septic tank and at the end of the septic tank outfall are below the multi-site DD cleanup levels. Site-impacted media have reached UU/UE, and in the case of arsenic, reached levels which are naturally occurring.

**QUESTION B:** Are the exposure assumptions, toxicity data, cleanup levels, and remedial action objectives (RAOs) used at the time of the remedy selection still valid?

Answer = Yes.

### **Question B Summary:**

The only COCs at Site 21 are PCBs and arsenic in soil. The source of the PCB multi-site DD cleanup level (1 mg/kg) is based on State of Alaska regulation 18 Alaska Administrative Code 75 and no regulatory changes to the PCB cleanup level occurred after the first FYR. Although the PCB cleanup level is based on risk to human health, it is protective of ecological receptors according to the risk assessment that supported the multi-site DD. The multi-site DD cleanup level (11 mg/kg) for arsenic is an accepted NEC sitewide background level and no formal changes have occurred. The distance between the area of PCB excavation and the nearest area of arsenic excavation at Site 21 is approximately 500 feet. Arsenic in water is not a concern. Only one 1994 groundwater result for total arsenic (at 0.072 mg/L) exceeded the cleanup level of 0.01 mg/L, whereas no results for dissolved arsenic exceeded the cleanup level, and arsenic was subsequently eliminated as a COC in groundwater (USACE 2009). Surface water samples collected in 2014 (where none of nine results for total or dissolved arsenic exceeded the cleanup level of 0.01 mg/L) demonstrated soil removal activities did not adversely impact surface water (USACE 2015a).

No changes in toxicity or other contaminant characteristics, risk assessment methods, or exposure pathways affect the protectiveness of the soil remedy.

QUESTION C: Has any other information come to light that could call into question the protectiveness of the remedy?

 $\mathbf{Answer} = \mathbf{No}.$ 

### **Question C Summary:**

No other identified information calls into question the protectiveness of the remedy. Climate change may be occurring in the arctic which could affect yearly precipitation levels, average temperatures, and sea ice formation. There are no new issues during this review period created by climate change. No shallow permafrost was reported during past investigations at the site.

#### V. ISSUES/RECOMMENDATIONS

#### ISSUES/RECOMMENDATIONS

Site(s) without Issues/Recommendations identified in the FYR:

Site 21

#### **OTHER FINDINGS**

In addition, the following are recommendations that were identified during the FYR but do not affect current and/or future protectiveness:

- Although the multi-site DD describes groundwater institutional controls for Site 21, no groundwater contamination existed at the time of the multi-site DD and no multi-site DD groundwater COCs are listed. It is recommended that an explanation of significant differences be prepared to clarify groundwater LUCs are not needed at Site 21.
- A lines of evidence approach supports the assertion that remaining arsenic in soil from excavation confirmation samples at Site 21 is naturally occurring. Lines of evidence considered during the evaluation included the following: no record of a potential metal related release and/or historical usage or site activity related to metals, post excavation site data do not show any well-defined pattern of concentrations indicative of a release of arsenic, and arsenic is solely associated with shallow soil near site features. The results of statistical analysis found that the arsenic concentration in soil for the excavation confirmation sample population was less than or equal to the SSCL. Additionally, a 95 percent students-t upper confidence limit was calculated for the Site 21 excavation confirmation samples (6.618 mg/kg), which was lower than the SSCL of 11 mg/kg (Appendix D).

#### VI. PROTECTIVENESS STATEMENT

| PROTECTIVENESS STATEMENT                                                                               |                               |                                   |
|--------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------|
| Site:                                                                                                  | Protectiveness Determination: | Planned Addendum Completion Date: |
| 21                                                                                                     | Protective                    | Not applicable                    |
| Protectiveness Statement:                                                                              |                               |                                   |
| Excavation and removal of PCB- and arsenic-contaminated soil is complete at Site 21 and RAOs have been |                               |                                   |
| reached. No further remedial action is needed because all site-impacted media have reached UU/UE.      |                               |                                   |

Notes:

RAO = remedial action objective

UU/UE = unrestricted use/unrestricted exposure

#### VII. NEXT REVIEW

No further FYRs are planned for Site 21 because all site-impacted media have reached UU/UE.

# VIII. RESPONSE ACTION SUMMARY FOR SITE 28 – DRAINAGE BASIN

The Site 28 Drainage Basin is located north of the MOC and drains northward into the Suqitughneq River (Suqi River) (Figure B-5). The site has been affected by fuel releases from the bulk fuel storage tanks (Site 11) and other spills and releases discussed in the multi-site DD (USACE 2009). The site contains wetlands, rolling tundra, ponds, and flowing interconnected streams. Water in the Site 28 Drainage Basin originates from surface water runoff (overland flow) from the MOC, two seeps at the head of the site near the MOC, and two sub-drainages further north. Overland flow can contribute significant amounts of water to the basin during rainfall events (USACE 2013a). The conceptual site model presented for the Site 28 Drainage Basin in the multi-site DD (USACE 2009) included an incised surface water channel with no evidence of overbank flow contaminating surface soil or the surrounding tundra. Results from surface soil samples collected during pre-decisional investigations performed in 1994, 1996, and 1998 supported this CSM (USACE 1999).

#### BASIS FOR TAKING ACTION

Site investigation data showed that petroleum hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), PCBs, and metals were above the sitewide project screening levels in sediment.

final 14

The human health and ecological risk assessment completed prior to the multi-site DD identified that analytes in sediment posed unacceptable risk to potential human receptors of concern (future seasonal resident and future site visitor) and one potential ecological indicator receptor of concern (tundra vole).

#### **RESPONSE ACTIONS**

No response actions occurred at Site 28 prior to the multi-site DD. The Site 28-specific RAOs listed in the multi-site DD (USACE 2009) are:

- Mitigate potential future risk to human health from ingestion, inhalation, and dermal contact with sediment exposure pathways. Meet pertinent risk-based cleanup levels in sediment.
- Prevent migration of contaminants into the Suqi River above risk-based cleanup levels.

The description of the selected remedy for Site 28 in the multi-site DD is as follows:

- Excavation and removal of petroleum, metals, and PCB-contaminated sediment at Site 28 Drainage Basin, including removal of near-surface sediments (to a depth of 6 to 12 inches) from the narrow channel upgradient of the Suqi River.
- Construction of sedimentation pond or other appropriate controls at Site 28 Drainage Basin.

There are no COCs or cleanup levels that were assigned only to Site 28 in the multi-site DD. The sitewide sediment COCs and cleanup levels were applied to Site 28 and other sites that contain submerged sediment as listed in Table 5.

Table 5
Sitewide Multi-Site DD Sediment Cleanup Levels

| Contaminant             | Cleanup Level <sup>a</sup> |
|-------------------------|----------------------------|
| 1-Methylnaphthalene     | 0.6 mg/kg                  |
| Acenaphthene            | 0.5 mg/kg                  |
| Benzo(g,h,i)perylene    | 1.7 mg/kg                  |
| Fluoranthene            | 2.0 mg/kg                  |
| Fluorene                | 0.8 mg/kg                  |
| Indeno(1,2,3-cd) pyrene | 3.2 mg/kg                  |
| Naphthalene             | 1.7 mg/kg                  |
| Phenanthrene            | 4.8 mg/kg                  |
| Total LPAH              | 7.8 mg/kg                  |
| Total HPAH              | 9.6 mg/kg                  |
| PCBs                    | 0.7 mg/kg                  |
| Arsenic                 | 93 mg/kg                   |
| Chromium                | 270 mg/kg                  |
| Lead                    | 530 mg/kg                  |
| Zinc                    | 960 mg/kg                  |
| DRO                     | 3,500 mg/kg                |
| RRO                     | 3,500 mg/kg                |

#### Notes:

mg/kg = milligrams per kilogram

PCB = polychlorinated biphenyl

RRO = residual-range organics

It is recommended an explanation of significant differences be prepared to clarify a sedimentation pond or other institutional control is not needed at Site 28.

#### STATUS OF IMPLEMENTATION

Excavation of contaminated sediment (suction dredging) to a depth of 1 to 2 feet began in 2012 and ended in 2013, which resulted in the excavation of 152 tons of sediment (USACE 2013b, 2015a). The 2013 excavation confirmation sample results in the remedial action report (USACE 2015a) and results from the 2018 sampling effort (USACE 2018) identified that all non-POL Site 28 COCs (PCBs, chromium, lead, and zinc) were below the sitewide sediment cleanup levels, and thus achieved UU/UE relative to all non-POL CERCLA contaminants; however, POL-related Site 28 COCs (diesel-range organics [DRO], residual-

<sup>&</sup>lt;sup>a</sup> Cleanup levels protective of the benthic community were selected for COCs, which are also protective of human health.

COC = contaminant of concern

DRO = diesel-range organics

HPAH = high molecular weight polycyclic aromatic hydrocarbons

LPAH = low molecular weight polycyclic aromatic hydrocarbons

range organics [RRO], and PAHs) were present at some locations above the sitewide sediment cleanup levels.

The remedial action excavation completed for Site 28, implemented as suction dredging, generally performed as expected. However, sediment was not removed beyond 2 feet bgs in any removal area. The targeted removal actions were intended to remove all continuously submerged sediment contaminated with COCs above the sitewide sediment cleanup levels, including removal of near-surface (6 to 12 inches deep) continuously submerged sediments from the narrow channel upgradient of the Suqi River. The intent was to remove the most highly contaminated materials closest to the main complex. Dredging could not be completed in Removal Areas 5 through 7 where vegetative material routinely clogged the in-line pumps; in these areas the sediment had to be removed by hand. Refer to Figures B-5a through B-5i (Appendix B) for the location of Site 28 removal areas. Some dredging was able to continue in Removal Area 7 following the hand-removal of the vegetative material. Due to the limited removal efforts in these areas, a reevaluation of the remedial action approach is recommended to address remaining site contamination.

Sediment migration during sediment removal was controlled by a temporary in-stream sediment trap. The in-stream temporary sediment trap was removed at the end of each of the 2012 and 2013 field seasons. A sedimentation pond or other institutional controls, as described in the multi-site DD (USACE 2009), have not been implemented. Construction of a sedimentation pond within the drainage basin would cause unnecessary adverse impacts to the wetland environment. There is a natural stilling area in Site 28 approximately 200 feet south of the Suqi River (Figures B-6 through B-10) where the surface water flow channels disperse. Based on confirmation samples collected during the 2013 excavation, samples collected from the Suqi River in 2016 (USACE 2017), and re-sampling of sediment in 2018 (Appendix F), the stilling area and existing natural ponds are functioning as sedimentation ponds and have prevented migration of contaminants above the multi-site DD cleanup levels from Site 28 into the Suqi River.

#### PROGRESS SINCE THE LAST REVIEW

This section includes the protectiveness determinations and statements from the last FYR (Table 6). There were no issues identified at Site 28 during the 2014 FYR as excavation was ongoing at that time.

Table 6 Protectiveness Determinations/Statements from the 2014 FYR

| Site | е | Protectiveness<br>Determination | Protectiveness Statement                                                                                                                                                                                                                                                           |
|------|---|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 28   | 3 | Will be Protective              | The remedy at Site 28 is expected to be protective of human health and the environment upon completion. In the interim, remedial activities completed to date have adequately addressed all exposure pathways that could result in unacceptable risks in these areas. <sup>1</sup> |

#### Notes:

#### IX. FIVE-YEAR REVIEW PROCESS

#### COMMUNITY NOTIFICATION, INVOLVEMENT & SITE INTERVIEWS

A public notice was published in the Nome Nugget on 29 March 2018 announcing the FYR and inviting the public to submit any comments to the USACE. Additionally, flyers and mailed notices were sent out and a public meeting was held on the 11 April 2018. The results of the review and the report will be made available at the site information repositories located at Savoonga City Hall and Gambell Sivuqaq Lodge.

During the FYR process, interviews were conducted to document any perceived problems or successes with the remedy that has been implemented to date. The complete interviews, comments, and USACE responses to all issues are included in Appendix G. A summary of the key Site 28 issues is presented below:

**Comment:** There is concern regarding whether or not the issues of contaminant migration and/or exposure pathways via sediment and/or surface water at Site 28 and related drainages have been adequately investigated and/or monitored. This includes concerns regarding the state of the residual contamination source areas which remain within the tundra at Site 28 as well as likely ongoing sources from the MOC plumes which are located immediately

<sup>&</sup>lt;sup>1</sup> Removal actions within the Site 28 drainage have been successful in achieving SSCLs for non-POL CERCLA COCs in sediment. However, POL COCs remain in sediment above SSCLs.

adjacent to/upgradient of Site 28. Surface water monitoring data from Site 28 may be necessary in the future in order to make conclusive determinations regarding the status of migration and/or exposure pathways.

Comment: A participant in the public meeting asked if mercury would be sampled for at Site 28 and that they were in possession of data that showed mercury was present. Note: The USACE asked that data which showed mercury is present above the cleanup level, through third party sampling, be provided to the USACE for evaluation.

#### **DATA REVIEW**

The data review for Site 28 primarily focused on contaminated sediment data generated after the 2014 FYR and was heavily focused on contamination in sediment, the media of concern for the site in the multi-site DD (USACE 2009). "Sediment," as defined by the USACE project delivery team and ADEC project manager is considered to be "all continuously submerged loose material (mineral and/or organic) except for that which is actively growing vegetation or is part of a vegetative mat." The new data for Site 28 included data from the 2013 removal action report (USACE 2015a), which included results for sediment confirmation samples; 2016 sediment and surface water sampling in the Suqi River (USACE 2017) used as a line of evidence for evaluation of potential impacts to sediment and surface water in the Suqi River that may have resulted from upgradient Site 28 contamination; and the Site 28 re-accumulated sediment mapping effort (USACE 2018), which included sampling data at the original 2012 sediment sampling locations within Site 28 for comparison between pre-removal sediment and post-removal (i.e., re-accumulated) sediment results.

The 2018 Site 28 sediment mapping report is included in this report as Appendix F. Comparison of 2013 Site 28 sediment data to multi-site DD risk-based sediment cleanup levels found that DRO, RRO, 2-methylnaphthalene, acenaphthene, fluoranthene, fluorene, naphthalene, phenanthrene, and low molecular weight polycyclic aromatic hydrocarbons (LPAH) exceed the multi-site DD sediment cleanup levels. Comparison of 2016 sediment data from the Suqi River immediately downstream from Site 28 did not find any compounds above the multi-site DD risk-based sediment cleanup levels. Comparison of 2018 Site 28 sediment data to multi-site DD risk-based sediment cleanup levels found that DRO, RRO, 2-methylnaphthalene, acenaphthene,

fluoranthene, fluorene, naphthalene, phenanthrene, and total LPAH exceed the risk-based sediment cleanup levels established in the multi-site DD.

Some analytes reported in the 2013 remedial action report and the 2018 sediment mapping report do not have a multi-site DD cleanup level (1-methylnaphthalene, benzo(a)anthracene, chrysene, pyrene, and selenium). Benzo(a)anthracene, chrysene, and pyrene were present and assessed in the risk assessment that supported the multi-site DD; the recent detections of these analytes are below the levels used for that assessment. 1-methylnapthalene and selenium maximum detections occurred in the dataset from the 2013 removal action samples and were evaluated in the first NEC FYR (USACE 2015b). The levels found from the maximum detections in sediment did not significantly contribute to overall risk to human health or the environment at Site 28 compared to the remaining levels of COCs at Site 28. No subsurface soil remedy is described in the multi-site DD for the site (USACE 2015b) because invasive activities in the Site 28 tundra, such as excavation in excess of the proposed suction dredge removal of practically accessible sediment, would likely result in adverse impacts that would be far greater to the natural resources and habitat than the remaining contamination. The selected remedy of removing the most highly contaminated and accessible sediment closest to the MOC, and from the narrow drainage channel and ponded areas in the lower half of Site 28 using a minimally invasive removal technique (such as suction dredging) while also managing the contamination in place by controlling downstream migration of suspended sediments and performing FYRs to ensure the remedy remains protective, was determined and agreed upon in the multi-site DD in order to minimize the adverse impacts to existing natural resources and habitat.

The 2018 sediment mapping effort calculated estimates of remaining sediment at the site. Based on 2018 sediment measurements, sediment re-accumulation does not appear to be a significant mechanism which would fully explain the volume of contaminated sediment observed in the 2014 sediment removal areas in 2018. This was determined by comparing the volume of sediment estimated in 2012, the volume of sediment removed in 2012 and 2013, and the volume of sediment estimated in 2018 by removal area. Additionally, discrete locations were compared within select removal areas for sediment thicknesses measured during the 2012 and 2018

mapping efforts. Visual field observations, such as surface evidence of sloughing, were also used to determine the likelihood of sediment re-accumulation. Sediment measured that was not the result of re-accumulation may be the result of the removal activity ceasing beyond 2 feet below the surface of the water, management decisions between USACE and ADEC to limit the excavation activity to accessible sediments to reduce impacts to the wetland environment, and mechanical limitations of a suction dredge in highly vegetated areas.

Approximately 196 of the 281 cubic yards of sediment remaining in the Site 28 drainage contains contaminated material above the SSCLs. This estimate was derived by using the sediment depth measurements collected during the 2018 mapping effort, estimating extents of contamination based on analytical results from the 2018 sediment samples, and calculating volume of contaminated sediment using the average thickness of sediment as illustrated on the cross sections for each transect (Appendix F [Attachment F-1]). Where multiple transects were collected to represent an elongated water body, the sediment thickness averaged from each transect was further weighted to account for differences in the width of the water body. For additional information regarding how the sediment was measured and how volume calculations were performed, refer to Section 4.0 of Appendix F.

The 2018 sediment volume estimates may be biased high for DRO and RRO due to naturally occurring organic material in sediment contributing to the reported levels of DRO and RRO. This observation is consistent with those reported in other investigations at Site 28 and other NEC sites. Silica gel treatment is only partially effective in reducing this high bias.

Subsurface soil POL contamination appears to be present at Site 28 on the southern boundary with MOC Site 11 that is not part of the sediment removal areas. MOC Site 11 excavations adjacent to Site 28 did not proceed into Site 28 at Ultraviolet Optical Screening Tool (UVOST) plumes D2, D3, I1, and J1B due to concern of impacting the wetland environment (USACE 2015a). Ceasing excavation activities associated with Site 11 before these activities entered into Site 28 was proposed by USACE during the 2011 removal action and subsequently agreed upon by ADEC. Figure B-6 shows the locations of the UVOST plumes within the Site 28 boundary.

FINAL 2/20/2020 21

**SITE INSPECTION** 

The site inspection was conducted on 3 August 2018. The purpose of the inspection was to

assess the protectiveness of the remedy. The inspection identified signs of petroleum sheen and

fuel odor when sediment was disturbed in some areas of Site 28. Thick vegetation was present

in all areas and did not show signs of stress. The areas where sediment dredging occurred during

2012 and 2013 were not easily distinguishable from other undisturbed areas of Site 28. The site

inspection checklist completed during the site visit is provided in Appendix E.

X. TECHNICAL ASSESSMENT

QUESTION A: Is the remedy functioning as intended by the Decision Documents?

Answer: No.

**Question A Summary:** 

The selected remedy remains protective and has functioned as intended for CERCLA contaminants in sediment within the Site 28 drainage. The selected remedy in the 2009 Decision Document included removing the most highly contaminated and accessible sediment closest to the MOC and from the narrow drainage channel and ponded areas in the lower half of Site 28 using a minimally invasive removal technique (such as suction dredging). The remedy also included management of contamination in place by controlling downstream migration of

suspended sediments and performing FYRs to ensure the remedy remains protective.

CERCLA non-POL COCs (PCBs, chromium, lead, and zinc) concentrations in sediment samples have been reduced to the SSCLs, which were risk-based levels that meant to achieve UU/UE; however, the remedy did not function as intended for POL-related Site 28 COCs (DRO, RRO, and PAHs) in sediment. The results of the sediment confirmation samples following excavation and data collected from re-accumulated sediment in 2018 indicated that POL-related Site 28 COCs (DRO, RRO, and PAHs) are present in Site 28 sediment within the

drainage basin above the sitewide sediment cleanup levels.

The distribution of POL-related Site 28 COCs remaining above the sediment cleanup levels imply that dredging, as applied in 2013, was not effective. Implementation problems identified in the removal action report, which reduced effectiveness, included regular clogging of the dredge due to the vegetative mat, inability of the diver to observe the dredge nozzle, and limiting

removal to the first 2 feet.

QUESTION B: Are the exposure assumptions, toxicity data, cleanup levels, and remedial action objectives (RAOs) used at the time of the remedy selection still valid?

Answer: Yes.

22 **FINAL** 

2/20/2020

#### **Question B Summary:**

Changes in standards and to be considered criteria: The multi-site DD sediment cleanup levels were derived from a combination of the Sediment Minimum Cleanup Level Standards Table III, Chapter 173-204-520 (Washington Administrative Code [WAC] 1995) and Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000). The sediment cleanup levels were selected to protect low trophic group receptors (macroinvertebrates) according to the feasibility study (USACE 2007) and they are below levels that are protective of human health.

The WAC standard was updated in February 2013 (WAC 2013), and Table III Marine Sediment Management Standards now appears in Section 173-204-562 instead of Section 173-204-520. Other changes of note are that two types of levels are listed, and values are present for more PAHs than at the time of the multi-site DD. The content of the current WAC Table III is revised to include standards for no adverse effects (sediment cleanup objective) and minor adverse effects (sediment screening value). The multi-site DD cleanup levels are the same as those now listed as "sediment screening values". Some variations were noted between the numeric value listed in the multi-site DD and the value listed in the WAC due to rounding of values described in the feasibility study when converting cleanup levels to a dry weight basis. For example, the cleanup level for 2-methylnaphthalene was rounded to 0.6 mg/kg, where the WAC value was 0.64 mg/kg, and the cleanup level for PCBs was rounded to 0.7 mg/kg, where the WAC value was 0.65 mg/kg. Rounding also occurred for acenaphthene and fluorene.

The source of the multi-site DD sediment cleanup levels for benzo(g,h,i)perylene, fluoranthene, and indeno(1,2,3-cd)pyrene is the Development and Evaluation of Consensus-Based Sediment Ouality Guidelines for Freshwater Ecosystems (MacDonald et al. 2000) because no values were available in WAC Table III for these compounds at the time of the multi-site DD. However, it was identified during a review of the article (MacDonald et al. 2000) that the compounds benzo(g,h,i)perylene, fluoranthene, and indeno(1,2,3-cd)pyrene are not present in the document and MacDonald et al (2000) cannot be the source of the cleanup levels. The feasibility study (USACE 2007) was reviewed to investigate the source of the benzo(g,h,i)perylene, fluoranthene, and indeno(1,2,3-cd)pyrene cleanup levels and it appears that the Consensus-Based Sediment Quality Guidelines Interim Guidance RR-088 (Wisconsin Department of Natural Resources 2003) is the source of the cleanup levels. No changes have occurred to either MacDonald et al (2000) or Wisconsin Department of Natural Resources (2003) during the review period. A summary of the changes to standards is listed in Table 7.

Table 7
Evaluation of Changes in Chemical-Specific Standards

| сос                                    | Multi-Site DD-<br>Established<br>Cleanup Level for<br>COCs<br>(mg/kg) | Source of the<br>Multi-Site DD<br>Cleanup Level | Has the Source of the Multi-Site<br>DD-Established Cleanup Level<br>Revised the Standard to a More<br>Stringent Level? |  |
|----------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|
| DRO C <sub>10</sub> to C <sub>25</sub> | 3,500                                                                 | Site-specific <sup>a</sup>                      | No                                                                                                                     |  |
| RRO C <sub>25</sub> to C <sub>36</sub> | 3,500                                                                 | Site-specific <sup>a</sup>                      | No                                                                                                                     |  |
| Acenaphthene                           | 0.5                                                                   | WAC 173-204-520 T3                              | No                                                                                                                     |  |
| Benzo(g,h,i)perylene                   | 1.7                                                                   | MacDonald et al. <sup>b</sup>                   | No                                                                                                                     |  |
| Fluoranthene                           | 2                                                                     | MacDonald et al. <sup>b</sup>                   | No                                                                                                                     |  |
| Fluorene                               | 0.8                                                                   | WAC 173-204-520 T3                              | No                                                                                                                     |  |
| Indeno(1,2,3-cd)pyrene                 | 3.2                                                                   | MacDonald et al. <sup>c</sup>                   | No                                                                                                                     |  |
| 2-Methylnaphthalene                    | 0.6                                                                   | WAC 173-204-520 T3                              | No                                                                                                                     |  |
| Naphthalene                            | 1.7                                                                   | WAC 173-204-520 T3                              | No                                                                                                                     |  |
| Phenanthrene                           | 4.8                                                                   | WAC 173-204-520 T3                              | No                                                                                                                     |  |
| Total LPAHs                            | 7.8                                                                   | WAC 173-204-520 T3                              | No                                                                                                                     |  |
| Total HPAHs                            | 9.6                                                                   | WAC 173-204-520 T3                              | No                                                                                                                     |  |
| PCBs (sum)                             | 0.7                                                                   | WAC 173-204-520 T3                              | No                                                                                                                     |  |
| Arsenic                                | 93                                                                    | WAC 173-204-520 T3                              | No                                                                                                                     |  |
| Chromium                               | 270                                                                   | WAC 173-204-520 T3                              | No                                                                                                                     |  |
| Lead                                   | 530                                                                   | WAC 173-204-520 T3                              | No                                                                                                                     |  |
| Zinc                                   | 960                                                                   | WAC 173-204-520 T3                              | No                                                                                                                     |  |

#### Notes

COC = contaminant of concern

DD = Decision Document

DRO = diesel-range organics

HPAH = high molecular weight polycyclic aromatic hydrocarbons

LPAH = low molecular weight polycyclic aromatic hydrocarbons

PCB = polychlorinated biphenyls

RRO = residual-range organics

T3 = Table III

WAC = Washington administrative code

The sources of the multi-site DD cleanup levels were evaluated to ascertain if any value had decreased in more recent versions of the source document (Table 7) as well as other available benchmarks for benthic macroinvertebrates, birds, and mammals (Table 8) to determine if the multi-site DD cleanup levels continue to be protective of wildlife at Site 28. As shown in Table 8, the multi-site DD cleanup levels are more conservative than the new sediment cleanup levels

<sup>&</sup>lt;sup>a</sup> Site-specific calculated value

<sup>&</sup>lt;sup>b</sup> The source of the cleanup level cited in the multi-site DD is not accurate. The value is from *Consensus-Based Sediment Quality Guidelines* Table 2 Probable Effect Concentration (Wisconsin Department of Natural Resources 2003).

<sup>&</sup>lt;sup>c</sup> The source of the cleanup level cited in the multi-site DD is not accurate. The value is from *Consensus-Based Sediment Quality Guidelines* Table 2 Midpoint Effect Concentration (Wisconsin Department of Natural Resources 2003).

(WAC 2013), equilibrium partitioning (EqP) sediment benchmarks (EPA 2003, 2012), as well as ecological preliminary remedial goals (EcoPRGs) for birds and mammals (Los Alamos National Laboratory [LANL] 2017).

- The 2013 WAC sediment cleanup levels (Table 8) are higher than the multi-site DD cleanup levels for fluoranthene and total HPAHs are lower than the multi-site DD cleanup levels for benzo(g,h,i)perylene and indeno(1,2,3-cd)pyrene.
- The default EqP sediment benchmarks for PAHs (Table 8) are derived using final chronic values for surface water and a total organic carbon of 1 percent. The derivation methodology is presented in EPA (2012). All EqP sediment benchmarks for PAHs are higher (less) conservative than the multi-site DD cleanup levels.
- EcoPRGs from the LANL database are the lowest available for birds and mammals for exposure to soils or sediments. The EcoPRGs are calculated using the lowest observed adverse effect level and either a default area use factor (AUF=1) or a site-specific AUF (based on the acreage of Site 28 of 14.65 acres). Both sets of EcoPRGs as wells as the species with the lowest value are presented in Table 8. The EcoPRGs assuming an AUF=1 are higher (less conservative) for all COCs, with the exception of lead and zinc. The EcoPRGs using Site 28 AUFs are higher (less conservative) for all COCs.

Based on comparison of the multi-site DD cleanup levels to updated WAC sediment cleanup levels as well as available benchmarks for the protection of benthic macroinvertebrates, birds, and mammals, the multi-site DD cleanup levels continue to be protective of wildlife that may potentially use Site 28.

25

Table 8 Comparison of Multi-Site DD Cleanup Levels and Risk-Based Benchmarks.

| Multi-Site DD Cleanup<br>Levels (USACE, 2009) |                             | Risk-based Criteria for Benthic Macroinvertebrates and Wildlife (mg/kg dw) |                                            |                                                   |                                                            |                                                                  |            |
|-----------------------------------------------|-----------------------------|----------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------|------------|
| coc                                           | Cleanup<br>Level<br>(mg/kg) | Source                                                                     | Sediment<br>Cleanup<br>Level<br>(WAC 2013) | EqP Sediment<br>Benchmarks<br>(EPA 2003,<br>2012) | Soil/Sediment<br>EcoPRG Wildlife<br>(AUF=1)<br>(LANL 2017) | Soil/Sediment<br>EcoPRG Wildlife<br>(AUF=Site 28)<br>(LANL 2017) | Receptor   |
| DRO C <sub>10</sub> to C <sub>25</sub>        | 3,500                       | Site-specific                                                              |                                            |                                                   |                                                            |                                                                  |            |
| RRO C <sub>25</sub> to C <sub>36</sub>        | 3,500                       | Site-specific                                                              |                                            |                                                   |                                                            |                                                                  |            |
| Acenaphthene                                  | 0.5                         | WAC, 1995                                                                  | 0.57                                       | 4.2                                               | 1300                                                       | 3600                                                             | shrew      |
| Benzo(g,h,i)perylene                          | 1.7                         | WDNR,<br>2003                                                              | 0.78                                       | 10.9                                              | 260                                                        | 710                                                              | shrew      |
| Fluoranthene                                  | 2                           | WDNR,<br>2003                                                              | 12                                         | 7.1                                               | 230                                                        | 620                                                              | shrew      |
| Fluorene                                      | 0.8                         | WAC, 1995                                                                  | 0.79                                       | 5.4                                               | 520                                                        | 1400                                                             | shrew      |
| Indeno(1,2,3-cd)pyrene                        | 3.2                         | WDNR,<br>2003                                                              | 0.88                                       | 11.2                                              | 740                                                        | 2000                                                             | shrew      |
| 2-Methylnaphthalene                           | 0.6                         | WAC, 1995                                                                  | 0.64                                       | 4.3                                               | 160                                                        | 450                                                              | shrew      |
| Naphthalene                                   | 1.7                         | WAC, 1995                                                                  | 1.7                                        | 3.9                                               | 30                                                         | 83                                                               | deer mouse |
| Phenanthrene                                  | 4.8                         | WAC, 1995                                                                  | 4.8                                        | 6                                                 | 110                                                        | 300                                                              | shrew      |
| Total LPAHs                                   | 7.8                         | WAC, 1995                                                                  | 7.8                                        |                                                   |                                                            |                                                                  |            |
| Total HPAHs                                   | 9.6                         | WAC, 1995                                                                  | 53                                         |                                                   |                                                            |                                                                  |            |
| PCBs (sum)                                    | 0.7                         | WAC, 1995                                                                  | 0.65                                       |                                                   |                                                            |                                                                  |            |
| Arsenic                                       | 93                          | WAC, 1995                                                                  | 93                                         |                                                   | 200                                                        | 540                                                              | shrew      |
| Chromium                                      | 270                         | WAC, 1995                                                                  | 270                                        |                                                   | 280                                                        | 770                                                              | robin      |
| Lead                                          | 530                         | WAC, 1995                                                                  | 530                                        |                                                   | 290                                                        | 3800                                                             | robin      |
| Zinc                                          | 960                         | WAC, 1995                                                                  | 960                                        |                                                   | 340                                                        | 930                                                              | robin      |

Notes:

Green color indicates that the criteria is higher than (less conservative) than that used in the multi-site DD.

Salmon color indicates that the criteria is lower than (more conservative) than that used in the multi-site DD.

EqP = Equilibrium partitioning sediment benchmark, assumes 1percent total organic carbon (EPA, 2012)

EcoPRG = ecological preliminary remedial goal. Lowest value for birds or mammals based on the lowest observed adverse effect level.

EcoPRGs calculated using AUF=1 and using Site 28 acreage of 14.65 acres.

Changes in toxicity and other contaminant characteristics: No changes to cancer slope factors in the Integrated Risk Information System (EPA 2005) database occurred during this FYR period for Site 28 COCs.

Changes in risk assessment methods: None were identified.

Changes in exposure pathways: The exposure pathways and assumptions used in the risk assessment that supported the multi-site DD have not changed. Physical site conditions have not changed following the 2013 removal action such that current protectiveness may be affected negatively.

The multi-site DD (USACE 2009) remedy for Site 28 includes construction of a man-made settling pond "or other appropriate controls" in order to manage the contamination in place by controlling downstream migration of suspended sediments and prevent migration of contamination into the Suqi River. There is a natural stilling area in Site 28 approximately 200 feet south of the Suqi River (Figures B-6 through B-10) where the surface water flow channels disperse. The USACE and ADEC temporarily postponed the construction of a settling pond to allow the opportunity to evaluate whether the natural stilling actions provided adequate functionality and protectiveness as required to meet the RAO to prevent migration of contaminants into the Suqi River.

This stilling area, in addition to the natural, existing ponds, have proven effective at preventing migration of contaminants into the Suqi River. This has been confirmed by the 2018 sediment mapping and sampling event (Appendix F), the results of which indicated no contaminants exceeded the SSCLs in re-accumulated sediment downstream of the natural stilling area. DRO concentrations in sediment samples analyzed with the silica gel method were detected well below the cleanup level in this area, at a maximum concentration of 1,890 mg/kg. The highest detected RRO concentration in re-accumulated sediment analyzed with the silica gel method was 1,660 mg/kg. The SSCL for both of these analytes is 3,500 mg/kg. PAHs were either not detected or were detected with estimated concentrations well below the cleanup level. Metals were detected in this area, but also well below the cleanup levels. Therefore, the Suqi River is not receiving contamination from an upgradient source such as Site 28. Data tables for these results are available in Attachment F-2. In addition, results of a surface water and sediment sampling effort of the Suqi River conducted in 2016 (USACE 2017) also indicated no contaminants exceeded the SSCLs in Suqi River sediment or surface water samples. Silica gel method was not performed on these samples, however, DRO (540 mg/kg in sediment) and RRO (2,500 mg/kg) at the confluence of the Suqi River, location S29-002, did not exceed SSCLs. Surface water samples were non-detect for all PAHs except for a j-flagged naphthalene result of 0.0000043 mg/L. TAH and TAqH did not exceed the multi-site DD criterion and sheen was not observed at this location.

Expected progress toward meeting RAOs: RAOs for all Site 28 non-POL CERCLA COCs (PCBs, chromium, lead, and zinc) are met and have reached levels that allow for UU/UE. RAOs for POL-related Site 28 COCs (DRO, RRO, and PAHs) have not been met.

QUESTION C: Has any other information come to light that could call into question the protectiveness of the remedy?

Answer: No.

### **Question C Summary:**

There is no other information identified that would call into question the protectiveness of the remedy. Climate change may be occurring in the arctic which could affect yearly precipitation levels, average temperatures, and sea ice formation. There are no new issues during this review period created by climate change. No shallow permafrost was reported during past investigations at the site.

### XI. ISSUES/RECOMMENDATIONS

| Issues and Recommendations Identified in the FYR: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                 |                |  |  |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------|----------------|--|--|
|                                                   | Issue Category: Other                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                 |                |  |  |
| OU(s):                                            | Issue: Sediment contamination above multi-site DD cleanup levels remains in Removal Areas 2 through 9 for multi-site DD COCs (DRO, RRO, 2-methylnaphthalene, acenaphthene, fluoranthene, fluorene, naphthalene, phenanthrene, and total LPAH) after 2012/2013 sediment removal actions. An estimated 196 of the 281 cubic yards of sediment present in Site 28 as of August 2018 contain compounds at levels above their respective multi-site DD cleanup levels. |                   |                 |                |  |  |
|                                                   | Recommendation: Conduct bench testing or pilot testing to improve the effectiveness of remedy implementation.                                                                                                                                                                                                                                                                                                                                                     |                   |                 |                |  |  |
| Affect Current<br>Protectiveness                  | Affect Future<br>Protectiveness                                                                                                                                                                                                                                                                                                                                                                                                                                   | Party Responsible | Oversight Party | Milestone Date |  |  |
| No                                                | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Other<br>USACE    | State           | 12/20/2023     |  |  |

#### Notes:

COC = contaminant of concern
DD = Decision Document
DRO = diesel-range organics
LPAH = low molecular weight polycyclic aromatic hydrocarbons
OU = operable unit
RRO = residual-range organics
USACE = U.S. Army Corps of Engineers

#### **OTHER FINDINGS**

In addition, the following are recommendations that were identified during the FYR but do not affect current and/or future protectiveness:

• Subsurface soil contamination is suspected to be present in several areas along the southern end of Site 28, within the UVOST delineated MOC plumes D2, D3, I2, J1B, and between UVOST plumes D and I (Figure B-6). Subsurface soil contamination present at Site 28 on the southern boundary with MOC Site 11 is not part of the sediment removal areas. MOC Site 11 excavations adjacent to Site 28 did not proceed into Site 28 at UVOST plumes D2,

- D3, I1, and J1B due to concern of impacting the wetland environment. It is recommended to formally document the contamination remaining at the southern end of Site 28 associated with Site 11. In addition, formally document why continued remedy implementation (excavation) north of Site 11 within Site 28 is infeasible due to shallow groundwater and impacts to wetlands.
- Construction of a sedimentation pond or other institutional controls, as described in the multi-site DD (USACE 2009), have not occurred at Site 28. There is a natural stilling area in Site 28 approximately 200-ft south of the Suqi River (Figure B-6) where the surface water flow channels disperse. This stilling area, in addition to the existing, natural sedimentation ponds, has been found to prevent migration of contaminants above risk-based cleanup levels into the Suqi River. This has been confirmed by the 2018 sampling (Appendix F), the results of which indicated no contaminants exceeded the SSCLs in re-accumulated sediment downstream of the natural stilling area. DRO concentrations in sediment samples analyzed with the silica gel method were detected well below the cleanup level in this area, at a maximum concentration of 1,890 mg/kg. The highest detected RRO concentration in reaccumulated sediment analyzed with the silica gel method was 1,600 mg/kg. The SSCL for both of these analytes is 3,500 mg/kg. PAHs were either not detected or were detected with estimated concentrations well below the cleanup level. Metals were detected in this area, but also well below the cleanup levels. Therefore, the Suqi River is not receiving contamination from an upgradient source such as Site 28. Data tables for these results are available in Attachment F-2. In addition, results of a surface water and sediment sampling effort of the Suqi River conducted in 2016 (USACE 2017) also indicated no contaminants exceeded the SSCLs in Suqi River sediment or surface water samples. Silica gel method was not performed on these samples, however, DRO (540 mg/kg in sediment) and RRO (2,500 mg/kg) at the confluence of the Suqi River, location S29-002, did not exceed SSCLs. Surface water samples were non-detect for all PAHs except for a j-flagged naphthalene result of 0.0000043 mg/L. TAH and TAqH did not exceed the DD criterion and sheen was not observed at this location. Construction of a sedimentation pond within the drainage basin would cause unnecessary impacts to the wetland environment, as natural features are successfully preventing the contaminant migration. Although this has been documented in the long-term monitoring plan (USACE 2016b), it is recommended that an explanation of significant differences be completed for Site 28 to document the post-DD change.
- CERCLA action at Site 28 is complete. The 2013 excavation confirmation sample results in the remedial action report (USACE 2015a) and results from the 2018 sampling effort (USACE 2018) identified that all non-POL Site 28 COCs (PCBs, chromium, lead, and zinc) are below the sitewide sediment cleanup levels, and thus achieved UU/UE relative to all CERCLA contaminants; however, POL-related Site 28 COCs (DRO, RRO, and PAHs) are present above the sitewide sediment cleanup levels. Future reviews for petroleum and petroleum related compounds at Site 28 should occur under the Periodic Review for other petroleum related NEC sites.

29

### XII. PROTECTIVENESS STATEMENT

| PROTECTIVENESS STATEMENT(S)                                                                        |                                                 |                                                 |  |  |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|--|--|
| <b>Site:</b> 28                                                                                    | <b>Protectiveness Determination:</b> Protective | Planned Addendum Completion Date Not applicable |  |  |
| Protectiveness Statement: The remedy at Site 28 is protective of human health and the environment. |                                                 |                                                 |  |  |

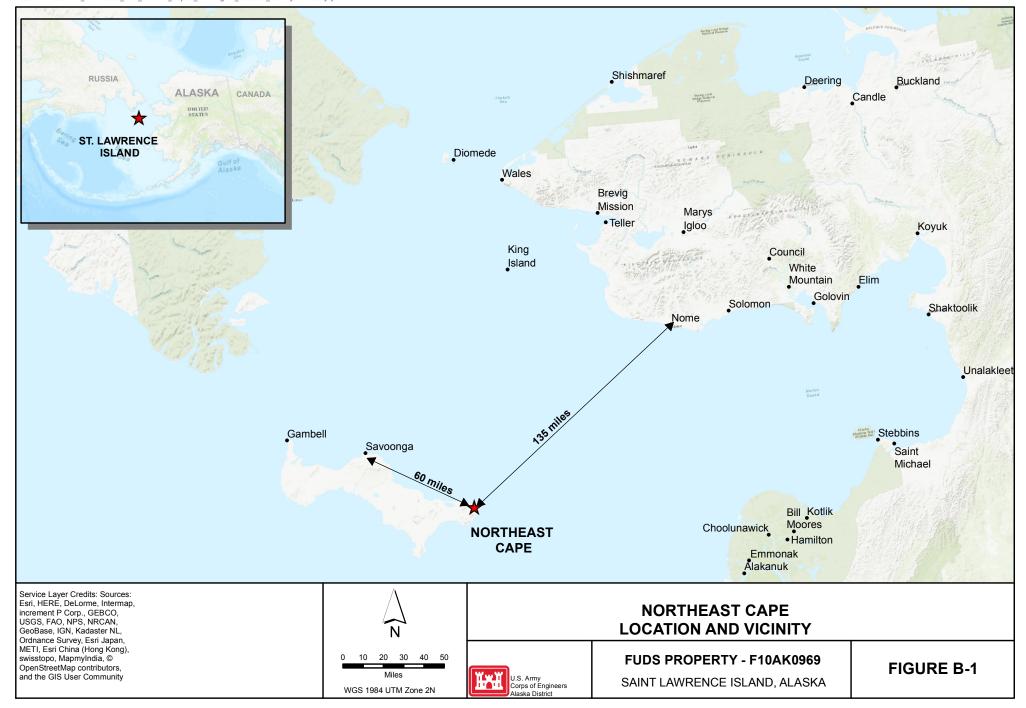
#### Note:

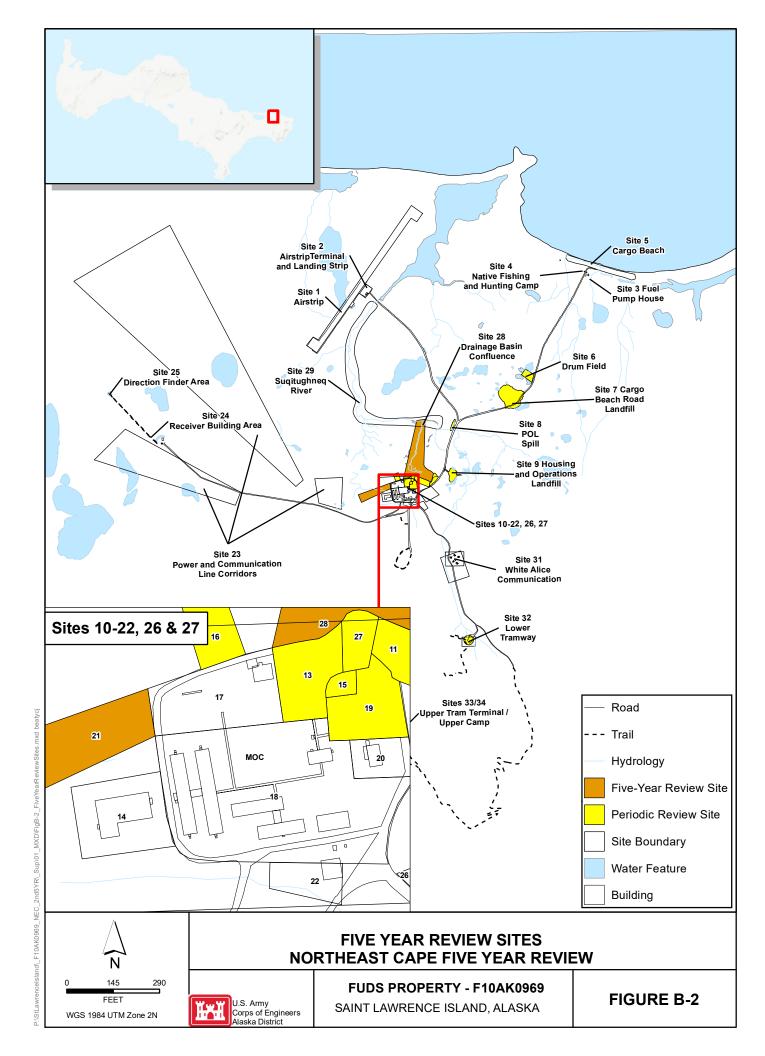
The protectiveness statement above is specific to non-POL CERCLA contaminants in sediment. POL contaminants (DRO, RRO, and PAHs) are present at Site 28 above the sitewide sediment cleanup levels.

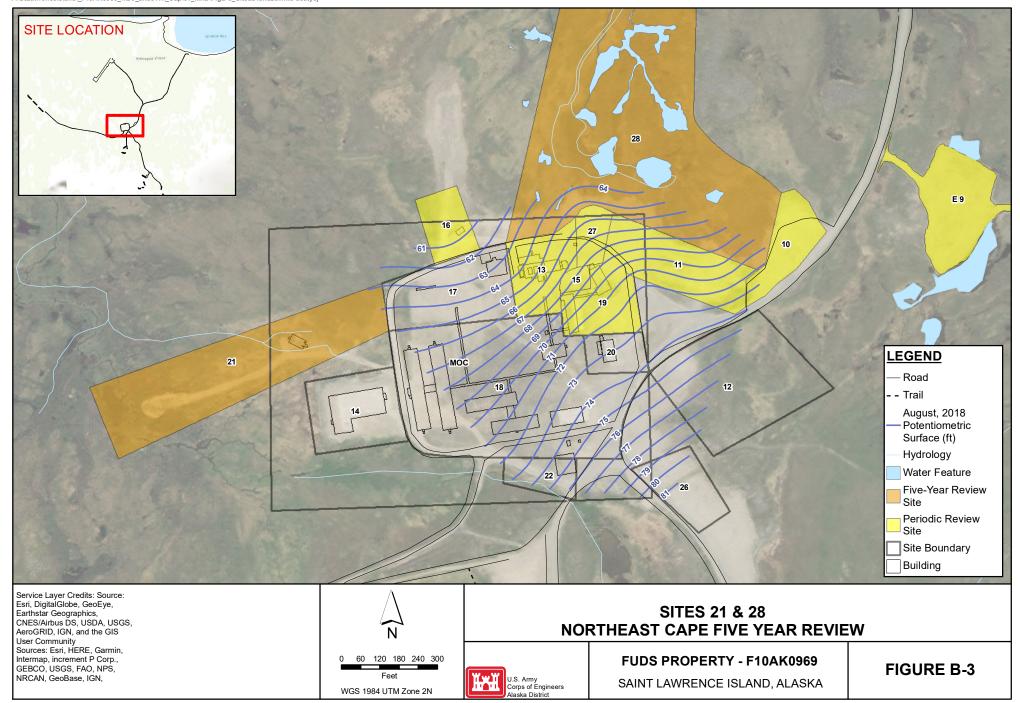
### XIII. NEXT REVIEW

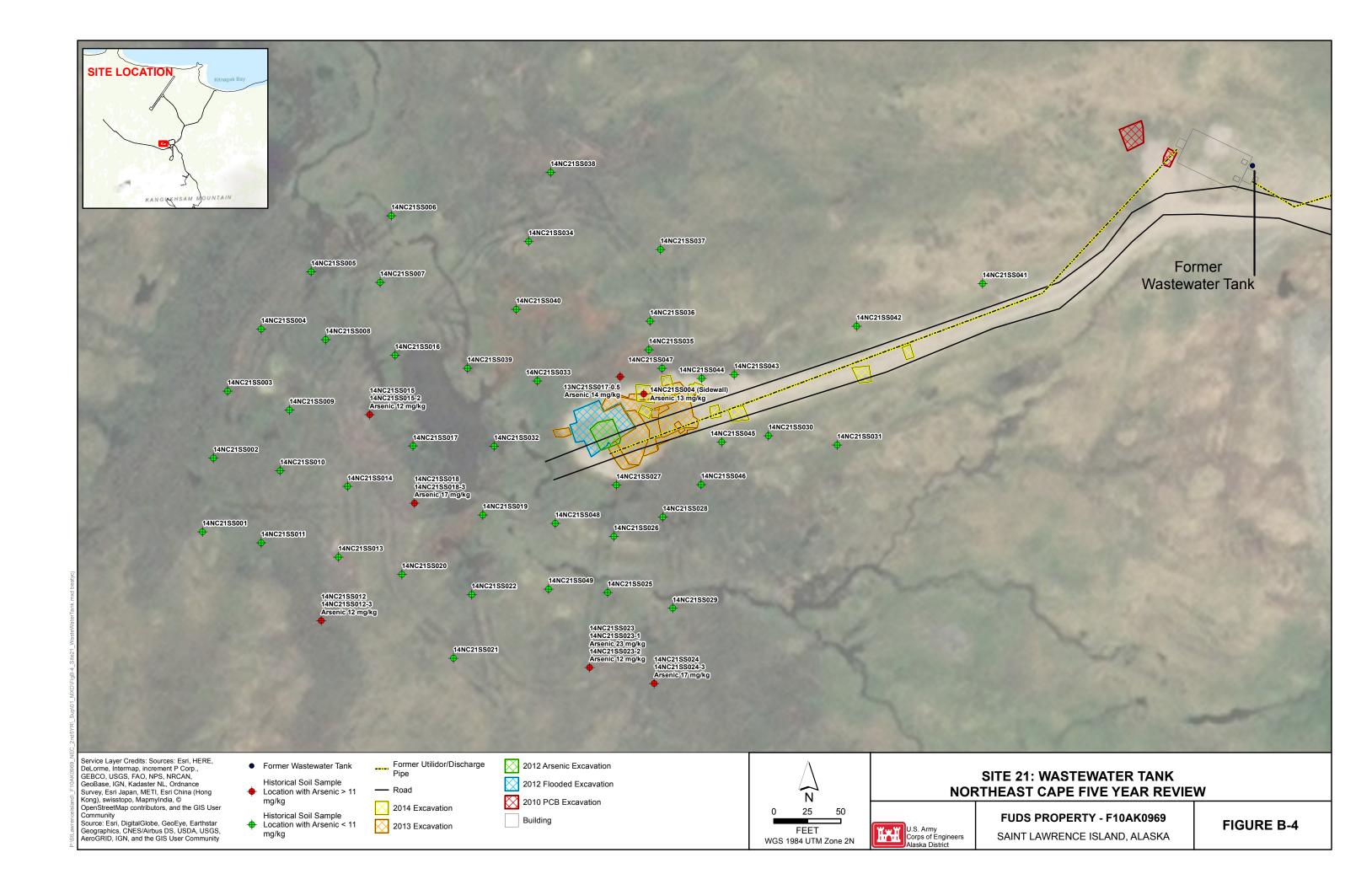
CERCLA action at Site 28 is complete. No future CERCLA FYRs are needed. However, POL-contaminants (DRO, RRO, and PAHs) are present above the sitewide sediment cleanup levels. Future reviews for petroleum and petroleum related compounds at Site 28 will be included in the Periodic Review for other petroleum related NEC sites.

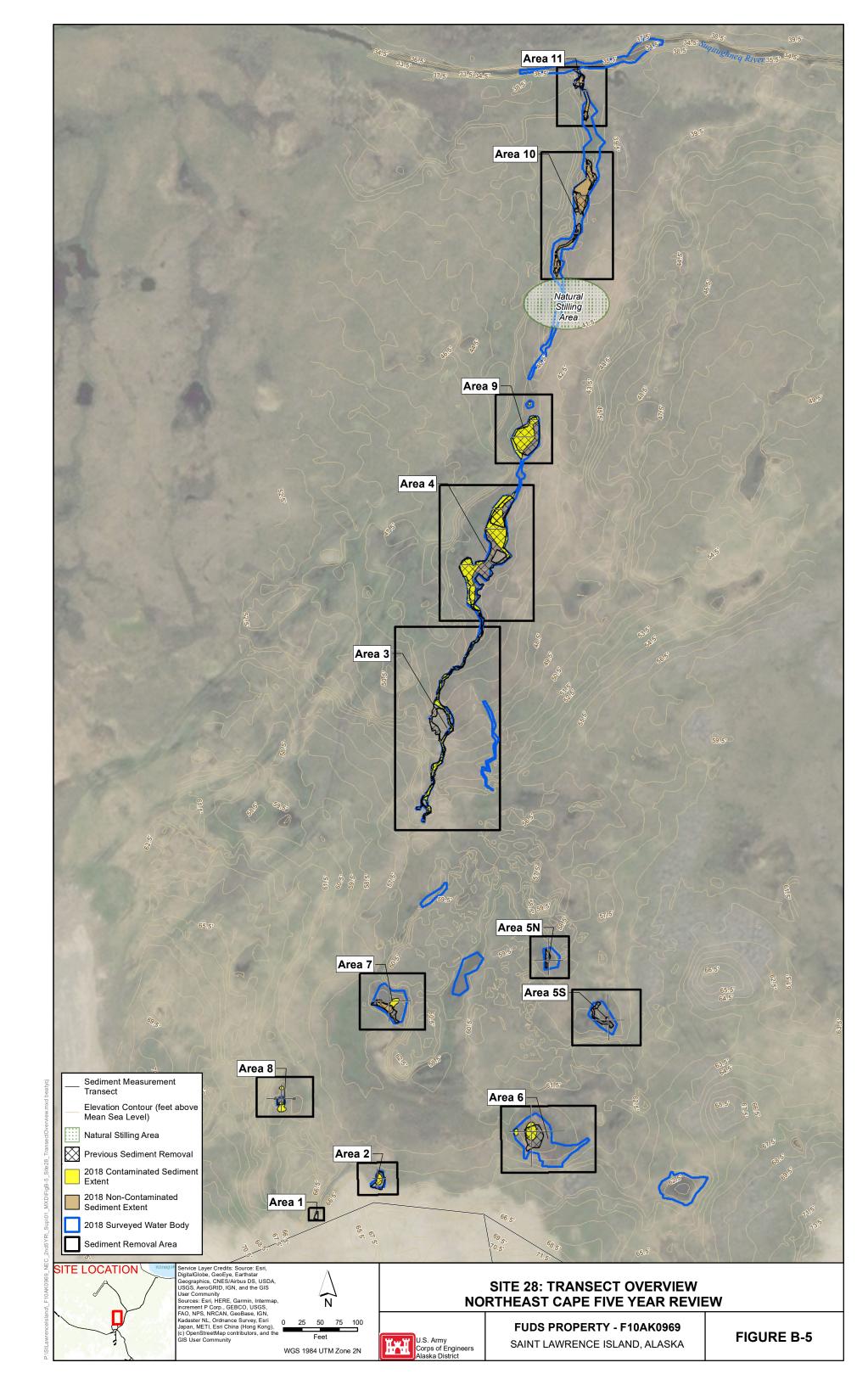
final 30

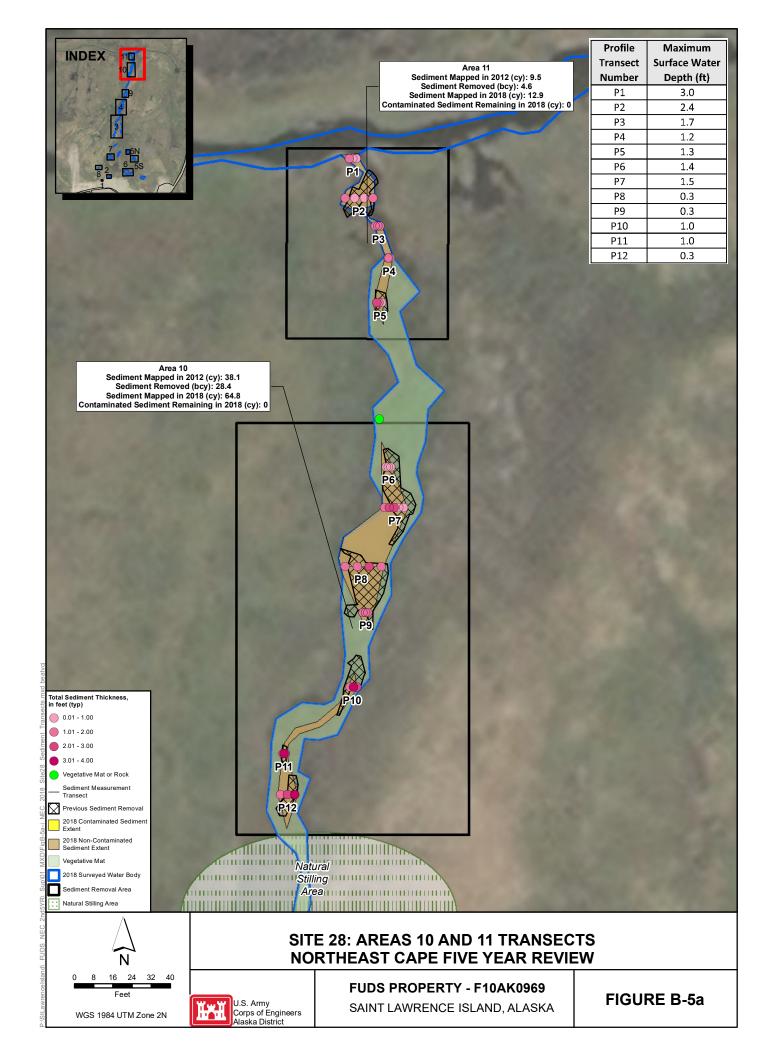

2/20/2020

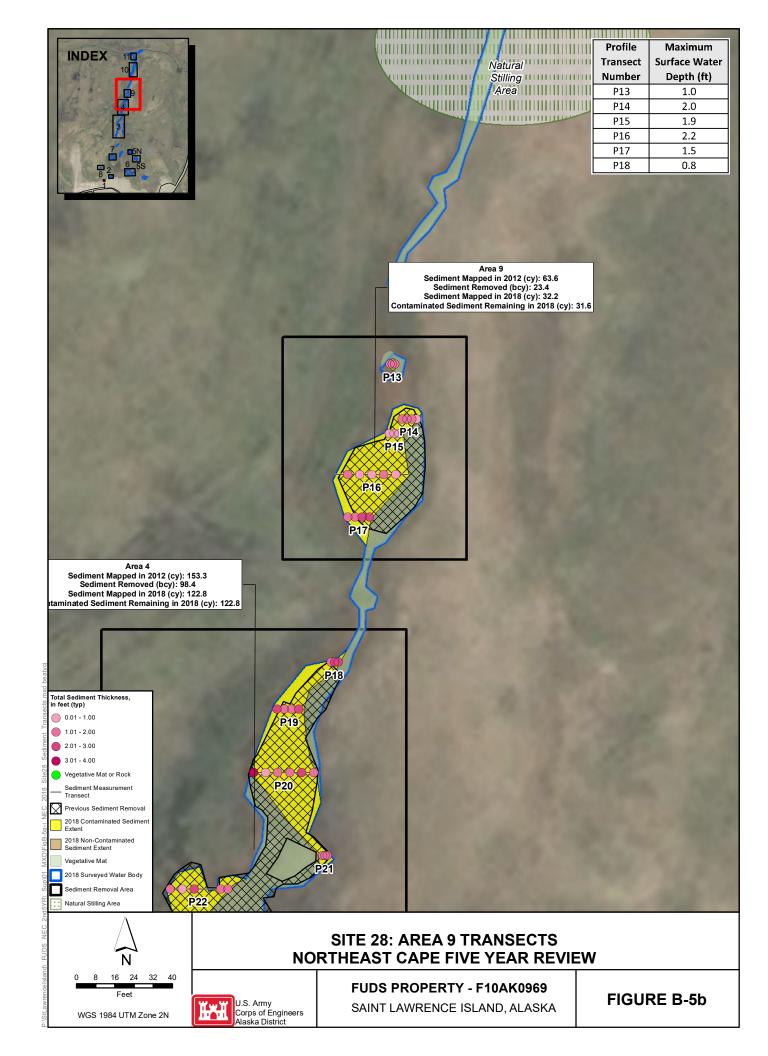

# APPENDIX A Reference List

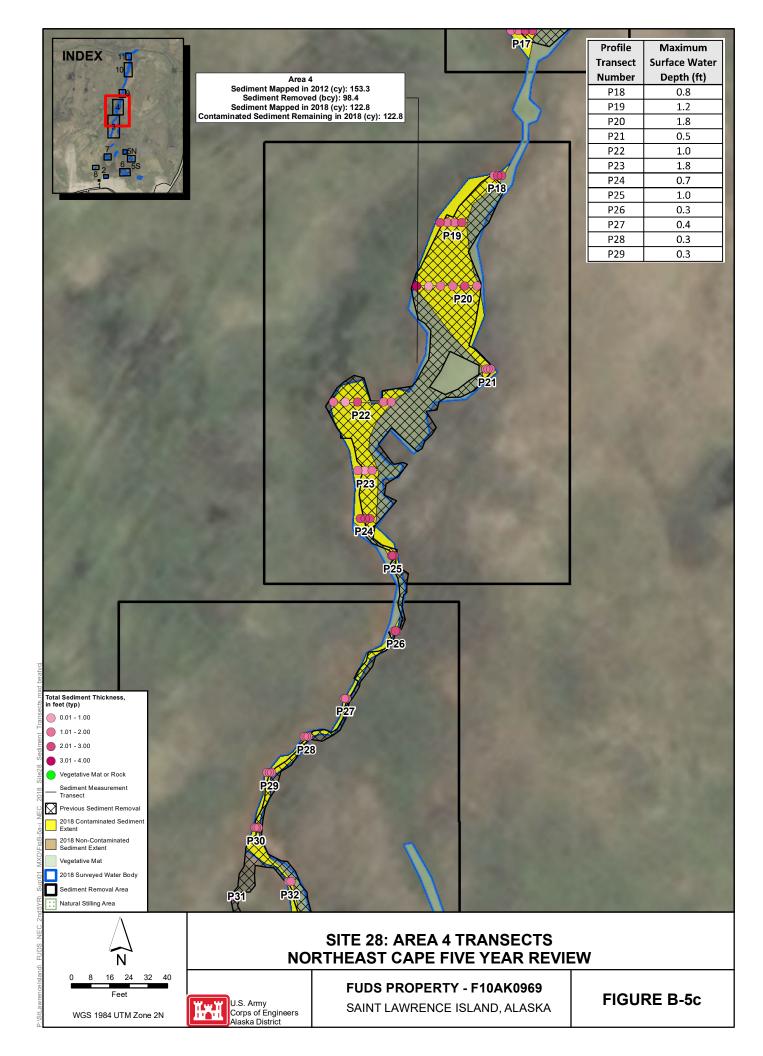

- ADEC (Alaska Department of Environmental Conservation). 2018a (August). *Guidance for Evaluating Metals at Contaminated Sites*.
- ADEC. 2018b (27 October). *Oil and Other Hazardous Substances Pollution Control*. Division of Spill Prevention and Response, Contaminated Sites Program. 18 AAC 75.
- EPA (U.S. Environmental Protection Agency). 2005. *Integrated Risk Information System (IRIS)*. National Center for Environmental Assessment. Cincinnati, Ohio. http://www.epa.gov/iris/index.html.
- MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. T. Arch. Environ. Contam. Toxicol. 39:20.
- USACE (U.S. Army Corps of Engineers). 1999 (August). *Phase II Remedial Investigation, Northeast Cape, St. Lawrence Island, Alaska. Vol 1.* FRMD No. F10AK096903\_03.10\_0003\_a.
- USACE. 2004a (January). *Human Health and Ecological Risk Assessment, Northeast Cape FUDS, St. Lawrence Island, Alaska.* FRMD No. F10AK096903\_03.11\_0005\_a.
- USACE. 2004b (August). Building Demolition/Debris Removal and Containerized Hazardous and Toxic Waste Removal Action Report, 2000 and 2001 Field Seasons, Northeast Cape FUDS, St. Lawrence Island, Alaska.
- USACE. 2007 (March). Feasibility Study, Northeast Cape FUDS, St. Lawrence Island, Alaska. FRMD No. F10AK096903\_04.09\_0500\_a.
- USACE. 2009 (January). Decision Document: Hazardous, Toxic, and Radioactive Waste (HTRW) Project # F10AK096903, Northeast Cape FUDS, St. Lawrence Island, Alaska. FRMD No. F10AK096903 05.09 0500 a.
- USACE. 2011 (July). Northeast Cape HTRW Remedial Action Report. Final. St. Lawrence Island, Alaska. Prepared by Bristol Environmental Remediation Services, LLC. FRMD No. F10AK096903 07.08 0502 a.
- USACE. 2012 (June). Northeast Cape HTRW Remedial Actions, Final Removal Action Report, St. Lawrence Island, Alaska. Prepared by Bristol Environmental Remediation Services, LLC. FRMD No. F10AK096903\_07.08\_0503\_a.
- USACE. 2013a (May). Site 28 Phase I Sediment Removal Report, Northeast Cape, St. Lawrence Island, Alaska. FUDS No. F10AK096903. FRMD No. F10AK096903\_0504\_a.
- USACE. 2013b (May). Northeast Cape HTRW Remedial Actions, Remedial Action Report, St. Lawrence Island, Alaska. FUDS No. F10AK096903. Prepared by Bristol Environmental Remediation Services, LLC. FRMD No. F10AK096903\_07.08\_0505\_a.

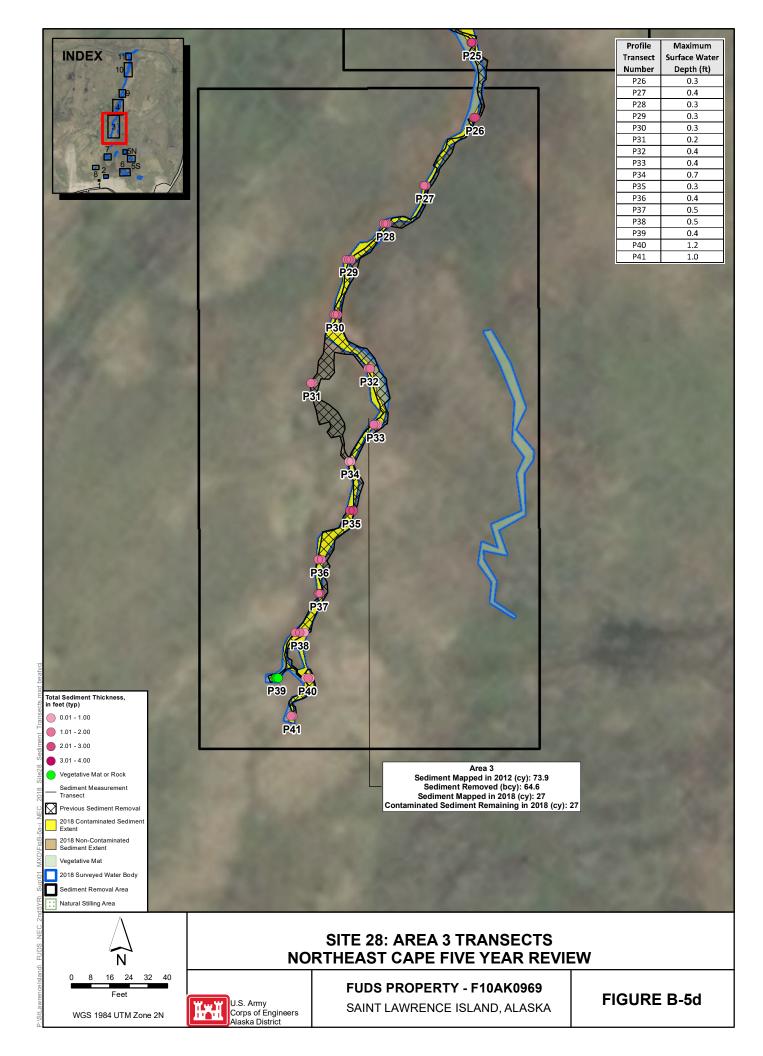

- USACE. 2015a (January). 2013 Remedial Action Report, Northeast Cape, St. Lawrence Island, Alaska. FUDS NO. F10AK096903. FRMD No. F10AK096903 07.08 0506 p.
- USACE. 2015b (February). First Five-Year Review Report, Northeast Cape FUDS, St. Lawrence Island, Alaska. FUDS No. F10AK0969-03. FRMD No. F10AK096903 07.11 0507 p.
- USACE. 2016a (May). 2014 Remedial Action Report, Northeast Cape FUDS, St. Lawrence Island, Alaska. FUDS No. F10AK0969-03. FRMD No. F10AK096903\_07.08\_0507\_p.
- USACE. 2016b (September). Long-Term Management Plan, Northeast Cape FUDS, St. Lawrence Island, Alaska. FUDS Nos. F10AK0969-03 and F10AK0969-05. FRMD Nos. F10AK096903 07.11 0508 a and F10AK096905 07.11 0508 a.
- USACE. 2017 (September). 2016 Site 8 and Suqitughneq River Surface Water and Sediment Sampling Report. Northeast Cape, St. Lawrence Island, Alaska. FRMD No. F10AK096903\_07.11\_0510\_a.
- USACE. 2018 (December). Site 28 Sediment Mapping and Sampling Report, Northeast Cape FUDS, St. Lawrence Island, Alaska. Draft. Prepared by Jacobs Engineering Group Inc.
- WAC (Washington Administrative Code). 1995. *Sediment Management Standards*. Chapter 173-204.
- WAC. 2013 (25 February). Sediment Management Standards. Chapter 173-204.
- WDNR (Wisconsin Department of Natural Resources). 2003 (December). *Consensus-Based Sediment Quality Guidelines*. Interim Guidance RR-088.

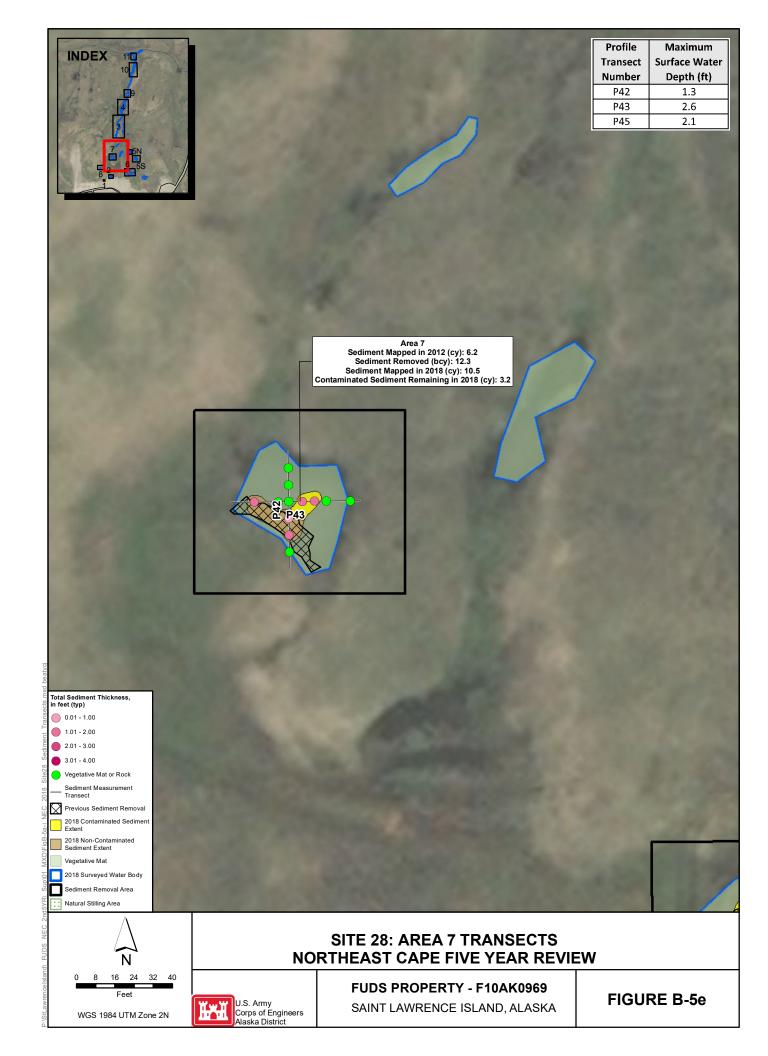

# APPENDIX B Figures

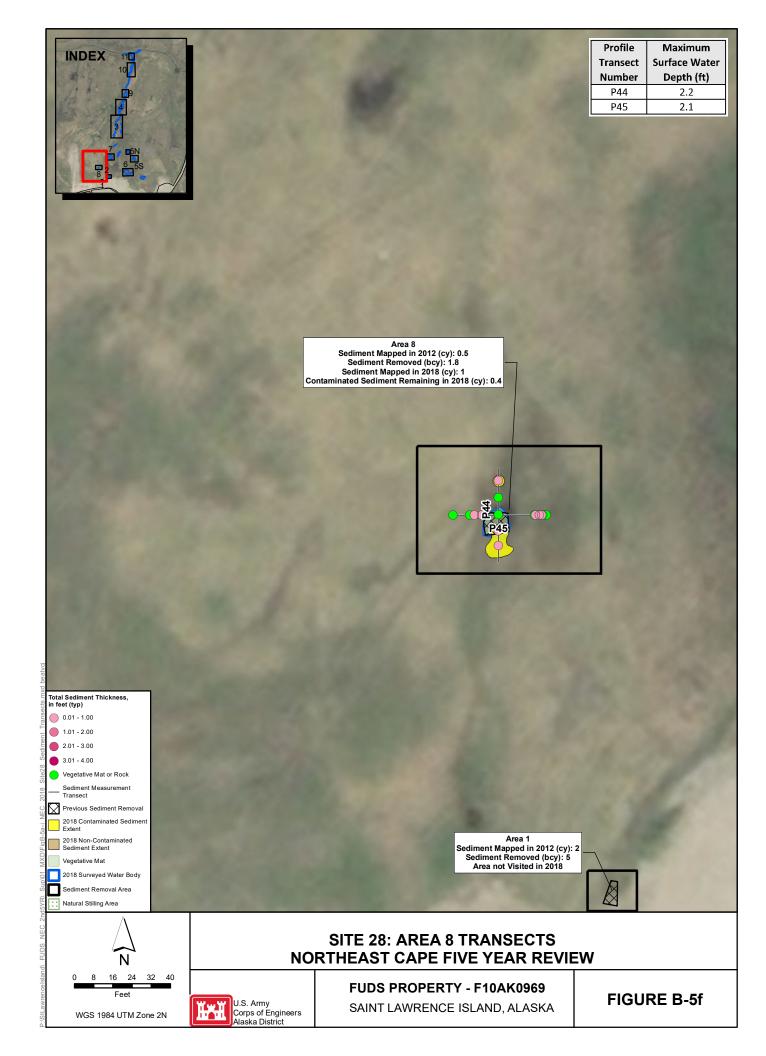


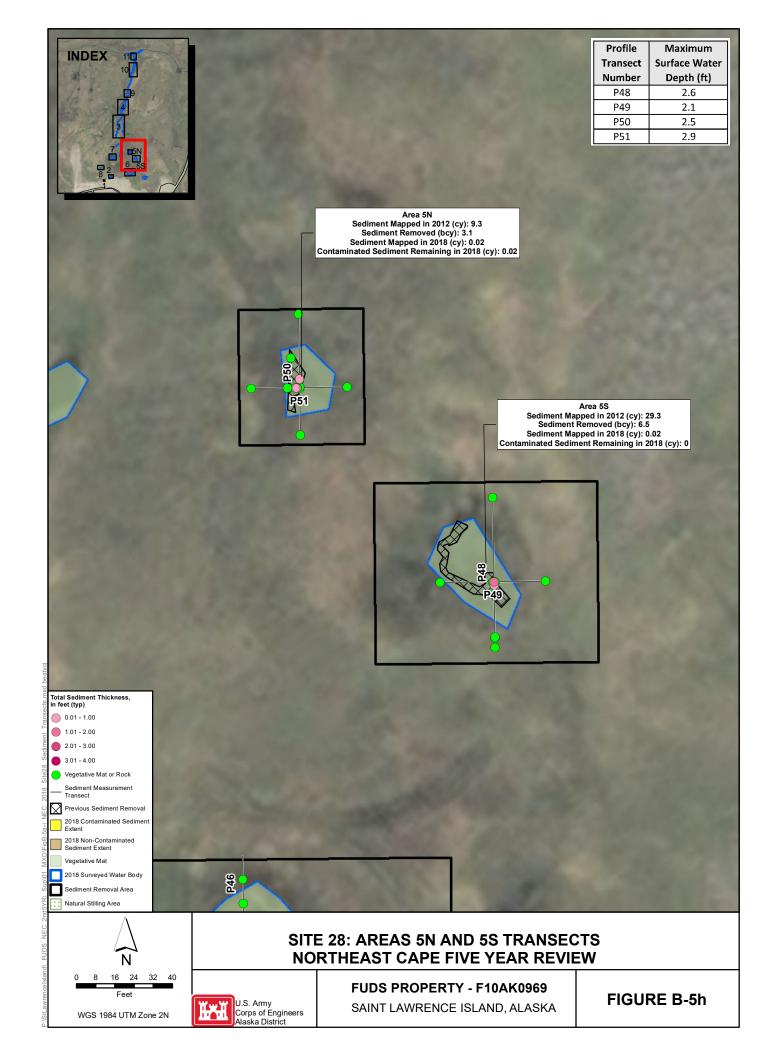



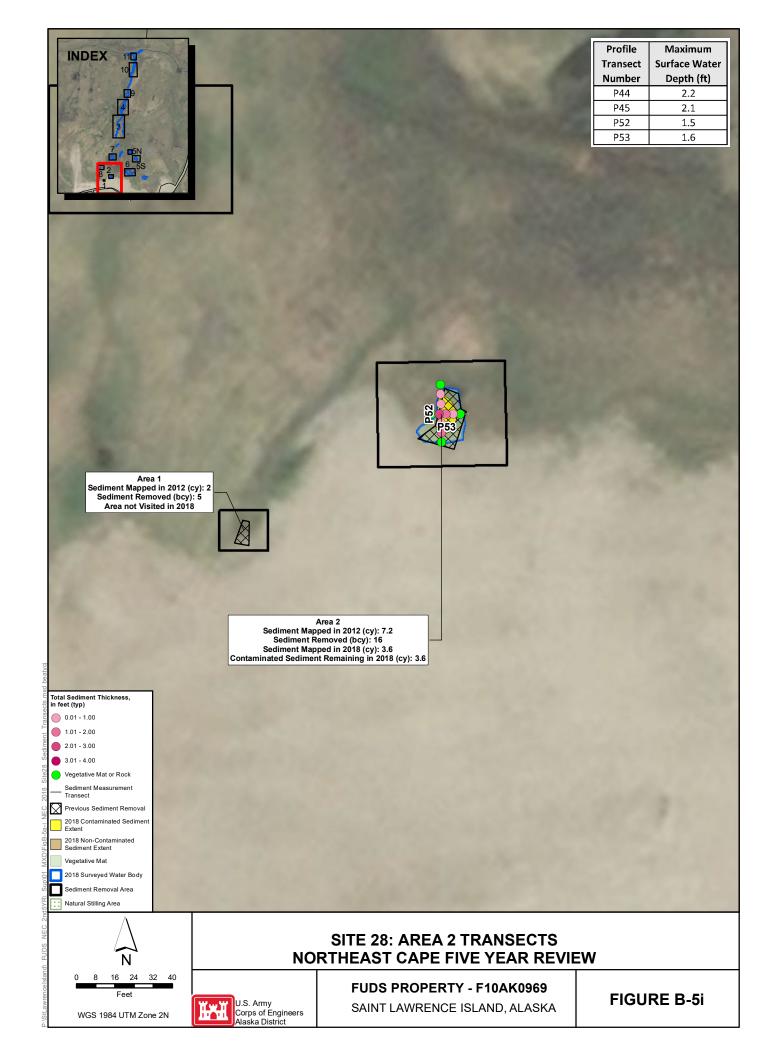



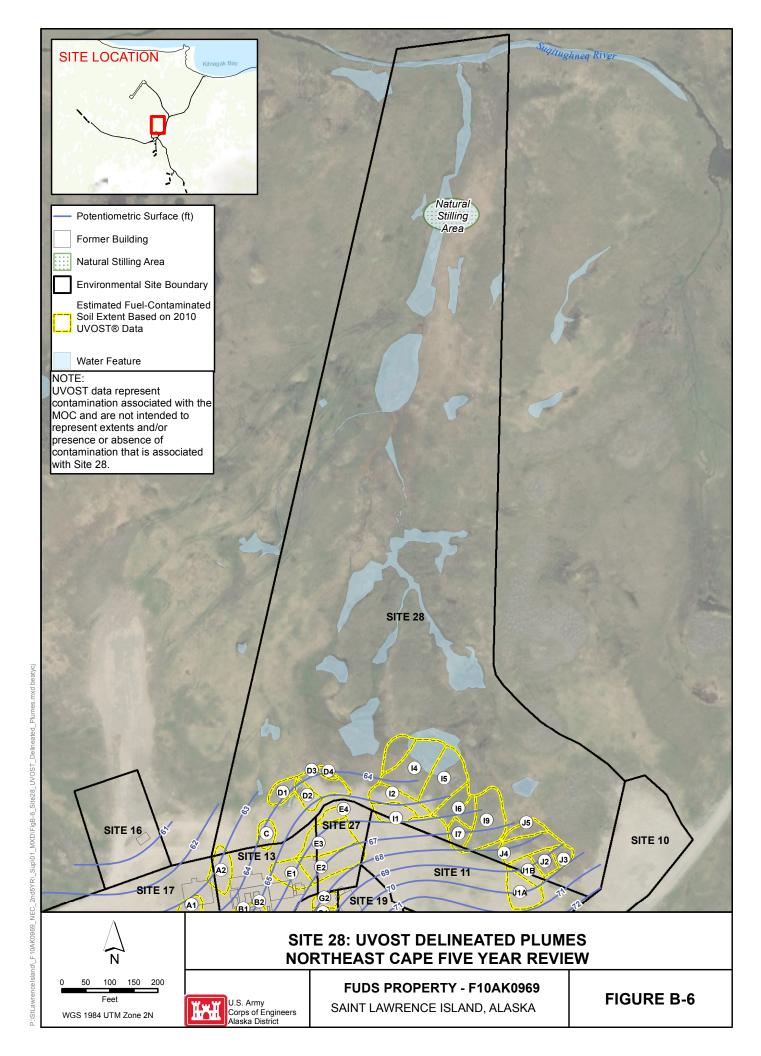



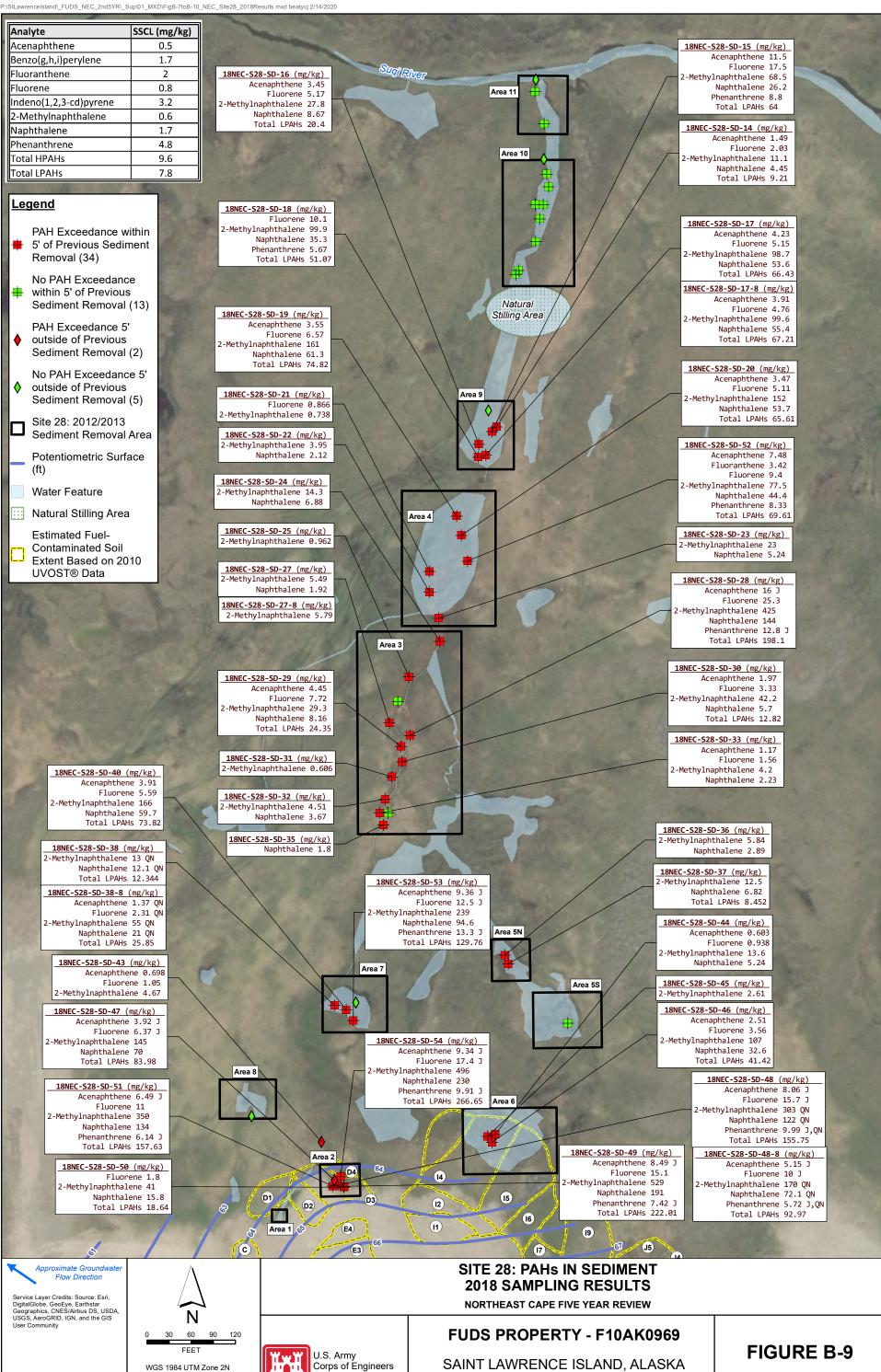


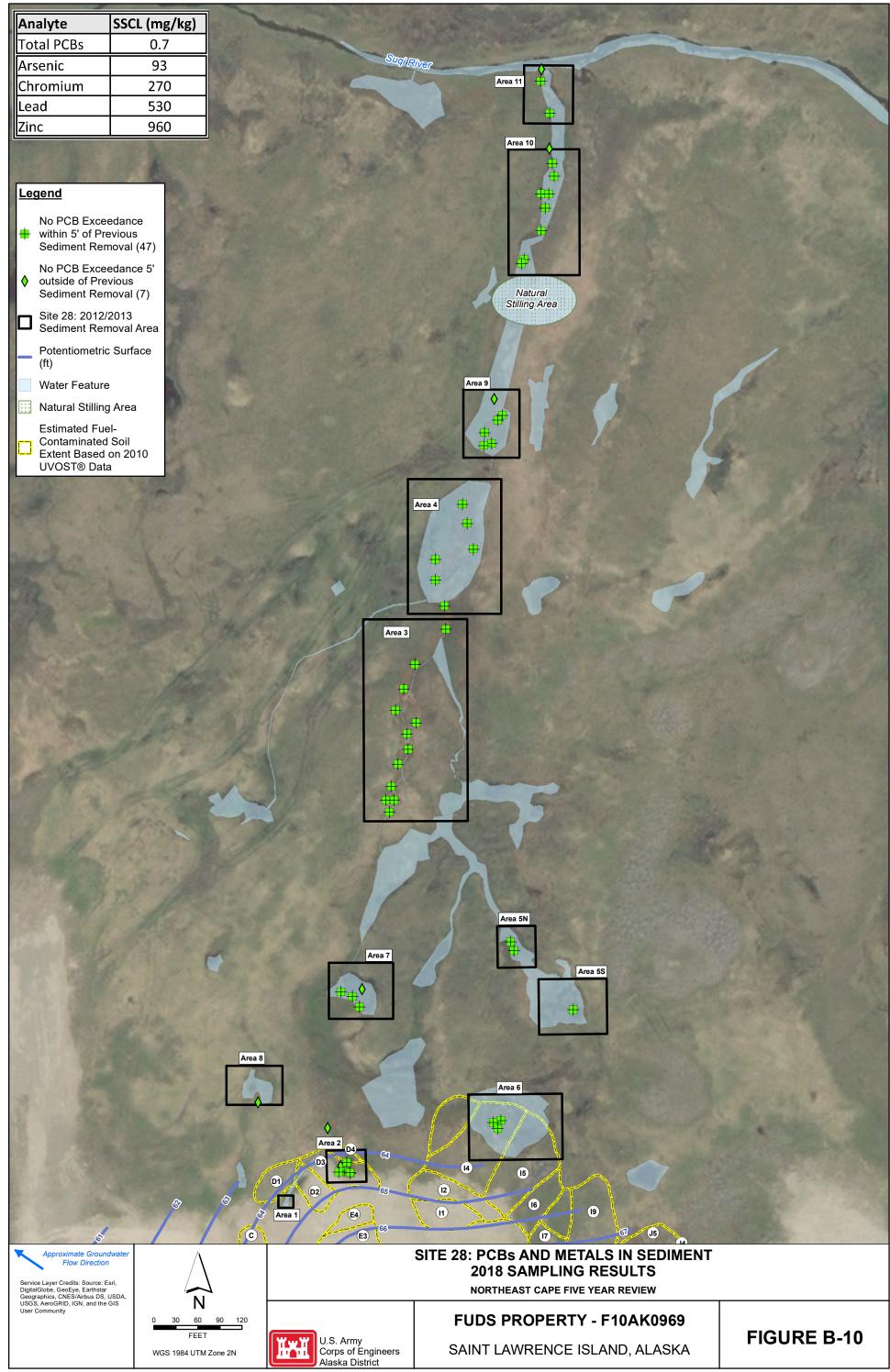










Alaska District



Alaska District



# APPENDIX C Site Characteristics and Chronology



# SECOND FIVE-YEAR REVIEW REPORT FOR NORTHEAST CAPE FORMERLY USED DEFENSE SITE FUDS NO. F10AK0969-03 ST. LAWRENCE ISLAND, ALASKA



U.S. Army Corps of Engineers Alaska District Anchorage, Alaska

# APPENDIX C SITE CHARACTERISTICS AND CHRONOLOGY

**FINAL** 

# **TABLE OF CONTENTS**

| SEC         | SECTION                        |                             |                                                           |          |  |  |
|-------------|--------------------------------|-----------------------------|-----------------------------------------------------------|----------|--|--|
| ACI         | RONY                           | MS AN                       | ND ABBREVIATIONS                                          | C-iii    |  |  |
| 1.0         | INT                            | INTRODUCTION                |                                                           |          |  |  |
|             | 1.1                            |                             |                                                           |          |  |  |
|             |                                | 1.1.1                       | Geology                                                   |          |  |  |
|             |                                | 1.1.2                       | Land and Resource Use at NEC                              |          |  |  |
|             |                                | 1.1.3                       | Site History                                              |          |  |  |
|             | 1.2                            | ORY OF CONTAMINATION AT NEC |                                                           |          |  |  |
|             |                                | 1.2.1                       | Initial Response at NEC                                   |          |  |  |
|             | 1.3                            | BASIS                       | S FOR TAKING ACTION AT NEC                                |          |  |  |
| 2.0         | SITE CHRONOLOGY                |                             |                                                           |          |  |  |
| 3.0         | REN                            |                             |                                                           |          |  |  |
|             | 3.1                            | SITE                        | 21: WASTEWATER TANK                                       |          |  |  |
|             |                                | 3.1.1                       | Site 21: Wastewater Tank Remedy Implementation and Statu  | ıs C-3-2 |  |  |
|             |                                | 3.1.2                       | Site 21 Wastewater Tank O&M                               |          |  |  |
|             | 3.2                            | SITE                        | 28: DRAINAGE BASIN                                        |          |  |  |
|             |                                | 3.2.1                       | Site 28 Drainage Basin Remedy Implementation and Status . |          |  |  |
|             |                                | 3.2.2                       | 2018 Sediment Mapping and Sampling                        | C-3-12   |  |  |
| 4.0         | PROGRESS SINCE THE LAST REVIEW |                             |                                                           |          |  |  |
| 5.0         | REF                            | REFERENCES                  |                                                           |          |  |  |
|             |                                |                             | TABLES                                                    |          |  |  |
| Tab         | le C-1                         | -1                          | NEC FUDS                                                  |          |  |  |
| Table C-2-1 |                                | 2-1                         | Chronology of Site Events                                 | C-2-1    |  |  |
| Table C-4-1 |                                | -1                          | Actions Since Previous FYR                                | C-4-1    |  |  |

(intentionally blank)

# ACRONYMS AND ABBREVIATIONS

°F degrees Fahrenheit

AAC Alaska Administrative Code

AC&WS Aircraft Control and Warning Station
ACAT Alaska Community Action on Toxics

ADEC Alaska Department of Environmental Conservation

ANCSA Alaska Native Claims Settlement Act

AST aboveground storage tank

ATSDR Agency for Toxic Substances and Disease Registry

bgs below ground surface

Bristol Bristol Environmental Remediation Services, LLC

BTEX benzene, toluene, ethylbenzene, and xylenes

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

COC contaminant of concern
DD Decision Document
DRO diesel-range organics

EPA U.S. Environmental Protection Agency FRMD FUDS Record Management Database

FUDS Formerly Used Defense Site

FYR Five-Year Review

GPS global positioning system

HTRW Hazardous, Toxic, and Radioactive Waste

J The analyte was positively identified; however, the associated result was

less than the limit of quantitation but greater than or equal to the detection

limit

LUC land use control

mg/kg milligrams per kilogram mg/L milligrams per liter

MNA monitored natural attenuation
MOC Main Operations Complex

Matter and Water and Wa

MW Montgomery Watson

MWH MWH Global
NEC Northeast Cape
NFA No Further Action

NOAA National Oceanic and Atmospheric Administration

NPL National Priorities List

O&M operations and maintenance

## ACRONYMS AND ABBREVIATIONS

PAH polycyclic aromatic hydrocarbon

PCB polychlorinated biphenyl

POL petroleum, oil, and lubricants RAB Restoration Advisory Board

RI remedial investigation
RRO residual-range organics
RTK real-time kinematic

SARA Superfund Amendments and Reauthorization Act of 1986

SSCL site-specific cleanup level

Suqi River Suqitughneq River

TAH total aromatic hydrocarbons
TAqH total aqueous hydrocarbons
USACE U.S. Army Corps of Engineers
UST underground storage tank

WACS White Alice Communications System

#### 1.0 INTRODUCTION

The U.S. Army Corps of Engineers (USACE) contracted Environmental Compliance Consultants, Inc. and Jacobs Engineering Group Inc. to conduct the second Five-Year Review (FYR) and periodic review of the selected remedies presented in the multi-site Decision Document (DD) (USACE 2009) at Northeast Cape (NEC) on St. Lawrence Island, Alaska (Figure B-1). This is a post-Superfund Amendments and Reauthorization Act of 1986 (SARA) statutory review that is required under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for the two NEC sites where hazardous substances, pollutants, or contaminants remained above levels that allow for unlimited use and unrestricted exposure after the first NEC FYR.

The NEC Formerly Used Defense Site (FUDS) project number is F10AK0969-03. The Alaska Department of Environmental Conservation (ADEC) Contaminated Sites Hazard ID number for the facility wide NEC FUDS is 207. The file number is 475.38.013. Individual sites within the NEC FUDS are also tracked with individual Hazard IDs. The U.S. Environmental Protection Agency (EPA) site ID number is AK9799F2999. The NEC FUDS is not listed on the National Priorities List (NPL). Table C-1-1 provides the ADEC Hazard ID and review status for each of the sites which currently require a CERCLA FYR.

Table C-1-1 NEC FUDS

| Site Name                | Hazard<br>ID | Review Status |
|--------------------------|--------------|---------------|
| Site 21: Wastewater Tank | 219          | CERCLA FYR    |
| Site 28: Drainage Basin  | 219          | CERCLA FYR    |

#### Note:

For definitions, refer to the Acronyms and Abbreviations section.

Remedial investigations (RIs) conducted at the NEC FUDS between 1994 and 2004 identified 34 contaminated sites. Two DDs were signed in January and September of 2009 that addressed the contaminated sites (USACE 2009a, 2009b). The Containerized Hazardous, Toxic, and Radioactive Waste (HTRW) DD (USACE 2009b) presented the selected remedy for Site 7. The HTRW DD (USACE 2009a) presented the selected remedies for the remaining 33 NEC sites.

Both 2009 DDs were signed after the effective date of the SARA, which requires FYRs for CERCLA sites where there are remaining hazardous substances, pollutants, and/or contaminants above levels that allow for unlimited use and unrestricted exposure. However, only five sites were required to have a FYR based on the CERCLA contaminants that were present. A summary of the NEC FUDS sites requiring FYRs at the time of the multi-site DD is provided below:

| Site 13 | Site 21 | Site 31 |
|---------|---------|---------|
| Site 16 | Site 28 |         |

At the time of this FYR, CERCLA action is complete at Site 13, Site 16, and Site 31. At Site 13 and Site 16, the only remaining contamination is attributed to petroleum, oil, and lubricants (POL) in groundwater and periodic reviews will occur in consultation with State Agencies. Site 31 is not included in this report because remedial action achieved a condition that allows for unrestricted use/unrestricted exposure and the site was recommended for No Further Action (NFA) in the first FYR (USACE 2015b).

The other NEC FUDS sites not addressed in this FYR due to the CERCLA petroleum exclusion, but where petroleum contamination remains above cleanup levels, are Site 3, Site 6, Site 7, Site 8, Site 9, Site 10, Site 11, Site 13, Site 15, Site 16, Site 19, Site 27, and Site 32. Separate Periodic Review reports will be prepared in coordination with the ADEC for these sites.

The remaining sites at NEC were determined to be NFA in the HTRW DD (USACE 2009a), indicating that no additional action was required and are not included in a review. These sites are:

| Site 2  | Site 14 | Site 22 | Site 26 |
|---------|---------|---------|---------|
| Site 4  | Site 17 | Site 23 | Site 29 |
| Site 5  | Site 18 | Site 24 | Site 33 |
| Site 12 | Site 20 | Site 25 | Site 34 |

### 1.1 PHYSICAL CHARACTERISTICS AT NEC

The NEC FUDS is located on St. Lawrence Island, Alaska in the western portion of the Bering Sea, approximately 135 air-miles southwest of Nome (Figure B-1). It is located at latitude 63.310278 and longitude -168.965272. The NEC property originally encompassed approximately 4,800 acres (7.5 square miles).

The NEC FUDS consists mainly of rolling tundra, extending from the Bering Sea toward the base of the Kinipaghulghat Mountains. The Kinipaghulghat Mountains rise abruptly to an elevation of approximately 1,800 feet above sea level, approximately 3 miles from the coastline. The NEC FUDS is only accessible by air, water, or all-terrain vehicle trails. The Village of Savoonga, the closest community, is located approximately 60 miles to the northwest (Figure B-1).

St. Lawrence Island has a subarctic maritime climate with continental influences during the winter. Summer temperatures at NEC average between 42 to 52 degrees Fahrenheit (°F) and winter temperatures average between -3 to 27°F (Western Regional Climate Center 2009).

# 1.1.1 Geology

St. Lawrence Island consists of isolated bedrock highlands of igneous, metamorphic, and older sedimentary rocks surrounded by unconsolidated alluvium overlying a relatively shallow erosional bedrock surface. The main area of operation, known as the Main Operations Complex (MOC) is located at approximately 100 feet in elevation. Around the MOC, shallow unconsolidated surficial materials overlie quartz monzonitic rocks of the Kinipaghulghat Pluton (Patton and Csejtey 1980). The pluton forms the mountainous area south of the NEC FUDS, which includes Kangukhsam Mountain. The Suqitughneq River (Suqi River) drainage in the Kinipaghulghat Pluton has created an erosional valley and alluvial fan of unconsolidated sediments. The NEC FUDS is located on this alluvial fan, which protrudes north from the mountain front toward the Bering Sea. Granitic bedrock materials are exposed at the coast north of the site at Kitnagak Bay, which suggests that the quartz monzonitic bedrock underlies the unconsolidated materials at a relatively shallow depth on a wave-cut erosional platform.

In general, the native soil stratigraphy at NEC is characterized by silts near the surface, overlying more sand-dominated soil at depth. The silt contains varying quantities of clay/sand/gravel and varies from zero to 10 feet in thickness. The silt is dark brown to dark green, and sometimes exhibits a mottled texture. The sand at depth contains varying degrees of silt/gravel/cobbles that ranges from 2 feet to greater than 20 feet thickness. These deeper, coarse-grained materials are generally unsorted and are likely to be of glaciofluvial origin. The depth to bedrock at the NEC FUDS is unknown (USACE 2009a, 2009b).

## 1.1.2 Land and Resource Use at NEC

St. Lawrence Island residents from the villages of Gambell and Savoonga engage in subsistence fishing, hunting, and gathering in the NEC FUDS area year-round. Local subsistence hunting camp structures are located adjacent to Site 3 and are occupied seasonally. There are not currently any permanent residents of the NEC area; however, representatives of the Native Village of Savoonga have indicated a desire to re-establish a permanent residential community at the site in the future.

St. Lawrence Island supports habitats for the following endangered or threatened species: the polar bear (threatened), spectacled eider (threatened), Steller's eider (threatened), and the Western Distinct Population Segment of Stellar sea lion (endangered). Walrus are protected under the Marine Mammal Protection Act. The area of NEC FUDS is used for the collection of berries and subsistence hunting of reindeer. The Suqi River (Site 29), located within the NEC FUDS, is used for subsistence fishing. The ocean surrounding the NEC FUDS is used extensively for subsistence activities including fishing and hunting of whales, walrus, seals, and sea birds.

# 1.1.3 Site History

The NEC FUDS was constructed as an Aircraft Control and Warning Station (AC&WS) during 1950 and 1951 to provide radar coverage and surveillance for the Alaskan Air Command, and later for the North American Air Defense Command, as part of the Alaska Early Warning System. The site was activated in 1952 and a White Alice Communications System (WACS)

station was added to the site in 1954. The AC&WS and WACS operations were supported by 212 personnel and terminated in 1969 and 1972, respectively. Most military personnel were removed from the site by the end of 1969 (USACE 2009a).

The NEC FUDS included areas for housing site personnel, power plant facilities, fuel storage tanks, distribution lines, maintenance shops, wastewater treatment facilities, and landfills. The buildings and majority of furnishings and equipment related to the AC&WS were abandoned in place initially due to the high cost of off-island transport (USACE 2009a).

In 1971, the villages of Gambell and Savoonga opted out of the Alaska Native Claims Settlement Act (ANCSA), which allowed for title to 1.136 million acres of land in the former St. Lawrence Island Reindeer Reserve established in 1903. The Gambell Native Corporation and Savoonga Native Corporation (now known as Sivuqaq, Inc. and Kukulget, Inc. respectively) received titles to all of St. Lawrence Island (except U.S. Surveys 4235, 4237, 4340, 4369, and 3728) by Interim Conveyance No. 203 dated 21 June 1979 (ANCSA 1979). In 1982, the Navy obtained approximately 26 acres of land containing the former WACS. The land transfer was later deemed invalid and property ownership was reverted to Sivuqaq, Inc. and Kukulget, Inc (USACE 2009a).

Demolition of the buildings and most of the other structures has been completed under multiple USACE contracts. The runway, improved gravel roads, and concrete slabs of some of the former structures remain intact. Investigations have been performed since the early 1990s and the information detailed in historical documents is briefly summarized in subsequent sections.

## 1.2 HISTORY OF CONTAMINATION AT NEC

The primary sources of contamination at the NEC FUDS are attributed to spills and leaks of fuel products associated with aboveground storage tanks (ASTs), underground storage tanks (USTs), and associated piping. The largest known spill at NEC occurred in 1967 when a plow truck accidentally hit POL Tank #2 and released approximately 30,000 gallons of fuel.

Interviews with former personnel suggest that there were several undocumented incidents of spills greater than 30,000 gallons from the large ASTs.

Other sources of contamination include electrical transformers, waste stored in 55-gallon drums, metal debris, and organic chemicals from paint, solvents, and other miscellaneous facility activities. Four RIs were conducted at the NEC FUDS between 1994 and 2004, during which the environmental concerns at NEC were divided among 34 individual sites.

# 1.2.1 Initial Response at NEC

Initial response actions were conducted at some of the NEC sites prior to DD preparation and signature; brief descriptions of these response actions are listed below:

- In 1990, transformers, drums, tanks, fire extinguishers, and other containerized hazardous wastes were removed from Site 31.
- In 1996, a radiological survey was conducted and public disclosure of potential asbestos hazards was initiated.
- In 2000, 6,099 fifty-five-gallon drums; approximately 60 tons of antenna poles, lines, and other miscellaneous nonhazardous debris; a fuel pipeline; and hazardous wastes from buildings were removed. An additional 19 ASTs were cleaned.
- During the 2001 field season, 17 additional tanks were cleaned, three USTs were decommissioned, and 3,303 tons of building demolition debris was demolished and packaged, including steel beams, asbestos-containing materials, and Toxic Substances Control Act-regulated materials. Twenty-five tons of polychlorinated biphenyl (PCB)-contaminated soil and 1,643 tons of POL-contaminated soil were excavated, and four potable water wells were decommissioned.
- In 2003, the remaining 30 buildings, other structures, and the utilidor system were demolished and removed. Over 300 drums and tanks of hazardous wastes, including a large septic tank at the MOC and 12 ASTs were removed or decommissioned. More than 500 power and communications poles and 60 miles of wires and cables were gathered for disposal; 650 feet of fuel lines were transported off-island. More than 5,000 tons of waste and debris were shipped off-island for disposal.
- In 2005, the tramway towers and wire were demolished and removed. Additionally, more than 200 metal and wooden poles, approximately 25 miles of power and communications wire and cable, 26 tons of debris from two debris fields located on Kangukhsam Mountain, more than 160 tons of PCB-contaminated concrete, and 290 tons of PCB-contaminated soil were removed. Approximately 1,500 tons of waste was sorted and packaged for transport off-island; 370 tons of non-creosote treated and unpainted wood were burned on-island, with the ash removed for disposal off-island.

Remedial actions following the 2009 DDs (USACE 2009a, 2009b) for current CERCLA FYR sites are summarized in Section 3.0. Site 7 remedial actions are described in the *Second Periodic Review Report* (USACE 2018d) and are not included under this cover.

# 1.3 BASIS FOR TAKING ACTION AT NEC

The primary environmental contaminants remaining at the NEC sites at the time of the multisite DD were petroleum hydrocarbons (diesel-range organics [DRO]/residual-range organics [RRO]), volatile organic compounds, PCBs, and metals. These contaminants remained in soil, sediment, and groundwater across the installation. The risk assessments performed at the individual sites determined the human and/or ecological risks exceeded EPA's risk range at some of the NEC sites. (intentionally blank)

### 2.0 SITE CHRONOLOGY

Important events, the associated document reference for each event, and relevant dates for the NEC sites listed in Table C-1-1 are shown in Table C-2-1. The focused activities presented in Table C-2-1 are associated with specific mobilizations. Additionally, investigative and/or removal actions continued to occur throughout the subsequent years listed.

Table C-2-1 Chronology of Site Events

| Event                                                                                                    | Date          |
|----------------------------------------------------------------------------------------------------------|---------------|
| NEC site acquired by the U.S. Air Force                                                                  | 1952          |
| AC&WS constructed                                                                                        | 1951 – 1952   |
| WACS constructed                                                                                         | 1954          |
| AC&WS operations terminated                                                                              | 1969          |
| WACS operations terminated                                                                               | 1972          |
| Bureau of Land Management obtained ownership of NEC                                                      | August 1975   |
| ANCSA transferred land ownership to Sivuqaq, Inc. and Kukulget, Inc.<br>(ANCSA 1979)                     | June 1979     |
| Ecological assessment conducted (Pennack 1989)                                                           | 1989          |
| Site inventory and preliminary assessment conducted (URS Corporation 1992, Ecology and Environment 1992) | 1991 and 1992 |
| Phase I RI conducted (MW 1995b)                                                                          | 1994          |
| All electrical transformers removed (MW 1995a)                                                           | 1994          |
| Phase II RI conducted (MW 1999)                                                                          | 1996-1998     |
| Remedial action conducted to remove communications wire and cable on the tundra (MW 1997)                | 1997          |
| Additional investigation supplementing the Phase II RI conducted (MW 2000)                               | 1999          |
| Site assessment conducted (U.S. Army Engineer District 1999)                                             | 1999          |
| Debris, hazardous waste, ASTs, and fuel pipeline removed                                                 | 2000          |
| RAB comprised of community members and other interested parties formed                                   | January 2000  |
| USTs, PCB and POL-contaminated soil removed, buildings demolished                                        | 2001          |
| Phase III RI conducted (MWH 2003)                                                                        | 2001 – 2002   |
| 30 buildings and utilidor demolished; drums, communication poles, and wire removed                       | 2003          |
| Phase IV RI conducted (Shannon & Wilson, Inc. 2005)                                                      | August 2004   |
| Human health and environmental risk assessment conducted (USACE 2004)                                    | 2004          |

# Table C-2-1 (Continued) Chronology of Site Events

| ATSDR performed a health consultation of PAHs and PCBs in fish from the Suqi River (ATSDR 2005)                                                                                                                                                                          | 2005                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Demolition and removal of the tram line and the associated line support towers debris removal, and excavation at Site 31, Site 7, and the MOC, Sites 10 through 22, 26, and 27 (USACE 2006)                                                                              | July 2005              |
| Feasibility study prepared (USACE 2007a)                                                                                                                                                                                                                                 | 2007                   |
| Groundwater Use Determination (18 AAC 350) submitted to ADEC for Sites 3, 4, 6, 7, and 9 (USACE 2007b)                                                                                                                                                                   | April 2007             |
| ADEC responds on the NEC 350 Determination request: ADEC stated that before the determination can be approved, the landowner must be willing to record and be responsible for implementing the institutional controls preventing groundwater use at the site (ADEC 2007) | May 2007               |
| Proposed Plan published (USACE 2007c) and public comment period opened                                                                                                                                                                                                   | July 2007              |
| Proposed Plan public comment period closed                                                                                                                                                                                                                               | August 2007            |
| Geophysical survey completed at Sites 7 and 10 (USACE 2007d)                                                                                                                                                                                                             | August 2007            |
| Responsiveness summary prepared (USACE 2008)                                                                                                                                                                                                                             | February 2008          |
| DD selecting the remedy for Site 7 approved by USACE (USACE 2009b)                                                                                                                                                                                                       | June 2009              |
| Remedial action began to implement the remedy for Site 7 (USACE 2010a)                                                                                                                                                                                                   | June 2009              |
| Phase I in situ chemical oxidation at the MOC (USACE 2010b)                                                                                                                                                                                                              | July 2009              |
| DD selecting the remedy for Sites 1 through 6 and Sites 8 through 34 approved<br>by USACE (USACE 2009a)                                                                                                                                                                  | September 2009         |
| Bristol requested landfill closure by ADEC for Site 7 (Bristol 2009)                                                                                                                                                                                                     | November 2009          |
| ACAT requests EPA oversight at Gambell and NEC FUDS and the inclusion of NEC FUDS on the NPL (ACAT 2009)                                                                                                                                                                 | November 2009          |
| EPA requests that the USACE details the cleanup efforts to date and addresse the issues identified by ACAT to re-evaluate EPA involvement and the listing of NEC on the NPL (EPA 2010)                                                                                   |                        |
| ADEC determined Site 7 closure was premature and denied the site closure request (ADEC 2009)                                                                                                                                                                             | December 2009          |
| Remedial action began to implement the DD-selected remedies at Sites 1, 3, 6 8, 13, 16, 21, 31, 32, and the MOC (USACE 2011)                                                                                                                                             | <sup>'</sup> July 2010 |
| Remedial action performed at Sites 7, 8, 9, 13, 21, 28, 31 and the MOC (USACE 2012)                                                                                                                                                                                      | July 2011              |
| The President of the Native Village of Savoonga requested that the ATSDR conduct a Public Health Assessment or Health Consultation on the FUDS of Gambell and NEC                                                                                                        | October 2011           |
| Public meeting on St. Lawrence Island regarding environmental health and cleanup Issues (EPA 2012a)                                                                                                                                                                      | December 2011          |
| Sediment mapping and sampling effort at Site 28 (USACE 2013a)                                                                                                                                                                                                            | July 2012              |

# Table C-2-1 (Continued) Chronology of Site Events

| Event                                                                                                        | Date                      |  |
|--------------------------------------------------------------------------------------------------------------|---------------------------|--|
| Remedial action performed at Sites 8, 10, 13, 21, 31, Radar Dome (Radome)<br>Road, and the MOC (USACE 2013c) | July 2012                 |  |
| St. Lawrence Island RAB and Public Meeting via teleconference (RAB 2012a)                                    | June 27, 2012             |  |
| Sediment removal effort at Site 28 (USACE 2013b)                                                             | September 2012            |  |
| EPA evaluated USACE cleanup of FUDS at NEC and Gambell (EPA 2012b)                                           | November 2012             |  |
| St. Lawrence Island RAB and Public Meeting at City Hall, Savoonga, Alaska<br>(RAB 2012b)                     | December 5, 2012          |  |
| Remedial action performed at Sites 8, 10, 13, 21, 28, and 31 (USACE 2015a)                                   | July 2013                 |  |
| Public notice of FYR published and public comment period opened                                              | August 2013               |  |
| FYR site visit                                                                                               | September 2013            |  |
| Surface water and groundwater sampling at Sites 7, 9 and a Kangukhsam<br>Mountain Spring (USACE 2014)        | September 2013            |  |
| Final RAB Meeting                                                                                            | 15 and 16 January<br>2014 |  |
| Public comment period closed for the first FYR                                                               | February 2014             |  |
| Remedial action performed at Sites 6, 7, 8, 10, 11, 21, 27, 31, 32<br>(USACE 2016b)                          | July 2014                 |  |
| First FYR completed for all sites (USACE 2015b, 2015c)                                                       | February 2015             |  |
| Groundwater samples collected from the MOC (USACE 2016a)                                                     | August 2015               |  |
| Long-term management plan prepared (USACE 2016c)                                                             | August 2016               |  |
| Groundwater samples collected from the MOC (USACE 2017a)                                                     | August 2016               |  |
| Surface water and sediment samples collected from Site 8 (USACE 2017b)                                       | August 2016               |  |
| Public Comment release and Summary Publication of the ATSDR Health<br>Consultation (ATSDR 2017a, 2017b)      | July 2017                 |  |
| Public notice of second FYR and public comment period opened                                                 | March 2018                |  |
| FYR site visit                                                                                               | August 2018               |  |
| Groundwater samples collected from the MOC (USACE 2018b)                                                     | August 2018               |  |
| Surface water collected from Site 9 (USACE 2018c)                                                            | August 2018               |  |
| Sediment mapped and samples collected from Site 28, refer to Appendix F (USACE 2018a).                       | August 2018               |  |

 $\underline{\mbox{Note:}}$  For definitions, refer to the Acronyms and Abbreviations section.

(intentionally blank)

#### 3.0 REMEDY IMPLEMENTATION

A brief description of each site, selected remedy, remedy implementation history, status, operations and maintenance (O&M) plans (where applicable), and land use controls (LUCs) are presented by site in this section.

#### 3.1 SITE 21: WASTEWATER TANK

Site 21 is located west of the MOC perimeter road and contained the wastewater treatment system for the main housing and operations complex (Figure B-3). The infrastructure consisted of a concrete septic settling tank and attached piping enclosed in a wooden utilidor that discharged to the wetland area approximately 450 feet west (Figure B-3). The tank compartments, utility corridor from the main complex, and the wooden utilidor outfall line were removed in 2003 (USACE 2009a).

Soil, sediment, and groundwater samples were collected at Site 21. PCBs and arsenic were identified as contaminants of concern (COCs) for soil (USACE 2009a). PCBs were found in the sludge from the septic tank at a concentration of 120 milligrams per kilogram (mg/kg), but the maximum concentration found in soil was 4.2 mg/kg (USACE 2009a). Confirmation sampling after the 2003 decommissioning work confirmed that PCBs had not migrated through the concrete. PCBs were detected at one additional location immediately beneath the outfall piping adjacent to the septic tank at a concentration of 1.7 mg/kg (USACE 2009a).

Arsenic in surface and subsurface soil was detected at concentrations generally ranging from 2.8 mg/kg to 39 mg/kg with one location of 170 mg/kg in surface soil downgradient of the septic tank outfall. Additional samples collected in 2001 detected arsenic ranging from 4.5 mg/kg to 11.5 mg/kg in soil and 12.1 mg/kg to 14.7 mg/kg in sediment. Following the removal of the utility corridor, confirmation samples ranged from 11.4 mg/kg to 35.2 mg/kg (USACE 2009a).

Arsenic was detected in groundwater in 1994 at concentrations up to 0.072 milligrams per liter (mg/L), which exceeded the cleanup level of 0.01 mg/L, but dissolved samples from the same

well did not exceed the cleanup level. Arsenic was subsequently eliminated as a COC in groundwater (USACE 2009a).

#### 3.1.1 Site 21: Wastewater Tank Remedy Implementation and Status

The selected remedy for soil at Site 21 was excavation and removal of PCB- and arseniccontaminated soil, implementation of an LUC to limit future drinking water use, and performance of CERCLA FYRs. Groundwater sampling performed in 1994 detected total arsenic, total chromium, and total lead concentrations above cleanup standards, but dissolved concentrations of these metals were below the cleanup levels. As a result, the presence of these metals was attributed to sediment suspended in the water (USACE 1999). Therefore, as stated in the multi-site DD, metals contamination in groundwater was likely due to sediments in the water column of the collected sample and metals were eliminated as a COC (USACE 2009a). LUCs to limit the use of Site 21 groundwater are not needed. However, Site 21 is included in the multi-site DD list of MOC sites requiring groundwater LUCs. Groundwater LUCs are applied to the MOC, which is adjacent to Site 21. Although Site 21 is near the MOC, it has not been affected by contamination emanating from the MOC. Continued periodic monitoring of MOC groundwater, as required by the multi-site DD until cleanup levels are met, will ensure any potential contaminant migration does not affect adjacent sites and is therefore protective of Site 21 groundwater. Migration of the groundwater contaminants at the MOC is not anticipated, as monitoring results indicate contaminated groundwater at the MOC is steady-state.

Excavation of PCB-contaminated soil was initiated in 2010 when approximately 10.4 tons of soil were excavated and removed for disposal (USACE 2011). Final excavation sample results confirmed that PCB concentrations for all Aroclors were less than 1 mg/kg (Figure B-3).

Excavation of arsenic-contaminated soil near the highest exceedance (170 mg/kg) began in 2010. From 2010 to 2012, approximately 135 tons of arsenic-contaminated soil above the site-specific cleanup level (SSCL) of 11 mg/kg were removed (Figure B-3).

In 2011, nine additional background samples were collected with results ranging from 2.9 mg/kg to 22 mg/kg. The 95-percent upper confidence limit of the mean was calculated to be 11.49 mg/kg. Arsenic concentrations up to 320 mg/kg have been encountered in soil during excavation. At the conclusion of the 2012 excavation, samples from four sidewall locations exceeded the cleanup level of 11 mg/kg established in the multi-site DD (USACE 2012).

In 2013, 19 soil borings were advanced to delineate the vertical and horizontal extent of arsenic contamination at Site 21. Three soil samples were collected per boring at depths of approximately 0.5, 2, and 3 feet below ground surface (bgs). Thirteen of the 19 soil borings contained arsenic at concentrations exceeding SSCLs up to 340 mg/kg (USACE 2015a). Soil boring results were used to guide initial excavation efforts. Soil boring location 21SB17, which contained an arsenic concentration of 14 mg/kg at 0.5 feet bgs, was not included as a removal due to active water flow. Confirmation samples were collected and arsenic continued to exceed the SSCL at 10 locations. The second round of excavation efforts proceeded at seven of the 10 locations. At the conclusion of the 2013 field season, 305.13 tons of arsenic-contaminated soil were removed and arsenic remained at 14 locations at concentrations that exceeded the SSCL of 11 mg/kg.

In 2014, Bristol Environmental Remediation Services, LLC (Bristol) sampled 40 soil borings at Site 21. The USACE chose the boring locations and plotted them on a map prior to field mobilization. The borings were advanced to approximately 3 to 4 feet bgs. Three soil samples were collected per boring, at depths of approximately 1 foot bgs, 2 feet bgs, and 3 feet bgs to establish the horizontal and vertical spatial extent and variability of arsenic in soil near Site 21. A total of 120 soil samples were collected from the 40 borings. Sample results indicated that six soil samples from five of the borings contained arsenic in concentrations exceeding the SSCL of 11 mg/kg. Nine additional soil boring locations were planned following discussions with the USACE and the ADEC.

The final nine soil borings were advanced to depths of between 3 and 4 feet bgs. Twenty-seven primary soil samples and three duplicate samples were collected from the additional borings. None of the samples from this second round of borings contained arsenic in concentrations

exceeding the cleanup level of 11 mg/kg. A brief data analysis of historic arsenic concentrations across the NEC site was conducted by the USACE. The USACE Project Delivery Team used this information along with the initial arsenic boring sample results to determine an excavation plan. Based on the local spatial distribution of arsenic and the historical analysis of sitewide arsenic in soil, the USACE instructed Bristol to target soil with arsenic greater than 17 mg/kg for removal.

On 7 August 2014, Bristol removed 5.19 tons of arsenic-contaminated soil from two 2013 confirmation soil sample locations, which contained arsenic concentrations of 25 mg/kg and 79 mg/kg. Two areas, approximately 25 square feet each, were excavated to depths of approximately 4 feet. Two primary samples and one duplicate sample were collected from the floor of the two excavations. None of the confirmation soil samples associated with these excavations contained arsenic in concentrations that exceeded the cleanup level of 11 mg/kg. No additional excavation occurred at these locations.

On 10 August 2014, 64.86 tons of arsenic-contaminated soil were removed from three 2013 confirmation sample locations and from two historical sample locations. A total of 19 primary and two duplicate samples were collected from the floor and sidewalls. None of the results contained arsenic in concentrations that exceeded 17 mg/kg. Sample 14NC21SS004 contained arsenic at a concentration of 13 mg/kg, which exceeds the SSCL of 11 mg/kg but was below the targeted arsenic removal concentration of 17 mg/kg. No additional excavation occurred in these areas.

On 19 August 2014, 37.3 tons of arsenic-contaminated soil were removed from two historical sample locations. Each of the sample locations were excavated in a 10-foot square to a depth of approximately 3 feet. Ten primary samples and one duplicate sample were collected from the floor and sidewalls. None of the sample results contained arsenic in concentrations that exceeded the SSCL of 11 mg/kg. Contaminated soil was containerized in bulk bags directly from the excavations at Site 21.

Any water from the excavated soil was allowed to drain from the excavator bucket into the excavation prior to placing the soil in the bulk bag. A total of 17 bulk bags were loaded with contaminated soil, for a total excavated weight of 107.35 tons. Site 21 excavations and borings were backfilled with clean material from the borrow source, which was compacted and graded to match the existing ground surface.

Additionally, in 2014 Bristol collected nine surface water samples from three locations at Site 21 to monitor the effects of soil removal on surface water. Surface water was monitored due to the potential hydrologic interconnectivity of groundwater and surface water in the area. This sampling was a precautionary measure to ensure contaminated soil removal activities at the MOC was not negatively affecting groundwater or surface water at Site 21. The samples were collected at three distinct times: prior to, during, and following soil excavation activities. The surface water samples were submitted for arsenic analysis. Arsenic was only detected in one unfiltered sample at an estimated concentration of 0.0039 mg/L (J-flagged). The sample was collected during soil excavation activities and did not exceed the surface water evaluation criterion of 0.01 mg/L. Arsenic was not detected in any of the other surface water samples.

#### 3.1.2 Site 21 Wastewater Tank O&M

At the time of this review, the LUC at Site 21 to limit future drinking water uses for groundwater has not been fully implemented. Two signs indicating where groundwater use for drinking water or ground disturbing activities are not recommended have been installed at the air field and at the fish camp. Each sign is two-sided and contains both Yupik and English transcriptions. Documentation of an agreement between the landowner and USACE for implementation of institutional controls is still required for this site. Additionally, FYRs are required at Site 21 until remedial action objectives are met.

#### 3.2 SITE 28: DRAINAGE BASIN

The Site 28 Drainage Basin is located north of the MOC and drains north into the Suqi River (Figure B-2). The site has been affected by fuel releases from the bulk fuel storage tanks

(Site 11) and other spills and releases discussed in the multi-site DD (USACE 2009a). The site contains wetlands, rolling tundra, ponds, and flowing streams.

Water in the Site 28 Drainage Basin originates from surface water runoff (overland flow) from the MOC, three drainages at the head of the site near the MOC, and two sub-drainages further north. Overland flow can contribute significant amounts of water to the basin during rainfall events. Since 1994, soil, sediment, surface water, and shallow groundwater samples have been collected and analyzed.

#### **Sediment**

Stained sediments were observed in each of the three main drainage basins, and they produce a sheen when disturbed (USACE 2009a). The primary COCs in soil and sediment at the time of the DD were DRO, RRO, polycyclic aromatic hydrocarbon (PAHs), PCBs, chromium, lead, and zinc (USACE 2009a). The highest concentrations of contaminants are located near the edge of the MOC gravel pad.

#### Soil

Soil samples were collected in 1994, 1996, and 1998 from within the boundary of the Site 28 Drainage Basin. Concentrations of DRO and PCBs exceeded soil cleanup standards and reached as high as 83,000 mg/kg and 1.1 mg/kg, respectively (USACE 1999). However, these samples were collected adjacent to the MOC boundary at the upgradient extent of the drainage basin, are attributed to activities at the MOC, and were removed during soil excavation activities conducted at the MOC.

#### **Surface Water**

As summarized by the multi-site DD (USACE 2009a), surface water samples were collected from the drainage basin in 1994, 1996, and 2001. Concentrations of DRO, total recoverable petroleum hydrocarbons, PCBs, and lead exceeded surface water cleanup levels in 1994. In 2001, DRO was detected at concentrations ranging from 0.39 to 2.3 mg/L. RRO and PCBs were

not detected and lead samples were not collected. The most heavily contaminated surface waters of the drainage basin were found at the head of the western and middle drainages, located at the terminus of the former culverts.

#### Groundwater

Groundwater samples collected in 1994 indicated the potential for DRO and lead contamination, but subsequent sampling in 2001 demonstrated the concentrations were below cleanup levels. No groundwater COCs were retained for Site 28 (USACE 2009a).

#### 3.2.1 Site 28 Drainage Basin Remedy Implementation and Status

The selected remedy for Site 28 consisted of three components:

- The excavation and removal of petroleum-, PCB-, and metal-contaminated sediment, including the removal of near-surface sediments from the narrow channel upgradient of the Suqi River.
- The construction of a sedimentation pond or other appropriate controls. The ends of the culverts would also be cleaned out and removed or plugged to prevent direct outflows of upgradient residual sources of contamination.
- The performance of CERCLA FYRs (USACE 2009a).

Although the selected remedies for Site 28 included the excavation and removal of contaminated sediment, at the time of the development and finalization of the multi-site DD in 2009 that removal activities would target the top six to twelve inches of silty/sandy sediment. Additionally, a sedimentation basin or other appropriate controls would be necessary to prevent downstream migration of contamination. An informational LUC, in accordance with UECA, describing residual contamination of POL-related contamination in sediment within the Site 28 drainage basin is recommended to prohibit disturbance of Site 28 sediment. LUCs with regard to soil and groundwater POL-related contamination at the southern boundary of Site 28 and within the previously defined "UVOST plumes" are also recommended, however, will be included within the Environmental Covenant for the MOC.

In 2010, approximately 95 feet of culvert was removed, and one culvert was capped (USACE 2011). The concrete manhole structure in the western drainage was also cleaned and removed. Sludge inside the manhole contained concentrations of DRO up to 68,000 mg/kg, PCB Aroclor 1254 up to 20 mg/kg, arsenic at 41 mg/kg, barium at 820 mg/kg, cadmium at 18 mg/kg, lead up to 5,000 mg/kg, mercury up to 15 mg/kg, and silver up to 16 mg/kg (USACE 2011). A 12-inch corrugated metal pipe that attached to the manhole and continued upgradient toward the MOC was cut, and 63 feet of the pipe was removed. The open end of the pipe was then filled with bentonite and welded shut. In the middle drainage, another 12-inch corrugated metal pipe measuring 32 feet in length was completely removed (USACE 2011).

In 2011, sediment and soil sampling were conducted to further delineate the extent and magnitude of contamination at Site 28 (Figures B-5 through B-7). Transects were located between the upper end of Site 28 and its confluence with the Suqi River; to include areas where contamination was noted in the multi-site DD (USACE 2009a) to gain a better understanding of contaminant distribution throughout the drainage. Sediment results were compared to the criteria specified in the multi-site DD when applicable. If sediment criteria were not listed in the multi-site DD for a particular analyte, evaluation criteria were based on the National Oceanic and Atmospheric Administration (NOAA) Screening Quick Reference Tables for freshwater sediment at the probable effect level (Buchman 2008). Some of the samples collected in 2011 did not meet the project definition of sediment, so soil cleanup levels were used for screening purposes. The results indicated five potential contaminants of potential concern: toluene, ethylbenzene, total xylenes, cadmium, and selenium (USACE 2012).

In 2012, additional sediment mapping and sampling was conducted. Streams and ponds in the drainage basin were inspected to define the horizontal boundaries of the sediment accumulation areas and probing was conducted to determine the thickness of the sediment (USACE 2013a). The mapping efforts identified approximately 400 cubic yards of sediment in 22 locations along the drainage (USACE 2013a).

In September 2012, following the mapping and sampling effort, Phase I of the sediment removal remedy was initiated in three areas. Two removal methods were evaluated for efficacy and

implementability: excavation and a combination of a Venturi dredge and geotextile dewatering tube:

- An excavator removed sediment in Areas 1 and 2, just north of the MOC gravel pad. This method allowed removed sediment to be dewatered in place but is limited to areas with firm ground such as the MOC gravel pad or a road. The excavator removed approximately 5 cubic yards of sediment from Area 1 in the western drainage and 16 cubic yards from Area 2 near the middle drainage. In Area 1, DRO, acenaphthylene, naphthalene, and 2-methylnaphthalene exceeded cleanup criteria in both confirmation samples. In Area 2, the same analytes plus RRO, acenaphthene, fluorene, and phenanthrene exceeded cleanup levels.
- The Venturi dredge was used in Area 4 located in the main channel of the drainage. This method can be used where the excavator cannot travel but requires large volumes of water to remove the sediment. Following removal, the sediment must be separated from the water and the water must be confirmed to meet discharge requirements before release. The dredge removed approximately 18 cubic yards of sediment from Area 4 in 2012. No confirmation samples were collected from Area 4. Approximately 135 cubic yards of contaminated sediment remained at Area 4 at the conclusion of the 2012 field season (USACE 2013c).

In 2013, sediment removal continued within Areas 3 through 11 (USACE 2015a):

- At Areas 5, 6, and 7, vegetative material routinely clogged the in-line pumps. Sediment and vegetative material were removed by hand instead of using the dredge. Personnel donned dry suits, entered the shallow ponds, and rolled/scooped up the sediment/decaying plant material in large pieces. Material was placed at the edge of each pond and an excavator was used to place the material in bulk bags for disposal (USACE 2014).
- Removal Area 8 was a small pond in 2012; however, it was dry in 2013. Material from this area was removed by excavator and placed directly into a bulk bag for disposal.
- Sediment was removed from Areas 3, 4, 7, 9, 10, and 11 using the Venturi dredge and geotextile dewatering system.
- At the conclusion of the 2013 field season, several analytes, including DRO, RRO, low molecular weight PAHs, arsenic, chromium, 2-methylnaphthalene, acenaphthene, fluorene, naphthalene, and phenanthrene, were measured in sediment confirmation samples collected immediately following sediment removal at concentrations greater than the site-specific cleanup levels. Analytes exceeding cleanup levels remained within all 11 sediment removal areas. In addition, acenaphthylene, 1-methylnaphthalene, and selenium were identified in sediment.
- During the 2014 field season, sediment dewatering tubes and water containments were removed from the Site 28 work pad.

#### **Water Treatment**

Water and sediment removed using the dredge system was moved to a water processing area west of Site 28. Treatment and management of the water was conducted in accordance with the ADEC approved work plan and close coordination with stakeholders to appropriately sample and discharge treated water. Applicable surface water criteria were determined from the SSCLs for a non-drinking water source, as stated in the 2009 multi-site DD (USACE 2009a).

The processing area consisted of two 20,000-gallon-capacity lined containment cells approximately 60 by 30 feet and 1.5 feet deep. The primary containment area consisted of a geotextile dewatering tube for sediment dewatering designed to contain the sediment while allowing water to pass through the pore spaces. The pore size ranged from 59 to 350 microns. Water was then treated through a scrubber – a natural cellulose fiber that selectively absorbs hydrocarbons inside high-density polyethylene containers with an inlet at the top. Water then flowed to the second set of containment cells to await analytical results prior to discharge. In 2012, samples collected from the treated water did not meet discharge criteria for total aromatic hydrocarbons (TAH) and total aqueous hydrocarbons (TAqH) identified in the State of Alaska Wastewater General Permit 2009DB0004-0216, and total and dissolved arsenic did not meet the drinking water standards presented in the *Alaska Water Quality Criteria Manual for Toxic and Other Deleterious Organic and Inorganic Substances* (ADEC 2008; USACE 2013c). No water was discharged. Excavated sediment and treated water from Area 4 remained within the lined containments over the winter of 2012/2013.

Following the 2012 field activities, changes to the sediment/water treatment system were made to implement this remedy effectively. In 2013, a SPINPRO HydroMizer polymer feed system with injection pump was introduced into the piping line prior to sediment capture in the geotextile tube to facilitate coagulation and settling (USACE 2013c). The water filtration system was modified to consist of two sock filters (water first flowed through a 25-micron-filter, and then through a 5-micron-filter), followed by a scrubber containing hydrocarbon-absorbent cellulose fibers (USACE 2015a). After the first batch of water was processed in 2013, analytical results indicated water was still above TAqH criterion

(USACE 2015a) and was therefore not discharged and remained in the holding tank for further treatment. A granular-activated carbon system was added as the last treatment step and the hydrocarbon scrubber was eliminated. Analytical results from the first batch using the modified treatment system were below discharge criteria presented in the State of Alaska Wastewater General Permit 2009DB0004-0216 and 18 Alaska Administrative Code (AAC) 70. After demonstration of the effectiveness of the modified treatment system through adequate analytical sampling, ADEC and USACE agreed that pre-treated water containment samples were no longer needed and treated water was discharged to the ground (USACE 2015a).

#### **Control Measures**

Two methods were used to control and minimize downstream sediment migration during removal activities: silt fencing and an in-stream sediment trap. Silt fencing was used where there was no direct flow to the main channel of the Suqi River and was placed on the north side of the ponded area. The sediment trap was placed downstream of sediment Removal Area 4. The trap was a steel box, 8 feet wide by 4 feet deep, with the rear (downstream) height extending approximately 6 feet high and tapering to a front section approximately 4 feet high. Rectangular slots allowed water to flow down and through the box. Unrolled jute mats were placed inside the trap, upstream, and downstream of the trap (USACE 2015a).

#### **Surface Water Sampling**

Surface water samples were collected at three locations before, during, and after sediment removal and at one location downstream of the sediment trap in 2013. Samples were analyzed for DRO, RRO, benzene, toluene, ethylbenzene, and xylenes (BTEX), PAHs, PCBs, and total metals (Resource Conservation and Recovery Act metals plus nickel, vanadium, and zinc). All surface water samples were below applicable surface water criteria (TAH, TAqH, and no visible sheen) presented in the 2009 multi-site DD and the 2008 (ADEC) *Alaska Water Quality Criteria Manual for Toxic and Other Deleterious Organic and Inorganic Substances*, (USACE 2015a).

#### 3.2.2 2018 Sediment Mapping and Sampling

In 2018, field activities included the mapping of sediment and surface water and the collection of sediment samples (Figures B-5 through B-7). The surface water bodies measured at Site 28 extended from the border of the MOC to the confluence with the Suqi River. The lateral and vertical extent of the surface water bodies were measured if they appeared greater than 30 feet in diameter. A real-time kinematic (RTK) global positioning system (GPS) was used to collect survey positions around the edge of major water bodies at Site 28. The depth of the water body was collected during the sediment mapping activities.

During the sediment mapping effort, submerged areas were characterized as sediment or vegetative mat within the surveyed water bodies. For this evaluation, sediment was defined as all continuously submerged loose material and organic material, except that which is actively growing vegetation and is part of the vegetative mat. If no material that met the project definition of sediment was identified (e.g., only vegetative mat present), the lack of sediment was documented and no further evaluation occurred in that water body. When sediment was identified, the vertical extent of sediment was measured. For discrete water bodies containing sediment, north/south and east/west transects were established. Transects crossed approximately at the center of the sediment area in the water body to measure thickness. A graduated hand probe was used to measure sediment thickness to the nearest 0.1 foot starting from the edge of the sediment area and at intervals not exceeding 10 feet.

A total of 54 sediment samples were collected from 0 to 2 feet bgs or until refusal was met with the hand tool (Figures B-5 through B-7). Forty-five samples were collected from surveyed locations based on the 2012 sediment mapping effort (USACE 2013a). Seven additional locations (locations S28- 04, -11, -25, -38, -42, -43, and -51) were staked and surveyed in either vegetative mat or on dry land. These seven locations were relocated to suitable sample locations because the original staked survey locations did not contain sediment as defined by the project. Three sediment samples of opportunity were collected from water bodies that contained a fuel odor or sheen (locations S28-51, 52, and 53). Sediment samples collected from Site 28 were analyzed for DRO by method AK102, DRO by method AK102 with silica gel cleanup, RRO

by method AK103, RRO by method AK103 with silica gel cleanup, total organic carbon, PAHs, PCBs, and metals (arsenic, chromium, lead, selenium, and zinc). Analytical results of analytes exceeding the multi-site DD SSCLs are shown on Figures B-5 through B-7. DRO and RRO results are presented from the silica gel cleanup method.

(intentionally blank)

#### 4.0 PROGRESS SINCE THE LAST REVIEW

Table C-4-1 describes the activities that have occurred at NEC FUDS since the last FYR to address issues identified in the previous FYR and outstanding issues from the multi-site DD. In the previous FYR, it was determined that the remedies were expected to be protective of human health and the environment upon completion for all sites.

Table C-4-1
Actions Since Previous FYR

| Site    | Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|         | 2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| Site 8  | An attempt to complete MNA sampling occurred at the revised decision units. After field personnel performed an initial site inspection, the USACE project delivery team was consulted and decided to not collect incremental sediment MNA samples at Site 8 due to the lack of sediment which met the multi-site DD definition of "continuously submerged" and above the vegetative mat. Subsequently, the ADEC PM performed a site inspection and agreed with the project delivery team decision to not collect incremental sediment MNA samples at Site 8 due to the lack of sediment, with the understanding additional sampling at Site 8 would occur within the next FYR period. |  |  |  |  |  |
| Site 28 | Field activities included sediment thickness measurement, surveying the extent of surface water bodies, and the collection of sediment samples. A total of 54 sediment samples were collected from 0 to 2 feet bgs. The drainage was mapped with a combination of RTK GPS and sediment probe measurements.                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|         | 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| All     | ATSDR published the draft findings of a NEC FUDS health consultation (ATSDR 2017a).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|         | 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| Site 8  | A total of 83 discrete samples were collected from 75 sample locations at Site 8. This sampling effort was completed to assess sediment distribution across the multi-site DD established decision units.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Site 29 | A total of 11 sediment and five surface water samples were collected from the Suqi River and estuary. Collocated sediment and surface water samples were collected from four locations along the Suqi River. Stream depth and velocity measurements were also collected from these four locations. Surface water samples were analyzed for BTEX and PAHs. Sediment samples were analyzed for DRO, RRO, PAHs, PCBs, and metals, including arsenic, chromium, lead, and zinc.                                                                                                                                                                                                           |  |  |  |  |  |

## Table C-4-1 (Continued) Actions Since Previous FYR

| Site    | Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|         | 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| Site 21 | At the completion of removal in 2013, arsenic remained at seven locations in concentrations that exceeded the SSCL of 11 mg/kg: samples 13NC21SS023 (25 mg/kg), 13NC21SS026 (79 mg/kg), 13NC21SS043 (17 mg/kg), 13NC21SS045 (19 mg/kg), 13NC21SS046 (21 mg/kg), and 13NC21SS047 (29 mg/kg). Additional delineation was requested to further characterize the extent of arsenic contamination. During Phase I, 120 soil samples were collected from 40 borings at 1-foot up to 3-foot intervals. An additional nine borings were advanced to depths between 3 and 4 feet Twenty-seven primary samples and three duplicate samples were collected from these borings. Following the analysis of the data collected, it was decided that arsenic greater than 17 mg/kg was targeted for removal. |  |  |  |  |  |
|         | A total of 107.35 tons of arsenic-contaminated waste was removed from Site 21. Thirty-one primary and four duplicate confirmation samples were collected during excavation. One sample, 14NC21S004 contained arsenic at a concentration of 13 mg/kg, which exceeded the SSCL of 11 mg/kg but was below the targeted removal concentration of 17 mg/kg. No further excavation occurred at this location.                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |

 $\underline{\mbox{Note:}}$  For definitions, refer to the Acronyms and Abbreviations section.

#### 5.0 REFERENCES

- ACAT (Alaska Community Action on Toxics). 2009. (11 November). Letter from Pamela Miller (ACAT) and Vi Waghiyi (ACAT) to Mathy Stanilaus (EPA). Includes *Tribal Representatives from St. Lawrence Island, Alaska, and the Alaska Community Action on Toxics (ACAT) Concerns About Ongoing U.S. Army Corps of Engineers Cleanup Work at the Northeast Cape and Gambell Letter from Dennis McLerran, Regional Administrator (EPA) to Colonel Richard Koenig, District Commander (USACE). FRMD Nos. F10AK069603 08.01 0082 a & F10AK096903 08.01 0519 a.*
- ADEC (Alaska Department of Environmental Conservation). 2007 (24 May). *ADEC Comments on the Northeast Cape 350 Determination*. Letter from Jeff Brownlee (ADEC) to Carey Cossaboom of USACE. May 24, 2007. FRMD No. F10AK096903 05.07 0501 a.
- ADEC. 2008 (12 December). Alaska Water Quality Criteria Manual for Toxic and Other Deleterious Organic and Inorganic Substances.
- ADEC. 2009 (7 December). *Technical Memorandum Requesting Closure for NE Cape Landfill Site* 7. Letter from Curtis Dunkin (ADEC) to Molly Welker of Bristol Remediation Services, LLC. December 7, 2009. ADEC File No. 475.38.013.
- ANCSA (Alaska Native Claims Settlement Act). 1979 (27 June). *Interim Conveyance 203*. Gambell Native Corporation and Savoonga Native Corporation.
- ATSDR (Agency for Toxic Substances and Disease Registry). 2005 (August). *Polyaromatic Hydrocarbons and Polychlorinated Biphenyls in Fish from the Suqitughneq River St. Lawrence Island, Alaska.* FRMD No. F10AK096903 03.11 0008 a.
- ATSDR. 2017a (24 July). Health Consultation, Public Comment Version, Northeast Cape Formerly Used Defense Site (FUDS), St. Lawrence Island, Alaska.
- ATSDR. 2017b (July). Health Consultation Summary, Northeast Cape, St. Lawrence Island, Alaska.
- Bristol (Bristol Environmental Remediation Services, LLC). 2009 (20 November). *Request for Site 7 Landfill Closure at Northeast Cape, St. Lawrence Island, Alaska*. Technical Memorandum. St. Lawrence Island, Alaska. FRMD No. 10AK096905\_07.08\_0501\_a.
- Buchman, M.F. 2008. *NOAA Screening Quick Reference Tables*. NOAA OR&R Report 08-1. Seattle, WA. Office of Response and Restoration Division, National Oceanic and Atmospheric Administration, 34 pp.
- Ecology and Environment. 1992 (December). Site Inventory, Northeast Cape, St. Lawrence Island, Alaska.

- EPA (U.S. Environmental Protection Agency). 2010 (23 March). Tribal Representatives from St. Lawrence Island, Alaska, and the Alaska Community Action on Toxics (ACAT) Concerns About Ongoing U.S. Army Corps of Engineers Cleanup Work at the Northeast Cape and Gambell Letter from Dennis McLerran, Regional Administrator (EPA) to Colonel Richard Koenig, District Commander (USACE). Includes Thank you letter from Pamela Miller (ACAT) and Vi Waghiyi (ACAT) to Mathy Stanilaus (EPA). FRMD Nos. F10AK069603\_08.01\_0082\_a & F10AK096903\_08.01\_0519\_a.
- EPA. 2012a (15 February). December 2011 Public Meetings on Saint Lawrence Island Regarding Environmental Health and Cleanup Issues, Proposed Action Items Resulting from the Meeting Letter from Sylvia Kawabata, Assessment and Brownfields Unit Manager (EPA) to December Dialogue Meeting Participants. FRMD No. F10AK096904 08.10 0013 a.
- EPA. 2012b (November). Environmental Protection Agency (EPA) Region 10's Evaluation of Army Corps of Engineers Cleanup of FUDS at NE Cape and Gambell, St. Lawrence Island, Alaska. FRMD Nos. F10AK0969603\_01.07\_0011\_a & F10AK069603\_01.07\_0500\_a.
- MW (Montgomery Watson). 1995a (January 10). Building Demolition and Debris Removal Technical Memorandum, Northeast Cape, St. Lawrence Island, Alaska.
- MW. 1995b (January 25). Remedial Investigation, Northeast Cape, St. Lawrence Island, Alaska.
- MW. 1997 (October). Letter Report to Alaska District Summarizing Wire Removal.
- MW. 1999 (August). Phase II Remedial Investigation, Northeast Cape, St. Lawrence Island, Alaska.
- MW. 2000 (June). *Phase II Remedial Investigation, Northeast Cape, St. Lawrence Island, Alaska.* FRMD No. F10AK096903\_03.10\_0011\_a.
- MWH (MWH Global). 2003 (March). *Phase III Remedial Investigation, Northeast Cape, St Lawrence Island, Alaska.* FRMD No. F10AK096903\_03.10\_0008\_a.
- Patton, W. and B. Csejtey. 1980. Geologic map of St. Lawrence Island, Alaska: U.S. Geological Survey Miscellaneous Investigation Series. Map I-1203. 1 sheet, scale 1:250,000.
- Pennack. 1989 (November). Tier II Ecological Assessment for Northeast Cape, St. Lawrence Island, Alaska. Environmental and Natural Resources Institute.
- RAB (Restoration Advisory Board). 2012a (27 June). *St. Lawrence Island Restoration Advisory Board and Public Meeting, Meeting Minutes.* Teleconference. FRMD No. F10AK096904 08.10 0010 a.

- RAB. 2012b (5 December). St. Lawrence Island Restoration Advisory Board and Public Meeting, Meeting Minutes. City Hall, Savoonga, Alaska. FRMD No. F10AK096904 08.10 0019 p.
- Shannon & Wilson, Inc. 2005 (June). *Phase IV Remedial Investigation, Northeast Cape, St. Lawrence Island, Alaska.* FRMD No. F10AK096903\_03.10\_0020\_a.
- URS Corporation. 1992 (April). Revised Site Inspection Final Report, White Alice Site, Northeast Cape, St. Lawrence Island, Alaska.
- USACE (U.S. Army Corps of Engineers). 1999 (August). *Phase II Remedial Investigation, Northeast Cape, St. Lawrence Island, Alaska. Vol 1.* FRMD No. F10AK096903 03.10 0003 a.
- USACE. 2004 (March). Human Health and Ecological Risk Assessment. Northeast Cape Installation. St. Lawrence Island, Alaska. Final. Prepared by MWH. FRMD No. F10AK096903\_03.11\_0005\_a.
- USACE. 2006 (September). White Alice Tram and Debris Removal, Northeast Cape, St. Lawrence Island, Alaska. FUDS No. F10AK096901. FRMD Nos. F10AK096903 07.08 a and F10AK096903 07.08 0501 a.
- USACE. 2007a (March). Feasibility Study, Northeast Cape FUDS, St. Lawrence Island, Alaska. FRMD No. F10AK096904\_04.09\_0500\_a & F10AK096905\_0500\_a.
- USACE. 2007b (April). Submission for Groundwater Use Determination (18 AAC 350) at Northeast Cape on St. Lawrence Island. Letter from Carey Cossaboom (USACE) to Jeff Brownlee (ADEC). FRMD No. F10AK096903\_05.01\_001\_a.
- USACE. 2007c (July). Proposed Plan, Northeast Cape Air Force Station, Formerly Used Defense Site. FUDS No. F10AK096903. FRMD No. F10AK096903\_04.10\_0500\_a.
- USACE. 2007d (November). *Geophysical Survey, Northeast Cape, St. Lawrence Island, Alaska*. Prepared by R&M Consultants, Inc. FRMD No. 10AK096905\_03.10\_0500\_a.
- USACE. 2008 (February). Responsiveness Summary, Northeast Cape Proposed Plan July 2007. FRMD No. F10AK096903 05.08 0504 a.
- USACE. 2009a (January). Decision Document: Hazardous, Toxic, and Radioactive Waste (HTRW) Project # F10AK096903, Northeast Cape FUDS, St. Lawrence Island, Alaska. FRMD No. F10AK096903 05.09 0500 a.
- USACE. 2009b (June). Decision Document: Site 7 Cargo Beach Road Landfill, Containerized Hazardous, Toxic, and Radioactive Waste (CON-HTRW) Project #F10AK096905, Northeast Cape FUDS, St. Lawrence Island, Alaska. FRMD No. F10AK096905\_05.09\_0500\_a.

- USACE. 2010a (May). Site 7 Landfill Cap Construction Completion Report: In-Situ Chemical Oxidation (Phase I) and Intrusive Drum Removal/Landfill Cap. Northeast Cape, St. Lawrence Island, Alaska. FRMD F10AK096905 07.08 0500 p.
- USACE. 2010b (August). In-Situ Chemical Oxidation (Phase I) and Intrusive Drum Removal/ Landfill Cap, Northeast Cape, St. Lawrence Island, Alaska. FUDS Project No. F10AK096903. Main Operation Complex Area: Phase I In-Situ Chemical Oxidation Summary Report. FRMD No. F10AK096903\_07.08\_0500\_a.
- USACE. 2011 (July). Northeast Cape HTRW Remedial Action Report. Final. St. Lawrence Island, Alaska. Prepared by Bristol Environmental Remediation Services, LLC. FRMD No. F10AK096903 07.08 0502 a.
- USACE. 2012 (June). Northeast Cape HTRW Remedial Actions, Final Removal Action Report, St. Lawrence Island, Alaska. Prepared by Bristol Environmental Remediation Services, LLC. FRMD No. F10AK096903\_07.08\_0503\_a.
- USACE. 2013a (January). Northeast Cape HTRW Remedial Actions, Site 28 Technical Memorandum Addendum, St. Lawrence Island, Alaska. FUDS No. F10AK0969-03 FRMD No. F10AK096903\_03.10\_022\_a.
- USACE. 2013b (May). Site 28 Phase I Sediment Removal Report, Northeast Cape, St. Lawrence Island, Alaska. FUDS No. F10AK096903. FRMD No. F10AK096903 0504 a.
- USACE. 2013c (May). Northeast Cape HTRW Remedial Actions, Remedial Action Report, St. Lawrence Island, Alaska. FUDS No. F10AK096903. Prepared by Bristol Environmental Remediation Services, LLC. FRMD No. F10AK096903 07.08 0505 a.
- USACE. 2014 (February). 2013 Sampling Conducted in Conjunction with the 2013 Five-Year Review at Northeast Cape. Northeast Cape, St. Lawrence Island, Alaska. FRMD No. F10AK096903\_07.11\_0504\_p.
- USACE. 2015a (January). 2013 Remedial Action Report, Northeast Cape, St. Lawrence Island, Alaska. FUDS NO. F10AK096903. FRMD No. F10AK096903\_07.08\_0506\_p.
- USACE. 2015b (February). First Five-Year Review Report, Northeast Cape FUDS, St. Lawrence Island, Alaska. FUDS No. F10AK0969-03. FRMD No. F10AK096903 07.11 0507 p.
- USACE. 2015c (February). First Periodic Review Report, Site 7 Cargo Beach Road Landfill, Northeast Cape FUDS, St. Lawrence Island, Alaska. FUDS No. F10AK0969-05. FRMD No. F10AK096905 07.11 0506 p.

- USACE. 2016a (April). 2015 Annual Groundwater Sampling Report, Northeast Cape Formerly Used Defense Site, Northeast Cape, St. Lawrence Island, Alaska. FUDS No. F10AK0969-03. FRMD No. F10AK096903 07.08 0508.
- USACE. 2016b (May). 2014 Remedial Action Report, 2014 Northeast Cape HTRW Remedial Actions, Northeast Cape, St. Lawrence Island, Alaska. FUDS Nos. F10AK0969-03 and F10AK0969-05. FRMD Nos. F10AK096903\_07.08\_0507\_p and F10AK096905\_07.08\_0502\_p.
- USACE. 2016c (September). Long-Term Management Plan Northeast Cape FUDS, St. Lawrence Island, Alaska. FUDS Nos. F10AK0969-03 and F10AK0969-05. FRMD Nos. F10AK096903 07.11 0508 a and F10AK096905 07.11 0508 a.
- USACE. 2017a (August). 2016 Monitored Natural Attenuation Groundwater Annual Sampling Report at the Main Operations Complex at Northeast Cape. Northeast Cape, St. Lawrence Island, Alaska. FRMD No. F10AK096903\_07.11\_0509\_a.
- USACE. 2017b (September). 2016 Site 8 and Suqitughneq River Surface Water and Sediment Sampling Report. Northeast Cape, St. Lawrence Island, Alaska. FRMD No. F10AK096903\_07.11\_0510\_a.
- USACE. 2018a (December). Site 28 Sediment Mapping and Sampling Report, Northeast Cape FUDS, St. Lawrence Island, Alaska. Draft. Prepared by Jacobs Engineering Group Inc.
- USACE. 2018b (December). 2018 Monitored Natural Attenuation Groundwater Annual Sampling Report at the Main Operations Complex, Northeast Cape FUDS, St. Lawrence Island, Alaska. Draft. Prepared by Jacobs Engineering Group Inc.
- USACE. 2018c (December). Site 9 Surface Water Monitoring Report, Northeast Cape FUDS, St. Lawrence Island, Alaska. Draft. Prepared by Jacobs Engineering Group Inc.
- USACE. 2018d (December). Second Periodic Review Report, Site 7 Cargo Beach Road Landfill, Northeast Cape FUDS, St. Lawrence Island, Alaska. Unpublished. Prepared by Jacobs Engineering Group Inc. F10AK096905\_xx.xx\_yyyy\_z.
- U.S. Army Engineer District, Alaska. 1999. *Trip Report: Suqitughneq River fish community assessment and habitat characterization, Northeast Cape, Saint Lawrence Island, Alaska.*
- Western Regional Climate Center. 2009 (April). *Period of Record Monthly Climate Summary*. <a href="https://wrcc.dri.edu/cgi-bin/cliMAIN.pl?ak6566">https://wrcc.dri.edu/cgi-bin/cliMAIN.pl?ak6566</a>. Accessed 16-August 2018.

(intentionally blank)

# APPENDIX D Site 21 Arsenic in Soil Assessment



### SECOND FIVE-YEAR REVIEW REPORT FOR NORTHEAST CAPE FORMERLY USED DEFENSE SITE FUDS NO. F10AK0969-03 ST. LAWRENCE ISLAND, ALASKA



U.S. Army Corps of Engineers Alaska District Anchorage, Alaska

### APPENDIX D SITE 21 ARSENIC IN SOIL ASSESSEMENT

**FINAL** 

### **TABLE OF CONTENTS**

| SEC                                | TIO                        | <u>N</u> | <u>P</u> A                      | <b>AGE</b>    |  |  |  |  |
|------------------------------------|----------------------------|----------|---------------------------------|---------------|--|--|--|--|
| ACR                                | ONY                        | MS ANI   | D ABBREVIATIONS                 | D-iii         |  |  |  |  |
| 1.0                                | .0 INTRODUCTION            |          |                                 |               |  |  |  |  |
| 2.0                                | LINI                       | ES OF E  | VIDENCE APPROACH                | <b>)-2-1</b>  |  |  |  |  |
| 3.0                                | DATASET AND DATA TREATMENT |          |                                 |               |  |  |  |  |
|                                    | 3.1                        | DESCR    | RIPTION OF THE SITE 21 DATASETE | <b>)-</b> 3-1 |  |  |  |  |
|                                    | 3.2                        | SITE 21  | 1 DATA TREATMENT                | <b>)-</b> 3-1 |  |  |  |  |
|                                    |                            | 3.2.1    | Censored Data                   | <b>)</b> -3-2 |  |  |  |  |
|                                    |                            | 3.2.2    | Qualified Data                  | <b>)</b> -3-2 |  |  |  |  |
|                                    |                            | 3.2.3    | Soil Classification             | <b>)</b> -3-2 |  |  |  |  |
| 4.0 SITE 21 COMPARISON TO THE SSCL |                            |          |                                 |               |  |  |  |  |
| 4.1 METHODS                        |                            |          |                                 |               |  |  |  |  |
| 4.2 RESULTS                        |                            |          | .TS                             | <b>)-4-</b> 1 |  |  |  |  |
|                                    |                            | 4.2.1    | Outlier Test                    | <b>)-4-</b> 2 |  |  |  |  |
|                                    |                            | 4.2.2    | Goodness-of-Fit Test            | <b>)-4-</b> 2 |  |  |  |  |
|                                    |                            | 4.2.3    | Hypothesis Testing              | <b>)-4-</b> 2 |  |  |  |  |
|                                    | 4.3                        | CONCI    | LUSIONS D                       | <b>)-4-</b> 2 |  |  |  |  |
| 5.0                                | REF                        | ERENCI   | ES                              | <b>)-</b> 5-1 |  |  |  |  |
|                                    |                            |          |                                 |               |  |  |  |  |
| ATTACHMENTS                        |                            |          |                                 |               |  |  |  |  |
| Atta                               | chmei                      | nt D-1   | Figure                          |               |  |  |  |  |
| Attachment D-2                     |                            | nt D-2   | Site 21 Results                 |               |  |  |  |  |
| Attachment D-3                     |                            | nt D-3   | ProUCL Input                    |               |  |  |  |  |
| Attachment D-4                     |                            | nt D-4   | ProUCL Output                   |               |  |  |  |  |
|                                    |                            |          |                                 |               |  |  |  |  |

(intentionally blank)

#### **ACRONYMS AND ABBREVIATIONS**

ADEC Alaska Department of Environmental Conservation

DD Decision Document

EPA U.S. Environmental Protection Agency FRMD FUDS Records Management Database

FUDS Formerly Used Defense Site mg/kg milligrams per kilogram

NEC Northeast Cape

SSCL site-specific cleanup level UCL upper confidence limit

USACE U.S. Army Corps of Engineers

(intentionally blank)

#### 1.0 INTRODUCTION

Site 21 is located west of the Northeast Cape (NEC) Formerly Used Defense Site (FUDS) Main Operations Complex perimeter road and contained a concrete septic settling tank with attached discharge piping that terminated at a surface discharge point 450 feet east of the septic tank (Figure D-1). Although elevated arsenic levels in soil at Site 21 led to arsenic becoming a site contaminant of concern in the 2009 Decision Document (DD), there is no known source of the arsenic (U.S. Army Corps of Engineers [USACE] 2009). During the data assessment for the second NEC Five-Year Review, it appears that naturally occurring arsenic in soil is contributing to Site 21 post-excavation sample results. Metals found in the environment, including arsenic, may be the result of anthropogenic activities (e.g., industrial processes or manufactured materials), but they are also naturally occurring in Alaska (Alaska Department of Environmental Conservation [ADEC] 2018). A lines of evidence approach was assessed to determine whether remaining arsenic levels in soil at Site 21 are naturally occurring. Several removal actions have occurred at the site in pursuit of the 11 milligrams per kilogram (mg/kg) soil site-specific cleanup level (SSCL) for arsenic. This assessment will be focused on the current data set and will not revisit the original decision to list arsenic as a contaminant of concern for Site 21. This appendix describes the lines of evidence approach; the currently available USACE result set; the statistical treatment of post-removal action data from 2012, 2013, and 2014; and conclusions of the assessment.

(intentionally blank)

#### 2.0 LINES OF EVIDENCE APPROACH

ADEC published a technical memorandum in 2018 (ADEC 2018) that describes the State's guidance for evaluating metals at contaminated sites. Although this guidance is primarily intended for sites that are in the pre-DD stage, it was not available for NEC FUDS at that time. The lines of evidence considered for Site 21 are as follows:

- 1. There is no record of a potential metal related release and/or historical usage, or site activity related to metals, but there was a wood-stave constructed water tank;
- 2. Post excavation site data do not show any well-defined pattern of concentrations indicative of a release of the metal; and
- 3. The metal is solely associated with shallow soil near site features.

There is no record of industrial activities at NEC FUDS that would have resulted in a discharge of arsenic containing effluent to the wastewater system at Site 21; or substantiated uses of arsenic in construction materials. The effluent discharge pipe is described as "8-inch insulated cast iron" and was possibly housed in a wooden utilidor from its origin point at Tank 21-3 to the wetland area discharge point approximately 450 feet to the west. This assertion was documented in the 2009 DD (USACE 2009) and no additional information is available since the DD to substantiate arsenic use.

Post-excavation confirmation samples do not show a well-defined pattern of concentrations and no gradient appears to exist. The USACE initiated soil removal in successive stages from 2012 through 2014 as described in the remedial action reports from 2012 (USACE 2013), 2013 (USACE 2014), and 2014 (USACE 2016). The excavation footprint reached a size of approximately 3,300 square feet as sporadic, marginal, and unrelated exceedances of the 11 mg/kg action level in confirmation samples were pursued.

The final excavation was performed in 2014. One 2014 sidewall confirmation sample in the final excavation footprint remained above the 11 mg/kg arsenic cleanup level limit at 13 mg/kg. During the final field effort in 2014, the USACE collected an additional 147 soil samples from an approximate 2-acre area surrounding the Site 21 outfall excavation. These sample results identified that arsenic in the area varied and that arsenic levels in undisturbed soil could be

found above 11 mg/kg. The maximum arsenic detection of 17 mg/kg was reported from subsurface soil upgradient and over 150 feet from the Site 21 excavation while samples between the maximum arsenic location and the excavation were below 11 mg/kg. The arsenic detections across the 2-acre sampling area at Site 21 are not related to any NEC FUDS features. The surface discharge location of the outfall line was positioned in a low-lying area that would have naturally contained the discharge and that area was excavated and 547 tons of soil removed.

#### 3.0 DATASET AND DATA TREATMENT

The following sections describe the Site 21 dataset and the data treatment that was applied.

#### 3.1 DESCRIPTION OF THE SITE 21 DATASET

The Site 21 soil dataset for arsenic includes excavation confirmation samples collected in 2012 (USACE 2013), 2013 (USACE 2014), and 2014 (USACE 2016) and samples collected outside of the excavation in 2013 and 2014 (USACE 2014, 2016). The final Site 21 excavation boundary and sample locations outside of the excavation are shown on Figure D-1 and a brief description of the samples are provided below:

- 2012 excavation confirmation samples, which were not removed in subsequent excavations, included 10 primary sample results from the eastern portion of the excavation.
- 2013 excavation confirmation samples, which were not removed by subsequent excavations, included 15 primary sample results. Additionally, three 2013 results from one soil boring outside of the excavation area is included (SB17).
- 2014 excavation confirmation samples included 30 primary results from the northern edge of the excavation and four distinct excavations along the outfall line route.
- 2014 Site 21 samples include 147 primary results from 49 locations outside of the Site 21 excavations.

A table of results with corresponding arsenic concentrations is provided in Attachment D-2.

#### 3.2 SITE 21 DATA TREATMENT

The complete Site 21 excavation confirmation results were utilized for comparison. In the event that field duplicate results were present, the higher of the two results was used represent that location. Although other Site 21 area data are available from outside the excavation, the sample types could not be compared to what remains in the excavation (e.g., peat vs. excavation confirmation samples below the vegetative layer) because soil characterization was not conducted for excavation confirmation samples. Site 21 data are included to support the general observations described in Section 2.0 of this appendix.

#### 3.2.1 Censored Data

The Site 21 excavation confirmation dataset did not include any censored data (e.g., nondetect).

#### 3.2.2 Qualified Data

Minimal qualification of Site 21 results occurred during data validation and none of the Site 21 excavation confirmation sample arsenic results are qualified. Qualified data results are present in the Site 21 samples, including two J-qualified results (results reported between the limit of detection and limit of quantitation) and one MN-qualified result (result with uncertain bias due to matrix effects). The qualified data were considered usable for this assessment.

#### 3.2.3 Soil Classification

Basic soil classifications are available for locations outside of the Site 21 excavations. Soil classification was not completed for excavation confirmation samples during the removal action. Many of the available soil classification descriptions mention "organics" or peat as descriptors.

#### 4.0 SITE 21 COMPARISON TO THE SSCL

All data used to perform the arsenic in soil statistical comparison between Site 21 and the SSCL using ProUCL 5.1 (Environmental Protection Agency [EPA] 2015). The applicable ProUCL input (Attachment D-2) and output files (Attachment D-3) are attached to this document and summarized in this section.

#### 4.1 METHODS

ProUCL 5.1 (EPA 2015) was used to complete the statistical assessment of the Site 21 excavation confirmation result dataset. These assessments included the following:

- Outlier test
- Goodness-of-fit test
- Hypothesis testing
- 95 percent upper confidence limit (UCL)

Before statistical analysis was performed, the Site 21 dataset was assessed for outliers and distribution, and a box plot was performed. The goodness-of-fit test was performed to identify data distribution.

Single sample tests can be used to compare a single site population (Site 21) to a threshold value (SSCL). These tests include the t-test for normally distributed data and non-parametric tests such as the Wilcoxon Rank Sum test (ADEC 2018). The t-test was used to statistically compare the Site 21 excavation confirmation dataset to the SSCL. Additionally, a 95 percent students-t UCL was calculated for the Site 21 dataset.

#### 4.2 RESULTS

The results of the ProUCL assessment comparing arsenic in soil in the Site 21 dataset for the SSCL are presented in the following sections.

#### 4.2.1 Outlier Test

Results of the outlier test (Reference) indicated that no outliers are present for the Site 21 excavation confirmation dataset at both a 5 percent and 1 percent significance level.

#### 4.2.2 Goodness-of-Fit Test

Results of the goodness-of-fit test indicate that the Site 21 excavation confirmation dataset can be described as normally distributed.

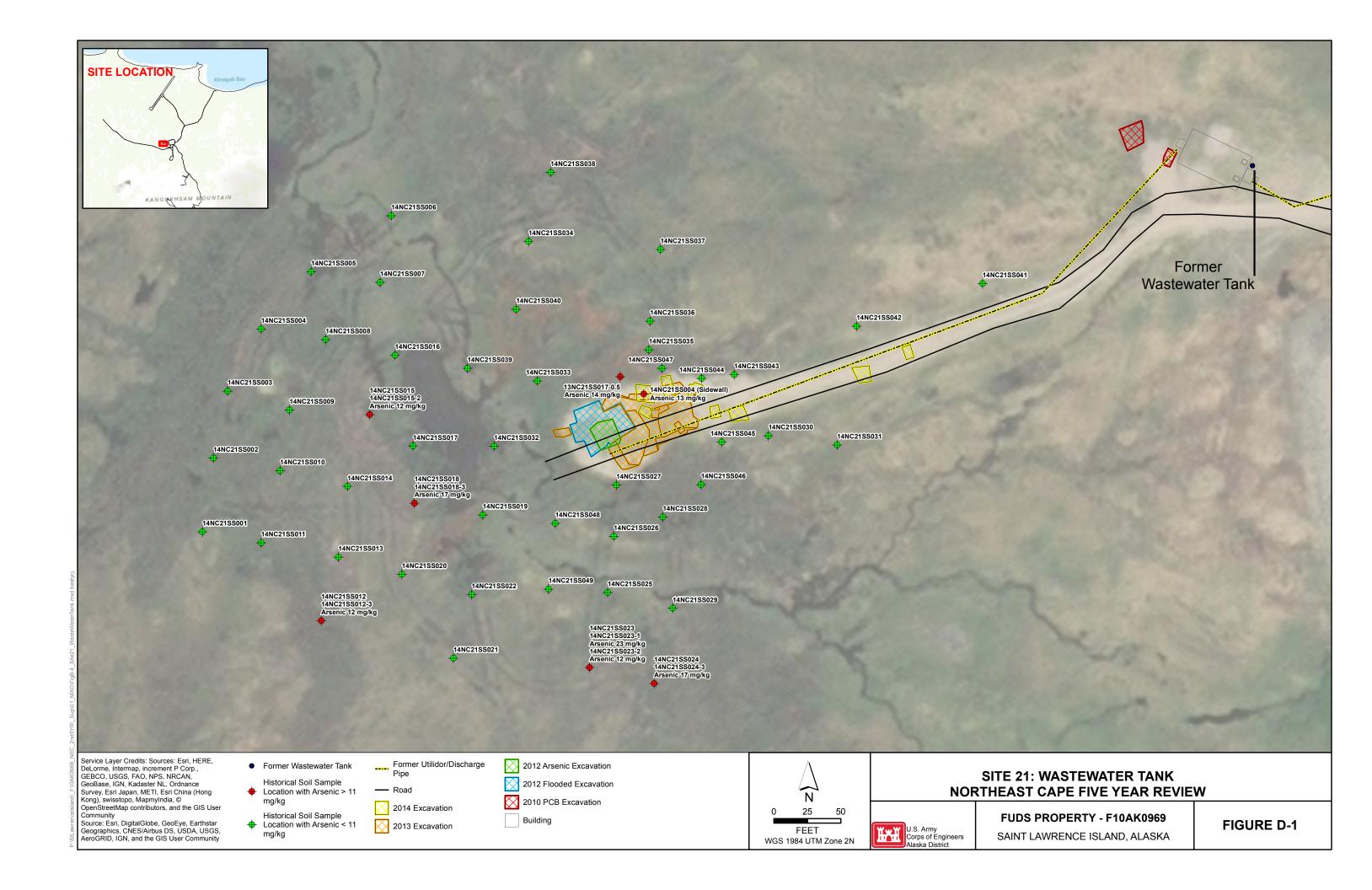
#### 4.2.3 Hypothesis Testing

A single sample hypothesis test was completed to compare the excavation confirmation sample dataset to the DD arsenic SSCL of 11 mg/kg using the t-test for a normally distributed data set. The following null hypothesis (H0) and alternate hypothesis (HA) were tested:

- H0: The central tendency arsenic concentration for the excavation confirmation population is greater than or equal to the SSCL.
- HA: The central tendency arsenic concentration for the excavation confirmation population is less than or equal to the SSCL.

The null hypothesis was rejected, which confirmed that the alternate hypothesis is confirmed. The results of the hypothesis testing confirmed that the central tendency of the remaining arsenic levels in the Site 21 excavation are less than or equal to the cleanup level. Additionally, a 95 percent students-t UCL was calculated for the Site 21 excavation confirmation samples. The 95 percent UCL value is 6.618 mg/kg, which is lower than the 11 mg/kg SSCL.

#### 4.3 CONCLUSIONS


A lines of evidence approach indicates that remaining levels of arsenic observed in the Site 21 excavation confirmations samples are from naturally occurring sources. Both statistical hypothesis testing and observational comparisons of the arsenic concentrations in soil at Site 21 indicate that remedial action associated with arsenic is complete at Site 21.

#### 5.0 REFERENCES

- ADEC (Alaska Department of Environmental Conservation). 2018 (August). *Guidance for Evaluating Metals at Contaminated Sites*.
- EPA (U.S. Environmental Protection Agency). 2015 (October). *ProUCL Version 5.1 Technical Guide*. Prepared by Singh, A. and A.K. Singh. EPA/600/R-07/041.
- USACE (U.S. Army Corps of Engineers). 2009 (September). *Decision Document:*Hazardous, Toxic, and Radioactive Waste Project #F10AK096903. Northeast Cape
  Formerly Used Defense Site St. Lawrence Island, Alaska. Signed 3 September 2009.
  F10AK09603 05.09 0500 a.
- USACE. 2013 (May). Northeast Cape HTRW Remedial Actions, Remedial Action Report, St. Lawrence Island, Alaska. FUDS No. F10AK096903. Prepared by Bristol Environmental Remediation Services, LLC. FRMD No. F10AK096903 07.08 0505 a.
- USACE. 2015 (January). 2013 Remedial Action Report, Northeast Cape, St. Lawrence Island, Alaska. FUDS NO. F10AK096903. FRMD No. F10AK096903\_07.08\_0506\_p.
- USACE. 2016 (May). 2014 Remedial Action Report, Northeast Cape FUDS, St. Lawrence Island, Alaska. FUDS No. F10AK0969-03. FRMD No. F10AK096903\_07.08\_0507\_p.

(intentionally blank)

# ATTACHMENT D-1 Figure



## ATTACHMENT D-2 Site 21 Results

|                         |                           |                | Sample ID                                                           | 14NC21SS001-1                                | 14NC21SS001-2                                | 14NC21SS001-3                                    | 14NC21SS002-1                                    | 14NC21SS002-2                                    | 14NC21SS002-3                                |
|-------------------------|---------------------------|----------------|---------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------------------------------------------|
|                         |                           |                | Location ID                                                         | SS001-1                                      | SS001-2                                      | SS001-3                                          | SS002-1                                          | SS002-2                                          | SS002-3                                      |
|                         |                           |                | Collection Date                                                     | 6/11/2014                                    | 6/11/2014                                    | 6/11/2014                                        | 6/11/2014                                        | 6/11/2014                                        | 6/11/2014                                    |
| Specific Method         | Analyte                   | Units          | Cleanup Level <sup>1</sup>                                          |                                              |                                              |                                                  |                                                  |                                                  |                                              |
| 6020                    | Arsenic                   | mg/Kg          | 11                                                                  | 2                                            | 3.2                                          | 4.7                                              | 4.6 J                                            | 4.2                                              | 4.8                                          |
|                         |                           |                |                                                                     |                                              |                                              |                                                  |                                                  |                                                  |                                              |
|                         |                           |                | Sample ID                                                           | 14NC21SS003-1                                | 14NC21SS003-2                                | 14NC21SS003-3                                    | 14NC21SS004-1                                    | 14NC21SS004-2                                    | 14NC21SS004-3                                |
|                         |                           |                | Location ID                                                         | SS003-1                                      | SS003-2                                      | SS003-3                                          | SS004-1                                          | SS004-2                                          | SS004-3                                      |
|                         |                           |                | Collection Date                                                     | 6/11/2014                                    | 6/11/2014                                    | 6/11/2014                                        | 6/11/2014                                        | 6/11/2014                                        | 6/11/2014                                    |
| Specific Method         | Analyte                   | Units          | Cleanup Level <sup>1</sup>                                          |                                              |                                              |                                                  |                                                  |                                                  |                                              |
| 6020                    | Arsenic                   | mg/Kg          | 11                                                                  | 3.7                                          | 4.2                                          | 6                                                | 2.3                                              | 5.2                                              | 5.8                                          |
|                         |                           |                |                                                                     |                                              |                                              |                                                  |                                                  |                                                  |                                              |
|                         |                           |                |                                                                     |                                              |                                              |                                                  |                                                  |                                                  |                                              |
|                         |                           |                | 0                                                                   | 440004000054                                 | 4400400005.0                                 | 441/004/00005-0                                  | 44100400005 4 D                                  | 44004000004                                      | 44100400000                                  |
|                         |                           |                | Sample ID                                                           | 14NC21SS005-1                                | 14NC21SS005-2                                | 14NC21SS005-3                                    | 14NC21SS005-4 <sup>D</sup>                       | 14NC21SS006-1                                    | 14NC21SS006-2                                |
|                         |                           |                | Location ID                                                         | SS005-1                                      | SS005-2                                      | SS005-3                                          | SS005-4                                          | SS006-1                                          | SS006-2                                      |
|                         |                           |                |                                                                     |                                              |                                              |                                                  |                                                  |                                                  |                                              |
| Specific Method         | Analyte                   | Units          | Location ID                                                         | SS005-1                                      | SS005-2                                      | SS005-3                                          | SS005-4                                          | SS006-1                                          | SS006-2                                      |
| Specific Method<br>6020 | <b>Analyte</b><br>Arsenic | Units<br>mg/Kg | Location ID Collection Date                                         | SS005-1                                      | SS005-2                                      | SS005-3                                          | SS005-4                                          | SS006-1                                          | SS006-2                                      |
|                         |                           |                | Location ID Collection Date Cleanup Level <sup>1</sup>              | SS005-1<br>6/11/2014                         | SS005-2<br>6/11/2014                         | SS005-3<br>6/11/2014                             | SS005-4<br>6/11/2014                             | SS006-1<br>6/11/2014                             | SS006-2<br>6/11/2014                         |
|                         |                           |                | Location ID Collection Date Cleanup Level <sup>1</sup> 11           | SS005-1<br>6/11/2014<br>4.9                  | \$\$005-2<br>6/11/2014                       | \$\$005-3<br>6/11/2014                           | \$\$005-4<br>6/11/2014                           | \$\$006-1<br>6/11/2014<br>5.9                    | \$\$006-2<br>6/11/2014                       |
|                         |                           |                | Location ID Collection Date Cleanup Level <sup>1</sup> 11 Sample ID | SS005-1<br>6/11/2014<br>4.9<br>14NC21SS006-3 | SS005-2<br>6/11/2014<br>3.4<br>14NC21SS007-1 | \$\$005-3<br>6/11/2014<br>3.4<br>14NC21\$\$007-2 | \$\$005-4<br>6/11/2014<br>3.4<br>14NC21\$\$007-3 | \$\$006-1<br>6/11/2014<br>5.9<br>14NC21\$\$008-1 | SS006-2<br>6/11/2014<br>3.8<br>14NC21SS008-2 |

#### Notes:

**Bold-**(Orange box), positive result exceeds Decision Document cleanup criteria.<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> Cleanup Level Established in 2009 Northeast Cape Decision Document

|                    |                    |                                  |                                                        |                                              | D                                              |                                             |                                              |                                                |                                       |
|--------------------|--------------------|----------------------------------|--------------------------------------------------------|----------------------------------------------|------------------------------------------------|---------------------------------------------|----------------------------------------------|------------------------------------------------|---------------------------------------|
|                    |                    |                                  | Sample ID                                              | 14NC21SS008-3                                | 14NC21SS008-4 <sup>D</sup>                     | 14NC21SS009-1                               | 14NC21SS009-2                                | 14NC21SS009-3                                  | 14NC21SS010-1                         |
|                    |                    |                                  | Location ID                                            | SS008-3                                      | SS008-4                                        | SS009-1                                     | SS009-2                                      | SS009-3                                        | SS010-1                               |
|                    |                    |                                  | Collection Date                                        | 6/11/2014                                    | 6/11/2014                                      | 6/11/2014                                   | 6/11/2014                                    | 6/11/2014                                      | 6/11/2014                             |
| Specific<br>Method | Analyte            | Units                            | Cleanup Level <sup>1</sup>                             |                                              |                                                |                                             |                                              |                                                |                                       |
| 6020               | Arsenic            | mg/Kg                            | 11                                                     | 4.4                                          | 4.1                                            | 5.6                                         | 5.5                                          | 11                                             | 4                                     |
|                    |                    |                                  |                                                        |                                              |                                                |                                             |                                              |                                                |                                       |
|                    |                    |                                  | Sample ID                                              | 14NC21SS010-2                                | 14NC21SS010-3                                  | 14NC21SS010-4 D                             | 14NC21SS011-1                                | 14NC21SS011-2                                  | 14NC21SS011-3                         |
|                    |                    |                                  | Location ID                                            | SS010-2                                      | SS010-3                                        | SS010-4                                     | SS011-1                                      | SS011-2                                        | SS011-3                               |
|                    |                    |                                  | Collection Date                                        | 6/11/2014                                    | 6/11/2014                                      | 6/11/2014                                   | 6/11/2014                                    | 6/11/2014                                      | 6/11/2014                             |
| Specific<br>Method | Analyte            | Units Cleanup Level <sup>1</sup> |                                                        |                                              |                                                |                                             |                                              |                                                |                                       |
| 6020               | Arsenic            | mg/Kg                            | 11                                                     | 4.6                                          | 1.6                                            | 1.6                                         | 7.6                                          | 4.6                                            | 11                                    |
|                    |                    |                                  |                                                        |                                              |                                                |                                             |                                              |                                                |                                       |
|                    |                    |                                  |                                                        |                                              |                                                |                                             |                                              |                                                |                                       |
|                    |                    |                                  | Sample ID                                              | 14NC21SS012-1                                | 14NC21SS012-2                                  | 14NC21SS012-3                               | 14NC21SS013-1                                | 14NC21SS013-2                                  | 14NC21SS013-3                         |
|                    |                    |                                  | Sample ID                                              | 14NC21SS012-1<br>SS012-1                     | 14NC21SS012-2<br>SS012-2                       | 14NC21SS012-3<br>SS012-3                    | 14NC21SS013-1<br>SS013-1                     | 14NC21SS013-2<br>SS013-2                       | 14NC21SS013-3<br>SS013-3              |
|                    |                    |                                  | Sample ID Location ID Collection Date                  | 14NC21SS012-1<br>SS012-1<br>6/11/2014        | 14NC21SS012-2<br>SS012-2<br>6/11/2014          | 14NC21SS012-3<br>SS012-3<br>6/11/2014       | 14NC21SS013-1<br>SS013-1<br>6/11/2014        | 14NC21SS013-2<br>SS013-2<br>6/11/2014          | 14NC21SS013-3<br>SS013-3<br>6/11/2014 |
| Specific<br>Method | Analyte            | Units                            | Location ID                                            | SS012-1                                      | SS012-2                                        | SS012-3                                     | SS013-1                                      | SS013-2                                        | SS013-3                               |
|                    | Analyte<br>Arsenic | Units<br>mg/Kg                   | Location ID Collection Date                            | SS012-1                                      | SS012-2                                        | SS012-3                                     | SS013-1                                      | SS013-2                                        | SS013-3                               |
| Method             |                    |                                  | Location ID Collection Date Cleanup Level <sup>1</sup> | SS012-1<br>6/11/2014                         | SS012-2<br>6/11/2014                           | SS012-3<br>6/11/2014                        | SS013-1<br>6/11/2014                         | SS013-2<br>6/11/2014                           | SS013-3<br>6/11/2014                  |
| Method             |                    |                                  | Location ID Collection Date Cleanup Level <sup>1</sup> | SS012-1<br>6/11/2014<br>2.9                  | SS012-2<br>6/11/2014<br>5                      | SS012-3<br>6/11/2014                        | SS013-1<br>6/11/2014<br>3.1                  | SS013-2<br>6/11/2014                           | SS013-3<br>6/11/2014                  |
| Method             |                    |                                  | Location ID Collection Date Cleanup Level 11 Sample ID | SS012-1<br>6/11/2014<br>2.9<br>14NC21SS014-1 | \$\$012-2<br>6/11/2014<br>5<br>14NC21\$\$014-2 | SS012-3<br>6/11/2014<br>12<br>14NC21SS014-3 | SS013-1<br>6/11/2014<br>3.1<br>14NC21SS015-1 | SS013-2<br>6/11/2014<br>1.9<br>14NC21SS015-4 D | SS013-3<br>6/11/2014                  |

#### Notes:

**Bold-**(Orange box), positive result exceeds Decision Document cleanup criteria.<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> Cleanup Level Established in 2009 Northeast Cape Decision Document

<sup>&</sup>lt;sup>D</sup>Sample is a duplicate of the preceding sample

|                    |                    |                    | Sample ID                                              | 14NC21SS015-3                                | 14NC21SS016-1                                    | 14NC21SS016-2                                      | 14NC21SS016-3                                | 14NC21SS017-1                                    | 14NC21SS017-3                                    |
|--------------------|--------------------|--------------------|--------------------------------------------------------|----------------------------------------------|--------------------------------------------------|----------------------------------------------------|----------------------------------------------|--------------------------------------------------|--------------------------------------------------|
|                    |                    |                    | Location ID                                            | SS015-3                                      | SS016-1                                          | SS016-2                                            | SS016-3                                      | SS017-1                                          | SS017-3                                          |
|                    |                    |                    | Collection Date                                        | 6/11/2014                                    | 6/11/2014                                        | 6/11/2014                                          | 6/11/2014                                    | 6/11/2014                                        | 6/11/2014                                        |
| Specific<br>Method | Analyte            | Units              | Cleanup Level <sup>1</sup>                             |                                              |                                                  |                                                    |                                              |                                                  |                                                  |
| 6020               | Arsenic            | mg/Kg              | 11                                                     | 9.5                                          | 4.5                                              | 3                                                  | 2.6                                          | 3.2                                              | 7.8                                              |
|                    |                    |                    |                                                        |                                              |                                                  |                                                    |                                              |                                                  |                                                  |
|                    |                    |                    | Sample ID                                              | 14NC21SS017-2                                | 14NC21SS017-4 <sup>D</sup>                       | 14NC21SS018-1                                      | 14NC21SS018-2                                | 14NC21SS018-3                                    | 14NC21SS019-1                                    |
|                    |                    |                    | Location ID                                            | SS017-2                                      | SS017-4                                          | SS018-1                                            | SS018-2                                      | SS018-3                                          | SS019-1                                          |
|                    |                    |                    | Collection Date                                        | 6/11/2014                                    | 6/11/2014                                        | 6/11/2014                                          | 6/11/2014                                    | 6/11/2014                                        |                                                  |
| Specific<br>Method | Analyte            | Units              | Cleanup Level <sup>1</sup>                             |                                              |                                                  |                                                    |                                              |                                                  |                                                  |
| 6020               | Arsenic            | mg/Kg              | 11                                                     | 3.1                                          | 4.3                                              | 1.7                                                | 7.5                                          | 17                                               | 6.6                                              |
|                    |                    |                    |                                                        |                                              |                                                  | •                                                  |                                              |                                                  | ·                                                |
|                    |                    |                    | Sample ID<br>Location ID<br>Collection Date            | 14NC21SS019-3<br>SS019-3<br>6/12/2014        | 14NC21SS019-2<br>SS019-2<br>6/12/2014            | 14NC21SS019-4 <sup>D</sup><br>SS019-4<br>6/12/2014 | 14NC21SS020-1<br>SS020-1<br>6/12/2014        | 14NC21SS020-2<br>SS020-2<br>6/12/2014            | 14NC21SS020-3<br>SS020-3<br>6/12/2014            |
| Specific<br>Method | Analyte            | Units              | Location ID Collection Date Cleanup Level <sup>1</sup> | SS019-3<br>6/12/2014                         | SS019-2<br>6/12/2014                             | SS019-4<br>6/12/2014                               | SS020-1<br>6/12/2014                         | SS020-2<br>6/12/2014                             | SS020-3<br>6/12/2014                             |
|                    | Analyte<br>Arsenic | <b>Units</b> mg/Kg | Location ID Collection Date                            | SS019-3                                      | SS019-2                                          | SS019-4                                            | SS020-1                                      | SS020-2                                          | SS020-3                                          |
| Method             |                    |                    | Location ID Collection Date Cleanup Level <sup>1</sup> | SS019-3<br>6/12/2014                         | SS019-2<br>6/12/2014                             | SS019-4<br>6/12/2014                               | SS020-1<br>6/12/2014                         | SS020-2<br>6/12/2014                             | SS020-3<br>6/12/2014                             |
| Method             |                    |                    | Location ID Collection Date Cleanup Level 11           | SS019-3<br>6/12/2014                         | SS019-2<br>6/12/2014<br>6.3                      | SS019-4<br>6/12/2014<br>5.8                        | \$\$020-1<br>6/12/2014                       | \$\$020-2<br>6/12/2014                           | \$\$020-3<br>6/12/2014                           |
| Method             |                    |                    | Location ID Collection Date Cleanup Level 11 Sample ID | SS019-3<br>6/12/2014<br>2.5<br>14NC21SS021-1 | \$\$019-2<br>6/12/2014<br>6.3<br>14NC21\$\$021-2 | \$\$019-4<br>6/12/2014<br>5.8<br>14NC21\$\$021-3   | SS020-1<br>6/12/2014<br>3.1<br>14NC21SS022-1 | \$\$020-2<br>6/12/2014<br>3.4<br>14NC21\$\$022-2 | \$\$020-3<br>6/12/2014<br>4.4<br>14NC21\$\$022-3 |

#### Notes:

**Bold**-(Orange box), positive result exceeds Decision Document cleanup criteria.<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> Cleanup Level Established in 2009 Northeast Cape Decision Document

<sup>&</sup>lt;sup>D</sup>Sample is a duplicate of the preceding sample

|                    |         |       | Sample ID                                                                      | 14NC21SS023-1                                                 | 14NC21SS023-2                                                 | 14NC21SS023-3                                                 | 14NC21SS024-1                                                   | 14NC21SS024-2                                                   | 14NC21SS024-3                                                 |
|--------------------|---------|-------|--------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|
|                    |         |       | Location ID                                                                    | SS023-1                                                       | SS023-2                                                       | SS023-3                                                       | SS024-1                                                         | SS024-1                                                         | SS024-1                                                       |
|                    |         |       | Collection Date                                                                | 6/12/2014                                                     | 6/12/2014                                                     | 6/12/2014                                                     | 6/12/2014                                                       | 6/12/2014                                                       | 6/12/2014                                                     |
| Specific<br>Method | Analyte | Units | Cleanup Level <sup>1</sup>                                                     |                                                               |                                                               |                                                               |                                                                 |                                                                 |                                                               |
| 6020               | Arsenic | mg/Kg | 11                                                                             | 23                                                            | 12                                                            | 6.9                                                           | 11                                                              | 10                                                              | 17                                                            |
|                    |         |       |                                                                                |                                                               |                                                               |                                                               |                                                                 |                                                                 |                                                               |
|                    |         |       | Sample ID                                                                      | 14NC21SS025-1                                                 | 14NC21SS025-2                                                 | 14NC21SS025-4 D                                               | 14NC21SS025-3                                                   | 14NC21SS026-1                                                   | 14NC21SS026-2                                                 |
|                    |         |       | Location ID                                                                    | SS025-1                                                       | SS025-2                                                       | SS025-4                                                       | SS025-3                                                         | SS026-1                                                         | SS026-2                                                       |
|                    |         |       | Collection Date                                                                | 6/12/2014                                                     | 6/12/2014                                                     | 6/12/2014                                                     | 6/12/2014                                                       | 6/12/2014                                                       | 6/12/2014                                                     |
| Specific<br>Method | Analyte | Units | Cleanup Level <sup>1</sup>                                                     |                                                               |                                                               |                                                               |                                                                 |                                                                 |                                                               |
| 0000               |         |       |                                                                                |                                                               |                                                               |                                                               |                                                                 |                                                                 |                                                               |
| 6020               | Arsenic | mg/Kg | 11                                                                             | 6.2                                                           | 6.1 QN                                                        | 3.4 QN                                                        | 6.2                                                             | 5.3                                                             | 3.3                                                           |
| 6020               | Arsenic | mg/Kg | 11                                                                             | 6.2                                                           | 6.1 QN                                                        | 3.4 QN                                                        | 6.2                                                             | 5.3                                                             | 3.3                                                           |
| 6020               | Arsenic | mg/Kg | 11 Sample ID                                                                   | 6.2<br>14NC21SS026-3                                          | 6.1 QN                                                        | 3.4 QN<br>14NC21SS027-2                                       | 6.2<br>14NC21SS027-3                                            | 5.3<br>14NC21SS027-4 <sup>D</sup>                               | 3.3<br>14NC21SS028-1                                          |
| 6020               | Arsenic | mg/Kg |                                                                                |                                                               |                                                               |                                                               |                                                                 |                                                                 |                                                               |
| 6020               | Arsenic | mg/Kg | Sample ID                                                                      | 14NC21SS026-3                                                 | 14NC21SS027-1                                                 | 14NC21SS027-2                                                 | 14NC21SS027-3                                                   | 14NC21SS027-4 <sup>D</sup>                                      | 14NC21SS028-1                                                 |
| Specific<br>Method | Arsenic | mg/Kg | Sample ID<br>Location ID                                                       | 14NC21SS026-3<br>SS026-3                                      | 14NC21SS027-1<br>SS027-1                                      | 14NC21SS027-2<br>SS027-2                                      | 14NC21SS027-3<br>SS027-3                                        | 14NC21SS027-4 <sup>D</sup><br>SS027-4                           | 14NC21SS028-1<br>SS028-1                                      |
| Specific           |         |       | Sample ID<br>Location ID<br>Collection Date                                    | 14NC21SS026-3<br>SS026-3                                      | 14NC21SS027-1<br>SS027-1                                      | 14NC21SS027-2<br>SS027-2                                      | 14NC21SS027-3<br>SS027-3                                        | 14NC21SS027-4 <sup>D</sup><br>SS027-4                           | 14NC21SS028-1<br>SS028-1                                      |
| Specific<br>Method | Analyte | Units | Sample ID Location ID Collection Date Cleanup Level <sup>1</sup>               | 14NC21SS026-3<br>SS026-3<br>6/12/2014                         | 14NC21SS027-1<br>SS027-1<br>6/12/2014                         | 14NC21SS027-2<br>SS027-2<br>6/12/2014                         | 14NC21SS027-3<br>SS027-3<br>6/12/2014                           | 14NC21SS027-4 <sup>D</sup><br>SS027-4<br>6/12/2014              | 14NC21SS028-1<br>SS028-1<br>6/12/2014                         |
| Specific<br>Method | Analyte | Units | Sample ID  Location ID  Collection Date  Cleanup Level <sup>1</sup> 11         | 14NC21SS026-3<br>SS026-3<br>6/12/2014                         | 14NC21SS027-1<br>SS027-1<br>6/12/2014                         | 14NC21SS027-2<br>SS027-2<br>6/12/2014                         | 14NC21SS027-3<br>SS027-3<br>6/12/2014                           | 14NC21SS027-4 <sup>D</sup> SS027-4 6/12/2014                    | 14NC21SS028-1<br>SS028-1<br>6/12/2014                         |
| Specific<br>Method | Analyte | Units | Sample ID Location ID Collection Date  Cleanup Level <sup>1</sup> 11 Sample ID | 14NC21SS026-3<br>SS026-3<br>6/12/2014<br>5.3<br>14NC21SS028-2 | 14NC21SS027-1<br>SS027-1<br>6/12/2014<br>2.2<br>14NC21SS028-3 | 14NC21SS027-2<br>SS027-2<br>6/12/2014<br>2.4<br>14NC21SS029-1 | 14NC21SS027-3<br>SS027-3<br>6/12/2014<br>5.3<br>14NC21SS029-4 D | 14NC21SS027-4 <sup>D</sup> SS027-4 6/12/2014  5.4 14NC21SS029-2 | 14NC21SS028-1<br>SS028-1<br>6/12/2014<br>3.7<br>14NC21SS029-3 |

#### Notes:

**Bold-**(Orange box), positive result exceeds Decision Document cleanup criteria.<sup>1</sup>

mg/kg = milligrams per kilogram

QN = One or more quality parameters was out of control with no directional bias.

<sup>&</sup>lt;sup>1</sup> Cleanup Level Established in 2009 Northeast Cape Decision Document

<sup>&</sup>lt;sup>D</sup>Sample is a duplicate of the preceding sample

|                    |                    |                                     | Sample ID                  | 14NC21SS030-1            | 14NC21SS030-2                     | 14NC21SS030-3            | 14NC21SS031-1            | 14NC21SS031-2            | 14NC21SS031-3                   |
|--------------------|--------------------|-------------------------------------|----------------------------|--------------------------|-----------------------------------|--------------------------|--------------------------|--------------------------|---------------------------------|
|                    |                    |                                     | Location ID                | SS030-1                  | SS030-2                           | SS030-3                  | SS031-1                  | SS031-2                  | SS031-3                         |
|                    |                    |                                     | Collection Date            | 6/12/2014                | 6/12/2014                         | 6/12/2014                | 6/12/2014                | 6/12/2014                | 6/12/2014                       |
| Specific<br>Method | Analyte            | Units                               | Cleanup Level <sup>1</sup> |                          |                                   |                          |                          |                          |                                 |
| 6020               | Arsenic            | mg/Kg                               | 11                         | 8.2                      | 3                                 | 3.5                      | 4.5                      | 5.1                      | 3.5                             |
|                    |                    |                                     |                            |                          |                                   |                          |                          |                          |                                 |
|                    |                    |                                     | Sample ID                  | 14NC21SS032-1            | 14NC21SS032-2                     | 14NC21SS032-3            | 14NC21SS033-1            | 14NC21SS033-2            | 14NC21SS033-4 <sup>D</sup>      |
|                    |                    | Location ID<br>Collection Date      |                            | SS032-1                  | SS032-2                           | SS032-3                  | SS033-1                  | SS033-2                  | SS033-4                         |
|                    |                    |                                     | Collection Date            | 6/12/2014                | 6/12/2014                         | 6/12/2014                | 6/12/2014                | 6/12/2014                | 6/12/2014                       |
| Specific<br>Method | Analyte            | Collection Date Units Cleanup Level |                            |                          |                                   |                          |                          |                          |                                 |
| 6020               | Arsenic            |                                     |                            | 6.8                      | 5.8                               | 3.9                      | 5                        | 2.7                      | 2.5                             |
|                    |                    |                                     | Sample ID<br>Location ID   | 14NC21SS033-3<br>SS033-3 | 14NC21SS034-1<br>SS034-1          | 14NC21SS034-2<br>SS034-2 | 14NC21SS034-3<br>SS034-3 | 14NC21SS035-1<br>SS035-1 | 14NC21SS035-3<br>SS035-3        |
|                    |                    |                                     | Collection Date            | 6/12/2014                | 6/12/2014                         | 6/12/2014                | 6/12/2014                | 6/13/2014                | 6/13/2014                       |
| Specific<br>Method |                    |                                     |                            |                          |                                   |                          |                          |                          |                                 |
|                    | Analyte            | Units                               | Cleanup Level <sup>1</sup> |                          |                                   |                          |                          |                          |                                 |
| 6020               | Analyte<br>Arsenic | Units<br>mg/Kg                      | Cleanup Level <sup>1</sup> | 2.7                      | 4.8                               | 6.1                      | 6.3                      | 5.8                      | 6                               |
| 6020               | 1                  |                                     |                            | 2.7<br>14NC21SS035-2     | 4.8<br>14NC21SS035-4 <sup>D</sup> | 6.1<br>14NC21SS036-1     | 6.3<br>14NC21SS036-2     | 5.8<br>14NC21SS036-3     | 6<br>14NC21SS036-4 <sup>D</sup> |
| 6020               | 1                  |                                     | 11                         |                          |                                   | -                        |                          |                          |                                 |
| 6020               | 1                  |                                     | 11<br>Sample ID            | 14NC21SS035-2            | 14NC21SS035-4 <sup>D</sup>        | 14NC21SS036-1            | 14NC21SS036-2            | 14NC21SS036-3            | 14NC21SS036-4 <sup>D</sup>      |

#### Notes:

<sup>&</sup>lt;sup>1</sup> Cleanup Level Established in 2009 Northeast Cape Decision Document

<sup>&</sup>lt;sup>D</sup>Sample is a duplicate of the preceding sample

|                    |         |       | Sample ID                  | 14NC21SS037-1    | 14NC21SS037-2 | 14NC21SS037-3   | 14NC21SS038-1 | 14NC21SS038-2 | 14NC21SS038-3 |
|--------------------|---------|-------|----------------------------|------------------|---------------|-----------------|---------------|---------------|---------------|
|                    |         |       | Location ID                | SS037-1          | SS037-2       | SS037-3         | SS038-1       | SS038-2       | SS038-3       |
|                    |         |       | Collection Date            | 6/13/2014        | 6/13/2014     | 6/13/2014       | 6/13/2014     | 6/13/2014     | 6/13/2014     |
| Specific<br>Method | Analyte | Units | Cleanup Level <sup>1</sup> |                  |               |                 |               |               |               |
| 6020               | Arsenic | mg/Kg | 11                         | 4                | 5.2           | 8.3             | 8.4           | 5.8           | 5.7           |
|                    |         |       |                            |                  |               |                 |               |               |               |
|                    |         |       | Sample ID                  | 14NC21SS039-1    | 14NC21SS039-2 | 14NC21SS039-3   | 14NC21SS040-1 | 14NC21SS040-2 | 14NC21SS040-3 |
|                    |         |       | Location ID                | SS039-1          | SS039-2       | SS039-3         | SS040-1       | SS040-2       | SS040-3       |
|                    |         |       | Collection Date            | 6/13/2014        | 6/13/2014     | 6/13/2014       | 6/13/2014     | 6/13/2014     | 6/13/2014     |
| Specific<br>Method | Analyte | Units | Cleanup Level <sup>1</sup> |                  |               |                 |               |               |               |
| 6020               | Arsenic | mg/Kg | 11                         | 8                | 7.5           | 4.7             | 5.6           | 8.8           | 7.6           |
|                    |         |       | 0                          | 401/00/400/7.0.5 | 400000047.0   | 401/0040047.0.5 | 41000000444   | 4400000044.0  | 44000400044.0 |
|                    |         |       | Sample ID                  | 13NC21SS17-0.5   | 13NC21SS17-2  | 13NC21SS17-2.5  | 14NC21SS041-1 | 14NC21SS041-2 | 14NC21SS041-3 |
|                    |         |       | Location ID                | 13NCSB17         | 13NCSB17      | 13NCSB17        | 21SS041-1     | 21SS041-2     | 21SS041-3     |
|                    |         |       | Collection Date            | 7/11/2013        | 7/11/2013     | 7/11/2013       | 8/5/2014      | 8/5/2014      | 8/5/2014      |
| Specific<br>Method | Analyte | Units | Cleanup Level <sup>1</sup> |                  |               |                 |               |               |               |
| 6020               | Arsenic | mg/Kg | 11                         | 14               | 7.4 MN        | 4.6             | 3.8           | 2.9           | 3.9           |

#### Notes:

**Bold-**(Orange box), positive result exceeds Decision Document cleanup criteria. 1

MN = One or more quality parameters was out of control with no directional bias due to matrix interference.

<sup>&</sup>lt;sup>1</sup> Cleanup Level Established in 2009 Northeast Cape Decision Document

|                    |         |       | Sample ID                  | 14NC21SS042-1 | 14NC21SS042-2 | 14NC21SS042-3 | 14NC21SS043-1 | 14NC21SS043-2     | 14NC21SS043-3 |
|--------------------|---------|-------|----------------------------|---------------|---------------|---------------|---------------|-------------------|---------------|
|                    |         |       | Location ID                | 21SS042-1     | 21SS042-2     | 21SS042-3     | SS043-1       | SS043-2           | SS043-3       |
|                    |         |       | Collection Date            | 8/5/2014      | 8/5/2014      | 8/5/2014      | 8/5/2014      | 8/5/2014          | 8/5/2014      |
| Specific<br>Method | Analyte | Units | Cleanup Level <sup>1</sup> |               |               |               |               |                   |               |
| 6020               | Arsenic | mg/Kg | 11                         | 4.1           | 3.0           | 8.7           | 10            | 3.8               | 2.9           |
|                    |         |       |                            |               |               |               |               |                   |               |
|                    |         |       | Sample ID                  | 14NC21SS044-1 | 14NC21SS044-2 | 14NC21SS044-3 | 14NC21SS045-1 | 14NC21SS045-1.5 D | 14NC21SS045-2 |
|                    |         |       | Location ID                | SS044-1       | SS044-2       | SS044-3       | SS045-1       | SS045-1.5         | SS045-2       |
|                    |         |       | Collection Date            | 8/5/2014      | 8/5/2014      | 8/5/2014      | 8/5/2014      | 8/5/2014          | 8/5/2014      |
| Specific<br>Method | Analyte | Units | Cleanup Level <sup>1</sup> |               |               |               |               |                   |               |
| 6020               | Arsenic | mg/Kg | 11                         | 7.9           | 4.2           | 5.0           | 6.4           | 4.5               | 4.2           |
|                    |         |       | Sample ID                  | 14NC21SS045-3 | 14NC21SS046-1 | 14NC21SS046-2 | 14NC21SS046-3 | 14NC21SS047-1     | 14NC21SS047-2 |
|                    |         |       | Location ID                | SS045-3       | SS046-1       | SS046-2       | SS046-3       | SS047-1           | SS047-2       |
|                    |         |       | Collection Date            | 8/5/2014      | 8/5/2014      | 8/5/2014      | 8/5/2014      | 8/5/2014          | 8/5/2014      |
| Specific<br>Method | Analyte | Units | Cleanup Level <sup>1</sup> | 5.7           | 2.2           | I 42          | 5.2           | 2.9               | 2.4           |
| 6020               | Arsenic | mg/Kg | 11                         | 5.7           | ۷.۷           | 4.2           | 5.3           | 2.9               | 3.4           |

#### Notes:

<sup>&</sup>lt;sup>1</sup>Cleanup Level Established in 2009 Northeast Cape Decision Document

<sup>&</sup>lt;sup>D</sup>Sample is a duplicate of the preceding sample

|                    |         |             | Sample ID       | 14NC21SS047-3 | 14NC21SS048-1 | 14NC21SS048-1.5 D | 14NC21SS048-2 | 14NC21SS048-3 | 14NC21SS049-1 |
|--------------------|---------|-------------|-----------------|---------------|---------------|-------------------|---------------|---------------|---------------|
|                    |         | Location ID |                 | SS047-3       | SS048-1       | SS048-1.5         | SS048-2       | SS048-3       | SS049-1       |
|                    |         |             | Collection Date | 8/5/2014      | 8/5/2014      | 8/5/2014          | 8/5/2014      | 8/5/2014      | 8/5/2014      |
| Specific<br>Method | Analyte | Units       | Cleanup Level1  |               |               |                   |               |               |               |
| 6020               | Arsenic | mg/Kg       | 11              | 6.9           | 9.1           | 7.3               | 6.2           | 5.6           | 6.6           |

|                    |         |       | Sample ID       | 14NC21SS049-1.5 <sup>D</sup> | 14NC21SS049-2 | 14NC21SS049-3 |
|--------------------|---------|-------|-----------------|------------------------------|---------------|---------------|
|                    |         |       | Location ID     | SS049-1.5                    | SS049-2       | SS049-3       |
|                    |         |       | Collection Date | 8/5/2014                     | 8/5/2014      | 8/5/2014      |
| Specific<br>Method | Analyte | Units | Cleanup Level1  |                              |               |               |
| 6020               | Arsenic | mg/Kg | 11              | 8.5                          | 5.8 J         | 9.7           |

#### Notes:

<sup>&</sup>lt;sup>1</sup> Cleanup Level Established in 2009 Northeast Cape Decision Document

 $<sup>^{\</sup>mathrm{D}}\mathrm{Sample}$  is a duplicate of the preceding sample

### 2018 Northeast Cape Second Five-Year Review – St. Lawrence Island, Alaska Table D-2.2 2012-2014 Site 21 Excavation Confirmation Results

|                    |         |       | Sample ID                  | 14NC21SS001 | 14NC21SS002 | 14NC21SS003 <sup>D</sup> | 14NC21SS004              | 14NC21SS005 | 14NC21SS006 | 14NC21SS007 |
|--------------------|---------|-------|----------------------------|-------------|-------------|--------------------------|--------------------------|-------------|-------------|-------------|
|                    |         |       | Location ID                | 21SS001     | 21SS002     | 21SS003                  | 21SS004                  | 21SS005     | 21SS006     | 21SS007     |
|                    |         |       | Collection Date            | 8/7/2014    | 8/7/2014    | 8/7/2014                 | 8/10/2014                | 8/10/2014   | 8/10/2014   | 8/10/2014   |
| Analysis<br>Method | Analyte | Unit  | Cleanup Level <sup>1</sup> |             |             |                          |                          |             | -           |             |
| 6020               | Arsenic | mg/kg | 11                         | 3.7         | 5.8         | 5.3                      | 13                       | 5.2         | 3.3         | 7.6         |
| •                  |         |       |                            |             |             |                          |                          |             |             |             |
|                    |         |       | Sample ID                  | 14NC21SS008 | 14NC21SS009 | 14NC21SS010              | 14NC21SS011              | 14NC21SS012 | 14NC21SS013 | 14NC21SS014 |
|                    |         |       | Location ID                | 21SS008     | 21SS009     | 21SS010                  | 21SS011                  | 21SS012     | 21SS013     | 21SS014     |
|                    |         |       | Collection Date            | 8/10/2014   | 8/10/2014   | 8/10/2014                | 8/10/2014                | 8/10/2014   | 8/10/2014   | 8/10/2014   |
| Analysis<br>Method | Analyte | Unit  | Cleanup Level <sup>1</sup> |             |             |                          |                          |             |             |             |
| 6020               | Arsenic | mg/kg | 11                         | 2.9         | 6.2         | 7.4                      | 9.4                      | 10          | 4.8         | 3.8         |
|                    |         |       |                            |             |             |                          |                          |             |             |             |
|                    |         |       | Sample ID                  | 14NC21SS015 | 14NC21SS016 | 14NC21SS017              | 14NC21SS018 <sup>D</sup> | 14NC21SS019 | 14NC21SS020 | 14NC21SS021 |
|                    |         |       | Location ID                | 21SS015     | 21SS016     | 21SS017                  | 21SS018                  | 21SS019     | 21SS020     | 21SS021     |
|                    |         |       | Collection Date            | 8/10/2014   | 8/10/2014   | 8/10/2014                | 8/10/2014                | 8/10/2014   | 8/10/2014   | 8/10/2014   |
| Analysis<br>Method | Analyte | Unit  | Cleanup Level <sup>1</sup> |             |             |                          |                          |             |             |             |
| 6020               | Arsenic | mg/kg | 11                         | 10          | 3.4         | 9.1                      | 7.4                      | 3.6         | 2.5         | 4.5         |

#### Notes:

Bold-(Orange box), positive result exceeds Decision Document cleanup criteria.<sup>1</sup>

|                    |         |       | Sample ID                  | 13NC21SS021 | 13NC21SS022 | 13NC21SS025 | 13NC21SS031 | 13NC21SS033 | 13NC21SS034 | 13NC21SS037 |
|--------------------|---------|-------|----------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                    |         |       | Location ID                | 21-021      | 21-021      | 21-025      | 21-031      | 21-033      | 21-034      | 21-037      |
|                    |         |       | Collection Date            | 8/23/2013   | 8/23/2013   | 8/23/2013   | 8/23/2013   | 8/23/2013   | 8/23/2013   | 8/23/2013   |
| Analysis<br>Method | Analyte | Unit  | Cleanup Level <sup>1</sup> |             |             |             |             |             |             |             |
| 6020               | Arsenic | mg/kg | 11                         | 6.0         | 4.4         | 9.9         | 7.6         | 5.8         | 4.4         | 5.7         |
|                    |         |       |                            |             |             |             |             |             |             |             |
|                    |         |       | Sample ID                  | 13NC21SS038 | 13NC21SS039 | 13NC21SS042 | 13NC21SS044 | 13NC21SS048 | 13NC21SS049 | 13NC21SS050 |
|                    |         |       | Location ID                | 21-038      | 21-039      | 21-042      | 21-044      | 21-048      | 21-049      | 21-050      |
|                    |         |       | Collection Date            | 8/24/2013   |             |             | 9/3/2013    | 9/3/2013    | 9/3/2013    | 9/3/2013    |
| Analysis<br>Method | Analyte | Unit  | Cleanup Level <sup>1</sup> |             |             |             |             |             |             |             |
| 6020               | Arsenic | mg/kg | 11                         | 4.4         | 2.2         | 2.0         | 11          | 6.7         | 5.1         | 7.0         |
|                    |         |       |                            |             |             |             |             |             |             |             |
|                    |         |       | Sample ID                  | 13NC21SS051 |             |             |             |             |             |             |
|                    |         |       | Location ID                | 21-051      |             |             |             |             |             |             |
|                    |         |       | Collection Date            | 9/3/2013    |             |             |             |             |             |             |
| Analysis<br>Method | Analyte | Unit  | Cleanup Level <sup>1</sup> |             |             |             |             |             |             |             |
| 6020               | Arsenic | mg/kg | 11                         | 7.9         |             |             |             |             |             |             |

#### Notes:

**Bold-**(Orange box), positive result exceeds Decision Document cleanup criteria.<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> Cleanup Level Established in 2009 Decision Document

<sup>&</sup>lt;sup>D</sup> Sample is a field duplicate of preceding sample.

<sup>&</sup>lt;sup>1</sup> Cleanup Level Established in 2009 Decision Document

<sup>&</sup>lt;sup>D</sup> Sample is a field duplicate of preceding sample.

### 2018 Northeast Cape Second Five-Year Review – St. Lawrence Island, Alaska Table D-2.2 2012-2014 Site 21 Excavation Confirmation Results

|                    |         |       | Sample ID                  | 14NC21SS022 | 14NC21SS023 | 14NC21SS024 <sup>D</sup> | 14NC21SS025 | 14NC21SS026 | 14NC21SS027 | 14NC21SS028 <sup>D</sup> |
|--------------------|---------|-------|----------------------------|-------------|-------------|--------------------------|-------------|-------------|-------------|--------------------------|
|                    |         |       | Location ID                | 21SS022     | 21SS023     | 21SS024                  | 21SS025     | 21SS026     | 21SS027     | 21SS028                  |
|                    |         |       | Collection Date            | 8/10/2014   | 8/10/2014   | 8/11/2014                | 8/19/2014   | 8/19/2014   | 8/19/2014   | 8/19/2014                |
| Analysis<br>Method | Analyte | Unit  | Cleanup Level <sup>1</sup> |             |             | -                        |             |             |             |                          |
| 6020               | Arsenic | mg/kg | 11                         | 5.8         | 2.1         | 3.1                      | 5.9         | 6.6         | 6.9         | 6.5                      |

|                    |         |       | Sample ID                  | 14NC21SS029 | 14NC21SS030 | 14NC21SS031 | 14NC21SS032 | 14NC21SS033 | 14NC21SS034 | 14NC21SS035 |
|--------------------|---------|-------|----------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                    |         |       | Location ID                | 21SS029     | 21SS030     | 21SS031     | 21SS032     | 21SS033     | 21SS034     | 21SS035     |
|                    |         |       | Collection Date            | 8/19/2014   | 8/19/2014   | 8/19/2014   | 8/19/2014   | 8/19/2014   | 8/19/2014   | 8/19/2014   |
| Analysis<br>Method | Analyte | Unit  | Cleanup Level <sup>1</sup> |             |             |             |             |             |             |             |
| 6020               | Arsenic | mg/kg | 11                         | 6.5         | 6.7         | 6.5         | 7.8         | 7.1         | 5.8         | 7.9         |

#### Notes:

**Bold-**(Orange box), positive result exceeds Decision Document cleanup criteria. 1

|                    |         |       | Sample ID                  | 12NC21SS002 | 12NC21SS003 | 12NC21SS004 | 12NC21SS006 | 12NC21SS007 | 12NC21SS008 | 12NC21SS009 |
|--------------------|---------|-------|----------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                    |         |       | Location ID                | NC2122002   | NC2122003   | NC2122004   | NC2122006   | NC2122007   | NC2122008   | NC2122009   |
|                    |         |       | Collection Date            | 8/15/2012   | 8/15/2012   | 8/15/2012   | 8/15/2012   | 8/15/2012   | 8/15/2012   | 8/15/2012   |
| Analysis<br>Method | Analyte | Unit  | Cleanup Level <sup>1</sup> |             |             |             |             |             |             |             |
| 6020               | Arsenic | mg/kg | 11                         | 4.0         | 5.2         | 6.0         | 6.1         | 8.8         | 3.3         | 9.4         |

|                    |         |       | Sample ID                  | 12NC21SS011 | 12NC21SS012 | 12NC21SS021 |  |  |
|--------------------|---------|-------|----------------------------|-------------|-------------|-------------|--|--|
|                    |         |       | Location ID                | NC2122011   | NC2122021   | NC2122021   |  |  |
|                    |         |       | Collection Date            | 8/15/2012   | 8/15/2012   | 9/4/2012    |  |  |
| Analysis<br>Method | Analyte | Unit  | Cleanup Level <sup>1</sup> |             |             |             |  |  |
| 6020               | Arsenic | mg/kg | 11                         | 4.7         | 5.6         | 5.3         |  |  |

#### Notes:

**Bold-**(Orange box), positive result exceeds Decision Document cleanup criteria.<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> Cleanup Level Established in 2009 Decision Document

<sup>&</sup>lt;sup>D</sup> Sample is a field duplicate of preceding sample.

<sup>&</sup>lt;sup>1</sup> Cleanup Level Established in 2009 Decision Document

<sup>&</sup>lt;sup>D</sup> Sample is a field duplicate of preceding sample.

# ATTACHMENT D-3 ProUCL Input

## 2018 Northeast Cape Second Five-Year Review – St. Lawrence Island, Alaska Table D-3.1 ProUCL Input

| Site 21 Excavation Confirmation - Arsenic |   |
|-------------------------------------------|---|
| 3.7                                       | Ī |
| 5.8                                       |   |
| 5.2                                       |   |
| 3.3                                       |   |
| 7.6                                       |   |
| 2.9                                       |   |
| 6.2                                       |   |
| 7.4                                       |   |
| 9.4                                       |   |
| 10                                        |   |
| 4.8                                       |   |
| 3.8                                       |   |
| 10                                        |   |
| 3.4                                       |   |
| 9.1                                       |   |
| 3.6                                       | _ |
| 2.5                                       | _ |
| 4.5                                       | _ |
| 5.8                                       | _ |
| 3.1                                       | _ |
| 5.9                                       | _ |
| 6.6                                       |   |
| 6.9                                       |   |
| 6.5                                       |   |
| 6.7                                       |   |
| 6.5                                       |   |
| 7.8                                       |   |
| 7.1                                       |   |
| 5.8                                       |   |
| 7.9                                       |   |
| 6                                         |   |
| 4.4                                       | _ |
| 9.9                                       | _ |
| 7.6                                       | _ |
| 5.8                                       |   |
| 4.4                                       |   |
| 5.7                                       | 4 |
| 4.4                                       | 4 |
| 2.2                                       | 4 |
| 2                                         | 4 |
| 11<br>6.7                                 | 4 |
|                                           | - |
| 5.1<br>7                                  | 4 |
| 7.9                                       | - |
| 7.9<br>4                                  | - |
| 5.2                                       | 4 |
| 6                                         | - |
| 6.1                                       | - |
| 8.8                                       | 4 |
| 9.4                                       | - |
| 3.3                                       | - |
| 4.7                                       | - |
|                                           | 4 |
| 5.6                                       | 4 |
| 5.3<br>13                                 | 4 |
| 13                                        |   |

# ATTACHMENT D-4 ProUCL Output

### 2018 Northeast Cape Second Five-Year Review – St. Lawrence Island, Alaska Table D-4.1 Outlier Tests for Selected Uncensored Variables

**User Selected Options** 

Date/Time of Computation 8/12/2019 13:43

From File KM Pro UCL Input.xls

Full Precision OFF

Rosner's Outlier Test for Site 21 Excavation Confirmation - Arsenic

Mean 6.095

Standard Deviation 2.342 Number of data 56

Nullibel of data St

Number of suspected outliers 1

Potential Obs. Test Critical

# Mean sd outlier Number value value (5%)

1 6.095 2.321 13 56 2.975 3.172

For 5% Significance Level, there is no Potential Outlier

For 1% Significance Level, there is no Potential Outlier

### 2018 Northeast Cape Second Five-Year Review – St. Lawrence Island, Alaska Table D-4.2 Goodness-of-Fit Test Statistics

#### Goodness-of-Fit Test Statistics for Uncensored Full Data Sets without Nondetects

#### **User Selected Options**

Date/Time of Computation 8/10/2019 3:41:21 PM

From File KM Pro UCL Input.xls

Full Precision OFF Confidence Coefficient 0.95

#### Site 21 Excavation Confirmation - Arsenic

#### **Raw Statistics**

Number of Valid Observations 56 Number of Distinct Observations 42

Minimum 2

Maximum 13

Mean of Raw Data 6.095

Standard Deviation of Raw Data 2.342

Khat 6.658

Theta hat 0.915 Kstar 6.313

Kstar 6.313 Theta star 0.965

Mean of Log Transformed Data 1.73

Standard Deviation of Log Transformed Data 0.408

#### **Normal GOF Test Results**

Correlation Coefficient R 0.986

Approximate Shapiro Wilk Test Statistic 0.968

Approximate Shapiro Wilk P Value 0.287

Lilliefors Test Statistic 0.0766

Lilliefors Critical (0.05) Value 0.118

Data appear Normal at (0.05) Significance Level

#### **Gamma GOF Test Results**

Correlation Coefficient R 0.996

A-D Test Statistic 0.199
A-D Critical (0.05) Value 0.752

K-S Test Statistic

K-S Critical(0.05) Value 0.119

0.0733

Data appear Gamma Distributed at (0.05) Significance Level

#### **Lognormal GOF Test Results**

Correlation Coefficient R 0.99

Approximate Shapiro Wilk Test Statistic 0.974
Approximate Shapiro Wilk P Value 0.448

Lilliefors Test Statistic 0.0996

Lilliefors Critical (0.05) Value 0.118

Data appear Lognormal at (0.05) Significance Level

### 2018 Northeast Cape Second Five-Year Review – St. Lawrence Island, Alaska Table D-4.3 Hypothesis Testing

#### One Sample t-Test for Uncensored Full Data Sets without Nondetects

**User Selected Options** 

Date/Time of Computation 8/10/2019 3:43:18 PM

From File KM Pro UCL Input.xls

Full Precision OFF

Confidence Coefficient 95% Substantial Difference 0.000

Action Level 11.000

Selected Null Hypothesis Mean >= Action Level (Form 2)
Alternative Hypothesis Mean < the Action Level

#### Site 21 Excavation Confirmation - Arsenic

#### One Sample t-Test

#### **Raw Statistics**

Number of Valid Observations 56 Number of Distinct Observations 42

 Minimum
 2

 Maximum
 13

 Mean
 6.095

 Median
 5.85

 SD
 2.342

 SE of Mean
 0.313

H0: Sample Mean >= 11 (Form 2)

Test Value -15.67

Degrees of Freedom 55 Critical Value (0.05) -1.673

P-Value 3.056E-22

#### Conclusion with Alpha = 0.05

Reject H0, Conclude Mean < 11

P-Value < Alpha (0.05)

### 2018 Northeast Cape Second Five-Year Review – St. Lawrence Island, Alaska Table D-4.4 UCL Statistics

#### Normal UCL Statistics for Uncensored Full Data Sets

**User Selected Options** 

Date/Time of Computation 8/10/2019 3:46:53 PM

From File KM Pro UCL Input.xls

95% Normal UCL

Full Precision OFF
Confidence Coefficient 95%

#### Site 21 Excavation Confirmation - Arsenic

#### **General Statistics**

| Total Number of Observations | 56    | Number of Distinct Observations | 42    |
|------------------------------|-------|---------------------------------|-------|
|                              |       | Number of Missing Observations  | 0     |
| Minimum                      | 2     | Mean                            | 6.095 |
| Maximum                      | 13    | Median                          | 5.85  |
| SD                           | 2.342 | SD of logged Data               | 0.408 |
| Coefficient of Variation     | 0.384 | Skewness                        | 0.58  |

#### **Normal GOF Test**

| Normal GOF Test                          | 0.968  | Shapiro Wilk Test Statistic  |
|------------------------------------------|--------|------------------------------|
| Data appear Normal at 5% Significance    | 0.287  | 5% Shapiro Wilk P Value      |
| 766 Lilliefors GOF Test                  | 0.0766 | Lilliefors Test Statistic    |
| 18 Data appear Normal at 5% Significance | 0.118  | 5% Lilliefors Critical Value |

#### Data appear Normal at 5% Significance Level

#### **Assuming Normal Distribution**

| 00,0110111141100=   |       | or to compare the comments         |       |
|---------------------|-------|------------------------------------|-------|
| 95% Student's-t UCL | 6.618 | 95% Adjusted-CLT UCL (Chen-1995)   | 6.635 |
|                     |       | 95% Modified-t LICL (Johnson-1978) | 6 622 |

95% UCLs (Adjusted for Skewness)

#### Suggested UCL to Use

95% Student's-t UCL 6.618

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

These recommendations are based upon the results of the simulation studies summarized in Singh, Singh, and laci (2002) and Singh and Singh (2003). However, simulations results will not cover all Real World data sets.

For additional insight the user may want to consult a statistician.

# APPENDIX E Second Five-Year Review Field Documentation



| I. SITE IN                                                                                                                                                                                                          | FORMATION                                            | 111                                                       |                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------|--------------------|
| Site name: 21 - Wostewater Tank                                                                                                                                                                                     | Date of inspection: 8                                | 12/18                                                     | 1,850              |
| Location and Region: Northeast Cape                                                                                                                                                                                 | EPA ID: AK9799                                       | 1                                                         |                    |
| Agency, office, or company leading the five-year review: USACE                                                                                                                                                      | Weather/temperature:                                 |                                                           |                    |
|                                                                                                                                                                                                                     | Monitored natural attenuat<br>Institutional controls |                                                           | erical Comments    |
| Attachments:   Inspection team roster attached                                                                                                                                                                      | □ Site map attached                                  | LA HETT III                                               | - Maj              |
| II. INTERVIEWS                                                                                                                                                                                                      | (Check all that apply)                               |                                                           |                    |
| 1. O&M site manager                                                                                                                                                                                                 | The surpassion Act                                   | Aller Late                                                |                    |
| Name Interviewed □ at site □ at office □ by phone Phon Problems, suggestions; □ Report attached                                                                                                                     | Title e no.                                          | Ring agrad a<br>reported ha<br>idalos associ<br>primis co | Date               |
| 2. O&M staff                                                                                                                                                                                                        | e no.                                                |                                                           | and the            |
| 3. Local regulatory authorities and response agencies office, police department, office of public health or exother city and county offices, etc.) Fill in all that appropriate the contact Corris Don Contact Name | environmental health, zonin<br>ply.                  | g office, rec                                             | order of deeds, or |
| Name Problems; suggestions; AReport attached                                                                                                                                                                        |                                                      |                                                           |                    |
| Agency                                                                                                                                                                                                              | dreenh sti                                           | e Properties                                              | in T               |
| Name Problems; suggestions; □ Report attached                                                                                                                                                                       | Title                                                | Date                                                      | Phone no.          |
| 4. Other interviews (optional) AReport attached                                                                                                                                                                     | d.                                                   | ***                                                       | SHIRES.            |
|                                                                                                                                                                                                                     |                                                      |                                                           |                    |

|     | III. ON-SITE DOCUMENTS                                                                                                         | & RECORDS VERIFIED (                                                                   | Check all that appl           | у)                      |
|-----|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------|-------------------------|
| 1.  | O&M Documents  O&M manual  As-built drawings  Maintenance logs  Remarks  Decision Document and  AAPS.                          | Readily available □ Up □ Readily available □ Readily available   St FYR Used for signs | ☐ Up to date                  | □ N/A                   |
| 2.  | Site-Specific Health and Safety Plan  Contingency plan/emergency respons Remarks                                               | se plan                                                                                | •                             | ⊠N/A<br>⊠N/A            |
| 3.  | O&M and OSHA Training Records Remarks                                                                                          | □ Readily available                                                                    | ☐ Up to date                  | ØN/A                    |
| 4.  | Permits and Service Agreements  ☐ Air discharge permit  ☐ Effluent discharge  ☐ Waste disposal, POTW  ☐ Other permits  Remarks |                                                                                        | ☐ Up to date<br>to date ► N/A | ⊠ N/A<br>⊠ N/A<br>⊠ N/A |
| 5.  | Gas Generation Records □ R Remarks                                                                                             |                                                                                        |                               |                         |
| 6.  | Settlement Monument Records Remarks                                                                                            | □ Readily available                                                                    | □ Up to date                  | № N/A                   |
| 7.  | Groundwater Monitoring Records Remarks                                                                                         |                                                                                        | ☐ Up to date                  | ⊠ N/A                   |
| 8.  | Leachate Extraction Records Remarks                                                                                            | □ Readily available                                                                    | ☐ Up to date                  | ⊠N/A                    |
| 9.  | Discharge Compliance Records  ☐ Air ☐ Water (effluent)  Remarks                                                                | □ Readily available □ Readily available                                                | ☐ Up to date ☐ Up to date     | ØN/A<br>ØN/A            |
| 10. | Daily Access/Security Logs Remarks                                                                                             | □ Readily available                                                                    | □ Up to date                  | ØN/A                    |

| В. О | ther Site Conditions                                           | Ola                                                                                            |                                                                                     |
|------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|      | and have fair to good of main road, and ver on provided water. | vertion are at original, PM gade it respectative cover. Ground is greative mat appears healthy | with surrounding grave pade<br>relatively weth swampy off<br>y Biogenic sheen noted |
|      |                                                                |                                                                                                | ARRIVE STREET                                                                       |
|      | VII. LA                                                        | NDFILL COVERS                                                                                  | N/A                                                                                 |
| A. L | andfill Surface                                                | acre ju tare diame sambe se ve salve                                                           | Orb 18 Mark personal and the first                                                  |
| 1.   | Settlement (Low spots) Areal extent Remarks                    | ☐ Location shown on site map Depth                                                             | □ Settlement not evident                                                            |
|      | Cracks Lengths Wid Remarks                                     | ☐ Location shown on site map  Iths Depths                                                      | ☐ Cracking not evident                                                              |
|      | Erosion Areal extent Remarks                                   | ☐ Location shown on site map Depth                                                             | □ Erosion not evident                                                               |
|      | Holes Areal extent Remarks                                     | ☐ Location shown on site map  Depth                                                            | ☐ Holes not evident                                                                 |
|      | Vegetative Cover ☐ G ☐ Trees/Shrubs (indicate size as Remarks  |                                                                                                | ished □ No signs of stress                                                          |
|      | Alternative Cover (armored a                                   | rock, concrete, etc.)                                                                          |                                                                                     |
|      | Bulges Areal extent Remarks                                    | ☐ Location shown on site map<br>Height_                                                        | ☐ Bulges not evident                                                                |

| 8. | ☐ Wet areas ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐     | Wet areas/water damage not evident Location shown on site map Areal extent |             |
|----|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 9. | . Slope Instability □ Slides □ I Areal extent Remarks | Location shown on site map □ No evidence of slope                                                                                                                                                  | instability |
| В. |                                                       | N/A earth placed across a steep landfill side slope to interrupturface runoff and intercept and convey the runoff to a                                                                             |             |
| 1. | Remarks                                               | Location shown on site map □ N/A or ol                                                                                                                                                             | cay         |
| 2. | ·                                                     | Location shown on site map \square N/A or ol                                                                                                                                                       | cay         |
| 3. | ~ ~                                                   | Location shown on site map □ N/A or ok                                                                                                                                                             | cay         |
| C. |                                                       | ats, riprap, grout bags, or gabions that descend down the unoff water collected by the benches to move off of the                                                                                  |             |
| 1. |                                                       | shown on site map                                                                                                                                                                                  |             |
| 2. |                                                       | shown on site map                                                                                                                                                                                  |             |
| 3. |                                                       | shown on site map                                                                                                                                                                                  |             |

| 4.     | Undercutting                                                                                                                                                                                             |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.     | Obstructions Type                                                                                                                                                                                        |
| 6.     | Excessive Vegetative Growth  No evidence of excessive growth  Vegetation in channels does not obstruct flow  Location shown on site map  Remarks                                                         |
| D. Cov | ver Penetrations □ Applicable □ N/A                                                                                                                                                                      |
| 1.     | Gas Vents □ Active□ Passive □ Properly secured/locked □ Functioning □ Routinely sampled □ Good condition □ Evidence of leakage at penetration □ Needs Maintenance □ N/A Remarks                          |
| 2.     | Gas Monitoring Probes  □ Properly secured/locked □ Functioning □ Routinely sampled □ Good condition □ Evidence of leakage at penetration □ Needs Maintenance □ N/A  Remarks □ N/A                        |
| 3.     | Monitoring Wells (within surface area of landfill)  □ Properly secured/locked □ Functioning □ Routinely sampled □ Good condition □ Evidence of leakage at penetration □ Needs Maintenance □ N/A  Remarks |
| 4.     | Leachate Extraction Wells  □ Properly secured/locked □ Functioning □ Routinely sampled □ Good condition □ Evidence of leakage at penetration □ Needs Maintenance □ N/A  Remarks                          |
| 5.     | Settlement Monuments                                                                                                                                                                                     |

| E. Gas Collection and Treatment  |                                                                                                                                     |                   |  |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|
| 1.                               | Gas Treatment Facilities  ☐ Flaring ☐ Thermal destructio ☐ Good condition☐ Needs Maintenanc Remarks                                 |                   |  |
| 2.                               | Gas Collection Wells, Manifolds and ☐ Good condition☐ Needs Maintenanc Remarks                                                      |                   |  |
| 3.                               | Gas Monitoring Facilities (e.g., gas monitoring of adjacent homes or buildings)  □ Good condition□ Needs Maintenance □ N/A  Remarks |                   |  |
| F. C                             | F. Cover Drainage Layer □ Applicable □ N/A                                                                                          |                   |  |
| 1.                               | Outlet Pipes Inspected  Remarks                                                                                                     | unctioning □ N/A  |  |
| 2.                               | Outlet Rock Inspected  Remarks                                                                                                      | unctioning □ N/A  |  |
| G. Detention/Sedimentation Ponds |                                                                                                                                     |                   |  |
| 1.                               | Siltation Areal extent  ☐ Siltation not evident  Remarks                                                                            | Depth \Bigcup N/A |  |
| 2.                               | Erosion Areal extent □ Erosion not evident Remarks                                                                                  | Depth             |  |
| 3.                               | Outlet Works                                                                                                                        | ıg □N/A           |  |
| 4.                               | <b>Dam</b> □ Functioning Remarks                                                                                                    | ng □N/A           |  |

| н. Б  | Retaining Walls   Applicable N/A                                                                                                                                                          |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.    | Deformations       □ Location shown on site map       □ Deformation not evident         Horizontal displacement       Vertical displacement         Rotational displacement       Remarks |
| 2.    | Degradation       □ Location shown on site map       □ Degradation not evident         Remarks       .                                                                                    |
| I. Pe | erimeter Ditches/Off-Site Discharge                                                                                                                                                       |
| 1.    | Siltation □ Location shown on site map □ Siltation not evident  Areal extent □ Depth □  Remarks □                                                                                         |
| 2.    | Vegetative Growth       □ Location shown on site map       □ N/A         □ Vegetation does not impede flow       Areal extent       Type         Remarks       Type       Type            |
| 3.    | Erosion                                                                                                                                                                                   |
| 4.    | Discharge Structure ☐ Functioning ☐ N/A Remarks                                                                                                                                           |
|       | VIII. VERTICAL BARRIER WALLS □ Applicable ※N/A                                                                                                                                            |
| 1.    | Settlement       □ Location shown on site map       □ Settlement not evident         Areal extent       Depth         Remarks       □                                                     |
| 2.    | Performance Monitoring Type of monitoring  □ Performance not monitored  Frequency □ Evidence of breaching  Head differential Remarks □                                                    |

|                                                                                 | IX. GROUNDWATER/SURFACE WATER REMEDIES □ Applicable 🙀 N/A                                                                                              |  |  |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| A. Groundwater Extraction Wells, Pumps, and Pipelines                           |                                                                                                                                                        |  |  |
| 1.                                                                              | Pumps, Wellhead Plumbing, and Electrical  ☐ Good condition☐ All required wells properly operating ☐ Needs Maintenance ☐ N/A  Remarks                   |  |  |
| 2.                                                                              | Extraction System Pipelines, Valves, Valve Boxes, and Other Appurtenances  □ Good condition□ Needs Maintenance  Remarks                                |  |  |
| 3.                                                                              | Spare Parts and Equipment  ☐ Readily available ☐ Good condition☐ Requires upgrade ☐ Needs to be provided  Remarks                                      |  |  |
| B. Surface Water Collection Structures, Pumps, and Pipelines   Applicable   N/A |                                                                                                                                                        |  |  |
| 1.                                                                              | Collection Structures, Pumps, and Electrical  ☐ Good condition☐ Needs Maintenance  Remarks                                                             |  |  |
| 2.                                                                              | Surface Water Collection System Pipelines, Valves, Valve Boxes, and Other Appurtenances  □ Good condition□ Needs Maintenance  Remarks                  |  |  |
| 3.                                                                              | Spare Parts and Equipment  □ Readily available □ Good condition□ Requires upgrade □ Needs to be provided  Remarks  ——————————————————————————————————— |  |  |

| C.          | Treatment System                                                                      | □ Applicable                            | DÍN/A                                   | one) staw garat mate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------|---------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.          | Treatment Train (Che  ☐ Metals removal  ☐ Air stripping  ☐ Filters                    | □ Oil/water sepa<br>□ Carbo             | aration   Bioremediation adsorbers      | on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             | $\square$ Additive (e.g., chelati $\square$ Others                                    | on agent, flocculent                    | t)                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | ☐ Good condition ☐ Sampling ports prope ☐ Sampling/maintenanc ☐ Equipment properly in | e log displayed and<br>lentified        | etional<br>up to date                   | in Consupring Agency (by set of the Atlantic program)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | ☐ Quantity of groundwa ☐ Quantity of surface w Remarks                                |                                         | у                                       | A Applementation of the contract of the contra |
| 2.          | Electrical Enclosures a  □ N/A □ Goo  Remarks                                         | nd Panels (properl<br>d condition□ Need |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.          | Tanks, Vaults, Storage □ N/A □ Goo Remarks                                            |                                         | er secondary containment                | □ Needs Maintenance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4.          | D 1                                                                                   | d condition□ Need                       | s Maintenance                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5.          | Treatment Building(s)  □ N/A □ Goo  □ Chemicals and equipm  Remarks                   | d condition (esp. ro                    |                                         | □ Needs repair                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6.          | Monitoring Wells (pum  □ Properly secured/lock  □ All required wells loca  Remarks    | ed  Functioning                         | nedy) □ Routinely sampled s Maintenance | □ Good condition □ N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>D.</b> ] | Monitoring Data                                                                       |                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.          | Monitoring Data  ☑ Is routinely submitted                                             | on time                                 | ☑Is of acceptable qu                    | ıality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2.          | Monitoring data suggest  ☐ Groundwater plume is                                       |                                         | ed □ Contaminant conc                   | entrations are declining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Ionitored Natural Attenuation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Monitoring Wells (natural attenuation remedy)  □ Properly secured/locked □ Functioning □ Routinely sampled □ Good condition □ All required wells located □ Needs Maintenance □ N/A  Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| X. OTHER REMEDIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| If there are remedies applied at the site which are not covered above, attach an inspection sheet describing the physical nature and condition of any facility associated with the remedy. An example would be soil vapor extraction.                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| XI. OVERALL OBSERVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Implementation of the Remedy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Describe issues and observations relating to whether the remedy is effective and functioning as designed. Begin with a brief statement of what the remedy is to accomplish (i.e., to contain contaminant plume, minimize infiltration and gas emission, etc.).  The selected remedy was to excavate and remove PCB- and arrenic -contaminated soil. The excavate and remove PCB- and arrenic -contaminated soil. The excavation areas are not easily identificable and are avered with Phr Vegetative cover is fair to good in most areas. No petroleum odor was detected at sistem on suface water in adjacent ponds appeared to be biogenix. The selected remedy appears effective: |
| Adequacy of O&M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Describe issues and observations related to the implementation and scope of O&M procedures. In particular, discuss their relationship to the current and long-term protectiveness of the remedy.  Where is no visual evidence of contamination remaining at Site 21.                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| C. | Early Indicators of Potential Remedy Problems                                                                                                                                                                                  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Describe issues and observations such as unexpected changes in the cost or scope of O&M or a high frequency of unscheduled repairs, that suggest that the protectiveness of the remedy may be compromised in the future.  None |
|    |                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                |
| D. | Opportunities for Optimization                                                                                                                                                                                                 |
|    | Describe possible opportunities for optimization in monitoring tasks or the operation of the remedy.                                                                                                                           |
|    |                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                |
| ~  |                                                                                                                                                                                                                                |

| I. SITE INFORMATION                                                                                                       |                                                               |  |  |
|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|--|
| Site name: Site 28 - Drainage Basin                                                                                       | Date of inspection: 63 Aug 2018                               |  |  |
| Location and Region: NEC                                                                                                  | EPAID: AK9799 F299                                            |  |  |
| Agency, office, or company leading the five-year review: US ACE                                                           | Weather/temperature:  50 F OVENCAST                           |  |  |
|                                                                                                                           | Monitored natural attenuation nstitutional controls           |  |  |
| Attachments:    Inspection team roster attached                                                                           | ☐ Site map attached                                           |  |  |
| II. INTERVIEWS                                                                                                            | (Check all that apply)                                        |  |  |
| 1. O&M site manager Now Name  Interviewed □ at site □ at office □ by phone Phone Problems, suggestions; □ Report attached |                                                               |  |  |
| Name Interviewed □ at site □ at office □ by phone Phone Problems, suggestions; □ Report attached                          | Title Date                                                    |  |  |
| Agency <u>ADEC</u> Contact Corres Dunkin Name                                                                             | nvironmental health, zoning office, recorder of deeds, or ly. |  |  |
| Agency                                                                                                                    | Title Date Phone no.                                          |  |  |
| 4. Other interviews (optional) Report attached                                                                            |                                                               |  |  |

|    | III. ON-SITE DOCUMENT                                                                                                          | TS & RECORDS VERIFIED (                                                                                             | Check all that appl        | y)                   |
|----|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------|
| Ĺ  | O&M Documents  O&M manual  As-built drawings  Maintenance logs  Remarks Decision Document  Site maps                           | □ Readily available □ Up t □ Readily available □ Readily available \tau \ Sed \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | ☐ Up to date☐ Up to date   | XN/A<br>IXN/A<br>and |
|    | Site-Specific Health and Safety Pl  ☐ Contingency plan/emergency resp Remarks                                                  |                                                                                                                     |                            | ĭXN/A<br>™N/A        |
| 3. | O&M and OSHA Training Recor<br>Remarks                                                                                         | <b>ds</b> □ Readily available                                                                                       | □ Up to date               | ZN/A                 |
| 1. | Permits and Service Agreements  ☐ Air discharge permit  ☐ Effluent discharge  ☐ Waste disposal, POTW  ☐ Other permits  Remarks | · · · · · · · · · · · · · · · · · · ·                                                                               | ☐ Up to date to date ⊠ N/A | № N/A<br>№ N/A       |
| 5. | Gas Generation Records Remarks                                                                                                 | □ Readily available □ Up                                                                                            | to date 🛮 🖾 N/A            |                      |
| 5. | Settlement Monument Records Remarks                                                                                            | □ Readily available                                                                                                 | □ Up to date               | ⊠ N/A                |
| 7. | Groundwater Monitoring Record Remarks                                                                                          | s □ Readily available                                                                                               | □ Up to date               | Ø N/A                |
| 0  | Leachate Extraction Records                                                                                                    | □ Readily available                                                                                                 | □ Up to date               | <b>V</b> ∏N/A        |
| 8. | Remarks                                                                                                                        |                                                                                                                     |                            |                      |
| 9. | Remarks  Discharge Compliance Records  □ Air □ Water (effluent) Remarks                                                        | □ Readily available □ Readily available                                                                             | □ Up to date □ Up to date  | ≅ N/A<br>□ N/A       |

|       |                                                                                                                                                 | IV. O&M COSTS                                                             |                                                                                                          |  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|
| I.    | O&M Organization  ☐ State in-house ☐ PRP in-house ☐ Federal Facility in-house ☐ Other USACE                                                     | ☐ Contractor for State<br>☐ Contractor for PRP<br>☐ Contractor for Federa | al Facility                                                                                              |  |
| 2.    | O&M Cost Records  □ Readily available □ Up to □ Funding mechanism/agreement i Original O&M cost estimate \$ 5 €                                 | n place                                                                   | eakdown attached                                                                                         |  |
| 3.    | From To Date Date |                                                                           | □ Breakdown attached |  |
|       | V. ACCESS AND INST                                                                                                                              | TITUTIONAL CONTR                                                          | OLS ⋈ Applicable □ N/A                                                                                   |  |
| 1.    |                                                                                                                                                 | ion shown on site map                                                     | ☐ Gates secured                                                                                          |  |
| B. Ot | ther Access Restrictions                                                                                                                        | - (100 × 11 H 11 H                                                        |                                                                                                          |  |
| 1.    | Signs and other security measure<br>Remarks                                                                                                     | es                                                                        | own on site map SN/A                                                                                     |  |

| C.  | Institutional Controls (ICs)                                                                                                                     |                |          |                |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|----------------|
| 1.  | Implementation and enforcement Site conditions imply ICs not properly implemented Site conditions imply ICs not being fully enforced             | □ Yes          | ™ No     | □ N/A<br>□ N/A |
|     | Type of monitoring (e.g., self-reporting, drive by) Periodic Penne Frequency 5 years                                                             |                |          | inspection)    |
|     | Responsible party/agency USACE Contact                                                                                                           |                |          |                |
|     | Name Title                                                                                                                                       | Da             | te       | Phone no.      |
|     | Reporting is up-to-date<br>Reports are verified by the lead agency                                                                               | MoYes<br>YaYes | □ No     | □ N/A □ N/A    |
|     | Specific requirements in deed or decision documents have been met Violations have been reported  Other problems or suggestions:  Report attached | ⊅Yes<br>□ Yes  |          | □ N/A<br>□ N/A |
| is, |                                                                                                                                                  |                |          |                |
| 2.  | Adequacy □ ICs are inadequate □ ICs are inadequate                                                                                               | quate          |          | □ N/A          |
| D.  | General                                                                                                                                          |                |          |                |
| Ī.  | Vandalism/trespassing ☐ Location shown on site map Remarks                                                                                       | andalism       | evident  |                |
| 2.  | Land use changes on site N/A Remarks                                                                                                             |                |          |                |
| 3.  | <b>Land use changes off site</b> ► N/A Remarks                                                                                                   |                |          |                |
|     | VI. GENERAL SITE CONDITIONS                                                                                                                      |                |          |                |
| A.  | <b>Roads</b> $\bowtie$ Applicable $\square$ N/A                                                                                                  |                |          |                |
| 1.  | Roads damaged ☐ Location shown on site map                                                                                                       | ds adequa      | ite⊟ N/A |                |

| B. Oth | 3. Other Site Conditions                                             |                                                                                                                  |                               |  |  |
|--------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------|--|--|
|        | water bodies. Debris<br>poles, rubber matting<br>debris en countered | rs and Shen present such as plywood, corrugated metal, at the Site Some at activities. Other res (utility poles) | and additional debris appears |  |  |
|        | VII. LANDI                                                           | FILL COVERS                                                                                                      | N/A                           |  |  |
| A. Lai | ndfill Surface                                                       |                                                                                                                  |                               |  |  |
| 1.     | Settlement (Low spots) Areal extent Remarks                          | ☐ Location shown on site map Depth                                                                               | □ Settlement not evident      |  |  |
| 2.     | Cracks Lengths Widths Remarks                                        | □ Location shown on site map  Depths                                                                             | □ Cracking not evident        |  |  |
| 3.     | Erosion Areal extent Remarks                                         | ☐ Location shown on site map<br>Depth                                                                            | □ Erosion not evident         |  |  |
| 4.     | Holes Areal extent Remarks                                           | ☐ Location shown on site map Depth                                                                               | □ Holes not evident           |  |  |
| 5.     | Vegetative Cover ☐ Grass ☐ Trees/Shrubs (indicate size and l Remarks | 1 1 3                                                                                                            | hed □ No signs of stress      |  |  |
| 6.     | Alternative Cover (armored rock Remarks                              | k, concrete, etc.)                                                                                               |                               |  |  |
| 7.     | Bulges Areal extent Remarks                                          | □ Location shown on site map Height                                                                              | ☐ Bulges not evident          |  |  |

| 8.   | Wet Areas/Water Damage  ☐ Wet areas  ☐ Ponding  ☐ Seeps  ☐ Soft subgrade  Remarks | ☐ Wet areas/water damage not evident ☐ Location shown on site map Areal extent ☐ Location shown on site map |     |
|------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 9.   | Slope Instability ☐ Slides Areal extent_ Remarks_                                 | ☐ Location shown on site map ☐ No evidence of slope instability                                                                                                                                                                           | Ğ   |
| В. В |                                                                                   | □ N/A ds of earth placed across a steep landfill side slope to interrupt the slop ity of surface runoff and intercept and convey the runoff to a lined                                                                                    | ie  |
| 1.   | Flows Bypass Bench<br>Remarks                                                     | ☐ Location shown on site map ☐ N/A or okay                                                                                                                                                                                                |     |
| 2.   | Bench Breached<br>Remarks                                                         | ☐ Location shown on site map ☐ N/A or okay                                                                                                                                                                                                |     |
| 3.   | Bench Overtopped<br>Remarks                                                       | □ Location shown on site map □ N/A or okay                                                                                                                                                                                                |     |
| C. L |                                                                                   | ntrol mats, riprap, grout bags, or gabions that descend down the steep si<br>w the runoff water collected by the benches to move off of the landfill                                                                                      | ide |
| 1.   | Areal extent                                                                      | Depth                                                                                                                                                                                                                                     |     |
| 2.   | Material Degradation □ Lo<br>Material type<br>Remarks                             |                                                                                                                                                                                                                                           |     |
| 3.   | Erosion                                                                           | Depth   No evidence of erosion                                                                                                                                                                                                            |     |

| 4.    | Undercutting ☐ Location shown on site map ☐ No evidence of undercutting  Areal extent Depth  Remarks                                                                                                                          |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.    | Obstructions Type No obstructions  Location shown on site map Areal extent  Size Remarks                                                                                                                                      |
| 6.    | Excessive Vegetative Growth  No evidence of excessive growth  Vegetation in channels does not obstruct flow  Location shown on site map  Remarks                                                                              |
| D. Co | ver Penetrations   Applicable   N/A                                                                                                                                                                                           |
| I.    | Gas Vents □ Active□ Passive □ Properly secured/locked □ Functioning □ Routinely sampled □ Good condition □ Evidence of leakage at penetration □ Needs Maintenance □ N/A Remarks □                                             |
| 2.    | Gas Monitoring Probes  □ Properly secured/locked □ Functioning □ Routinely sampled □ Good condition □ Evidence of leakage at penetration □ Needs Maintenance □ N/A Remarks                                                    |
| 3.    | Monitoring Wells (within surface area of landfill)  □ Properly secured/locked □ Functioning □ Routinely sampled □ Good condition □ Evidence of leakage at penetration □ Needs Maintenance □ N/A  Remarks                      |
| 4.    | Leachate Extraction Wells         □ Properly secured/locked □ Functioning       □ Routinely sampled       □ Good condition         □ Evidence of leakage at penetration       □ Needs Maintenance       □ N/A         Remarks |
| 5.    | Settlement Monuments       □ Located       □ Routinely surveyed       □ N/A         Remarks       □                                                                                                                           |

| E. G | as Collection and Treatment                                                            | □ Applicab  | le □ N/A    |                    |               |    |
|------|----------------------------------------------------------------------------------------|-------------|-------------|--------------------|---------------|----|
| 1,   | Gas Treatment Facilities  □ Flaring □ Thermal des □ Good condition□ Needs Main Remarks |             | Collection  | n for reuse        |               |    |
| 2.   | Gas Collection Wells, Manifol  ☐ Good condition☐ Needs Main Remarks                    |             | ;           |                    |               |    |
| 3.   | Gas Monitoring Facilities (e.g. ☐ Good condition☐ Needs Main Remarks                   |             | ng of adjac | ent homes or build | ings)         | ą. |
| F. C | over Drainage Layer                                                                    | ☐ Applical  | ble □1      | N/A                |               |    |
| 1.   | Outlet Pipes Inspected<br>Remarks                                                      | □ Function  | ning        | □ N/A              |               |    |
| 2.   | Outlet Rock Inspected Remarks                                                          | □ Function  | ning        | □ N/A              |               |    |
| G. 1 | Detention/Sedimentation Ponds                                                          | ☐ Applical  | ble □1      | N/A                |               |    |
| 1.   | Siltation Areal extent  ☐ Siltation not evident Remarks                                | п           | Depth       |                    | □ <b>N</b> /A |    |
| 2.   | Erosion Areal extent_ □ Erosion not evident Remarks_                                   |             | Depth_      |                    |               |    |
| 3.   | Outlet Works                                                                           | nctioning [ | □ N/A       |                    |               |    |
| 4.   | <b>Dam</b> □ Fu Remarks                                                                | nctioning [ | ⊃ N/A       |                    |               |    |

| 1.       Deformations       □ Location shown on site map       □ Deformation not evident         Horizontal displacement       Vertical displacement         Rotational displacement       Remarks | 8 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                                                                                                                                                                                                    |   |
| 2. <b>Degradation</b> □ Location shown on site map □ Degradation not evident Remarks □                                                                                                             |   |
| I. Perimeter Ditches/Off-Site Discharge □ Applicable 7/4 N/A                                                                                                                                       |   |
| 1. Siltation □ Location shown on site map □ Siltation not evident  Areal extent □ Depth □  Remarks                                                                                                 |   |
| 2. Vegetative Growth □ Location shown on site map □ N/A □ Vegetation does not impede flow Areal extent Type Remarks                                                                                |   |
| 3. Erosion ☐ Location shown on site map ☐ Erosion not evident  Areal extent ☐ Depth ☐  Remarks ☐ ☐ Remarks ☐ ☐ Erosion not evident                                                                 |   |
| 4. <b>Discharge Structure</b> □ Functioning □ N/A Remarks                                                                                                                                          |   |
| VIII. VERTICAL BARRIER WALLS   Applicable N/A                                                                                                                                                      |   |
| 1. Settlement                                                                                                                                                                                      |   |
| 2. Performance Monitoring Type of monitoring  □ Performance not monitored  Frequency □ Evidence of breaching  Head differential □  Remarks □                                                       |   |

|       | IX. GROUNDWATER/SURFACE WATER REMEDIES   Applicable   N/A                                                                            |  |  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------|--|--|
| A. G  | A. Groundwater Extraction Wells, Pumps, and Pipelines □ Applicable □ N/A                                                             |  |  |
| 1.    | Pumps, Wellhead Plumbing, and Electrical  ☐ Good condition☐ All required wells properly operating ☐ Needs Maintenance ☐ N/A  Remarks |  |  |
| 2.    | Extraction System Pipelines, Valves, Valve Boxes, and Other Appurtenances  □ Good condition□ Needs Maintenance Remarks               |  |  |
| 3.    | Spare Parts and Equipment  ☐ Readily available ☐ Good condition☐ Requires upgrade ☐ Needs to be provided  Remarks                    |  |  |
| B. St | arface Water Collection Structures, Pumps, and Pipelines   Applicable                                                                |  |  |
| 1.    | Collection Structures, Pumps, and Electrical  ☐ Good condition☐ Needs Maintenance Remarks_                                           |  |  |
| 2.    | Surface Water Collection System Pipelines, Valves, Valve Boxes, and Other Appurtenances  Good condition Needs Maintenance Remarks    |  |  |
| 3.    | Spare Parts and Equipment  □ Readily available □ Good condition□ Requires upgrade □ Needs to be provided  Remarks                    |  |  |

| <b>C.</b> ' | Treatment System                                                                                                                                                                                                                                                               | ☐ Applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | XN/A                       |                           |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------|
| 1.          | Treatment Train (Checo   ☐ Metals removal   ☐ Air stripping   ☐ Filters   ☐ Additive (e.g., chelatio   ☐ Others   ☐ Good condition   ☐ Sampling ports proper   ☐ Sampling/maintenance   ☐ Equipment properly ic   ☐ Quantity of groundwa   ☐ Quantity of surface was   Remarks | ☐ Oil/water sepa☐ Carbon agent, flocculent ☐ Needs Mainte ☐ In Meeds Mainte ☐ In Me | enance ctional dup to date |                           |
| 2.          | Electrical Enclosures a □ N/A □ Goo Remarks                                                                                                                                                                                                                                    | and Panels (proper<br>od condition□ Need                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |                           |
| 3.          | Tanks, Vaults, Storage □ N/A □ Goo Remarks                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | per secondary containment  | □ Needs Maintenance       |
| 4.          | Discharge Structure as □ N/A □ Goo Remarks                                                                                                                                                                                                                                     | nd Appurtenances<br>od condition□ Need                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                           |
| 5.          | Treatment Building(s)  □ N/A □ Goo  □ Chemicals and equipmates                                                                                                                                                                                                                 | od condition (esp. r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | roof and doorways)<br>ed   | □ Needs repair            |
| 6.          | Monitoring Wells (pump and treatment remedy)  □ Properly secured/locked □ Functioning □ Routinely sampled □ Good condition □ All required wells located □ Needs Maintenance □ N/A  Remarks                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                           |
| D.          | Monitoring Data                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                           |
| 1.          | Monitoring Data                                                                                                                                                                                                                                                                | l on time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ¥ Is of acceptable q       | uality                    |
| 2.          | Monitoring data sugges  ☐ Groundwater plume i                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ined   Contaminant con     | centrations are declining |

| D. I | D. Monitored Natural Attenuation                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1.   | Monitoring Wells (natural attenuation remedy)         □ Properly secured/locked       □ Functioning       □ Routinely sampled       □ Good condition         □ All required wells located       □ Needs Maintenance       □ N/A         Remarks       □ N/A                                                                                                                                               |  |  |  |
|      | X. OTHER REMEDIES                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|      | If there are remedies applied at the site which are not covered above, attach an inspection sheet describing the physical nature and condition of any facility associated with the remedy. An example would be soil vapor extraction.                                                                                                                                                                     |  |  |  |
|      | XI. OVERALL OBSERVATIONS                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| A.   | Implementation of the Remedy                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|      | Describe issues and observations relating to whether the remedy is effective and functioning as designed. Begin with a brief statement of what the remedy is to accomplish (i.e., to contain contaminant plume, minimize infiltration and gas emission, etc.).  The remedy does not appear to be operating as designed.  Strong Indications of Confamination such as steen, and odor are present on site. |  |  |  |
| В.   | Adequacy of O&M                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|      | Describe issues and observations related to the implementation and scope of O&M procedures. In particular, discuss their relationship to the current and long-term protectiveness of the remedy.  The remedy is short-term protective as currently implemented. It appears that contamination may remain above the SSCLs.                                                                                 |  |  |  |

| C. | Early Indicators of Potential Remedy Problems                                                                                                                                                                                                                                                     |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Describe issues and observations such as unexpected changes in the cost or scope of O&M or a high frequency of unscheduled repairs, that suggest that the protectiveness of the remedy may be compromised in the future.  Now.                                                                    |
|    |                                                                                                                                                                                                                                                                                                   |
| D. | Describe possible opportunities for optimization in monitoring tasks or the operation of the remedy.  Continue Further remedy implementation or re-evaluate the remedy effectiveness as correctly implemented the and determine if additional remedies should be considered through a focused FS. |



## 2018 Northeast Cape Second Five-Year Review – St. Lawrence Island, Alaska

#### PHOTOGRAPH LOG **TABLE OF CONTENTS**

| <u>Photo Number</u>                                                                                                                                                                     | <b>Page</b> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Photo No. 1 – 02 August 2018 View facing west of Site 21                                                                                                                                | E-1         |
| Photo No. 2 – 02 August 2018 View facing east of Site 21                                                                                                                                | E-1         |
| <b>Photo No. 3</b> – 02 August 2018 View facing west of Site 21                                                                                                                         | E-2         |
| <b>Photo No. 4</b> – 02 August 2018 View facing north of irregular topography at Site 21                                                                                                | E-2         |
| <b>Photo No. 5</b> – 02 August 2018 View facing west of a rock pile observed at Site 21                                                                                                 | E-3         |
| <b>Photo No. 6</b> – 03 August 2018 View facing down of sheen on surface water at Site 28.                                                                                              | E-3         |
| <b>Photo No. 7</b> – 03 August 2018 View facing north of pond with sheen at Site 28                                                                                                     | E-4         |
| <b>Photo No. 8</b> – 07 August 2018 View facing north of pond containing sample locations #1 and #2 at Site 28. Stressed vegetation on the edge of the ponded water and low water level | E-4         |
| <b>Photo No. 9</b> – 03 August 2018 View facing northeast of utility pole base in pond at Site 28.                                                                                      | E-5         |
| <b>Photo No. 10</b> – 03 August 2018 View facing down of a fallen utility pole with treated covering at Site 28.                                                                        | E-5         |
| <b>Photo No. 11</b> – 03 August 2018 View facing down of a fallen utility pole with treated covering at Site 28.                                                                        | E-6         |
| <b>Photo No. 12</b> – 03 August 2018 View facing down of a fallen utility pole with treated covering at Site 28                                                                         | E-6         |
| <b>Photo No. 13</b> – 03 August 2018 View facing north of 1-inch electrical conduit at Site 28                                                                                          | E-7         |
| <b>Photo No. 14</b> – 03 August 2018 View facing down of rubber tubing found at Site 28                                                                                                 | E-7         |
| <b>Photo No. 15</b> – 03 August 2018 View facing east of partially buried rubber matting at Site 28.                                                                                    | E-8         |
| <b>Photo No. 16</b> – 06 August 2018 View facing east of plywood at Site 28                                                                                                             | E-8         |
| <b>Photo No. 17</b> – 03 August 2018 View facing east of tarp material at Site 28                                                                                                       | E-9         |
| <b>Photo No. 18</b> – 06 August 2018 View facing east of an in-tact straw wattle at the MOC/Site 28 border.                                                                             | E-9         |
| Photo No. 19 – 06 August 2018 View facing south of reindeer tracks through Site 28                                                                                                      | E-10        |
| <b>Photo No. 20</b> – 07 August 2018 View facing east of a pond containing lath #1 and #2 at the confluence of the Suqi River and Site 28                                               | E-10        |

## 2018 Northeast Cape Second Five-Year Review – St. Lawrence Island, Alaska

(intentionally blank)



**Photo No. 1** – 02 August 2018 View facing west of Site 21.



**Photo No. 2** – 02 August 2018 View facing east of Site 21.



**Photo No. 3** – 02 August 2018 View facing west of Site 21.



**Photo No. 4** - 02 August 2018 View facing north of irregular topography at Site 21.



**Photo No. 5** – 02 August 2018 View facing west of a rock pile observed at Site 21.



**Photo No. 6** – 03 August 2018 View facing down of sheen on surface water at Site 28.



**Photo No. 7** - 03 August 2018 View facing north of pond with sheen at Site 28.



Photo No. 8 – 07 August 2018

View facing north of pond containing sample locations #1 and #2 at Site 28. Stressed vegetation on the edge of the ponded water and low water level.



**Photo No. 9** - 03 August 2018 View facing northeast of utility pole base in pond at Site 28.



**Photo No. 10** - 03 August 2018 View facing down of a fallen utility pole with treated covering at Site 28.



**Photo No. 11** - 03 August 2018 View facing down of a fallen utility pole with treated covering at Site 28.



**Photo No. 12** - 03 August 2018 View facing down of a fallen utility pole with treated covering at Site 28.



**Photo No. 13** - 03 August 2018 View facing north of 1-inch electrical conduit at Site 28.



**Photo No. 14** - 03 August 2018 View facing down of rubber tubing found at Site 28.



**Photo No. 15** - 03 August 2018 View facing east of partially buried rubber matting at Site 28.



**Photo No. 16** – 06 August 2018 View facing east of plywood at Site 28.



**Photo No. 17** – 03 August 2018 View facing east of tarp material at Site 28.



**Photo No. 18** - 06 August 2018 View facing east of an in-tact straw wattle at the MOC/Site 28 border.



**Photo No. 19** – 06 August 2018 View facing south of reindeer tracks through Site 28.



**Photo No. 20** – 07 August 2018 View facing east of a pond containing lath #1 and #2 at the confluence of the Suqi River and Site 28.

# **APPENDIX F**Site 28 Sediment Mapping and Sampling Report



## SECOND FIVE-YEAR REVIEW REPORT FOR NORTHEAST CAPE FORMERLY USED DEFENSE SITE FUDS NO. F10AK0969-03 ST. LAWRENCE ISLAND, ALASKA



U.S. Army Corps of Engineers Alaska District Anchorage, Alaska

# APPENDIX F SITE 28 SEDIMENT MAPPING AND SAMPLING REPORT

**FINAL** 

#### **TABLE OF CONTENTS**

| <u>SEC</u> | CTIO | <u>N</u> |                                                          | <b>PAGE</b> |
|------------|------|----------|----------------------------------------------------------|-------------|
| ACI        | RONY | MS AN    | D ABBREVIATIONS                                          | F-v         |
| EXE        | ECUT | IVE SU   | MMARY                                                    | F-ES-1      |
| 1.0        | INT  | RODUC    | TION                                                     | F-1-1       |
|            | 1.1  | PROJE    | ECT GOALS AND OBJECTIVES                                 | F-1-1       |
|            | 1.2  | REPOI    | RT ORGANIZATION                                          | F-1-1       |
| 2.0        | SITI | E DESC   | RIPTION AND HISTORY                                      | F-2-1       |
|            | 2.1  | SITE I   | DESCRIPTION                                              | F-2-1       |
|            |      | 2.1.1    | Climate                                                  | F-2-1       |
|            |      | 2.1.2    | Geology                                                  | F-2-2       |
|            | 2.2  | SITE F   | HISTORY                                                  | F-2-2       |
|            |      | 2.2.1    | Site 28                                                  | F-2-3       |
| 3.0        | FIE  | LD INVI  | ESTIGATION ACTIVITIES                                    | F-3-1       |
|            | 3.1  | WORK     | X PLAN DEVIATIONS                                        | F-3-1       |
|            | 3.2  | MOBI     | LIZATION AND DEMOBILIZATION                              | F-3-2       |
|            | 3.3  | SURV     | EYING                                                    | F-3-4       |
|            | 3.4  | WATE     | ER BODY MAPPING                                          | F-3-5       |
|            | 3.5  | SEDIM    | MENT MAPPING                                             | F-3-6       |
|            | 3.6  | SAMP     | LING ACTIVITIES                                          | F-3-9       |
|            | 3.7  | WAST     | E MANAGEMENT                                             | F-3-13      |
| 4.0        | INV  | 'ESTIGA  | ATION RESULTS AND DISCUSSION                             | F-4-1       |
|            | 4.1  | EXTE     | NT OF WATER BODIES                                       | F-4-1       |
|            | 4.2  | SEDIM    | MENT EXTENT AND THICKNESS                                | F-4-5       |
|            |      | 4.2.1    | Post-Removal Sediment Quantity Evaluation                | F-4-7       |
|            | 4.3  |          | RE AND LATERAL EXTENT OF CONTAMINATION AT                | F-4-9       |
|            |      | 4.3.1    | Data Quality Assessment                                  | F-4-11      |
|            |      | 4.3.2    | Evaluation of Biogenic Interference for Site 28 Sediment | F-4-12      |
|            |      | 4.3.3    | DRO Analytical Results                                   | F-4-18      |
|            |      | 4.3.4    | RRO Analytical Results                                   | F-4-19      |
|            |      | 4.3.5    | PAH Analytical Results                                   | F-4-19      |
|            |      | 4.3.6    | PCB Analytical Results                                   | F-4-20      |
|            |      | 4.3.7    | Metals Analytical Results                                | F-4-21      |
|            |      | 4.3.8    | Debris at Site 28                                        | F-4-21      |

## **TABLE OF CONTENTS (Continued)**

| <u>SEC</u> | <u>PAGE</u>      |                                                                                                                                     |        |  |
|------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------|--|
| 5.0        | CONCLUSION       | IS AND RECOMMENDATIONS                                                                                                              | F-5-1  |  |
| 6.0        | REFERENCES       |                                                                                                                                     | F-6-1  |  |
|            |                  |                                                                                                                                     |        |  |
|            |                  | TABLES                                                                                                                              |        |  |
| Tabl       | e F-ES-1         | 2018 Exceedances of SSCLs for Sediment at Site 28                                                                                   | F-ES-2 |  |
| Tabl       | e F-3-1          | Key Field Personnel                                                                                                                 | F-3-4  |  |
| Tabl       | e F-3-2          | Site 28 Project-Specific Waste Quantities                                                                                           | F-3-13 |  |
| Tabl       | e F-4-1          | Summary of Sediment Quantities Mapped and Removed from Site 28                                                                      | F-4-6  |  |
| Tabl       | e F-4-2          | Comparison of 2012 and 2018 Discrete Thickness Measurements                                                                         | F-4-8  |  |
| Tabl       | e F-4-3          | 2018 Exceedances of SSCLs for Sediment at Site 28                                                                                   |        |  |
| Tabl       | e F-4-4          | Untreated DRO Results Above SSCL With Silica Gel-Treated Results Below SSCL                                                         |        |  |
| Tabl       | e F-4-5          | Untreated RRO Results Above SSCL With Silica Gel-Treated Results Below SSCL                                                         | F-4-17 |  |
|            |                  | PHOTOGRAPHS                                                                                                                         |        |  |
| Phot       | ograph F-3-1: O  | verview of camp set-up. View facing northeast                                                                                       | F-3-3  |  |
| Phot       | ograph F-3-2: Si | nkhole discovered during demobilization site walk along Airport Access Road. View facing southwest.                                 |        |  |
| Phot       | ograph F-3-3: Su | arveying of a water body at Site 28. View facing east                                                                               |        |  |
|            | <b>C</b> 1       | ransects at a discrete water body at Site 28. View facing southwest                                                                 |        |  |
| Phot       | ograph F-3-5: Su | rveyed linear water body at Site 28. View facing south                                                                              |        |  |
|            | 0 1              | bollecting sediment thickness measurements using a graduated hand probe at a discrete water body at Site 28. View facing southwest. |        |  |
| Phot       | ograph F-3-7: Do | econtaminating sample collection equipment during sediment sampling at Site 28. View facing west                                    |        |  |
| Phot       | ograph F-3-8: Co | ollecting a sediment sample at Site 28. View facing down                                                                            |        |  |
| Phot       | ograph F-3-9: Vo | egetative mat at surveyed and staked location S28-04 at Site 28; sample location was relocated. View facing south.                  | F-3-11 |  |

## **TABLE OF CONTENTS (Continued)**

| <b>SECTION</b>        | <u>PAGE</u>                                                                                                                                                         |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Photograph F-3-10: N  | Measuring distance to relocated sample location S28-04 from survey lathe at Site 28. View facing westF-3-12                                                         |
| Photograph F-3-11: C  | ompass reading to relocated sample location S28-04 from survey lathe at Site 28. View facing westF-3-12                                                             |
| Photograph F-4-1: Ar  | tesian upwelling at S28-35. View facing downF-4-2                                                                                                                   |
| Photograph F-4-2: Na  | turally occurring mottled iron present in the flowing stream of Removal Areas 3 and 4. View facing southF-4-3                                                       |
| Photograph F-4-3: Sa  | mple location S28-13, in Removal Area 9, with an abundant vegetative mat. View facing north                                                                         |
| Photograph F-4-4: Int | erconnected, ponded water bodies at Removal Areas 10 and 11 with elongated features containing an abundant vegetative mat (S28-5 and S28-6). View facing northF-4-4 |
| Photograph F-4-5: Ab  | oundant vegetative mat at Removal Area 10 containing a small section of stream upgradient from sample location S28-12.  View facing southwest                       |
| Photograph F-4-6: Th  | e confluence of Site 28 with the Suqi River at sample location S28-1. View facing east                                                                              |
| Photograph F-4-7: Pa  | rtially submerged utility pole within Site 28 Drainage. View facing southF-4-21                                                                                     |
| Photograph F-4-8: Ply | wood debris within Site 28. View facing northF-4-22                                                                                                                 |
|                       | CHROMATOGRAMS                                                                                                                                                       |
| Chromatogram F-4-1:   | Example of a typical diesel fuel fingerprintF-4-13                                                                                                                  |
| Chromatogram F-4-2:   | Example of typical motor oil fingerprintF-4-13                                                                                                                      |
| Chromatogram F-4-3:   | Example of Site 28 biogenic fingerprintF-4-14                                                                                                                       |
| Chromatogram F-4-4:   | Example of a DRO standard fingerprint, RRO standard fingerprint, and Site 28 biogenic fingerprintF-4-15                                                             |
|                       | ATTACHMENTS                                                                                                                                                         |
| Attachment F-1        | Figures and Sediment Cross Sections                                                                                                                                 |
| Attachment F-2        | Data Quality Assessment                                                                                                                                             |
| Attachment F-3        | Field Documentation                                                                                                                                                 |
| Attachment F-4        | Photograph Log                                                                                                                                                      |
| Attachment F-5        | Sediment Mapping and Sampling SOP                                                                                                                                   |

(intentionally blank)

#### ACRONYMS AND ABBREVIATIONS

°F degrees Fahrenheit

AC&WS Aircraft Control and Warning Station

ADEC Alaska Department of Environmental Conservation

bgs below ground surface

CCV continuing calibration verification

COC contaminant of concern

cy cubic yard(s)

DD Decision Document

DoD U.S. Department of Defense
DQA data quality assessment
DRO diesel-range organics

ECC Environmental Compliance Consultants, Inc.
EPA U.S. Environmental Protection Agency

FUDS Formerly Used Defense Site

HPAH high molecular weight polycyclic aromatic hydrocarbon

HTRW hazardous, toxic, and radiological waste

Jacobs Engineering Group Inc.

LPAH low molecular weight polycyclic aromatic hydrocarbon

mg/kg milligrams per kilogram
MOC Main Operations Complex

N/A not applicable NEC Northeast Cape

NOAA National Oceanic and Atmospheric Association

NOM naturally occurring organic material PAH polycyclic aromatic hydrocarbon

PCB polychlorinated biphenyl

PM project manager

POL petroleum, oil, and lubricants

QC quality control

RRO residual-range organics
SIM selective-ion monitoring
SOP standard operating procedure
SSCL site-specific cleanup level
Site 28 Drainage Basin

Suqi River Suqitughneq River

# ACRONYMS AND ABBREVIATIONS (Continued)

TAH total aromatic hydrocarbons
TAqH total aqueous hydrocarbons
USACE U.S. Army Corps of Engineers

WACS White Alice Communications System

#### EXECUTIVE SUMMARY

This Site 28 Drainage Basin (Site 28) report summarizes the 2018 sediment mapping field activities and analytical results and presents conclusions and recommendations. Site 28 is part of the Northeast Cape Formerly Used Defense Site on St. Lawrence Island, Alaska (Alaska Department of Environmental Conservation File No. 475.38.013). The 2018 activities were completed according to the 2018 Remedial Action Review Work Plan (U.S. Army Corps of Engineers [USACE] 2018). Activities included surveying the extent of water bodies at Site 28, measuring extent and thickness of sediment in the selected waterbodies, and collecting sediment samples.

All analytical results were compared to site-specific cleanup levels (SSCLs) for sediment established in the 2009 Decision Document (DD) (USACE 2009).

The primary conclusions of the 2018 Site 28 field activities and analytical results include:

- A natural stilling area was found to be present between Area 9 and Area 10. The area appeared to be entirely composed of vegetative mat which dispersed flow channels observed in Area 10.
- A total of 281 cubic yards (cy) of sediment were estimated to be present at Site 28 water bodies in 2018. Based on a lines-of-evidence approach, re-accumulation of sediment is possible in certain areas of Site 28. However, estimating the amount of sediment which has re-accumulated is not possible currently due to procedural differences in the 2012 and 2018 mapping efforts and the 2013 post-removal estimating techniques.
- Target analytes exceeding the multi-site DD-based SSCLs in sediment samples were found in sediment samples across Areas 2 through 9 in 2018. Target analytes did not exceed the multi-site DD-specified SSCLs at the confluence with the Suqitughneq River (Suqi River) within Area 11 or immediately south of the Suqi River in Area 10 in 2018. Diesel-range organics (DRO), residual-range organics (RRO), 2-methylnaphthalene, and naphthalene are the most prevalent analytes exceeding SSCLs. Applying the analytical results to the estimated sediment volumes, 196 of the 281 cy of sediment contains compounds at levels above their respective SSCLs. Table F-ES-1 presents the analytes that exceeded SSCLs, the range of concentrations detected, the location of the maximum concentration, and number of locations exceeding SSCLs.
- Other polycyclic aromatic hydrocarbons were reported in the Site 28 sediment samples that do not have an SSCL, with 1-methylnaphthalene being the most frequently reported of these analytes in 2018.

- Sediment contamination greater than SSCLs were not found in Removal Areas 10 and 11 near the Suqi River in 2018.
- PCBs, reported as Aroclors, were not found at Site 28 above the SSCL in 2018.
- Naturally occurring organic material in sediment is contributing to the 2018 reported levels of DRO and RRO and causing a high bias. This observation is consistent with those reported in historical investigations at Site 28 and other Northeast Cape sites. Silica gel treatment is only partially effective in reducing this high bias.

Table F-ES-1
2018 Exceedances of SSCLs for Sediment at Site 28

| Test<br>Method     | Analyte             | Sediment<br>SSCL<br>(mg/kg) <sup>1</sup> | 2018<br>Concentration<br>Range of Results<br>(mg/kg) | Location ID of<br>Maximum<br>Concentration | Number of<br>Locations with<br>Result Greater than<br>Multi-Site DD-<br>based SSCL |
|--------------------|---------------------|------------------------------------------|------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------|
| AK102              | DRO                 | 3,500                                    | 214 <b>– 105,000</b>                                 | S28-15                                     | 36 of 54                                                                           |
| AK102 <sup>2</sup> | DRO – Silica Gel    | 3,500                                    | 102 – <b>94,100</b>                                  | S28-28                                     | 32 of 54                                                                           |
| AK103              | RRO                 | 3,500                                    | 844 <b>– 127,000</b>                                 | S28-42                                     | 35 of 54                                                                           |
| AK103 <sup>2</sup> | RRO – Silica Gel    | 3,500                                    | 296 <b>– 106,000</b>                                 | S28-42                                     | 18 of 54                                                                           |
| SW8270D            | 2-Methylnaphthalene | 0.6                                      | ND - <b>529</b>                                      | S28-49                                     | 35 of 54                                                                           |
|                    | Acenaphthene        | 0.5                                      | ND - <b>16 J</b>                                     | S28-28                                     | 22 of 54                                                                           |
|                    | Fluoranthene        | 2                                        | ND - <b>3.42</b>                                     | S28-52                                     | 1 of 54                                                                            |
|                    | Fluorene            | 0.8                                      | ND - <b>25.3</b>                                     | S28-28                                     | 25 of 54                                                                           |
|                    | Naphthalene         | 1.7                                      | ND - <b>230</b>                                      | S28-54                                     | 31 of 54                                                                           |
|                    | Phenanthrene        | 4.8                                      | ND - 13.3 J                                          | S28-53                                     | 9 of 54                                                                            |
|                    | Total LPAH          | 7.8                                      | ND - <b>266.65</b>                                   | S28-54                                     | 25 of 54                                                                           |

#### Notes:

# Bold = exceeded SSCL

For definitions, refer to the Acronyms and Abbreviations section.

<sup>&</sup>lt;sup>1</sup>Sediment SSCL as defined in the 2009 multi-site DD (USACE 2009).

<sup>&</sup>lt;sup>2</sup> Performed using the silica gel cleanup method.

J - The analyte was positively identified; however, the associated result was less than the limit of quantitation but greater than or equal to the detection limit.

#### 1.0 INTRODUCTION

This report presents field activities and analytical results and presents conclusions from the sample collection effort at Site 28 Drainage Basin (Site 28) conducted in August 2018 at the Northeast Cape (NEC) Formerly Used Defense Site (FUDS) on St. Lawrence Island, Alaska (Alaska Department of Environmental Conservation [ADEC] File No. 475.38.013). Environmental Compliance Consultants, Inc. (ECC) and Jacobs Engineering Group Inc. (Jacobs) prepared the work plan, performed the fieldwork, and prepared this report for the U.S. Army Corps of Engineers (USACE) under Hazardous, Toxic, and Radiological Waste (HTRW) Contract No. W911KB-17-D-0017, Task Order No. W911KB18F0020. Field activities were performed in accordance with the 2018 Remedial Action Review Work Plan (USACE 2018).

#### 1.1 PROJECT GOALS AND OBJECTIVES

Project goals specific to the investigation at Site 28 were defined in the work plan (USACE 2018). The goal of the 2018 field investigation at Site 28 was to evaluate the post-removal quantity of sediment and compare analytical results to the previous 2012 sediment mapping effort described in the *Site 28 Technical Memorandum Addendum* (USACE 2013a). The 2018 objectives included the following:

- Measure (survey) the extent of water bodies;
- Measure extent and thickness of sediment within select waterbodies; and
- Collect sediment samples at Site 28 locations specified in the work plan and submit them for planned test procedures.

# 1.2 REPORT ORGANIZATION

This report is organized as follows:

- Section 1.0 introduces the project, describes the project goals, and outlines the report organization.
- Section 2.0 provides a physical description of the site and summarizes the site history.

- Section 3.0 defines project field investigation activities to include: deviations, project mobilization, land survey, water body mapping, sediment mapping, sampling activities, waste management, and demobilization activities.
- Section 4.0 presents investigation results and discussion.
- Section 5.0 presents conclusions and recommendations derived from the field investigation and analytical data review.
- Section 6.0 lists the references cited in this document.

In addition to the main report, the following attachments contain further information:

- Attachment F-1 provides figures of the site to include sediment transects, sampling locations, and sediment cross sections.
- Attachment F-2 provides the data quality assessment (DQA).
- Attachment F-3 provides copies of the field documentation.
- Attachment F-4 provides a photograph log for the 2018 activities described in this report.
- Attachment F-5 provides Standard Operating Procedure (SOP) NEC-SOP-02, Site 28 Sediment Mapping and Sample Collection.

#### 2.0 SITE DESCRIPTION AND HISTORY

The following sections describe the location of NEC, information about the physical and ecological setting, site history, and Site 28 physical setting and history. The information in this section is compiled from previous historical NEC documents and includes citations where needed.

# 2.1 SITE DESCRIPTION

St. Lawrence Island, Alaska, is in the western portion of the Bering Sea, approximately 135 air miles southwest of Nome. The NEC FUDS is 9 miles west of the northeastern cape of the island at 63°19' N, 168°58' W. The NEC FUDS property originally encompassed approximately 4,800 acres (7.5 square miles) bordered by Kitnagak Bay to the northeast, Kangighsak Point to the northwest, and the Kinipaghulghat Mountains to the south (USACE 2015a).

NEC FUDS consists mainly of rolling tundra rising from the Bering Sea toward the base of the Kinipaghulghat Mountains. The Kinipaghulghat Mountains rise abruptly to an elevation of approximately 1,800 feet above sea level roughly 3 miles from the coastline. The NEC FUDS is not connected to other permanent communities on the island by road and is only accessible by air, water, or utility task vehicle trails. The closest community is the Native Village of Savoonga, located approximately 60 miles to the northwest (Figure F-1 [Attachment F-1]).

### 2.1.1 Climate

St. Lawrence Island has a cool, moist, subarctic maritime climate, with some continental influences during winter when much of the Bering Sea is covered with pack ice. Winds and fog are common, and precipitation occurs approximately 300 days per year as light rain, mist, or snow. Annual snowfall is approximately 80 inches per year. Total annual precipitation is about 16 inches per year, and more than half falls as light rain between June and September. Summer temperatures average between 34 and 48 degrees Fahrenheit (°F), with a record high of 65°F. Winter temperatures range from -2 to 10°F, with an extreme low of -30°F. Freeze-up on the

island normally occurs in October or November, and breakup normally occurs in June (USACE 2015).

# 2.1.2 Geology

St. Lawrence Island consists of isolated bedrock highlands of igneous, metamorphic, and older sedimentary rocks surrounded by unconsolidated alluvium overlying a relatively shallow erosional bedrock surface. The main area of operation, known as the Main Operations Complex (MOC) is located at approximately 100 feet in elevation. In the area of the MOC, shallow unconsolidated surficial materials overlie quartz monzonitic rocks of the Kinipaghulghat Pluton (Patton and Csejtey 1980). The pluton forms the mountainous area south of the NEC FUDS, which includes Kangukhsam Mountain. The Suqitughneq River (Suqi River) drainage in the Kinipaghulghat Pluton has created an erosional valley and alluvial fan of unconsolidated sediments. The NEC FUDS is located on this alluvial fan, which protrudes north from the mountain front toward the Bering Sea. Granitic bedrock materials are exposed at the coast north of the site at Kitnagak Bay, which suggests that the quartz monzonitic bedrock underlies the unconsolidated materials at a relatively shallow depth on a wave-cut erosional platform.

In general, the native soil stratigraphy at NEC is characterized by silts near the surface, overlying more sand-dominated soil at depth. The silt contains varying quantities of clay/sand/gravel and varies from 0 to 10 feet in thickness. The silt is dark brown to dark green, and sometimes exhibits a mottled texture. In some areas, the silt exhibits an aqua green or blue color. Dark brown silts are observed in outcrops. The sand at depth contains varying degrees of silt/gravel/cobbles that ranges from 2 feet to greater than 20 feet in thickness. These deeper, coarse-grained materials are generally unsorted and are likely to be of glaciofluvial origin. The depth to bedrock at the NEC FUDS is unknown (USACE 2009).

# 2.2 SITE HISTORY

NEC FUDS was constructed as an Aircraft Control and Warning Station (AC&WS) during 1950 and 1951 to provide radar coverage and surveillance for the Alaskan Air Command and later for the North American Air Defense Command, as part of the Alaska Early Warning

System. The site was activated in 1952 and a White Alice Communications System (WACS) station was added to the site in 1954. The AC&WS and WACS operations were supported by 212 personnel and were terminated in 1969 and 1972, respectively. The majority of military personnel were removed from the site by the end of 1969 (USACE 2015a).

The NEC FUDS included areas for housing site personnel, power plant facilities, fuel storage tanks, distribution lines, maintenance shops, wastewater treatment facilities, and landfills. The buildings and majority of furnishings and equipment related to the AC&WS were initially abandoned in place due to the high cost of off-island transport (USACE 2015a).

In 1971, the villages of Gambell and Savoonga opted out of the Alaska Native Claims Settlement Act, which allowed them to claim title to 1.136 million acres of land in the former St. Lawrence Island Reindeer Reserve, established in 1903. The Gambell Native Corporation and Savoonga Native Corporation (now known as Sivuqaq, Inc. and Kukulget, Inc., respectively) received titles to all of St. Lawrence Island (except U.S. Surveys 3728, 4235, 4237, 4340, and 4369) by Interim Conveyance No. 203, dated 21 June 1979 and finalized 2 December 1980. In 1982, the U.S. Navy obtained approximately 26 acres of land containing the former WACS. The land transfer was later deemed invalid and property ownership was reverted to Sivuqaq, Inc. and Kukulget, Inc.

Demolition of the buildings and most other structures was completed under multiple USACE contracts. The runway, improved gravel roads, and concrete slabs of some of the former structures remain intact. Four remedial investigations were conducted at 34 individual sites grouped by environmental concerns between 1994 and 2004 (USACE 2015a). Following completion of the 2007 feasibility study (USACE 2007) and the 2009 multi-site Decision Document (DD) (USACE 2009), remedial actions occurred through 2014 (USACE 2015).

# 2.2.1 Site 28

Site 28 is located north of the MOC and south of the Suqi River (Figure F-2). The site has been affected by fuel releases from the bulk fuel storage tanks (Site 11) and other spills and releases

discussed in the multi-site DD (USACE 2009). Site 28 contains wetlands, rolling tundra, and ponds, and surface water at Site 28 drains north into the Suqi River.

Surface water at Site 28 originates from surface water runoff (overland flow) from the MOC and groundwater seeps. Three distinct drainage areas near the MOC are present at the head of the drainage basin (south end), which contribute flow to Site 28 (USACE 2009). The eastern headwater drainage flows from the vegetated area adjacent to Sites 10 and 11, which are located north of the former fuel tanks; the middle headwater drainage originates from a small swale where a culvert directed flow from Site 27, and the western headwater drainage is located downgradient of Site 13 (USACE 2013a). The western drainage originated from a manhole and a small concrete supporting structure just north of the perimeter access road, which emptied into an artificially created swale. The manhole likely served as the drain leading from Building 110 (Heat and Electrical Power Building) at the MOC (USACE 2009).

The three drainage areas merge to form two flowing channels of water further downgradient (north) and eventually merge into one flowing channel. There are two distinct groundwater seeps at the head of the Site 28 drainage directly north of the gravel pad. Overland flow can contribute significant amounts of water to the basin during rainfall events (USACE 2013a). Sediment, soil, surface water, and shallow groundwater samples have been collected and analyzed beginning in 1994.

# Site 28 Historical Contamination

Fuel-contaminated sediment was observed in each of the three drainages at the head of the drainage basin near the MOC, and they produced sheen when disturbed (USACE 2009). The primary contaminants of concern (COCs) in sediment at the time of the multi-site DD were diesel-range organics (DRO), residual-range organics (RRO), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), chromium, lead, and zinc (USACE 2009).

As summarized by the multi-site DD (USACE 2009), surface water samples were collected from the drainage basin in 1994, 1996, and 2001. Concentrations of DRO, total recoverable

petroleum hydrocarbons, PCBs, and lead were elevated in 1994 (USACE 2009). In 2001, DRO was detected at concentrations ranging from 0.39 to 2.3 milligrams per liter. PCBs and RRO were nondetect. The most heavily contaminated surface waters of the drainage basin were found at the terminus of the former culverts near the southern portion of Site 28 at the head of the western and middle drainages.

Groundwater samples collected in 1994 indicated the potential for DRO and lead contamination, but subsequent sampling in 2001 demonstrated that concentrations were below cleanup levels. No groundwater COCs were retained in the multi-site DD for Site 28 (USACE 2009).

# Multi-Site DD-Selected Remedy for Site 28

The selected remedy for Site 28 in the multi-site DD consisted of three components:

- 1. Excavation and removal of petroleum-, metals- and PCB-contaminated sediment, including the removal of near-surface sediments from the narrow channel upgradient of the Suqi River.
- 2. Construction of a sedimentation pond or other appropriate controls. The ends of the culverts would also be cleaned out and removed or plugged to prevent direct outflows of upgradient residual sources of contamination.
- 3. Completion of Comprehensive Environmental Response, Compensation, and Liability Act Five-Year Reviews (USACE 2009).

An informational LUC, in accordance with UECA, describing residual POL-related contaminants in sediment within the Site 28 drainage basin is recommended to prohibit disturbance of Site 28 sediment. LUCs with regard to soil and groundwater POL-related contamination at the southern boundary of Site 28 and within the previously defined "UVOST plumes" are also recommended, however, these will be included within the Environmental Covenant for the MOC.

# Site 28 Remedy Implementation

In 2010, approximately 95 feet of culvert were removed, and one culvert was capped (USACE 2011). The concrete manhole structure in the western headwater drainage was also

cleaned and removed. Sludge inside the manhole contained concentrations of DRO up to 68,000 milligrams per kilogram (mg/kg), PCB Aroclor 1254 up to 20 mg/kg, arsenic up to 41 mg/kg, barium up to 820 mg/kg, cadmium up to 18 mg/kg, lead up to 5,000 mg/kg, mercury up to 15 mg/kg, and silver up to 16 mg/kg (USACE 2011). A 12-inch corrugated metal pipe that attached to the manhole and continued upgradient toward the MOC was cut, and 63 feet of the pipe was removed. The open end of the pipe was then filled with bentonite and welded shut. In the middle headwater drainage, another 12-inch corrugated metal pipe measuring 32 feet long was completely removed (USACE 2011).

In 2011, sediment sampling was conducted to further delineate the extent and magnitude of contamination at Site 28 between the southern end of Site 28 and its confluence with the Suqi River (to include areas where contamination was noted in the multi-site DD) (USACE 2009) to gain a better understanding of contaminant distribution throughout the drainage. Sediment results were compared to the site-specific cleanup level (SSCL) specified in the multi-site DD. If sediment criteria were not listed in the multi-site DD for a particular analyte, evaluation criteria were based on the National Oceanic and Atmospheric Administration (NOAA) Screening Quick Reference Tables for freshwater sediment at the probable effect level (Buchman 2008). Some of the samples collected in 2011 did not meet the project definition of sediment, so soil cleanup levels were used for screening purposes. Sediment is defined as all continuously submerged loose material and organic material, except that which is actively growing vegetation and is part of the vegetative mat. The results indicated that five additional contaminants in sediment were of potential concern: toluene, ethylbenzene, total xylenes, cadmium, and selenium (USACE 2013a).

In 2012, additional sediment mapping, sampling, and probing were conducted. Streams and ponds in the drainage basin were inspected to define the horizontal boundaries of the sediment accumulation areas and probing was conducted to determine the thickness of the sediment (USACE 2013b). The 2012 sediment probing effort was conducted using a 4-inch diameter hand auger with a T-handle. The probing depths were measured by marking the auger handle at 6-inch intervals. The reference marks were used to calculate the depth at 66 probing locations. Sediment thickness ranged from 0.5 foot to 2 feet throughout Site 28 in 2012. The mapping

efforts identified approximately 400 cubic yards (cy) of sediment along the drainage basin (USACE 2013b).

In September 2012, following the mapping, sampling, and probing effort, Phase I of the sediment removal remedy was initiated in three areas. Two removal methods were evaluated for efficacy and implementability: excavation and a combination of a Venturi dredge and geotextile dewatering tube:

- An excavator removed sediment in Removal Areas 1 and 2, just north of the MOC gravel pad. This method allowed excavated sediment to be dewatered in place but was limited to areas with firm ground such as the MOC gravel pad or a road. The excavator removed approximately 5 cy of sediment from Removal Area 1 in the western headwater drainage and 16 cy from Removal Area 2 near the middle headwater drainage. In Removal Area 1, DRO, acenaphthylene, 2-methylnaphthalene, and naphthalene exceeded the multi-site DD-based SSCLs in both confirmation samples. In Removal Area 2, the same analytes plus RRO, acenaphthene, fluorene, and phenanthrene exceeded the multi-site DD-based SSCLs.
- The Venturi dredge was used in Removal Area 4 located in the main channel of the drainage. This method was used where the excavator could not travel but required large volumes of water to remove the sediment. Following removal, the sediment was separated from the water and the water was confirmed to meet discharge requirements presented in the State of Alaska Wastewater General Permit 2009DB0004 before release. The dredge removed approximately 18 cy of sediment from Removal Area 4 in 2012. No confirmation samples were collected from Removal Area 4. Approximately 135 cy of contaminated sediment remained at Removal Area 4 at the conclusion of 2012 field season (USACE 2013b).

In 2013, sediment removal continued within Removal Areas 3 through 11 (USACE 2015a); for volume of sediment removed in 2013, refer to Table F-4-2 in Section 4.2.1:

- At Removal Areas 5, 6, and 7, vegetative material routinely clogged the in-line pumps. Sediment and vegetative material were removed by hand instead of using the dredge. Personnel donned dry suits, entered the shallow ponds, and rolled/scooped up the sediment/decaying plant material in large pieces. Material was placed at the edge of each pond and an excavator was used to place the material in bulk bags for disposal (USACE 2015a).
- Removal Area 8 was a small pond in 2012; however, it was dry in 2013. Material from this area was removed by excavator and placed directly into a bulk bag for disposal (USACE 2015a).
- Sediment was removed from Removal Areas 3, 4, 7, 9, 10, and 11 using the Venturi dredge and geotextile dewatering system (USACE 2015a).

• Based on sediment results collected at the conclusion of the 2013 removal action, several analytes previously identified above the multi-site DD SSCLs for Site 28 (including DRO, RRO, acenaphthene, fluorene, 2-methylnaphthalene, naphthalene, phenanthrene, low molecular weight PAHs [LPAHs], arsenic, and chromium) remained at concentrations greater than the multi-site DD SSCLs for Site 28. Analytes exceeding the multi-site DD SSCLs for Site 28 remained within all 11 sediment removal areas. In addition, acenaphthylene, anthracene, and pyrene exceeded NOAA Screening Quick Reference Tables (USACE 2015a).

Other significant parts of the 2013 removal effort included treatment of water produced during sediment removal, control measures, and surface water sampling.

Water and sediment removed using the dredge system was moved to a water processing area west of Site 28. The processing area consisted of two 20,000-gallon-capacity lined containment cells approximately 60 by 30 feet and 1.5 feet deep. The primary containment area consisted of a geotextile dewatering tube for sediment dewatering designed to contain the sediment while allowing water to pass through the pore spaces. The pore size ranged from 59 to 350 microns. Water was then treated through a scrubber, a natural cellulose fiber that selectively absorbs hydrocarbons inside high-density polyethylene containers with an inlet at the top. Water then flowed to the second set of containment cells to await analytical results below total aromatic hydrocarbons (TAH) and total aqueous hydrocarbons (TAqH) criteria identified in the State of Alaska Wastewater General Permit 2009DB0004-0216 prior to discharge. In 2012, samples collected from the treated water did not meet discharge criteria for TAH and TAqH (USACE 2013b). No water was discharged. Excavated sediment and treated water from Removal Area 4 remained within the lined containments over the winter of 2012/2013.

Following the 2012 field activities, changes to the sediment/water treatment system were made in order to implement this remedy effectively. In 2013, a SPINPRO HydroMizer polymer feed system with injection pump was introduced into the piping line prior to sediment capture in the geotextile tube to facilitate coagulation and settling (USACE 2013b). The water filtration system was modified to consist of two sock filters (water first flowed through a 25-micron-filter and then through a 5-micron-filter), followed by a scrubber containing hydrocarbon-absorbent cellulose fibers (USACE 2015a). After the first batch of water was processed in 2013, analytical

results indicated water remained above TAqH criteria (USACE 2015a). A granular-activated carbon system was added as the last treatment step and the hydrocarbon scrubber was eliminated. Analytical results from the first batch of water processed using the modified treatment system were below discharge criteria presented in the State of Alaska Wastewater General Permit 2009DB0004-0216 and 18 Alaska Administrative Code 70. ADEC and USACE agreed that pre-treated water containment samples were no longer needed and treated water was discharged to the ground (USACE 2015a).

Two methods were used to control and minimize downstream sediment migration during removal activities: silt fencing and an in-stream sediment trap. Silt fencing was used where there was no direct flow to the main channel of the Suqi River and was placed on the north side of the ponded area. The sediment trap was placed downstream of sediment Removal Area 4. The trap was a steel box, 8 feet wide by 4 feet deep, with the rear (downstream) height extending approximately 6 feet high and tapering to a front section approximately 4 feet high. Rectangular slots allowed water to flow down and through the box. Unrolled jute mats were placed inside, upstream, and downstream of the trap (USACE 2013b).

Surface water samples were collected at three locations before, during, and after sediment removal and at one location downstream of the sediment trap. Samples were analyzed for DRO, RRO, PAHs, PCBs, benzene, toluene, ethylbenzene, xylenes, and total and dissolved metals (Resource Conservation and Recovery Act metals plus nickel, vanadium, and zinc). All surface water samples were below applicable surface water criteria and no sheen was observed (USACE 2015a).

(intentionally blank)

# 3.0 FIELD INVESTIGATION ACTIVITIES

Site 28 sediment mapping and sampling at the NEC FUDS Site 28 took place from 4 through 9 August 2018 and were one component of a larger NEC field effort which occurred from 31 July through 10 August 2018. Other field activities un-related to the Site 28 sediment effort will be described in other reports. This section discusses 2018 field activities at Site 28, which include mobilization and demobilization, surveying, waterbody mapping, sediment thickness measurements, sediment sampling, and managing waste.

#### 3.1 WORK PLAN DEVIATIONS

Deviations from the 2018 work plan (USACE 2018) occurred during the execution of fieldwork. None of the deviations significantly affected the data usability. The work plan deviations were as follows:

- To meet the DQO for sediment sample collection at Site 28, two samples were collected as composite samples rather than grab samples. The volume of sediment present within the ponded area at surveyed locations 18NEC-S28-SD-36 and 18NEC-S28-SD-37 was limited; most of the substrate either consisted of rock or vegetative mat. The collection of two composite samples rather than grab samples did not affect data quality (Attachment F-2); however, results from the composite samples are representative of a larger spatial extent than the grab samples that were collected from other locations at Site 28.
- Some obstructions were present, which inhibited measuring and recording the lateral and vertical extent of sediment. This occurred at profile locations P15 and P17 (refer to the sediment transect summary in Attachment F-3). The obstructions are presumed to be debris, as discussed in Section 4.3.8; however, the obstructions were considered sediment for purposes of drawing sediment transect lines and no sediment depth was recorded at the two locations where obstructions were encountered.
- Seven sampling locations (locations S28-04, -11, -25, -38, -42, -43, and -51) were relocated in consultation with the USACE because the area did not contain sediment as defined by the project. The seven original locations were either vegetative mat or on dry land in 2018 and both from areas previously sampled and with prior removal actions. For each of the seven relocated sample locations the distance between the original sample location and relocated sample location was measured, and a compass reading was recorded from the original sample location to the relocated sample location.

• During waterbody mapping, the extent of the vegetative mat was not surveyed by professional surveyors as indicated in the 2018 work plan (USACE 2018). Instead, the field team collected measurements at each of the surveyed transect locations using a tape measure and projected the extent on the figures in Attachment F-1. This did not affect the DQO to map the extent of the vegetative mat, because the measurements were still collected.

#### 3.2 MOBILIZATION AND DEMOBILIZATION

Mobilization and demobilization occurred during July and August 2018, respectively. Jacobs personnel traveled from Anchorage to Nome via commercial airline on 31 July 2018 and then to St. Lawrence Island via Bering Air charter. ECC and USACE traveled to St. Lawrence Island via Security Aviation charter on 31 July 2018. Supplies for the camp were barged to St. Lawrence Island prior to the commencement of fieldwork. PRL Logistics, Inc. provided services for a remote camp at NEC (Photograph F-3-1). Field gear was transported to NEC on 31 July 2018 via Bering Air charter. Travel at NEC was achieved using utility task vehicles. The USACE project manager (PM) and ADEC PM arrived by Security Aviation charter on 6 August 2018. The USACE PM departed the same day on a Security Aviation charter while the ADEC PM departed by Bering Air charter on 8 August. All personnel demobilized from NEC via Bering Air charter or Security Aviation charter by 10 August 2018. Personnel demobilized by Bering Air traveled to Nome and returned to Anchorage via commercial airline. All other personnel were demobilized by Security Aviation directly to Anchorage. Camp crew remained on site and deconstructed the facilities.

The remote camp was dismantled and prepared for the barge. The barge departed from NEC on 14 September 2018. A site walk was conducted by ECC and a PRL Logistics, Inc. representative on 14 September 2018. While conducting the site walk, a sinkhole was discovered along Airport Access Road (Photograph F-3-2). Some wood debris remained on the camp site and minor garbage was removed and disposed of in Nome. The water discharge area for the camp was inspected and there were no signs of damage from the associated camp activity.



Photograph F-3-1: Overview of camp set-up. View facing northeast.



Photograph F-3-2: Sinkhole discovered during demobilization site walk along Airport Access Road. View facing southwest.

The key project personnel that participated in the field effort along with responsibilities are provided in Table F-3-1.

Table F-3-1 **Key Field Personnel** 

| Title                                | Organizational Affiliation                                                                                                    | Name                                                        | Responsibilities                                                                                                         |  |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|
| Superintendent                       | Prime Contractor (ECC)                                                                                                        | Stanley Seegars                                             | Implements, oversees, and coordinates project activities and camp activities. Supports PM as needed.                     |  |
| Contractor QC<br>System Manager      | Subcontractor (Jacobs)                                                                                                        | Kevin Maher<br>Angela DiBerardino                           | Conducts field inspections and ensures field activities are in compliance with planning documents and approved contract. |  |
| Site Safety and<br>Health Officer    | Prime Contractor (ECC)                                                                                                        | Stanley Seegars                                             | Developed, implemented, and oversaw all safety and health-related project aspects.                                       |  |
| Field Sampler                        | Prime Contractor (ECC)<br>Subcontractor (Jacobs)                                                                              | Admon Abuamsha<br>Jessica Bay<br>Haley Huff<br>Peter Mamrol | Collected field screening and analytical samples and managed and shipped analytical samples.                             |  |
| Sample<br>Expediter                  | Prime Contractor (ECC)                                                                                                        | Dan Mcgauhey                                                | Expedited coolers with analytical samples from Bering Air to Alaska Airlines GoldStreak in Nome, Alaska.                 |  |
| Project Chemist                      | Subcontractor (Jacobs)                                                                                                        | Nathaniel Gingery                                           | Coordinated with the laboratory, reviewed data, and ensured data quality objectives were met.                            |  |
| Analytical<br>Laboratory PM          | Laboratory Subcontractor<br>Agriculture & Priority<br>Pollutants Laboratories,<br>Inc.<br>SGS Environmental<br>Services, Inc. | Greg Salata<br>Justin Nelson                                | Analyzed the samples in accordance with contract and QC requirements.                                                    |  |
| Emergency<br>Medical<br>Professional | Medical Subcontractor<br>(Beacon)                                                                                             | Zackery Bauder                                              | Provided medical services in accordance with contract.                                                                   |  |

Note:
For definitions, refer to the Acronyms and Abbreviations section.

#### 3.3 **SURVEYING**

NEC survey activities occurred from 1 through 4 August 2018. A survey was performed to identify the extent of water bodies, locate proposed sampling locations, and record positions of other features as needed. Surveying was conducted by Lounsbury & Associates, a professional land surveyor (Photograph F-3-3). Survey data tables relevant to sampling locations and compliant with the *Manual for Electronic Deliverables* (USACE 2017a) are included in Attachment F-3.

Lounsbury & Associates used the National Geodetic Survey Online Positioning User Service to process all static baselines and obtain the geodetic positions for project control. Values were obtained by averaging multiple solutions on each point, all of which were based upon at least two hours of static global positioning system observation time. Observations were obtained over multiple days and at different times each day to incorporate different satellite geometry. The integrity of the xyz positions on each control point were confirmed through multiple real-time kinetic check-shots on each point.



Photograph F-3-3: Surveying of a water body at Site 28. View facing east.

# 3.4 WATER BODY MAPPING

The surface water bodies measured in 2018 at Site 28 extended from the border of the MOC to the confluence with the Suqi River. The lateral and vertical extent of the surface water bodies were surveyed if they appeared greater than 30 feet in diameter. The surface water bodies at

Site 28 are presented on Figure F-3 (Attachment F-1) along with the surface water elevation contours.

Real-time kinetic global positioning system was used to collect survey positions around the edge of major water bodies at Site 28. The depth of the water body was collected during the sediment mapping activities, as described in Section 3.5, and are displayed on the cross sections presented in Attachment F-1 for each transect profile. All recorded water body depths are provided in Attachment F-3.

# 3.5 SEDIMENT MAPPING

Site 28 sediment mapping activities occurred from 4 through 6 August 2018. Submerged areas were characterized as sediment or vegetative mat within the surveyed water bodies. For this characterization, sediment was defined as all continuously submerged loose material and organic material, except that which is actively growing vegetation as part of the vegetative mat. If no sediment was identified (e.g., only vegetative mat present), the lack of sediment was documented, and no further evaluation occurred. When sediment was identified, the vertical extent of sediment was measured in accordance with Jacobs SOP NEC-SOP-02. NEC-SOP-02 as presented in the 2018 work plan (USACE 2018). Suggested changes to the field SOP were identified after the field effort for future activities at the request of the USACE. The revised SOP is included as Attachment F-5.

Some obstructions were present, which inhibited measuring and recording the lateral and vertical extent of sediment. This occurred at profile locations P15 and P17 (refer to Attachment F-3). The obstructions are presumed to be debris as discussed in Section 4.3.8.

Two types of water bodies contained sediment at Site 28: discrete ponds and elongated interconnected water features. Discrete ponds did not directly interconnect to other surface water features at the time of the sampling event. Elongated, interconnected, and flowing surface water features made up most of the surface water features in the drainage. These features were

generally oriented on a north/south axis and flowing water ran in a north direction toward the Suqi River.

For discrete water bodies containing sediment, north/south and east/west transects were established using a compass with a declination set to 8 degrees east. Transects crossed approximately at the center of the water body to measure thickness (Photograph F-3-4) according to the work plan.



Photograph F-3-4: Transects at a discrete water body at Site 28. View facing southwest.

For linear water bodies that contained sediment, an east/west profile transect was established every 30 feet along across the north/south axis (Photograph F-3-5). The areas where sediment was present in the linear water bodies occurred in narrow sections; therefore, thickness measurements occurred by evenly-spacing three or more measurements at each transect.



Photograph F-3-5: Surveyed linear water body at Site 28. View facing south.

A graduated hand probe was used to measure sediment thickness to the nearest 0.1 foot starting from the edge of the sediment area and at intervals not exceeding 10 feet (Photograph F-3-6).

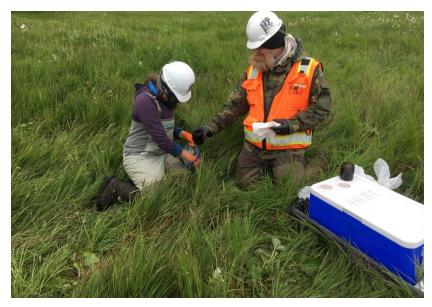


Photograph F-3-6: Collecting sediment thickness measurements using a graduated hand probe at a discrete water body at Site 28. View facing southwest.

Multiple measurements were collected at each location using the graduated probe (e.g., sediment thickness, water depth, and depth at which resistance of the subsurface underlying sediment was noted) and were recorded in the field log book presented in Attachment F-3. Sediment thickness measurements are the basis of the transect profile cross sections included in Attachment F-1. Figures F-4a through F-4i present the transects and the sediment measurement from each probing location.

# 3.6 SAMPLING ACTIVITIES

Site 28 sediment sampling activities occurred from 7 through 9 August 2018. Field documentation, including logbooks and sediment boring logs from each sample location, are included in Attachment F-3. All samples were collected, labeled, stored, and shipped in accordance with Jacobs SOPs JE-SOP-2000, JE-SOP-5300, JE-SOP-7000, and NEC-SOP-2 provided in the 2018 work plan (USACE 2018). Samples were thermally preserved in the field using gel ice immediately after collection and then stored in a temperature regulated refrigerator maintained at 0 to 6 degrees Celsius until offsite shipment to the laboratory. All samples were shipped via Bering Air from NEC to Nome. In Nome the coolers were transferred to Alaska Airlines GoldStreak priority cargo for shipment to SGS Environmental Services, Inc. of Anchorage, Alaska. The sample summary is provided in Attachment F-2.


Reusable sampling tools (hand auger) were decontaminated before use with Alconox and deionized water rinses (Photograph F-3-7) and one-time-use equipment was disposed of after use. Personal protective equipment, such as waders and gloves, were decontaminated after exiting water bodies that had fuel sheen or odor. Decontamination water was collected and shipped offsite (refer to Section 3.7 and Attachment F-3).



Photograph F-3-7: Decontaminating sample collection equipment during sediment sampling at Site 28. View facing west.

A total of 54 sediment samples were collected using a hand auger, sampling spoons, and gloved hands (Photograph F-3-8). A total of 44 samples were collected from surveyed locations based on previous sample locations from the 2012 sediment mapping effort (USACE 2013a). Seven additional locations (locations S28-04, -11, -25, -38, -42, -43, and -51) were originally staked out in either vegetative mat or on dry land (Photograph F-3-9). These seven locations were relocated from previously sampled locations with prior removal actions to suitable sample locations in consultation with the USACE because the original location did not contain sediment in 2018 as defined by the project. The new locations were recorded using a tape measure and compass (Photographs F-3-9 and F-3-10). Three samples of opportunity were collected from water bodies that contained a fuel odor or sheen (locations S28-52, -53, and -54). Sediment samples were collected from depths up to 2 feet deep in the sediment layer or shallower if refusal was met with the hand auger. Because limited thickness of a sediment layer was present at locations S28-SD-36 and S28-SD-37, composite sediment samples were collected by gathering small amounts of sediment from within one foot of each of the location's

survey lathe. Sample classification, sample ID, sample depth, and other observations were recorded in field documentation (Attachment F-3).



Photograph F-3-8: Collecting a sediment sample at Site 28. View facing down.



Photograph F-3-9: Vegetative mat at surveyed and staked location S28-04 at Site 28; sample location was relocated. View facing south.



Photograph F-3-10: Measuring distance to relocated sample location S28-04 from survey lathe at Site 28. View facing west.



Photograph F-3-11: Compass reading to relocated sample location S28-04 from survey lathe at Site 28. View facing west.

Sediment samples collected from Site 28 were analyzed for DRO by method AK102 (with and without silica gel cleanup), RRO by method AK103 (with and without silica gel cleanup), total organic carbon by method SW9060A, PAHs by method SW8270 selective-ion monitoring

(SIM), PCBs by method SW8082A, and select metals (arsenic, chromium, lead, selenium, and zinc) by method SW6020A.

# 3.7 WASTE MANAGEMENT

Investigation-derived waste was transported and disposed of in accordance with all applicable local, state, and federal regulations. Investigation-derived waste, including used nitrile gloves, sampling spoons, and general refuse were incinerated at the camp site. Extra sediment not utilized for sample collection was returned to the location in which it was collected. Wastewater generated during decontamination of equipment and personal protective equipment was collected in a 5-gallon bucket on site. Liquid waste was transferred from Site 28 to a waste collection area near the main camp and combined with wastewater from other NEC activities into 55-gallon drums. A total of four 55-gallon drums was transported offsite via barge at the end of the field effort. Table F-3-2 identifies the waste water quantities generated at Site 28. Waste disposal documentation is included in Attachment F-3.

Table F-3-2
Site 28 Project-Specific Waste Quantities

| Waste Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Generation Date | Approximate Disposal<br>Quantity <sup>1</sup> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------|
| No. 1 and 1 | 6 August 2018   | 2 gallons                                     |
| Nonhazardous decontamination wastewater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 August 2018   | 2 gallons                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8 August 2018   | 3 gallons                                     |

#### Note:

<sup>&</sup>lt;sup>1</sup> Site 28 wastewater was combined with wastewater from MOC field activities.

(intentionally blank)

#### 4.0 INVESTIGATION RESULTS AND DISCUSSION

This section summarizes and interprets analytical results and field measurements for the 2018 sampling activities conducted at Site 28 by ECC and Jacobs.

#### 4.1 EXTENT OF WATER BODIES

The data generated by the 2018 waterbody mapping effort described in Section 3.4 is presented on Figure F-3. The surface water elevation contours confirm field observations that surface water flow is occurring from the south in a northward direction toward the Suqi River. The extent of surface water in 2018 appeared to be less than the extent of surface water reported in 2012. The type of waterbodies varies by geographical location within Site 28.

Surface water in the southern portion of Site 28, nearest to the MOC, is comprised of discrete ponded water bodies with little apparent connection (observable flow) to other surface water features. These surface water features were most evident in Removal Areas 2, 5, 6, 7, and 8 (Figure F-4). Groundwater seeps emanating from the gravel pad were observed near Removal Area 2.

Water from an upwelling, present at the southern point of Removal Area 3 near sample location S28-35 (Photograph F-4-1), flows north through an elongated feature that is interconnected within Removal Areas 3, 4, and 9 (Photograph F-4-2). Naturally occurring iron staining was present within Removal Areas 3 and 4. The northern portion of Removal Area 9, near sample location S28-13, has an abundant vegetative mat and an apparent decelerated water flow (Photograph F-4-3).

A natural stilling area was observed between Removal Areas 9 and 10. The likely stilling area appears to be created by a slight elevation change which has the effect of spreading out surface flow over a wider area than that observed in Removal Area 9 or Removal Area 10. No primary flow channel was found, and the submerged areas were entirely made up of vegetative mat.

Removal Areas 10 and 11 include ponded areas interconnected by elongated features. This area also contained an abundance of tall grass and a vegetative mat (Photograph F-4-4). A small section of stream is found in the vegetative mat in Removal Area 10 south of sample location S28-12 (Photograph F-4-5). The main Site 28 confluence with the Suqi River occurs at sample location S28-1 (Photograph F-4-6) where a narrow flowing water feature is observed. Flow measurements recorded from the Suqi River in 2016 concluded that both velocity and discharge increased downstream of the Site 28 confluence as a result of in-flow from Site 28 (USACE 2017b).



Photograph F-4-1: Artesian upwelling at S28-35. View facing down.



Photograph F-4-2: Naturally occurring mottled iron present in the flowing stream of Removal Areas 3 and 4. View facing south.



Photograph F-4-3: Sample location S28-13, in Removal Area 9, with an abundant vegetative mat. View facing north.



Photograph F-4-4: Interconnected, ponded water bodies at Removal Areas 10 and 11 with elongated features containing an abundant vegetative mat (S28-5 and S28-6). View facing north.



Photograph F-4-5: Abundant vegetative mat at Removal Area 10 containing a small section of stream upgradient from sample location S28-12. View facing southwest.



Photograph F-4-6: The confluence of Site 28 with the Suqi River at sample location S28-1. View facing east.

# 4.2 SEDIMENT EXTENT AND THICKNESS

In 2012, a sediment mapping effort to measure sediment extent and thickness occurred at Site 28. Sediment thickness was measured in 66 locations throughout Site 28 and ranged from 0.5 foot to 2 feet. Approximately 400 cy of sediment were estimated to be present within the Site 28 waterbodies based on the 2012 measurements (USACE 2013a).

Site 28 sediment removal actions occurred in 2012 and 2013. An estimated total of 284.6 cy of contaminated sediment were removed in 2012 and 2013; two locations in 2012 (20.6 cy from Removal Areas 1 and 2) and nine locations in 2013 (264 cy from Removal Areas 3 through 11) (USACE 2015a). The volume of sediment removed during these activities was estimated by using AutoCAD to compare the pre- and post-removal square footage of the waterbodies multiplied by the pre-removal estimate of sediment thickness (USACE 2015a). No direct measurements were taken at that time.

In 2018, the extent and thickness of sediment were measured as described in Section 3.5. A total of 51 profile transects were established and 207 locations were measured for sediment thickness

across the transects. Sediment thickness in 2018 ranged from 0.1 foot to 3.4 at Site 28 with a total estimated volume of 281 cy across all water bodies. A comparison of the 2012 versus the 2018 estimated volumes of sediment by removal area is presented in Table F-4-1. Figures F-4a through F-4i display the location of 2018 transect, thickness measurement locations, and areas where sediment removal occurred in 2013.

Table F-4-1
Summary of Sediment Quantities Mapped and Removed from Site 28

| Area         | Estimated<br>Sediment<br>Volume in 2012<br>(cy) | Volume of<br>Sediment Removed<br>in 2012 and 2013<br>(cy) | Estimated<br>Sediment<br>Volume in 2018<br>(cy) | Estimated Volume of<br>Contaminated Sediment<br>in 2018<br>(cy) |
|--------------|-------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------|
| Area 1       | 1.6                                             | 5                                                         | Not measured <sup>1</sup>                       | Not measured <sup>1</sup>                                       |
| Area 2       | 7.2                                             | 16                                                        | 3.62                                            | 3.62                                                            |
| Area 3       | 73.9                                            | 64.6                                                      | 26.99                                           | 26.99                                                           |
| Area 4       | Area 4 153.3                                    |                                                           | 122.84                                          | 122.84                                                          |
| Area 5 North | 9.3                                             | 3.1                                                       | 0.02                                            | 0.02                                                            |
| Area 5 South | 29.3                                            | 6.5                                                       | 0.02                                            | 0                                                               |
| Area 6       | 6.9                                             | 21.3                                                      | 6.4                                             | 6.4                                                             |
| Area 7       | 6.2                                             | 12.3                                                      | 10.48                                           | 3.2                                                             |
| Area 8       | 0.5                                             | 1.8                                                       | 1.01                                            | 0.44                                                            |
| Area 9       | 63.6                                            | 23.4                                                      | 32.15                                           | 32.15                                                           |
| Area 10-1    | 4.2                                             | 3.9                                                       |                                                 | 0                                                               |
| Area 10-2    | 1.3                                             | 0.4                                                       | 20.9                                            |                                                                 |
| Area 10-3    | 7.2                                             | 5.1                                                       |                                                 |                                                                 |
| Area 10-4    | 16.9                                            | 11.5                                                      | 42.04                                           | 0                                                               |
| Area 10-5    | 8.5                                             | 7.5                                                       | 43.91                                           |                                                                 |
| Area 11-1    | 2.7                                             | 2.2                                                       | 12.01                                           | 0                                                               |
| Area 11-2    | 6.8                                             | 2.4                                                       | 12.91                                           |                                                                 |
| Totals       | 399.4                                           | 285.4                                                     | 281.25                                          | 195.66                                                          |

#### Notes:

<sup>1</sup> Sediment volume was not measured in 2018 because sediment probing was not performed in 2012 (USACE 2013a). For definitions, refer to the Acronyms and Abbreviations section.

Sediment profile cross sections were created from 2018 measurements for each of the 51 transects to illustrate the sediment distribution encountered. The cross sections also identify the water depth encountered and vegetative mat areas. Bathymetry and sediment thicknesses measurements were linearly interpolated between measurements points across the transect to produce the cross section illustrations in Attachment F-1, numbered P-1 through P-53.

Sediment volume was calculated using the area of sediment within each water body as mapped in plan-view, multiplied by the average thickness of sediment as illustrated on the cross sections. An average sediment thickness was approximated for each sediment transect using the distribution as shown on each cross section in Attachment F-1. Where multiple transects were collected to represent an elongated water body, the sediment thickness averaged from each transect was further weighted to account for differences in the width of the waterbody.

# 4.2.1 Post-Removal Sediment Quantity Evaluation

Secondary goals for the 2018 sediment data assessment were to determine if significant re-accumulation of sediment occurred at Site 28 after 2013 removal efforts and what volume of contaminated sediment may have remained at Site 28. Although a direct comparison of overall 2012 and 2018 sediment volumes was attempted, it did not prove fruitful. Comparability issues were identified due to the differences in 2018 quantity and type of measurements when compared to the 2012 efforts. More sediment locations were measured in 2018 (207) than in 2012 (66). The reduced measurement density in 2012 resulted in a higher variability in the final estimate. Additionally, no direct measurements of sediment thickness occurred after the removal actions.

The following lines-of-evidence approach provided insight to possible sediment re-accumulation:

- Comparing the volume of sediment estimated in 2012, the volume of sediment removed in 2012 and 2013 and the volume of sediment estimated in 2018 by removal area;
- Comparing the sediment thickness from discrete locations within select removal areas measured during the 2012 and 2018 mapping effort; and
- Using visual field observations, such as surface evidence of sloughing.

As summarized in Table F-4-1, numerical comparisons for 2012, 2013, and 2018 sediment volumes did not compare well on a removal area basis. Therefore, the first line of evidence did

not provide any insight other than identifying the need to use the 2018 measurement approach for future efforts at Site 28.

The second line of evidence comparison is summarized in Table F-4-2. There were 11 measurement locations between the 2012 and 2018 study where measurements occurred at similar locations.

Table F-4-2 Comparison of 2012 and 2018 Discrete Thickness Measurements

| Removal<br>Area | Water Body<br>Type | 2012 Probe<br>Number | 2018 Profile<br>Transect<br>Number | 2012 Sediment<br>Thickness<br>(feet) | 2018 Sediment<br>Thickness<br>(feet) | Comparison<br>Outcome |
|-----------------|--------------------|----------------------|------------------------------------|--------------------------------------|--------------------------------------|-----------------------|
| 3               | Elongated          | 28-43                | P34                                | 1                                    | 0.7                                  | 2018 < 2012           |
| 3               | Elongated          | 28-44                | P35                                | 1.5                                  | 2.1                                  | 2018 > 2012           |
| 3               | Elongated          | 28-51                | P40                                | 0.75                                 | 0.4                                  | 2018 < 2012           |
| 4               | Elongated          | 28-33                | P25                                | 1.75                                 | 2.3                                  | 2018 > 2012           |
| 4               | Elongated          | 28-37                | P27                                | 1.5                                  | 0.3                                  | 2018 < 2012           |
| 5               | Ponded             | 28-62                | P49                                | 1                                    | vegetative mat                       | 2018 < 2012           |
| 7               | Ponded             | 28-55                | P42                                | 1                                    | 0.3                                  | 2018 < 2012           |
| 9               | Ponded             | 28-22                | P16                                | 1                                    | 1.1                                  | 2018 > 2012           |
| 10              | Ponded             | 28-10                | P8                                 | 1.25                                 | 2.3                                  | 2018 > 2012           |
| 11              | Ponded             | 28-1                 | P1                                 | 1                                    | 1                                    | 2018 = 2012           |
| 11              | Ponded             | 28-4                 | P2                                 | 1.75                                 | 1.3                                  | 2018 < 2012           |

The evaluation of the second line of evidence showed that seven of the 11 locations had less sediment in 2018 when compared to 2012 and four locations had more sediment. Focusing on some of the discrete pond locations where sediment thickness was lower in 2018 identified that re-accumulation was not suspected. Remaining sediment was identified at 2018 location P42 (Removal Area 7). There was no re-accumulation mechanism to transport sediment to this location; therefore, it was suspected that the remaining sediment may be present due to incomplete removal. Other locations, such as P27 (Removal Area 3) and P34 (Removal Area 4), may be indicative of re-accumulation based on their presence in areas of higher water flow rates created by the narrow channel.

The final line of evidence reviewed were field observations. Some of the ponded water bodies observed in Removal Areas 2 and 8 appeared to have vertical edges. These vertical edges were likely effects of the removal activities and were not natural features. These waterbodies showed evidence of sloughing, which would be a possible re-accumulation mechanism.

Elongated features with flowing water through Removal Areas 3, 4, and 9 had the potential for sediment re-accumulation. The average sediment thickness measurement from upgradient to downgradient should have increased if sediment was reaccumulating through these elongated water body features. However, the average thickness measurements did not indicate this was occurring and no significant areas of sloughing were noted in 2018.

Based on the three lines of evidence reviewed, the procedural differences between 2012 and 2018 mapping efforts do not allow meaningful volume comparisons. Some limited re-accumulation of sediment was likely in areas of Site 28 where supported by flow conditions (Removal Areas 3 and 4). However, re-accumulation did not explain the volume of remaining sediment at Site 28 if it was assumed the 2013 removal action was complete.

# 4.3 NATURE AND LATERAL EXTENT OF CONTAMINATION AT SITE 28

Analytical results from the 2018 Site 28 sediment sampling effort were compared to the SSCLs for COCs identified in the work plan that originated in the 2009 multi-site DD (USACE 2009). Target analytes exceeding the multi-site DD-based SSCLs for sediment at Site 28 were present at the south portion of the site closest to the MOC and extending downgradient through Removal Area 9. The two removal areas closest to the Suqi River (Removal Areas 10 and 11) did not contain target analytes above the sediment SSCLs. Figures in Attachment F-1 present 2018 sample locations and analytical results for locations exceeding the SSCLs. Table F-4-3 presents a minimum and maximum sample concentration for each analyte, sample location of the maximum detected concentration, and number of locations with exceedances greater than the SSCLs.

Table F-4-3 2018 Exceedances of SSCLs for Sediment at Site 28

| T                  |                        | Sediment                     | 2018 Concentration          | Location of Maximum Concentration |              | Number of Locations with Result Greater |
|--------------------|------------------------|------------------------------|-----------------------------|-----------------------------------|--------------|-----------------------------------------|
| Test Method        | Analyte                | SSCL<br>(mg/kg) <sup>1</sup> | Range of Results<br>(mg/kg) | Location ID                       | Removal Area | than Multi-Site DD-<br>based SSCL       |
| SW6020A            | Arsenic                | 93                           | 2.64 - 86.2                 | S28-34                            | Area 3       | None                                    |
|                    | Chromium               | 270                          | 5.56 - 48.3                 | S28-42                            | Area 8       | None                                    |
|                    | Lead                   | 530                          | 5.41 - 98.9                 | S28-43                            | N/A          | None                                    |
|                    | Zinc                   | 960                          | 19.4 - 280                  | S28-42                            | Area 8       | None                                    |
|                    | Total PCB              | 0.7                          | ND - 0.482                  | S28-17                            | Area 9       | None                                    |
|                    | Aroclor 1016           | 0.7                          | ND                          | N/A                               |              | None                                    |
|                    | Aroclor 1221           | 0.7                          | ND                          | N/A                               |              | None                                    |
| SW8082A            | Aroclor 1232           | 0.7                          | ND                          | N/A                               |              | None                                    |
| SW8082A            | Aroclor 1242           | 0.7                          | ND                          | N/A                               |              | None                                    |
|                    | Aroclor 1248           | 0.7                          | ND                          | N/A                               |              | None                                    |
|                    | Aroclor 1254           | 0.7                          | ND - 0.2                    | S28-44                            | Area 6       | None                                    |
|                    | Aroclor 1260           | 0.7                          | ND - 0.482                  | S28-17                            | Area 9       | None                                    |
|                    | 2-Methylnaphthalene    | 0.6                          | ND - <b>529</b>             | S28-49                            | Area 2       | 35 of 54                                |
|                    | Acenaphthene           | 0.5                          | ND – <b>16 J</b>            | S28-28                            | Area 3       | 22 of 54                                |
|                    | Benzo(g,h,i)perylene   | 1.7                          | ND                          | N/A                               |              | None                                    |
|                    | Fluoranthene           | 2                            | ND - 3.42                   | S28-52                            | Area 4       | 1 of 54                                 |
| CMOSTOD            | Fluorene               | 0.8                          | ND - 25.3                   | S28-28                            | Area 3       | 25 of 54                                |
| SW8270D            | Indeno(1,2,3-cd)pyrene | 3.2                          | ND                          | N/A                               |              | None                                    |
|                    | Naphthalene            | 1.7                          | ND - 230                    | S28-54                            | Area 2       | 31 of 54                                |
|                    | Phenanthrene           | 4.8                          | ND QN - 13.3 J              | S28-53                            | Area 7       | 9 of 54                                 |
|                    | Total LPAH             | 7.8                          | ND - <b>266.65</b>          | S28-54                            | Area 2       | 25 of 54                                |
|                    | Total HPAH             | 9.6                          | ND - 6.931                  | S28-52                            | Area 4       | None                                    |
| AK102              | DRO                    | 3,500                        | 214 <b>– 105,000</b>        | S28-15                            | Area 9       | 36 of 54                                |
| AK102 <sup>2</sup> | DRO                    | 3,500                        | 102 – <b>94,100</b>         | S28-28                            | Area 3       | 32 of 54                                |
| AK103              | RRO                    | 3,500                        | 844 <b>– 127,000</b>        | S28-42                            | Area 8       | 35 of 54                                |
| AK103 <sup>2</sup> | RRO                    | 3,500                        | 296 – 106,000               | S28-42                            | Area 8       | 18 of 54                                |

For definitions, refer to the Acronyms and Abbreviations section.

Notes:

1 Sediment SSCL as defined in the 2009 multi-site DD (USACE 2009).
2 Performed using the silica gel cleanup method.
Bold = exceeded SSCL

J - The analyte was positively identified; however, the associated result was less than the limit of quantitation but greater than or equal to the detection limit. QN – Analyte result is considered an estimated value (unknown bias) due to a QC failure.

In 2018, sediment samples exceeded the SSCLs for fuel and fuel-constituents including DRO, RRO, 2-methylnaphthalene, acenaphthene, fluoranthene, fluorene, naphthalene, phenanthrene, and LPAH. DRO and RRO results were elevated due to biogenic interference, discussed in Section 4.3.2. DRO, 2-methylnaphthalene, and naphthalene were the most prevalent analytes exceeding SSCLs. Of the estimated 281 cy of sediment currently present at Site 28, approximately 196 cy of that sediment appears to contain DRO/RRO and/or PAHs above the SSCLs.

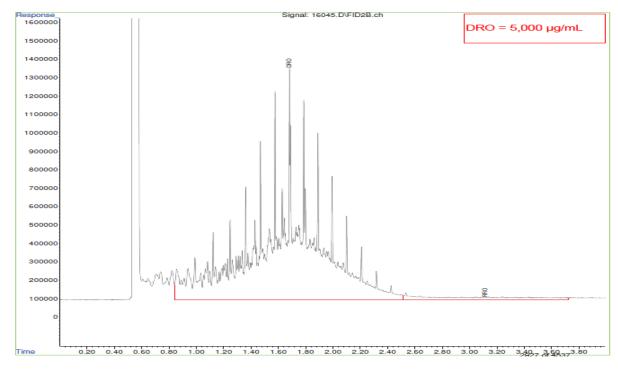
# 4.3.1 Data Quality Assessment

The sample summary table, complete analytical results, and DQA are included in Attachment F-2. Data quality was assessed using the laboratory case narrative, laboratory data deliverables, and ADEC checklists. Reviews of the analytical results and associated quality control (QC) samples were performed by the Jacobs Project Chemist in accordance with the 2018 work plan (USACE 2018).

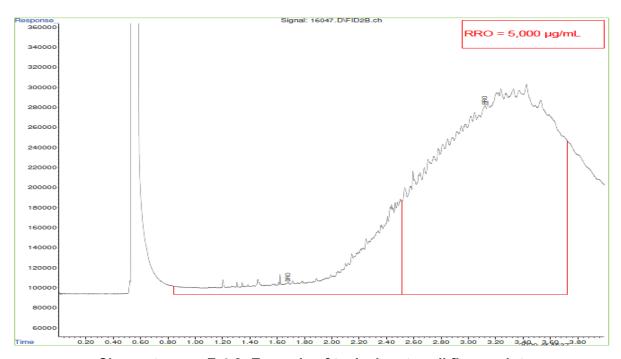
The 2018 DQA found the overall quality of the project data to be acceptable and no results were rejected. Data quality was evaluated against the following requirements: U.S. Department of Defense (DoD) Quality Systems Manual (DoD 2017); ADEC and U.S. Environmental Protection Agency (EPA) analytical methods (ADEC 2017; EPA 2014); and laboratory limits. Qualifiers were applied to sample results that did not meet the data quality objectives. Qualified results are considered estimated. PCB surrogate recovery was outside of QC goals, for sample 18NEC-S28-SD-42, but data were minimally affected. Field duplicate precision did not meet project goals for multiple analytes and those analytical results were qualified. For data qualifier definitions and details of the data validation, refer to the DQA (Attachment F-2).

Biogenic interference from naturally occurring organic material (NOM) in soil and sediment had been reported in previous sampling efforts at NEC (USACE 2013a). NOM likely contributed to DRO and RRO concentrations in sediment collected in 2018 and biased the analytical results high (refer to Section 4.3.2). All DRO and RRO chromatograms were reviewed. After comprehensive review of all chromatograms and consultation with the USACE,

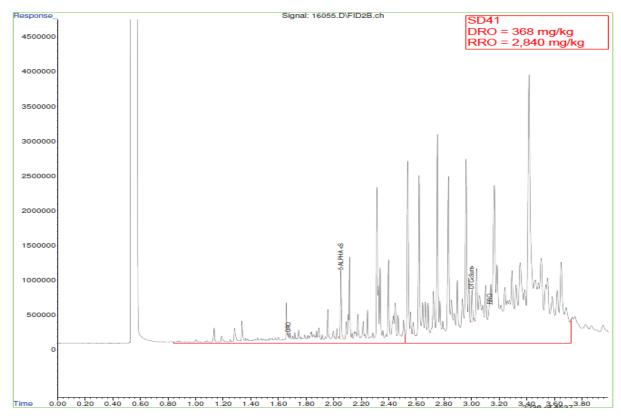
silica gel-treated DRO results will be the only results presented on figures and used for data interpretation. Biogenic interference also significantly contributed to the RRO levels as the fingerprint observed in the RRO range is not consistent with the typical motor oil pattern seen in the RRO calibration chromatograms.


# 4.3.2 Evaluation of Biogenic Interference for Site 28 Sediment

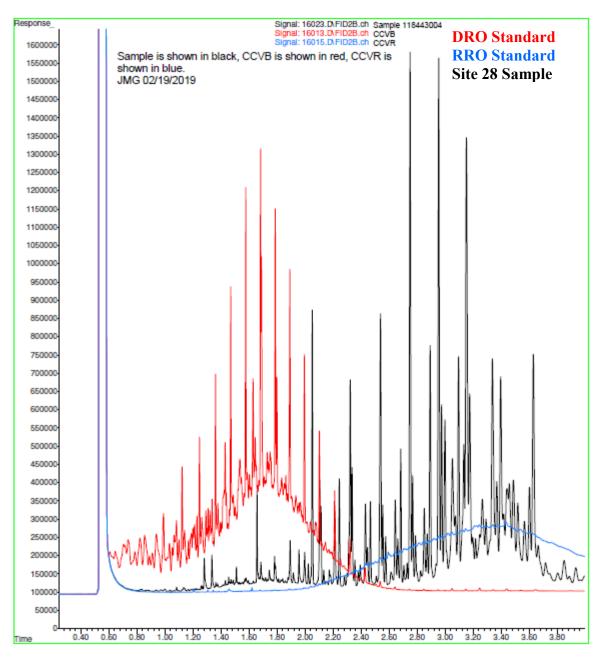
NOM in soil and sediment is encountered at many locations throughout Alaska especially in tundra peat and topsoil. These naturally occurring organics can be present at high levels (percent range) that are well above the NEC multi-site DD-based SSCLs for DRO and RRO reported by the AK102 and AK103 test methods (ADEC 2006). According to Technical Memorandum 06-001 (ADEC 2006), a silica gel cleanup procedure may be used as part of an evaluation process to determine the presence and degree of biogenic interference. The silica gel cleanup procedure is intended to remove NOM from the extracted analytical sample while leaving petrogenic organic contamination relatively unaffected.


The previous NEC soil data and Site 28 sediment data collected in 2012 described the presence of NOM causing biogenic interference, which affected RRO results (USACE 2013a). Site 28 contains lush vegetation with a thick organic mat near and within the waterbodies (USACE 2013a). To support the evaluation of NOM contribution to 2018 Site 28 sediment samples, sediment was analyzed for DRO and RRO with and without silica gel cleanup and total organic carbon. The assessment of biogenic interference and its affects was completed by a chromatographic assessment followed by a comparison of silica gel-treated and untreated DRO and RRO results. All chromatograms referenced in this section are provided in Attachment F-2. Select examples of chromatograms will be presented in this section for discussion purposes.

Calibration chromatograms for the normal alkane standard, the DRO reference standard, and the RRO reference standard form the foundation of fingerprint evaluation to establish retention time references ( $C_{10}$  to  $C_{25}$  for DRO and  $C_{25}$  to  $C_{36}$  for RRO) and define patterns typical for diesel fuel and motor oil under the condition used by the AK 102/103 test method. Examples


of the typical DRO and RRO fingerprints, a Site 28 biogenic fingerprint, and the three fingerprints displayed on a single chromatogram are provided below.




Chromatogram F-4-1: Example of a typical diesel fuel fingerprint



Chromatogram F-4-2: Example of typical motor oil fingerprint



Chromatogram F-4-3: Example of Site 28 biogenic fingerprint



Chromatogram F-4-4: Example of a DRO standard fingerprint, RRO standard fingerprint, and Site 28 biogenic fingerprint

The biogenic fingerprint is distinguishable from the typical DRO and typical RRO fingerprint as demonstrated by the example fingerprints. The Site 28 biogenic interference generally starts at  $C_{17}$  (1.7 minutes on the time axis) and continues through  $C_{36}$  (3.7 minutes on the time axis). It is noted that the biogenic pattern seen at Site 28 has the potential to affect both DRO and RRO with a higher potential affect in the RRO range.

Many of the 2018 Site 28 chromatograms were consistent with the typical DRO fingerprint, which was expected based on the historical sources of contamination upgradient of the site. All fingerprints in the RRO range were not consistent with the typical motor oil fingerprint but were consistent with the biogenic fingerprint (Chromatograms S28-21 and S28-36 in Attachment F-2). No known large spill of motor oil at NEC that would affect Site 28 exists. Based on the review of chromatogram fingerprints, NOM is present in all 2018 samples collected from Site 28.

The next step in the evaluation was to compare 2018 silica gel-treated DRO and RRO results to untreated results. The results comparison discussed in this section focused on those results where untreated results are above the SSCLs and treated results are below the SSCLs as they affect the definition of the extent of contamination. The locations where untreated DRO results were above the SSCL of 3,500 mg/kg but silica gel-treated DRO results were below the SSCL were S28-21, S28-24, S28-36, and S28-37 (four out of 53 locations).

The DRO results for these locations are summarized in Table F-4-4.

Table F-4-4
Untreated DRO Results Above SSCL With Silica Gel-Treated Results Below SSCL

| Location ID | Sample ID       | Untreated DRO<br>(mg/kg) | Treated DRO<br>(mg/kg) |
|-------------|-----------------|--------------------------|------------------------|
| S28-21      | 18NEC-S28-SD-21 | 4,000                    | 3,390                  |
| S28-24      | 18NEC-S28-SD-24 | 4,390                    | 3,460                  |
| S28-36      | 18NEC-S28-SD-36 | 4,120                    | 2,960                  |
| S28-37      | 18NEC-S28-SD-37 | 4,490                    | 3,440                  |

Note:

For definitions, refer to the Acronyms and Abbreviations section.

The locations where untreated RRO results were above the SSCL of 3,500 mg/kg and silica gel-treated results were below the SSCL in 2018 are S28-11, S28-26, S28-30, S28-32, S28-33, S28-34, S28-35, S28-36, S28-37, S28-38, S28-39, S28-44, S28-45, S28-46, S28-48, S28-53, and S28-54 (17 of 53 locations).

The RRO results for these locations are summarized in Table F-4-5.

Table F-4-5
Untreated RRO Results Above SSCL With Silica Gel-Treated Results Below SSCL

| Location ID      | Sample ID         | Untreated RRO<br>(mg/kg) | Treated RRO<br>(mg/kg) |
|------------------|-------------------|--------------------------|------------------------|
| S28-11           | 18NEC-S28-SD-11   | 3,840                    | 1,660                  |
| S28-26           | 18NEC-S28-SD-26   | 3,640                    | 2,780                  |
| S28-30           | 18NEC-S28-SD-30   | 7,060                    | 3,400                  |
| S28-32           | 18NEC-S28-SD-32   | 4,010                    | 2,020                  |
| S28-33           | 18NEC-S28-SD-33   | 7,180                    | 2,800                  |
| S28-34           | 18NEC-S28-SD-34   | 5,290                    | 3,030                  |
| S28-35           | 18NEC-S28-SD-35   | 4,080                    | 1,960                  |
| S28-36           | 18NEC-S28-SD-36   | 7,990                    | 1,720                  |
| S28-37           | 18NEC-S28-SD-37   | 5,660                    | 1,430                  |
| S28-38           | 18NEC-S28-SD-38   | 7,580                    | 2,000                  |
| S28-38 duplicate | 18NEC-S28-SD-38-8 | 8,490                    | 2,550                  |
| S28-39           | 18NEC-S28-SD-39   | 6,360                    | 1,840                  |
| S28-44           | 18NEC-S28-SD-44   | 5,090                    | 2,370                  |
| S28-45           | 18NEC-S28-SD-45   | 4,110                    | 1,370                  |
| S28-46           | 18NEC-S28-SD-46   | 5,440                    | 1,010                  |
| S28-48           | 18NEC-S28-SD-48   | 6,980                    | 2,020                  |
| S28-48 duplicate | 18NEC-S28-SD-48-8 | 6,050                    | 2,230                  |
| S28-53           | 18NEC-S28-SD-53   | 10,600                   | 1,870                  |
| S28-54           | 18NEC-S28-SD-54   | 7,040                    | 2,290                  |

#### Note:

For definitions, refer to the Acronyms and Abbreviations section.

The silica gel cleanup did not affect the overall contribution of diesel fuel to DRO concentrations in 2018 as demonstrated by the chromatograms for location S28-36. While the biogenic pattern is greatly reduced, as noted by the lower height of peaks on the y-axis from 2.2 to 3.7 minutes, the DRO pattern from 1 to 2.2 minutes is not affected. Additionally, it can be observed that the silica gel cleanup did not fully remove the biogenic interference in the

RRO range. The greater removal of biogenic contributions to the RRO range is also generally confirmed by the lower overall percent reduction of DRO concentrations in treated and untreated results (Table F-4-4) compared to the percent reduction in RRO concentrations for treated and untreated results (Table F-4-5).

This assessment of biogenic interference confirms that biogenic interference is present in Site 28 samples and that silica gel-treated DRO and RRO results should be utilized for site assessment of the extent of contamination. It is also noted that silica gel treatment may not fully remove the potential bias to DRO and RRO results.

# 4.3.3 DRO Analytical Results

DRO in sediment above the SSCL remains prevalent at Site 28. The previous sediment sampling effort in 2012 reported DRO and 2-methylnapthalene as the most prevalent fuel contaminants at Site 28 (USACE 2013a). In 2018, DRO above the SSCL was prevalent from the southern portion of Site 28 near the MOC to sample location SD28-14. There were no exceedances for DRO nearest to the Suqi River (locations S28-01 through S28-13) and in the southeastern water bodies of Removal Area 5 (locations S28-36, S28-37, and S28-41). The DRO silica gel cleanup exceedances for Site 28 are presented on Figure F-5.

The highest 2018 concentration for DRO silica gel cleanup (94,100 mg/kg) was at location S28-28 within Removal Area 3. The areas with DRO concentrations greater than 40,000 mg/kg were within Removal Areas 2, 3, 4, and 9. From location S28-13 and north to S28-01 at the confluence of the drainage basin and the Suqi River, a natural filtering process appeared to be occurring because sediment contamination had not accumulated into Removal Areas 10 or 11.

In 2012 the average DRO concentration for sediment samples was approximately 23,000 mg/kg before silica gel cleanup and approximately 21,000 mg/kg after silica gel cleanup (USACE 2013a). In 2018, the average DRO concentration before silica gel cleanup was approximately 24,600 mg/kg and approximately 20,000 mg/kg after silica gel cleanup. The

DRO concentrations are relatively similar between the 2012 and 2018 sediment mapping and sampling events.

# 4.3.4 RRO Analytical Results

The highest 2018 concentration for RRO silica gel cleanup (106,000 mg/kg) was at location S28-42 within Removal Area 8. This RRO concentration was elevated and related to high levels of NOM within the sample even after the silica gel cleanup process. The silica gel cleanup process could not remove all biogenic interference. In fuel-contaminated soil, fuel-related analytes such as PAHs were frequently collocated. PAHs did not exceed SSCLs at location S28-42; therefore, a residual-range fuel product was unlikely to be elevated to 106,000 mg/kg. The removal areas with RRO concentrations greater than 10,000 mg/kg are within Removal Areas 2, 3, 8, and 9. RRO was not exceeding the SSCL in Removal Areas 5, 6, 10, or 11. All RRO exceedances of the SSCL were collocated with DRO exceedances of the SSCL. The RRO exceedances for Site 28 are presented on Figure F-6.

In 2012 the average RRO concentration for sediment samples was approximately 5,200 mg/kg before silica gel cleanup and approximately 3,500 mg/kg after silica gel cleanup. In 2018, the average RRO concentration before silica gel cleanup was approximately 8,900 mg/kg and approximately 5,500 mg/kg after silica gel cleanup. The RRO concentrations are greater in the 2018 sediment mapping and sampling event than the 2012 event.

# 4.3.5 PAH Analytical Results

Eighteen PAHs were analyzed by method SW8270SIM for Site 28 in 2018. However, only 10 PAHs (eight individual analytes and two calculated PAHs) had multi-site DD-based SSCLs. PAHs with multi-site DD-based SSCLs included the following: 2-methylnaphtnalene, acenaphthene, benzo(g,h,i)perylene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, naphthalene, phenanthrene, LPAH (PAHs with three or fewer rings), and high molecular weight PAHs (HPAHs) (PAHs with four or more rings). PAHs without multi-site DD-based SSCLs but analyzed by method SW8270SIM included the following: 1-methylnaphtnalene,

acenaphthylene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and pyrene.

#### PAHs with SSCLs

The most frequently reported PAHs above SSCLs in sediment (exceedances in 22 or more locations) at Site 28 in 2018 were 2-methylnaphthalene, acenaphthene, fluorene, naphthalene, and LPAH. Locations with PAHs exceeding the SSCLs were collocated with DRO exceedances, with the exception of Removal Area 5 (Figure F-7), where DRO did not exceed the SSCL. Removal Area 5 contained PAH exceedances for 2-methylnapthalene and naphthalene.

#### PAHs without SSCLs

1-Methylnaphthalene, benzo(a)anthracene, chrysene, fluoranthene, and pyrene were detected in sediment at Site 28 in 2018 and do not have SSCLs. 1-Methylnaphthalene and pyrene were the most frequently detected compounds without an SSCL. All detections for 1-methylnaphthalene were collocated with 2-methylnaphthalene except for location S28-04, which had a detection of 0.106 J mg/kg for 1-methylnaphthalene and was nondetect for 2-methylnaphthalene.

# 4.3.6 PCB Analytical Results

There were no 2018 sediment samples that exceeded the PCB SSCL of 0.7 mg/kg at Site 28. Low-level PCBs were reported at 29 locations; Aroclor-1260 accounted of the all but one of the reported detections. Aroclor-1254 was reported at one location, S28-44. Sampling locations with low-level PCB detections were found in Removal Areas 2, 3, 4, 6, 7, and 9. The highest concentration for total PCBs was 0.482 mg/kg at location S28-47, located within a pond in Removal Area 2 near the MOC. All locations closest to the Suqi River within Removal Areas 10 and 11 were nondetect for PCBs.

# 4.3.7 Metals Analytical Results

In 2018, no locations exceeded the SSCLs for metals (arsenic, chromium, lead, and zinc). Although selenium was not included in the 2009 multi-site DD (USACE 2009), it was analyzed. The highest detected concentration for selenium was 4.34 mg/kg. Figure F-8 presents the 2018 metals sample locations.

# 4.3.8 Debris at Site 28

Debris consisting of submerged utility poles, plywood, cable wire, and rubber rigging mats were scattered throughout Site 28 in 2018. The partially submerged utility poles were observed above the water line (Photograph F-4-7). Other obstructions were noted during the sediment mapping activities within transect profiles P15 and P17. The plywood, cable wire, and rubber rigging were observed both submerged and unsubmerged within Site 28 (Photograph F-4-8).



Photograph F-4-7: Partially submerged utility pole within Site 28 Drainage. View facing south.



Photograph F-4-8: Plywood debris within Site 28. View facing north.

## 5.0 CONCLUSIONS AND RECOMMENDATIONS

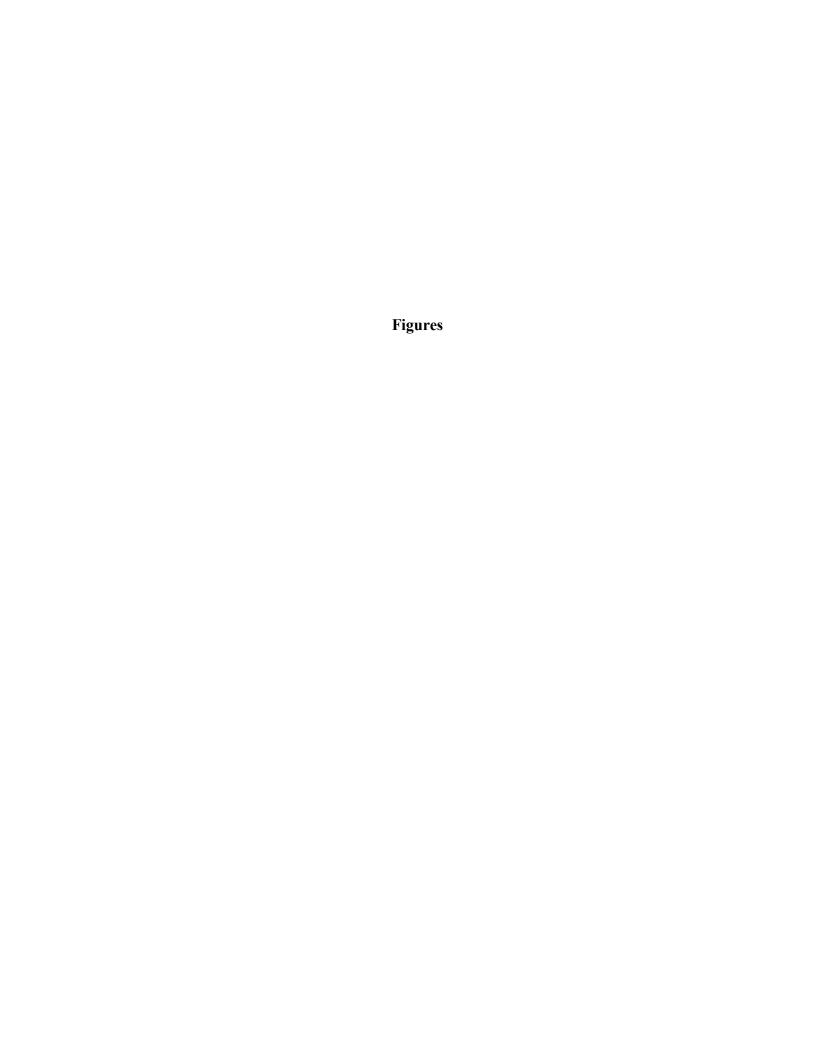
The conclusions and recommendations based on the data collected for the 2018 Site 28 sediment mapping and sampling are as follows:

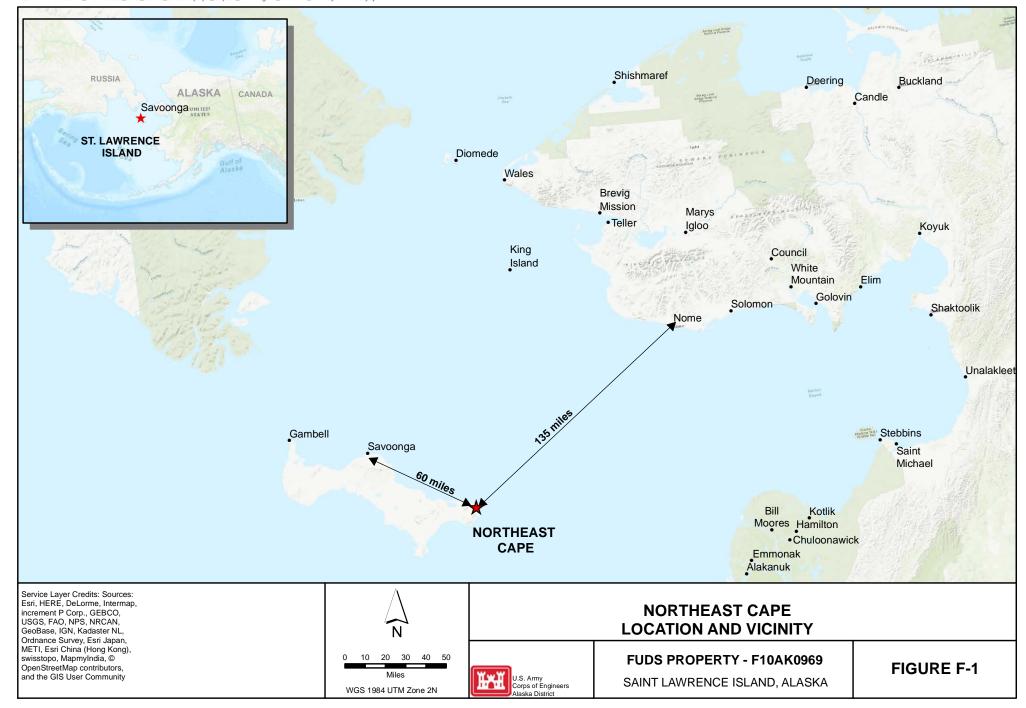
#### • Conclusions:

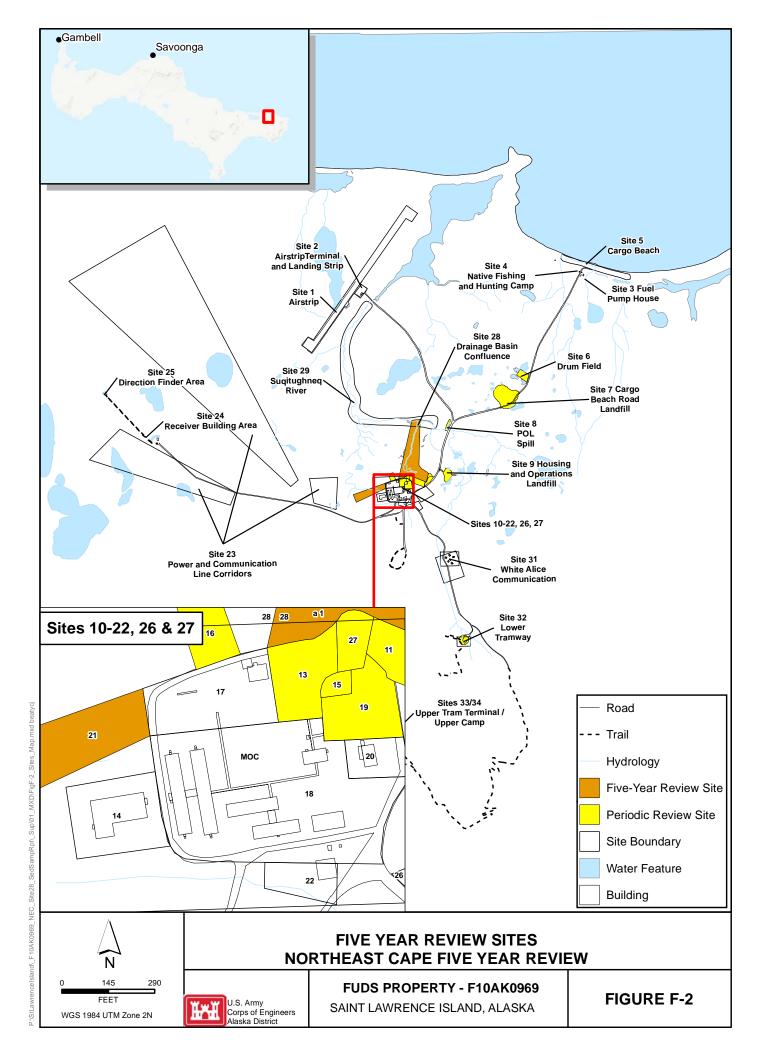
- A natural stilling area was found to be present between Area 9 and Area 10. The area appeared to be entirely composed of vegetative mat, which dispersed flow channels observed in Area 10.
- A total of 281 cy of sediment were estimated to be present at Site 28 water bodies in 2018. Based on a lines-of-evidence approach, re-accumulation of sediment is possible in certain areas of Site 28. However, estimating the amount of sediment which has "re-accumulated" is not possible currently due to procedural differences in the 2012 and 2018 mapping efforts and the 2013 post-removal sediment volume estimating techniques.
- Target analytes in 2018 exceeding the multi-site DD-based SSCLs in sediment samples were found in sediment samples across Areas 2 through 9. Target analytes in 2018 did not exceed the multi-site DD-specified SSCLs at the confluence with the Suqi River within Area 11 or immediately south of the Suqi River in Area 10. DRO, RRO, 2-methylnaphthalene, and naphthalene are the most prevalent analytes exceeding SSCLs in 2018. Applying the analytical results to the estimated sediment volumes, 196 of the 281 cy of sediment contains compounds at levels above their respective SSCLs in 2018.
- Sediment contamination greater than SSCLs are not found in Removal Areas 10 and 11 near the Suqi River in 2018.
- PCBs, reported as Aroclors, were not found at Site 28 above the SSCL in 2018.
- NOM in sediment is contributing to the 2018 reported levels of DRO and RRO and causing a high bias. This observation is consistent with those reported in historical investigations at Site 28 and other NEC sites. Silica gel treatment is only partially effective in reducing this high bias.

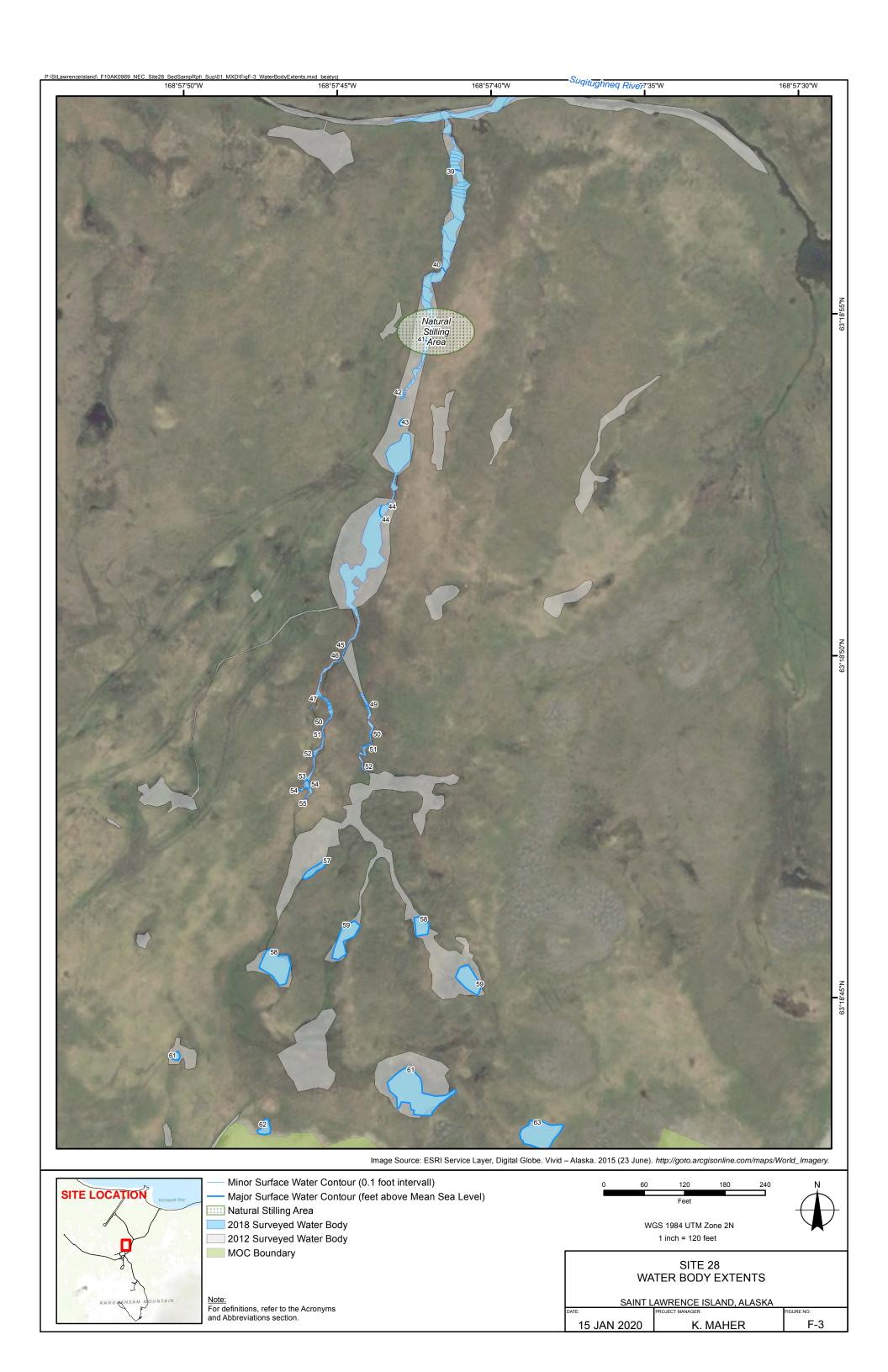
# • Recommendations:

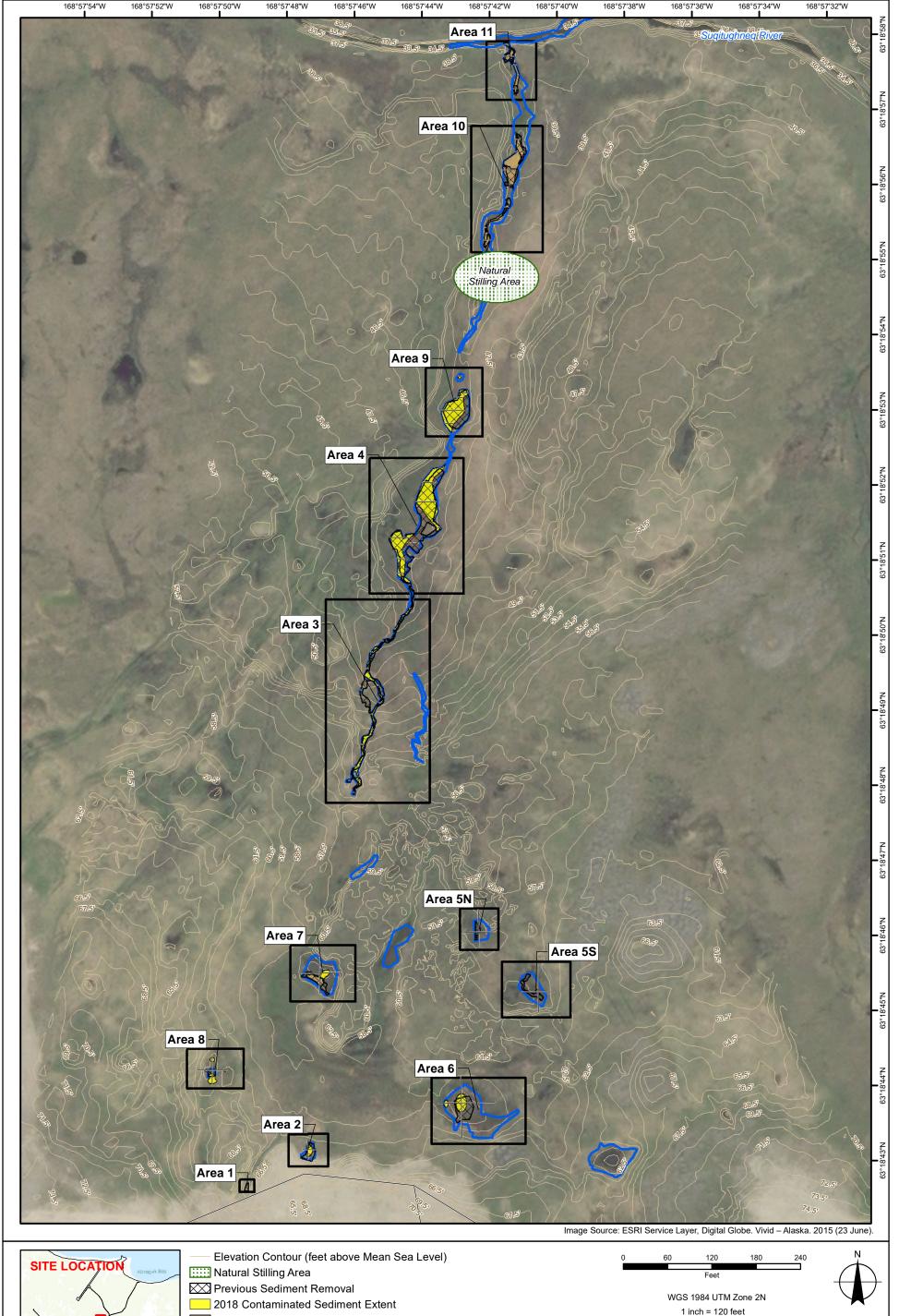
- Utilize the 2018 sediment measurement process for future sediment mapping efforts at Site 28.
- Utilize silica gel-treated DRO and RRO results for future data evaluation, presentations, and site management decisions.


(intentionally blank)


### 6.0 REFERENCES


- ADEC (Alaska Department of Environmental Conservation). 2006 (18 May). *Biogenic Interference and Silica Gel Cleanup*. Technical Memorandum 06-001.
- ADEC. 2017 (22 March). Underground Storage Tanks Procedures Manual, Guidance for Treatment of Petroleum-Contaminated Soil and Water and Standard Sampling Procedures. Division of Spill Prevention and Response, Contaminated Sites Program.
- Buchman, M.F. 2008. NOAA Screening Quick Reference Tables. NOAA OR&R Report 08-1. Seattle, WA. Office of Response and Restoration Division, National Oceanic and Atmospheric Administration, 34 pages.
- DoD (U.S. Department of Defense). 2017 (4 January). Department of Defense (DoD)/Department of Energy (DOE) Consolidated Quality Systems Manual (QSM) for Environmental Laboratories. Version 5.1.
- EPA (U.S. Environmental Protection Agency). 2014 (July). *Test Methods for Evaluating Solid Waste*. SW846, Third Edition, Update V.
- Patton, W. and B. Csejtey. 1980. Geologic map of St. Lawrence Island, Alaska: U.S. Geological Survey Miscellaneous Investigation Series. Map I-1203. 1 sheet, scale 1:250,000. <a href="http://dggs.alaska.gov/pubs/id/12943">http://dggs.alaska.gov/pubs/id/12943</a>. Accessed 12 January 2017.
- USACE (U.S. Army Corps of Engineers). 2007 (March). Feasibility Study, Northeast Cape FUDS, St. Lawrence Island, Alaska. Prepared by Jacobs Engineering Group Inc. F10AK096904\_04.09\_0500\_a and F10AK096905\_0500\_a.
- USACE. 2009 (September). Decision Document: Hazardous, Toxic, and Radioactive Waste Project #F10AK096903. Northeast Cape Formerly Used Defense Site St. Lawrence Island, Alaska. Signed 3 September 2009. F10AK09603 05.09 0500 a.
- USACE. 2011 (July). Northeast Cape HTRW Remedial Actions, Northeast Cape, St. Lawrence Island, Alaska. F10AK09603\_07.08\_0502\_a\_200-1e.
- USACE. 2013a (January). Site 28 Technical Memorandum Addendum. Revision 1. St. Lawrence Island, Alaska. Prepared by Bristol Environmental Remediation Services, LLC. FRMD No. F10AK096903\_03.10\_0022\_a.
- USACE. 2013b (May). Northeast Cape HTRW Remedial Actions, Site 28 Phase I Sediment Removal Report. Revision 2. St. Lawrence Island, Alaska. Prepared by Bristol Environmental Remediation Services, LLC. FRMD No. F10AK09603\_07.08\_0504\_a.
- USACE. 2015 (January). 2013 Northeast Cape HTRW Remedial Actions, Revision 1. St. Lawrence Island, Alaska. Prepared by Bristol Environmental Remediation Services, LLC. F10AK096909\_07.08\_0506\_p.


- USACE. 2017a (April). Manual for Electronic Deliverables, Requirements for Submittals of Documents, Laboratory, Data, and Other Items. F10AKxxxxxx\_yy.yy\_zzzz\_a.
- USACE. 2017b (September). 2016 Site 28 and Suqitughneq River Surface Water and Sediment Sampling Report. Prepared by Jacobs Engineering Group Inc. F10AK096903\_07.11\_0510\_a.
- USACE 2018 (July). 2018 Remedial Action Review Work Plan. Final. Prepared by Jacobs Engineering Group Inc. F10AK096903 07.04 0514 a.


# ATTACHMENT F-1 Figures and Sediment Cross Sections







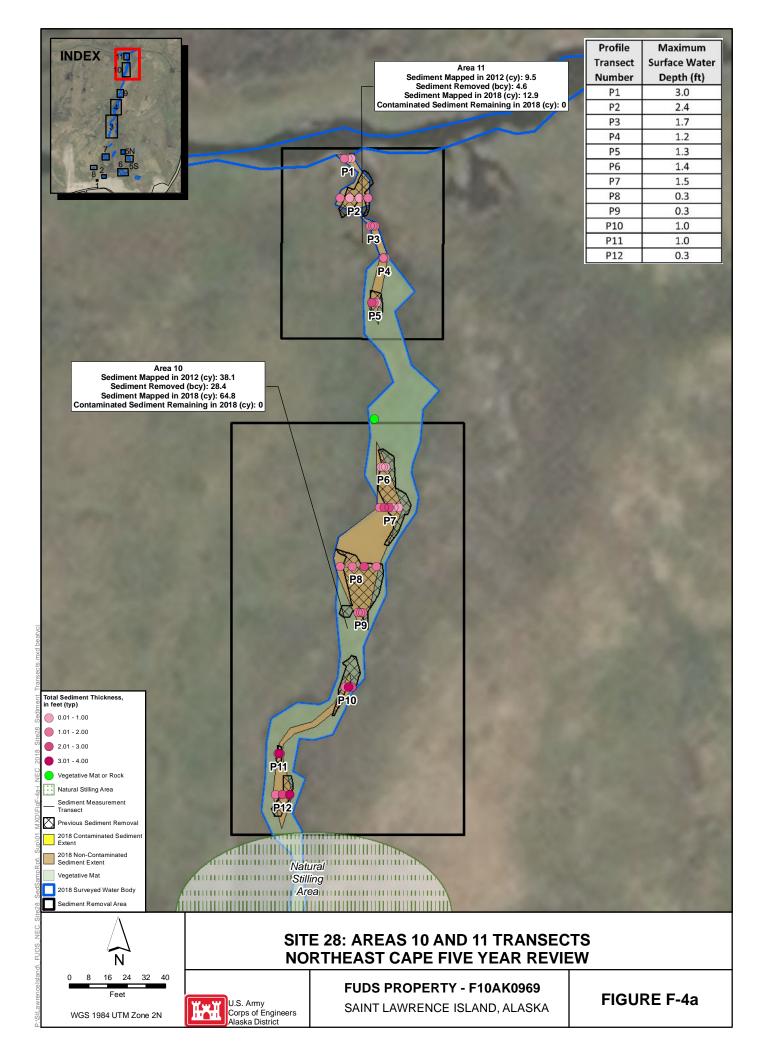


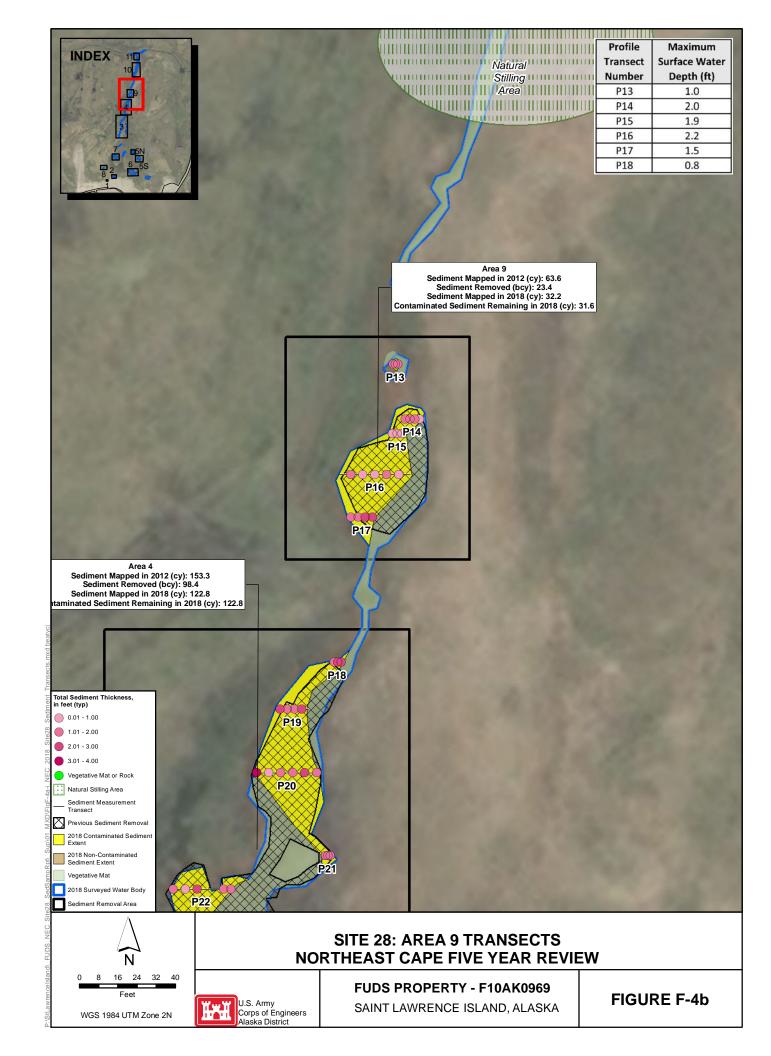


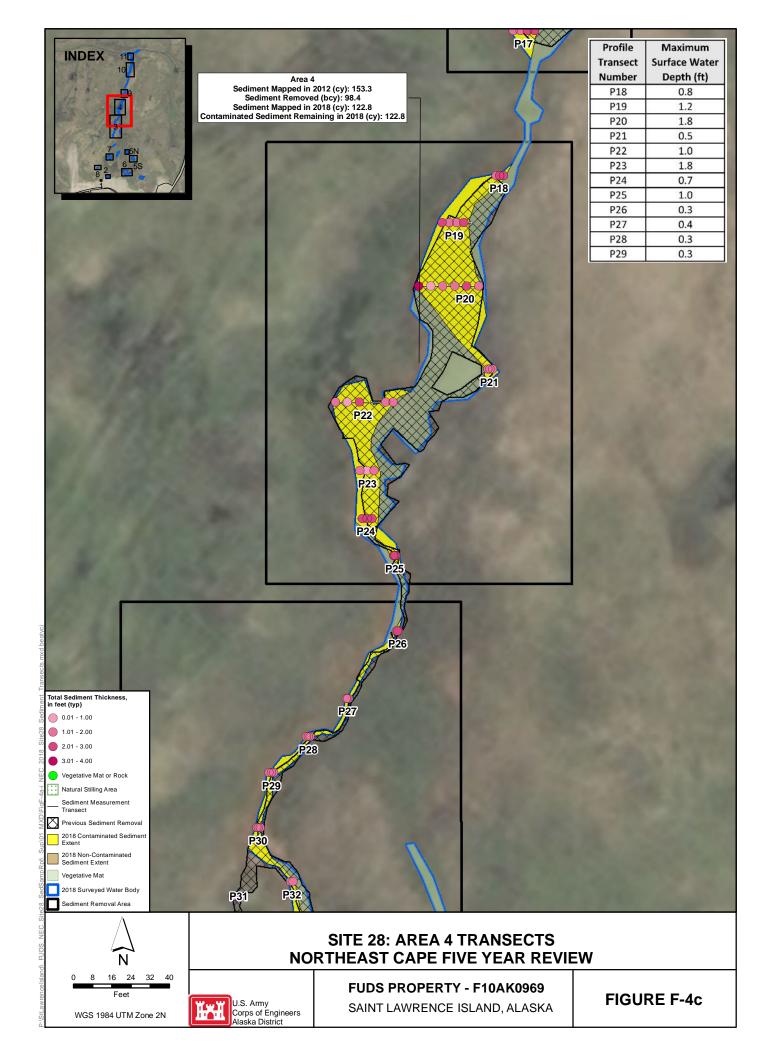
2018 Non-Contaminated Sediment Extent

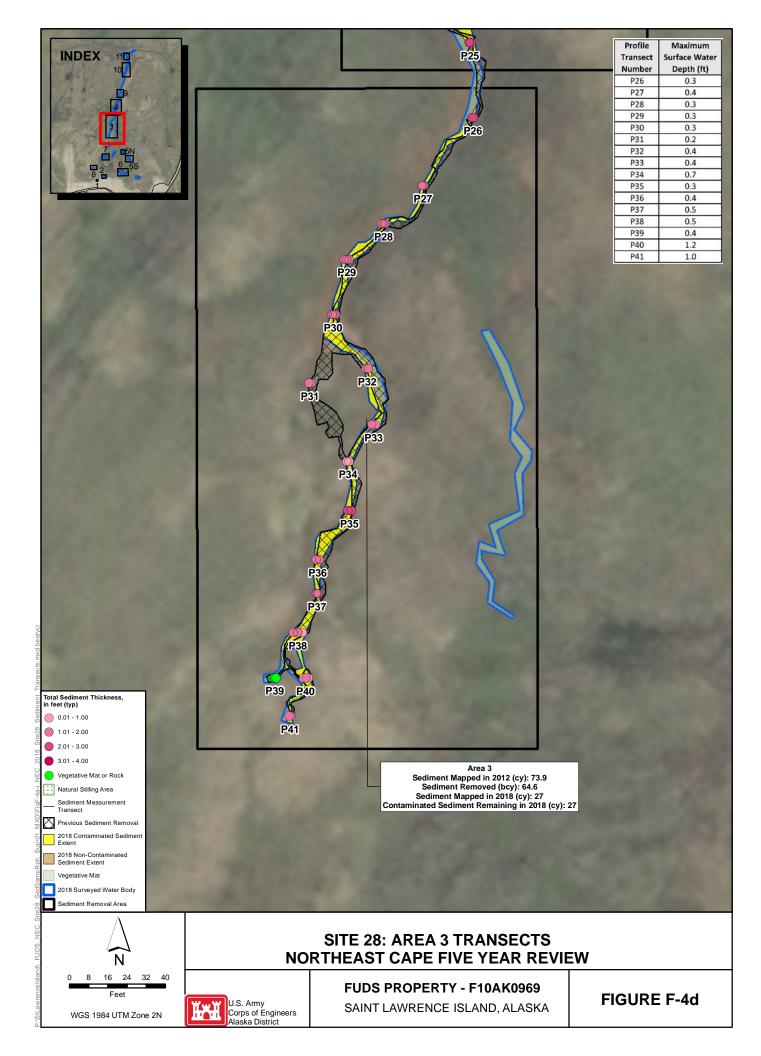
2018 Surveyed Water Body
Sediment Removal Area

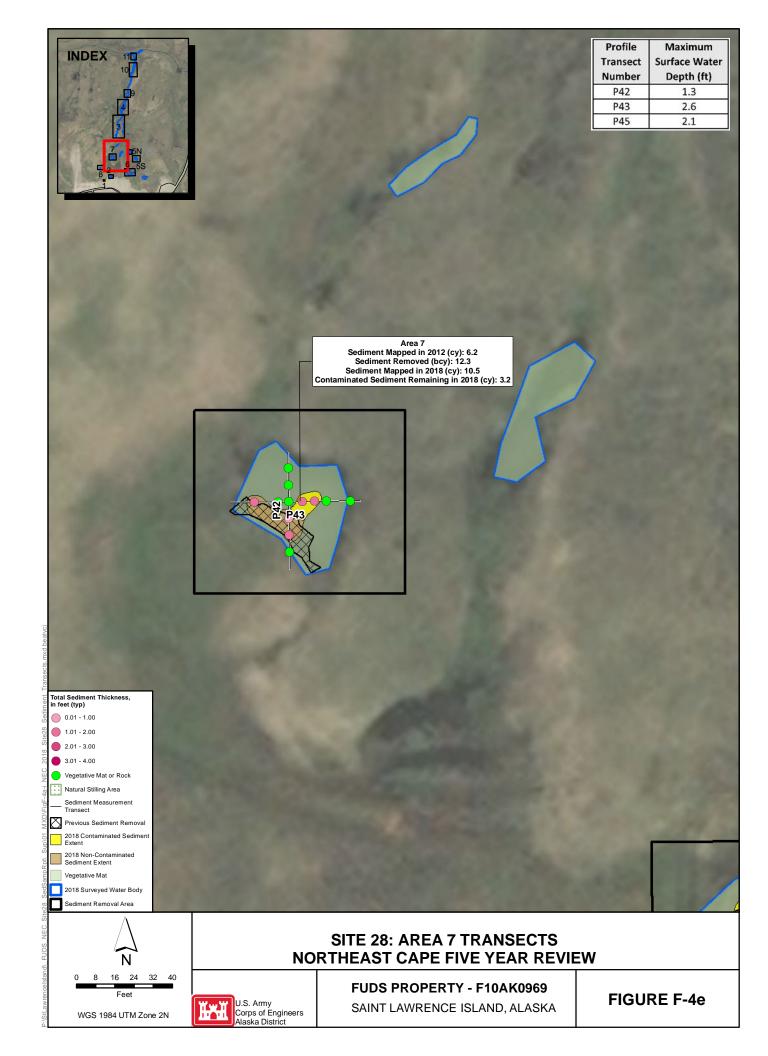
P:\StLawrenceIsland\\_FUDS\_NEC\_Site28\_SedSampRpt\\_Sup\01\_MXD\FigF4\_TransedOve

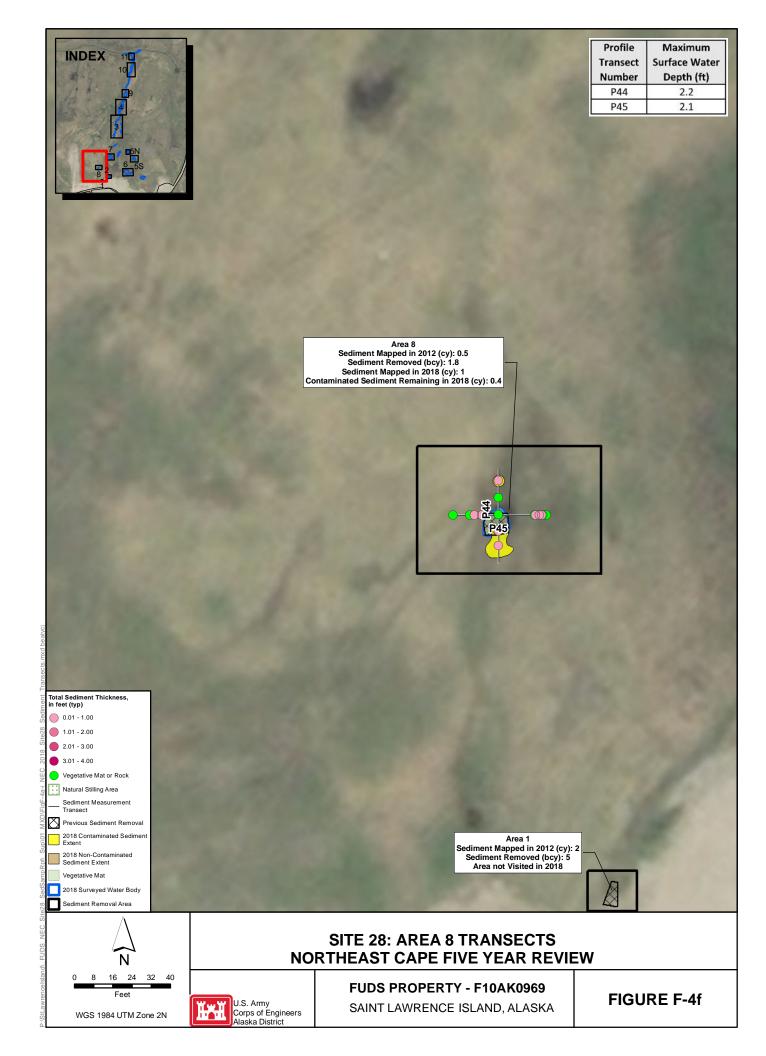

SITE 28
TRANSECT OVERVIEW
SAINT LAWRENCE ISLAND, ALASKA

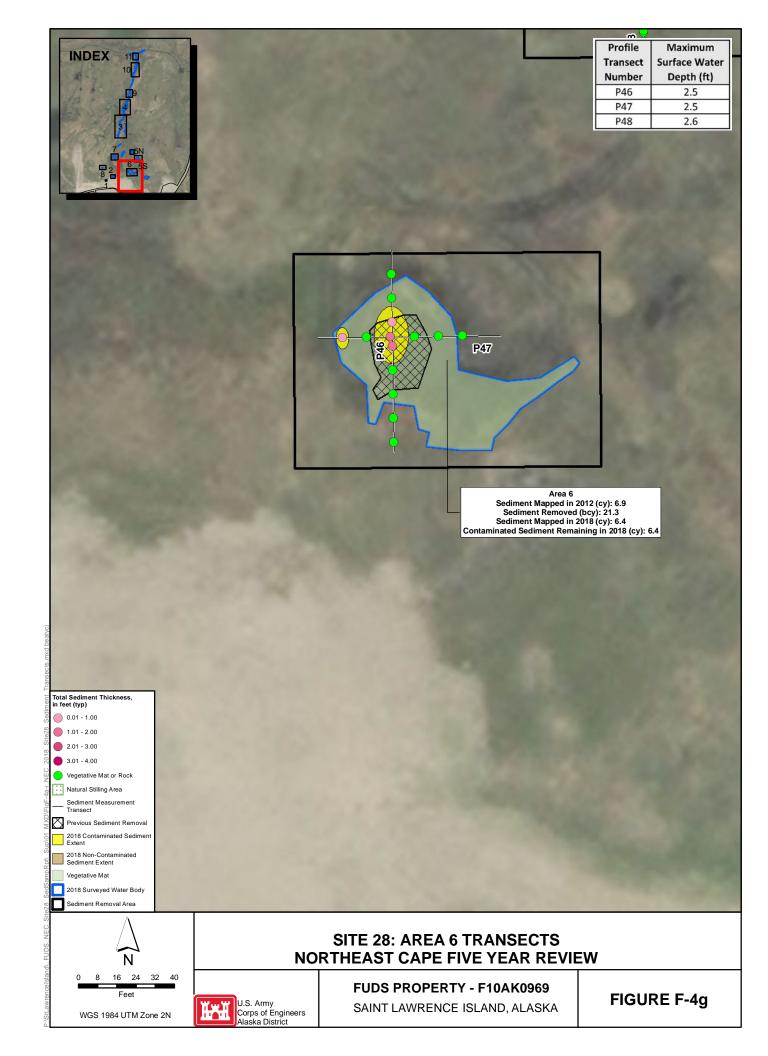

PROJECT MANAGER: FIGURE

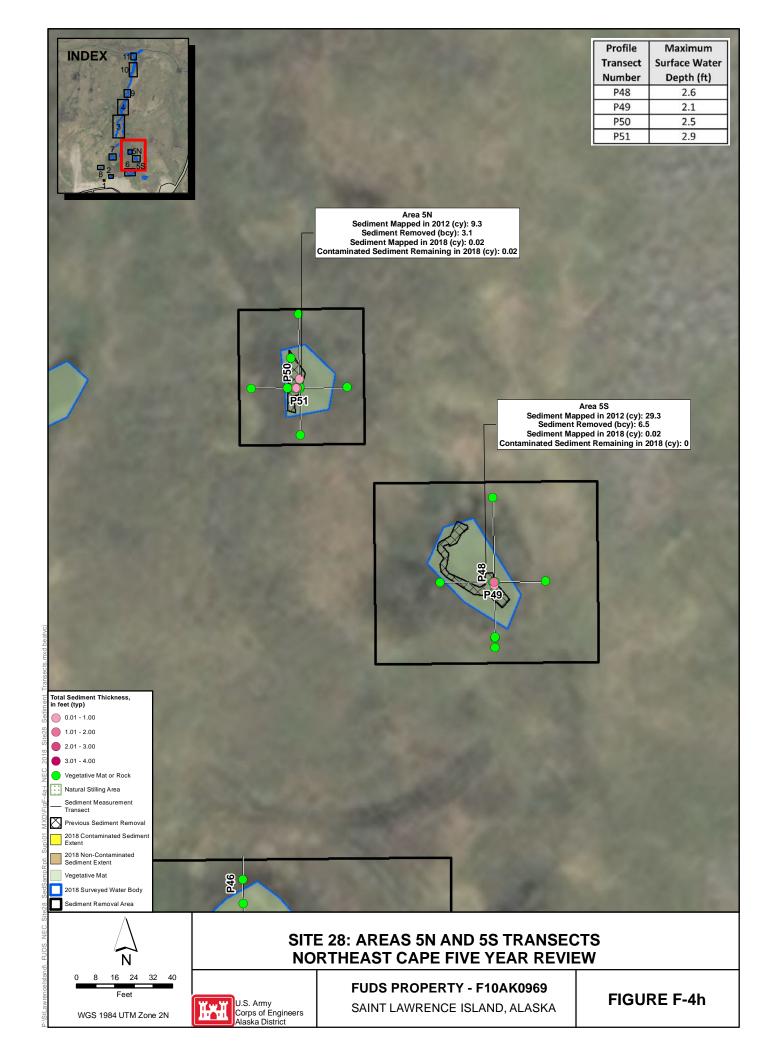

14 FEB 2020

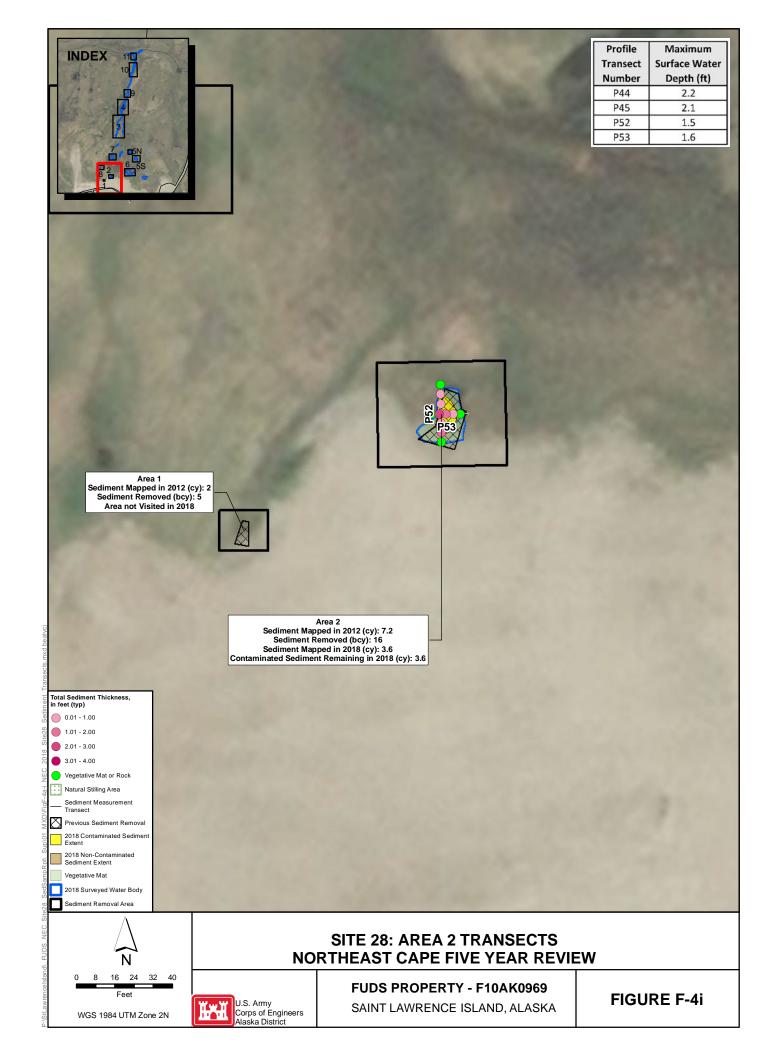

K. MAHER


F-4



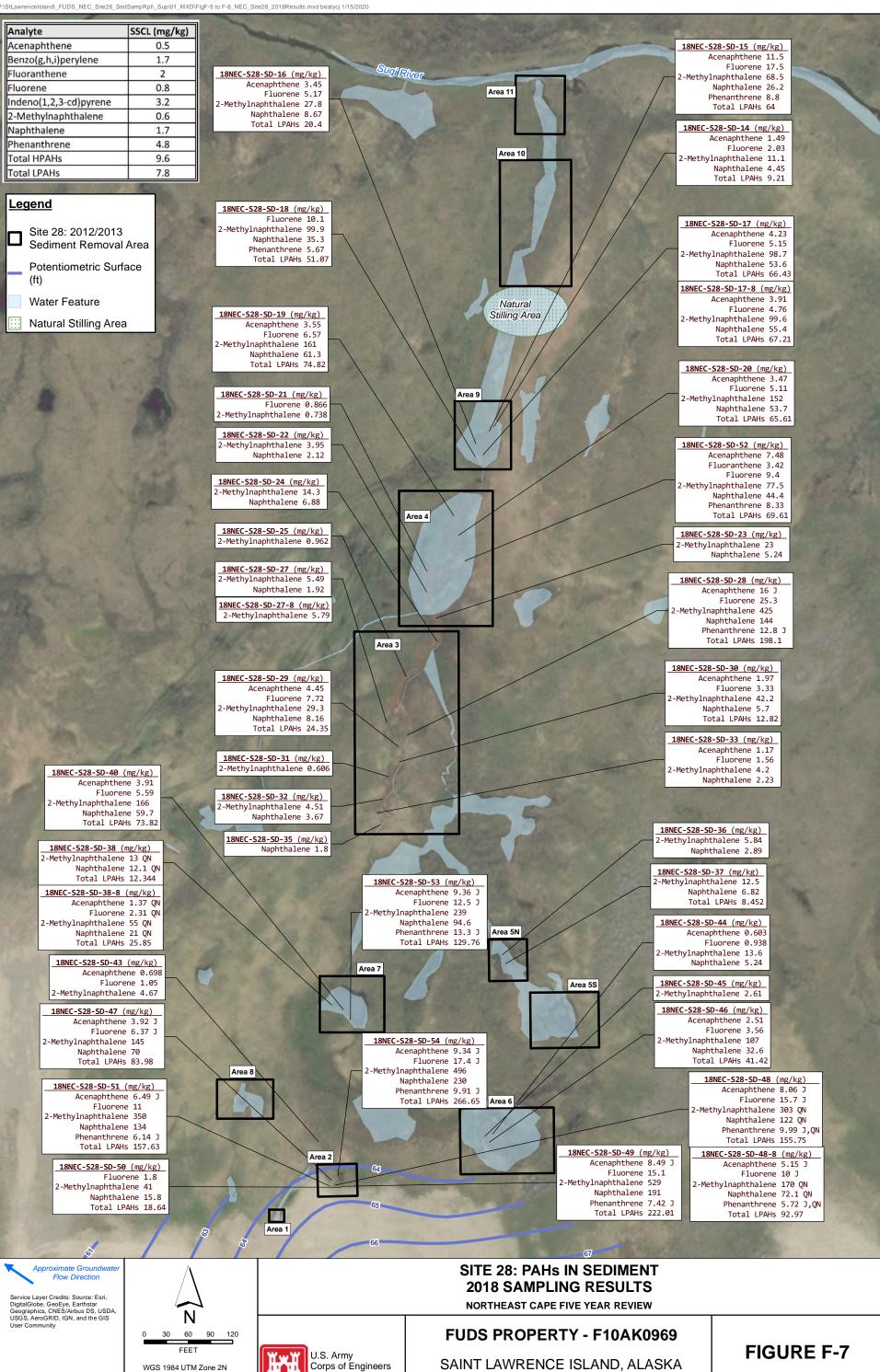












SAINT LAWRENCE ISLAND, ALASKA

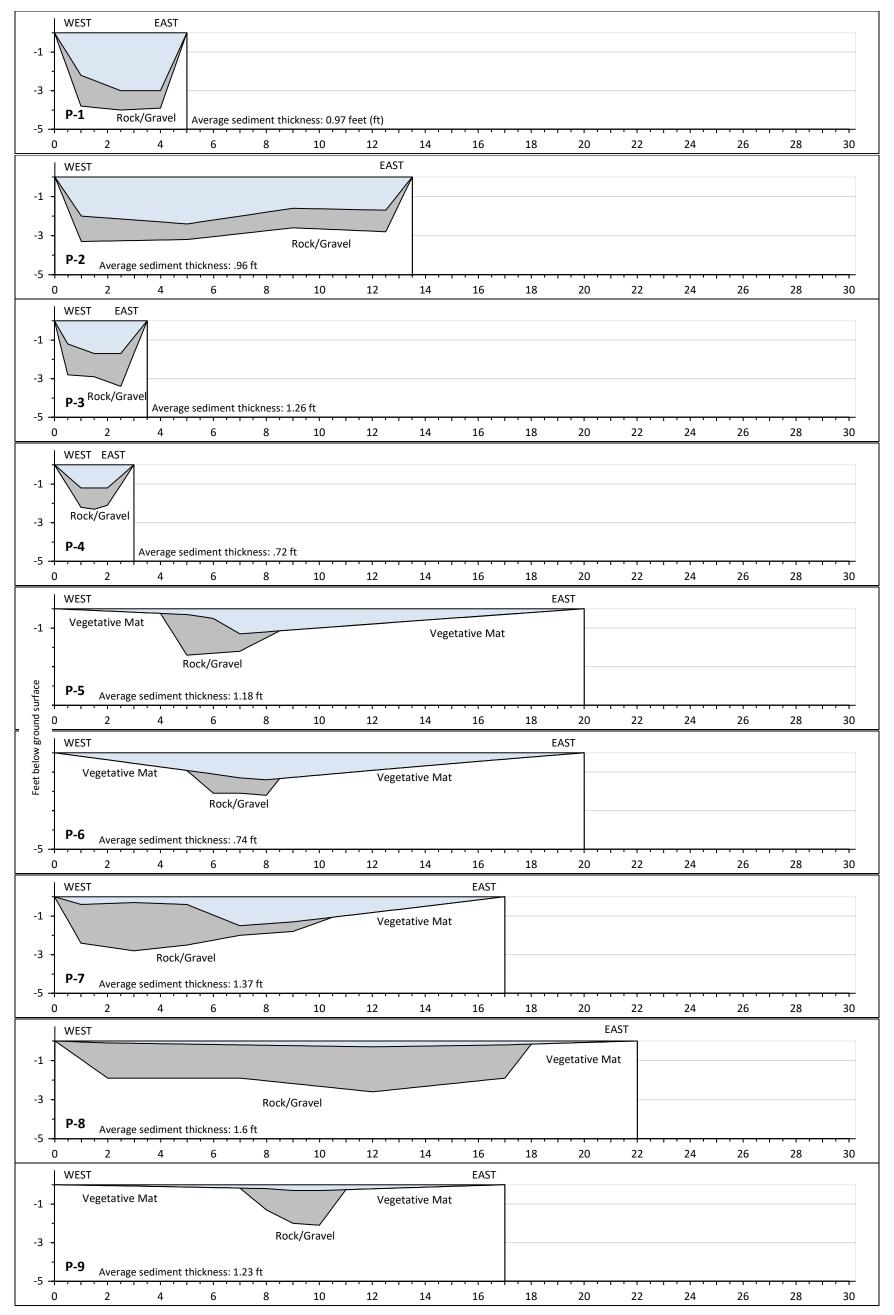
WGS 1984 UTM Zone 2N

Alaska District

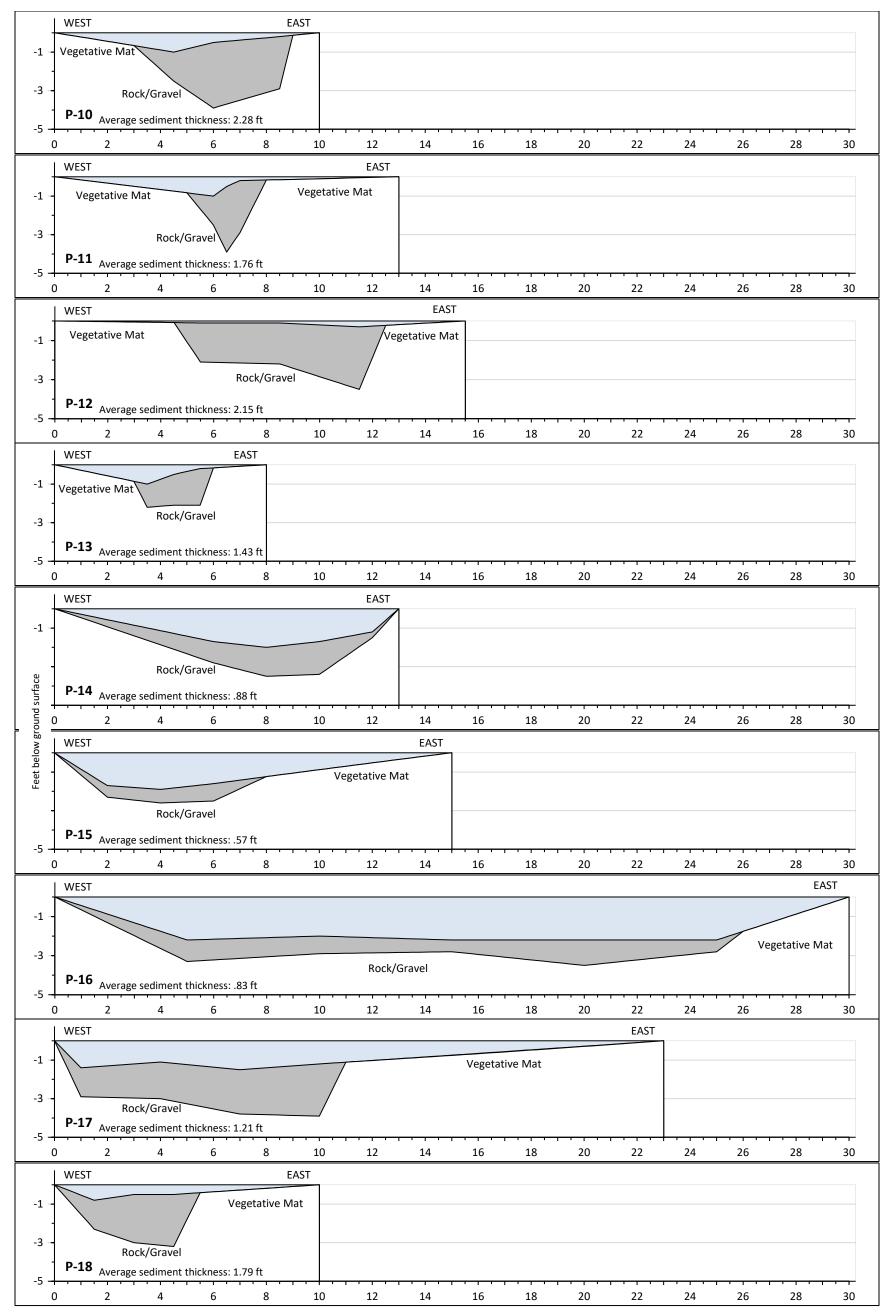
Alaska District



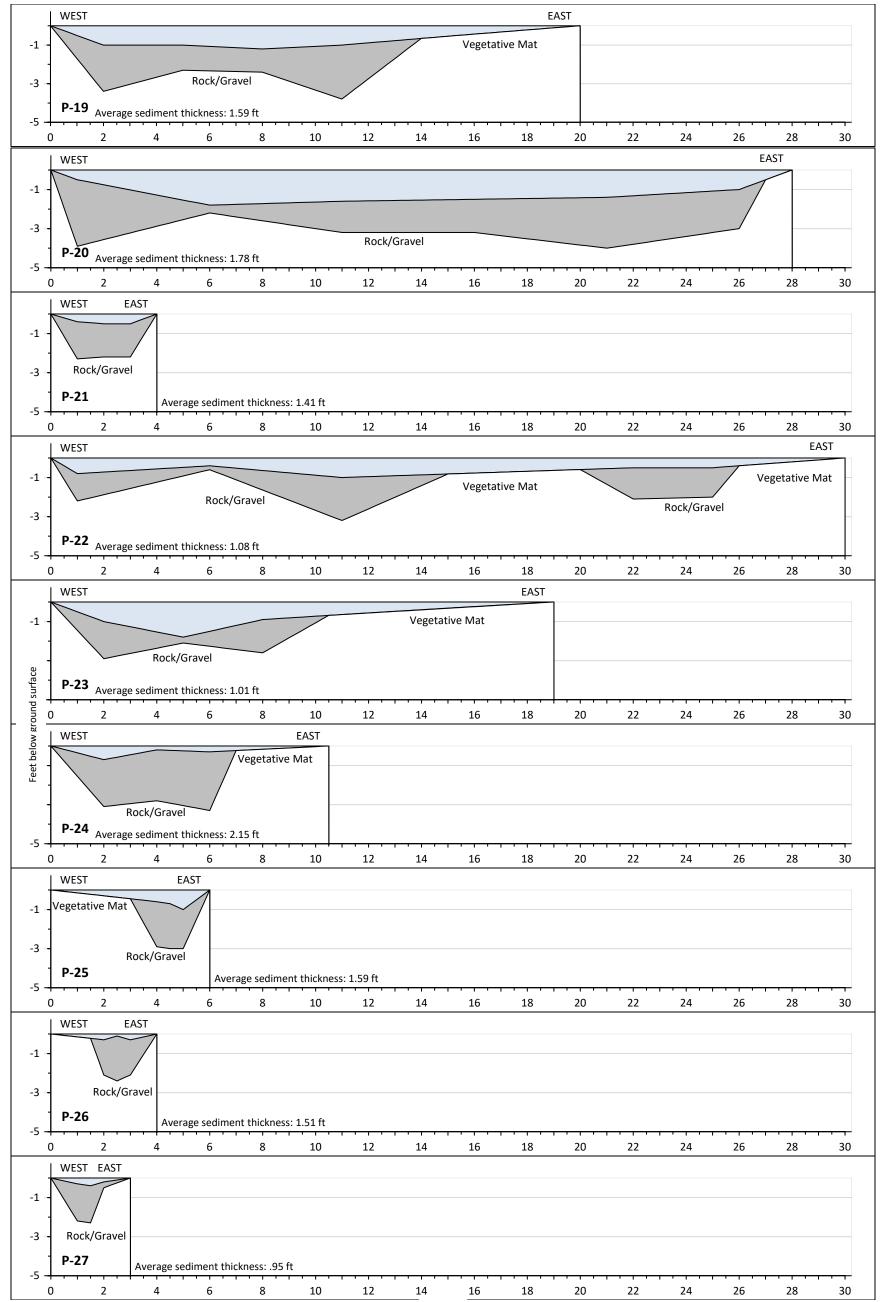
Alaska District


SAINT LAWRENCE ISLAND, ALASKA

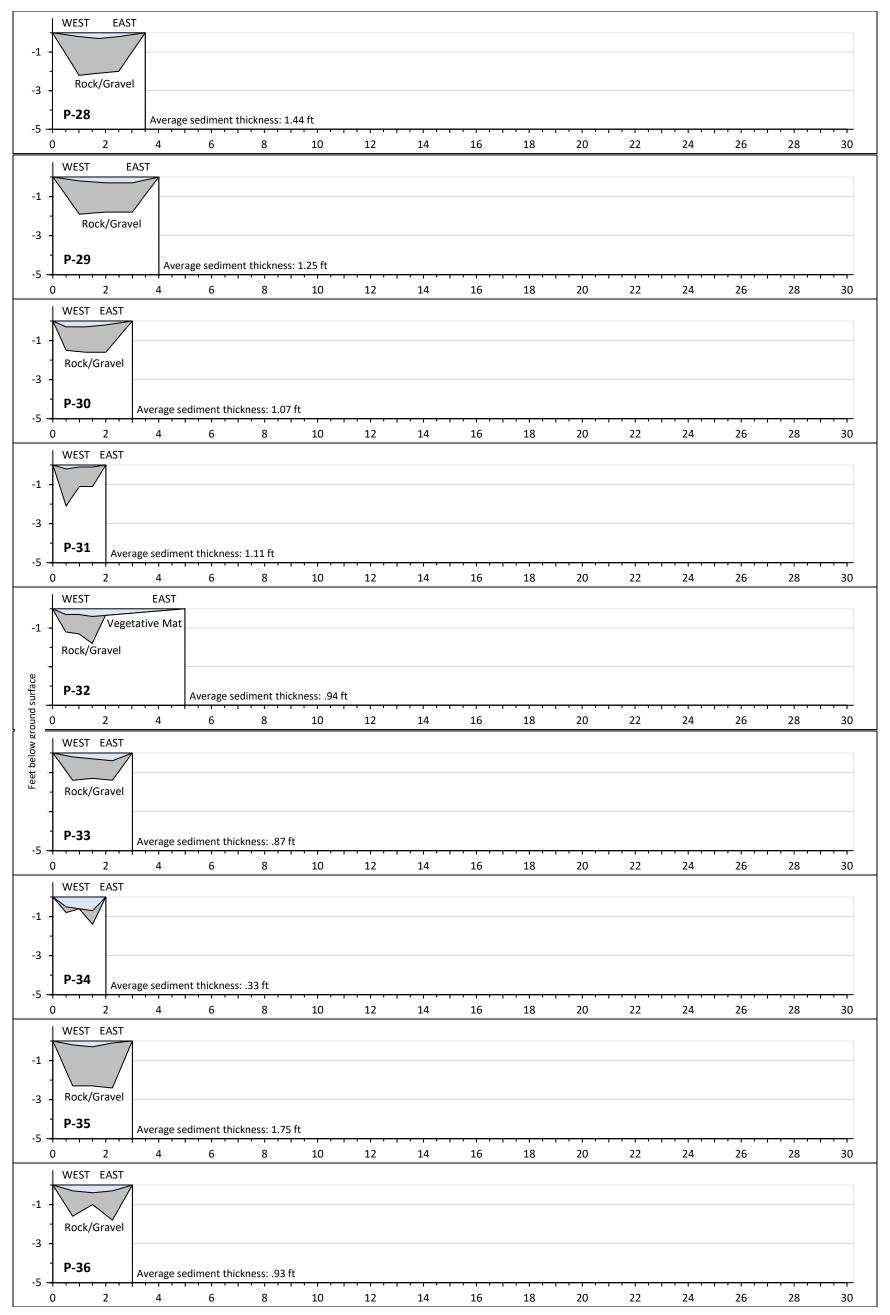
WGS 1984 UTM Zone 2N



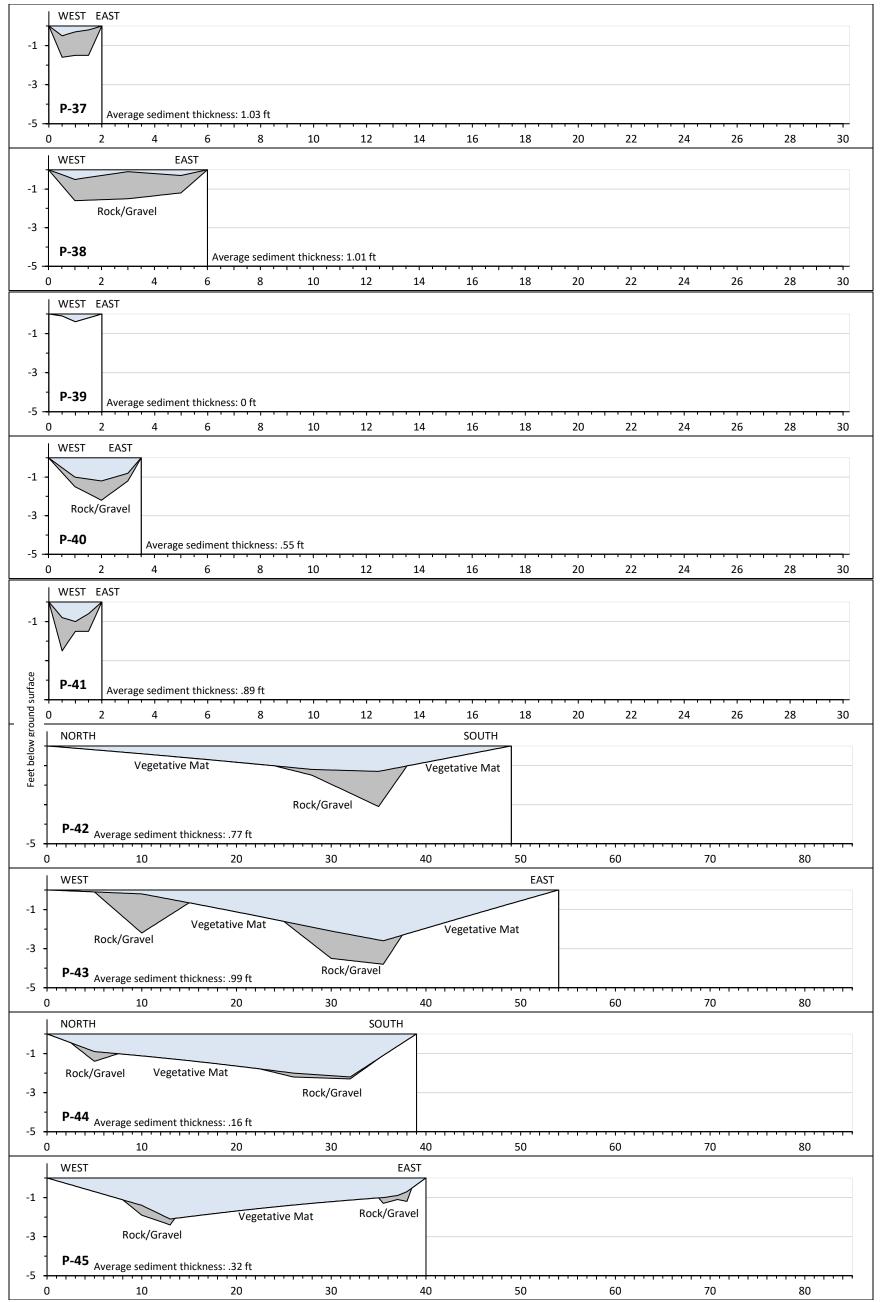

## NORTHEAST CAPE FUDS 2018 SITE 28 SEDIMENT TRANSECT PROFILE


The cross sections provided in this attachment provide profiles for each sediment transect measured at Site 28. For linear water bodies, a profile transect was established every 30 feet along the length (north/south) of the area that contained sediment. Sediment thickness was measured across the width (east/west) of the profile transect with three or more evenly-spaced measurements. For discrete water bodies containing sediment, north/south and east/west transects were established. Transects crossed approximately at the center of the sediment area in the water body to measure thickness. Sediment thickness was measured to the nearest 0.1 foot starting from the edge of the sediment area and at intervals not exceeding 10 feet. The cross sections display the cardinal directions from which measurements were collected, show both the water (shaded blue) and sediment (shaded gray) thickness in feet, and note the presence of rock/gravel or vegetative mat where those features were recorded.

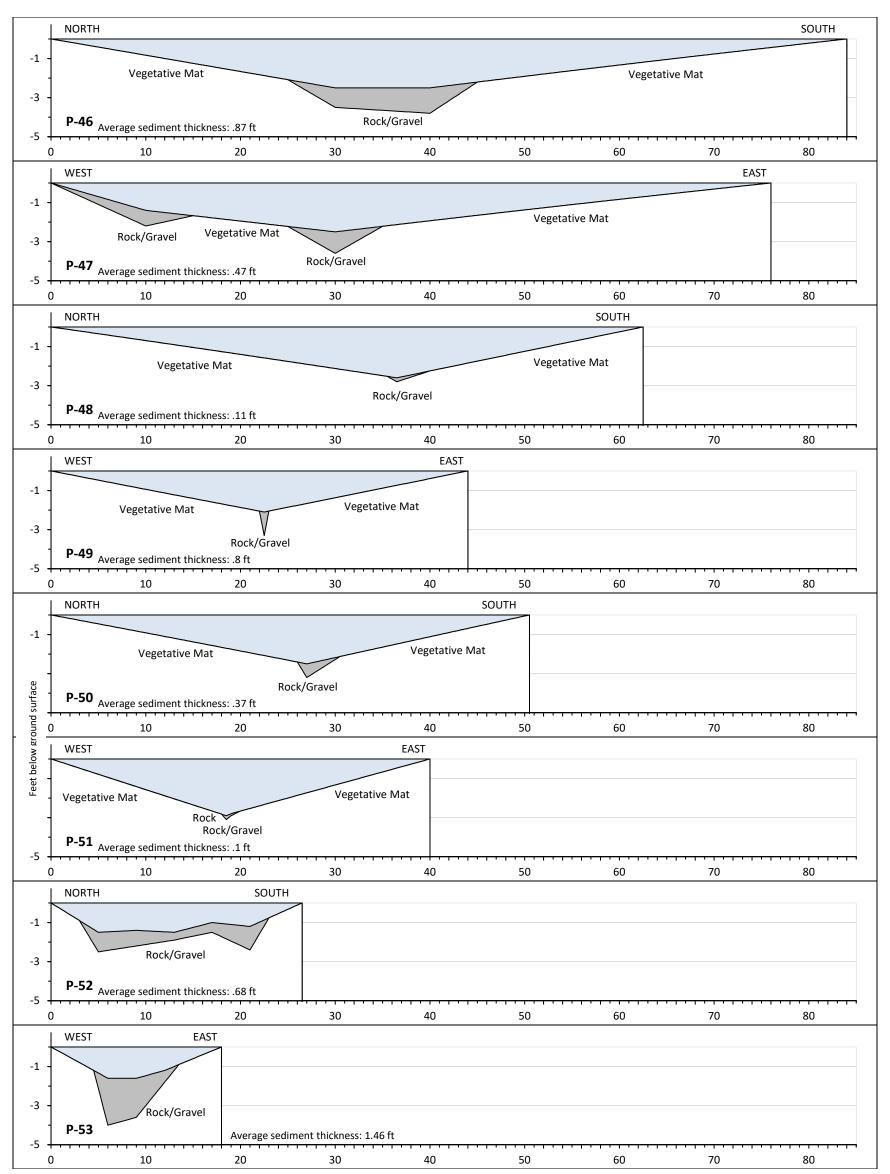



Feet




Feet




Feet



Feet



Feet



Feet

# ATTACHMENT F-2 Data Quality Assessment

# 2018 SITE 28 SEDIMENT SAMPLING REPORT AT NORTHEAST CAPE

## ATTACHMENT F-2 SEDIMENT DATA QUALITY ASSESSMENT

# NORTHEAST CAPE, ST. LAWRENCE ISLAND, ALASKA

**FINAL** 

## **TABLE OF CONTENTS**

| SEC  | CTIO    | <u>N</u> |                                                 | <u>PAGE</u> |
|------|---------|----------|-------------------------------------------------|-------------|
| ACF  | RONY    | MS AN    | ND ABBREVIATIONS                                | F2-iii      |
| ANA  | ALYT    | ICAL I   | DATA QUALIFIERS                                 | F2-v        |
| 1.0  | INT     | RODU     | CTION                                           | F2-1-1      |
|      | 1.1     | QC C     | RITERIA                                         | F2-1-1      |
|      | 1.2     | DATA     | A QUALITY SUMMARY                               | F2-1-2      |
|      |         | 1.2.1    | Sample Handling/Preservation                    | F2-1-3      |
|      |         | 1.2.2    | Method Blank and Trip Blank Contamination       | F2-1-3      |
|      |         | 1.2.3    | LCS Accuracy and Precision                      | F2-1-4      |
|      |         | 1.2.4    | MS Accuracy and Precision                       | F2-1-4      |
|      |         | 1.2.5    | Surrogate Spike Accuracy                        | F2-1-5      |
|      |         | 1.2.6    | FD Precision                                    | F2-1-6      |
|      |         | 1.2.7    | Calibration Verification Samples                | F2-1-7      |
|      |         | 1.2.8    | Reporting Limit Assessment                      | F2-1-7      |
|      |         | 1.2.9    | EB Contamination                                | F2-1-8      |
| 2.0  | CON     | NCLUS    | ION                                             | F2-2-1      |
| 3.0  | REF     | EREN     | CES                                             | F2-3-1      |
|      |         |          | TABLES                                          |             |
| Tabl | le F2-  | 1-1      | Field QC Sample Quantities                      | F2-1-1      |
| Tabl | le F2-  | 1-2      | Preparation Batch and Associated MS/MSD         | F2-1-4      |
| Tabl | le F2-  | 1-3      | Duplicate Results Exceeding DD Limits           | F2-1-7      |
|      |         |          | EXHIBITS                                        |             |
| Exh  | ibit F2 | 2-1      | Sample Summary Table and Analytical Data Tables |             |
| Exh  | ibit F2 | 2-2      | Qualified Sample Results Tables                 |             |
| Exh  | ibit F2 | 2-3      | ADEC Laboratory Data Review Checklists          |             |
| Exh  | ibit F2 | 2-4      | Laboratory Deliverables                         |             |
| Exh  | ibit F2 | 2-5      | Biogenic Chromatograms                          |             |

(intentionally blank)

#### ACRONYMS AND ABBREVIATIONS

°C degrees Celsius

ADEC Alaska Department of Environmental Conservation

APPL Agriculture & Priority Pollutants Laboratories, Inc. of Clovis, CA

BTEX benzene, toluene, ethylbenzene, and xylenes

CoC chain-of-custody

DD Decision Document

DL detection limit

DoD U.S. Department of Defense

DQA data quality assessment
DQO data quality objective
DRO diesel-range organics

Dup duplicate

EB equipment blank

EPA U.S. Environmental Protection Agency

FD field duplicate
GW groundwater

HCL hydrochloric acid

HNO<sub>3</sub> nitric acid

Jacobs Engineering Group Inc.

L liter

LCL lower control limit

LCS laboratory control sample

LCSD laboratory control sample duplicate

LOD limit of detection
LOQ limit of quantitation

mg/L milligrams per liter

mL milliliter

MOC Main Operations Complex

MS matrix spike

MSD matrix spike duplicate

## **ACRONYMS AND ABBREVIATIONS (Continued)**

N/A not applicable
NEC Northeast Cape

ND nondetect

PAH polycyclic aromatic hydrocarbon

PCB polychlorinated biphenyl

QA quality assurance QC quality control

QSM Quality Systems Manual

RCRA Resource Conservation and Recovery Act (of 1976, amended in 1984)

RPD relative percent difference

RRO residual-range organics

SD sediment

SDG sample delivery group

SGS SGS North America, Inc. of Anchorage, AK

SIM selective ion monitoring
SSCL site-specific cleanup level

SW surface water

TAT turnaround time

TB trip blank

TOC total organic carbon UCL upper control limit

USACE U.S. Army Corps of Engineers

VOA volatile organic analysis

### **ANALYTICAL DATA QUALIFIERS**

The following data qualifiers are applicable to the 2018 Northeast Cape analytical data:

- J The analyte was positively identified; however, the associated result was less than the LOQ but greater than or equal to the DL.
- B The analyte was detected in the method blank, the trip blank, or EB above the DL and the concentration in the sample did not exceed the blank concentration by a factor of five (factor of 10 for common laboratory contaminants acetone, toluene, and methylene chloride).
- QH Analyte result was considered an estimated value (biased high) due to a QC failure.
- QL Analyte result was considered an estimated value (biased low) due to a QC failure.
- QN Analyte result was considered an estimated value (unknown bias) due to a QC failure.
- R Result is rejected and should not be used for reporting purposes.

(intentionally blank)

#### 1.0 INTRODUCTION

This data quality assessment (DQA) and Alaska Department of Environmental Conservation (ADEC) laboratory data review checklists assess the overall quality and usability of data from the 2018 sampling events at Northeast Cape (NEC) on Saint Lawrence Island, Alaska. The sediment samples were analyzed by SGS North America, Inc. of Anchorage, AK (SGS). All samples are presented in Table F2-1-1, categorized by method and sample type.

The exhibits to this DQA present the sample summary table and analytical data table (Exhibit F2-1), tables of sample results that did not meet the project data quality objectives (DQOs) (Exhibit F2-2), ADEC laboratory data review checklists (Exhibit F2-3), laboratory deliverables (Exhibit F2-4), and chromatograms relevant to the discussion of biogenic interference (Exhibit F2-5).

Table F2-1-1
Field QC Sample Quantities

| Matrix   | Sample<br>Type | PAHs<br>8270SIM | DRO/RRO<br>AK102+3 | DRO/RRO<br>Silica Gel<br>AK102SG | Metals<br>E200.8 | Metals<br>SW6020 | PCBs<br>SW8082 | TOC<br>SW9060 |
|----------|----------------|-----------------|--------------------|----------------------------------|------------------|------------------|----------------|---------------|
|          | Primary        | 54              | 54                 | 54                               | N/A              | 54               | 54             | 54            |
|          | Duplicate      | 6               | 6                  | 6                                | N/A              | 6                | 6              | 6             |
| Sediment | MS/MSD         | 6               | 6                  | 6                                | N/A              | 6                | 6              | 10            |
|          | EB             | 1               | 1                  | N/A                              | 1                | N/A              | 1              | N/A           |

Note:

For definitions, refer to the Acronyms and Abbreviations section.

#### 1.1 QC CRITERIA

Jacobs Engineering Group Inc. (Jacobs) performed this DQA and completed ADEC laboratory data review checklists for records associated with the analytical data, as per the 2018 Remedial Action Review Work Plan (U.S. Army Corps of Engineers [USACE] 2018). Data quality was evaluated against the following requirements: U.S. Department of Defense (DoD) Quality

Systems Manual (QSM) (DoD 2017); ADEC and U.S. Environmental Protection Agency (EPA) analytical methods (ADEC 2017a, EPA 2014); and laboratory limits.

The Jacobs project chemist performed a completeness check of the electronic data to verify that data packages and electronic files included all the requested information. All analytical data were reviewed, including the chain-of-custody (CoC) and sample receipt records, laboratory case narratives, and laboratory data. Analytical data were reviewed for methodology, sample holding times, laboratory blanks, limits of quantitation (LOQs), limits of detection (LODs), detection limits (DLs), surrogate recoveries, laboratory control sample (LCS) and LCS duplicate (LCSD) recovery accuracies, matrix spike (MS) and MS duplicate (MSD) recovery accuracies, and precision. Other quality control (QC) parameters (initial calibration, continuing calibration, tuning, internal standards, interference check solutions, post-digestion spikes, and serial dilutions) were reviewed by means of the laboratory case narrative. These QC parameters met acceptance criteria; any sample results outside QC parameters are listed in Section 1.2 or in the associated ADEC laboratory data review checklist (Exhibit F2-3). Analytical DQOs were considered met when the quality of the sample data met precision, accuracy, representativeness, completeness, comparability, and sensitivity requirements. The overall quality of the data was acceptable as qualified. Flagged data are considered usable but estimated.

Qualification was not required in the following circumstances:

- Surrogate or MS/MSD recoveries were outside QC limits, and the sample was diluted by a factor of five or greater.
- MS/MSD recoveries were outside QC limits, and the spiked concentration was less than that of the parent sample.
- An analyte was detected in the method blank, but there was no detection in the sample.
- Surrogate, MS, or LCS recoveries exceeded upper control limits (UCLs), and there was no detection in the sample(s).

### 1.2 DATA QUALITY SUMMARY

In general, the overall quality of project data was acceptable, and the completeness goal of 95 percent was met for all parameters. Complete details of the evaluation and associated

samples are provided in the ADEC laboratory review checklists (Exhibit F2-3). The tables in Exhibit F2-2 include analytical results that did not meet project DQOs and required qualification.

The following anomalies were identified during the data review process as follows:

- Sample handling/preservation
- Method blank and trip blank contamination
- LCS accuracy and precision
- MS accuracy and precision
- Surrogate spike accuracy
- Field duplicate (FD) precision
- Calibration Verification Samples
- Reporting limit assessment
- EB contamination

Sections 1.2.1 through 1.2.9 describe anomalies and their effects on data quality and usability.

### 1.2.1 Sample Handling/Preservation

Five coolers were sent to SGS for the sediment sampling effort. All sample coolers were received within the acceptable temperature range of 0 to 6 degrees Celsius (°C). No sample handling anomalies affecting data quality or usability were identified by the laboratory on the cooler receipt form or during this data quality review.

#### 1.2.2 Method Blank and Trip Blank Contamination

There were no detections in the method blanks that required qualification of associated samples. The sediment sampling event did not include the analysis for volatile organics that require a trip blank.

### 1.2.3 LCS Accuracy and Precision

All LCS and LCSD recoveries and relative percent differences (RPDs) were within laboratory and DoD QSM control limits; therefore, no sample qualification was required.

#### 1.2.4 MS Accuracy and Precision

MS/MSDs were collected to evaluate the accuracy and precision of matrix and/or laboratory procedures. The DoD QSM requirement of one project MS/MSD set for each preparation batch of 20 samples was not met. Table F2-1-2 presents the preparation batch and the associated parent sample MS/MSD. The MS/MSD recoveries for several analytes and analyses were outside of the QC criteria; however, failing recoveries on samples that were diluted more than five times were not qualified.

Table F2-1-2
Preparation Batch and Associated MS/MSD

| SDG     | Analytical Batch Number | Method  | Parent Sample ID |
|---------|-------------------------|---------|------------------|
| 1184373 | MXX31829                | SW6020A | 18NEC-S28-SD-03  |
| 1184430 | MXX31835                | SW6020A | No SSQC          |
| 1184430 | MXX31836                | SW6020A | 18NEC-S28-SD-28  |
| 1184430 | MXX31840                | SW6020A | 18NEC-S28-SD-54  |
| 1184430 | MXX31843                | E200.8  | No SSQC          |
| 1184373 | WXX12476                | SW9060  | 18NEC-S28-SD-03  |
| 1184430 | WXX12484                | SW9060  | 18NEC-S28-SD-17  |
| 1184430 | WXX12484                | SW9060  | 18NEC-S28-SD-26  |
| 1184430 | WXX12488                | SW9060  | 18NEC-S28-SD-28  |
| 1184430 | WXX12488                | SW9060  | 18NEC-S28-SD-39  |
| 1184430 | WXX12489                | SW9060  | 18NEC-S28-SD-54  |
| 1184430 | WXX12489                | SW9060  | 18NEC-S28-SD-44  |
| 1184373 | XXX40151                | 8270SIM | 18NEC-S28-SD-03  |
| 1184373 | XXX40152                | SW8082A | 18NEC-S28-SD-03  |
| 1184373 | XXX40154                | AK102   | 18NEC-S28-SD-03  |
| 1184373 | XXX40154A               | AK103   | 18NEC-S28-SD-03  |
| 1184373 | XXX40155                | AK102SG | 18NEC-S28-SD-03  |
| 1184373 | XXX40155A               | AK103SG | 18NEC-S28-SD-03  |
| 1184430 | XXX40169                | 8270SIM | No SSQC          |
| 1184430 | XXX40172                | 8270SIM | 18NEC-S28-SD-28  |
| 1184430 | XXX40174                | 8270SIM | No SSQC          |
| 1184430 | XXX40175                | SW8082A | No SSQC          |
| 1184430 | XXX40176                | SW8082A | 18NEC-S28-SD-28  |

**Table F2-1-2 (Continued)** Preparation Batch and Associated MS/MSD

| SDG     | Analytical Batch Number | Method  | Parent Sample ID |
|---------|-------------------------|---------|------------------|
| 1184430 | XXX40178                | AK102SG | 18NEC-S28-SD-28  |
| 1184430 | XXX40178A               | AK103SG | 18NEC-S28-SD-28  |
| 1184430 | XXX40179                | AK102   | 18NEC-S28-SD-28  |
| 1184430 | XXX40179A               | AK103   | 18NEC-S28-SD-28  |
| 1184430 | XXX40180                | SW8082A | No SSQC          |
| 1184430 | XXX40183                | SW8082A | 18NEC-S28-SD-54  |
| 1184430 | XXX40184                | 8270SIM | 18NEC-S28-SD-54  |
| 1184430 | XXX40192                | AK102   | 18NEC-S28-SD-54  |
| 1184430 | XXX40192A               | AK103   | 18NEC-S28-SD-54  |
| 1184430 | XXX40193                | AK102SG | 18NEC-S28-SD-54  |
| 1184430 | XXX40193A               | AK103SG | 18NEC-S28-SD-54  |
| 1184430 | XXX40205                | AK102   | No SSQC          |
| 1184430 | XXX40205A               | AK103   | No SSQC          |
| 1184430 | XXX40206                | AK102SG | No SSQC          |
| 1184430 | XXX40206A               | AK103SG | No SSQC          |
| 1184430 | XXX40207                | AK102   | No SSQC          |
| 1184430 | XXX40207A               | AK103   | No SSQC          |
| 1184430 | XXX40262                | SW8082A | No SSQC          |

Note: SSQC = site specific quality control

#### 1.2.5 **Surrogate Spike Accuracy**

Sample results with surrogates outside of QC criteria were qualified as estimated except in the following cases: nondetect (ND) samples with high surrogate recoveries or samples with a dilution factor of five or greater. Sample results for SW8260, SW8270, and SW8270SIM were only qualified for surrogate recovery exceedances if two or more surrogates did not meet QC criteria. Sample results with low surrogate recoveries were qualified QL and are considered biased low.

Many sediment samples were diluted beyond five times during extraction and analysis, resulting in surrogate recoveries outside of control limits. These results did not require qualification. One sample, 18NEC-S28-SD-47, was diluted during the extraction process (final extract volume greater than standard final volume) for diesel-range organics (DRO) and reported with an analytical dilution of one. The sample results were not qualified as the

extraction dilution occurred due to extract color (high levels of non-target organics) and the total dilution exceeded five times.

Only one project sample required qualification for surrogate recovery. The polychlorinated biphenyl (PCB) results in sample 18NEC-S28-SD-42 were qualified QL to indicate a possible low bias due to low surrogate recovery (39 percent). Data usability was minimally affected since the qualified results were ND with LODs significantly less than the associated site-specific cleanup level (SSCL). Table F-2.1 (Exhibit F2-2) provides a summary of the surrogate recovery outliers and the affected sample results.

#### 1.2.6 FD Precision

FD samples were collected to evaluate the precision of matrix and/or laboratory procedures. The frequency criterion for FD, one per ten primary samples, was met for each analytical method, as outlined in the Section 2.3.1 of the quality assurance project plan (USACE 2018). Table F2-1-1 provides a summary of the FD quantities, summarized by analytical method.

FD precision was evaluated against the recommended RPD limit of 50 percent, as stated in the ADEC *Field Sampling Guidance* (ADEC 2017b). RPD values for sample/duplicate pair results, where one was ND and the other was detected, were calculated using the LOD value for the ND result. Results were qualified as estimated (QN) in several samples due to high FD RPD values. All qualified results were less than the respective SSCLs except for those listed in Table F2-1-3.

Table F2-1-3

Duplicate Results Exceeding DD Limits

| Sample ID         | Analyte             | Result<br>(mg/kg) | NE Cape DD SSCL<br>(mg/kg) |
|-------------------|---------------------|-------------------|----------------------------|
| 18NEC-S28-SD-38   | 2-Methylnaphthalene | 13                | 0.6                        |
| 18NEC-S28-SD-38-8 | 2-Methylnaphthalene | 55                | 0.6                        |
| 18NEC-S28-SD-38-8 | Acenaphthene        | 1.37              | 0.5                        |
| 18NEC-S28-SD-38-8 | DRO                 | 6620              | 3500                       |
| 18NEC-S28-SD-38-8 | DRO-silica gel      | 4610              | 3500                       |
| 18NEC-S28-SD-38-8 | Fluorene            | 2.31              | 0.8                        |
| 18NEC-S28-SD-38   | Naphthalene         | 12.1              | 1.7                        |
| 18NEC-S28-SD-38-8 | Naphthalene         | 21                | 1.7                        |
| 18NEC-S28-SD-48   | 2-Methylnaphthalene | 303               | 0.6                        |
| 18NEC-S28-SD-48-8 | 2-Methylnaphthalene | 170               | 0.6                        |
| 18NEC-S28-SD-48   | Naphthalene         | 122               | 1.7                        |
| 18NEC-S28-SD-48-8 | Naphthalene         | 72.1              | 1.7                        |
| 18NEC-S28-SD-48   | Phenanthrene        | 9.99              | 4.8                        |
| 18NEC-S28-SD-48-8 | Phenanthrene        | 5.72              | 4.8                        |

#### Note:

For definitions, refer to the Acronyms and Abbreviations section.

The high RPD values are attributed to the sample matrix, which contained high and variable levels of naturally occurring organics. Unless otherwise noted, the higher value between the sample and the FD will be used for reporting purposes. Table F-2.2 (Exhibit F2-2) provides a summary of sample results that were qualified QN due to FD RPD outliers.

### 1.2.7 Calibration Verification Samples

The laboratory did not identify any instrument QC issues that required qualification of associated samples.

#### 1.2.8 Reporting Limit Assessment

Laboratory LODs for ND sample results were evaluated against the SSCLs defined in Table 2-1 of the quality assurance project plan (USACE 2018). The confidence level at the LOD was 99

percent (1 percent false negative rate) as per the DoD QSM definition. This level of uncertainty was deemed acceptable for this DQA.

The laboratory LODs were greater than the SSCLs for five analytes in seven instances. For sample 18NEC-S28-SD-34, 2-methlynaphthalene and acenaphthene were greater than the SSCLs due to a 10-fold dilution. For sample 18NEC-S28-SD-35, acenaphthene was greater than the SSCLs due to a 10-fold dilution. Aroclor 1221 was also greater than the total PCB SSCL for 8NEC-S28-SD-35 in an undiluted analysis. 18NEC-S28-SD-36, acenaphthene and fluorene were greater than the SSCLs due to a 10-fold dilution. Aroclor 1221 was also greater than the total PCB SSCL for 8NEC-S28-SD-36 in an undiluted analysis.

The overall data quality was not significantly affected for this issue because of the limited number of occurrences and the fact that sample dilution was the primary cause. Additionally, Aroclor 1221 was not found in any historical NEC samples above the total PCB SSCL. ND samples that had LODs exceeding the cleanup level are shown in italics in the analytical data tables (Exhibit F2-1) and listed in Table F-2.3 (Exhibit F2-2).

#### 1.2.9 EB Contamination

One equipment blank (EB) was collected during this project for the sediment effort. Naphthalene and zinc were detected above the DL in the EB; however, samples were not qualified unless the result was within five times the EB contamination. EB detections are shown in Table F-2.4 (Exhibit F2-2). There were no results that required qualification due to EB detections.

#### 2.0 CONCLUSION

In general, the overall quality of project data was acceptable. The completeness goal of 95 percent for all parameters was met as no results were rejected (100 percent completeness). Seven ND LOD values exceeded the SSCLs but did not significantly affect data usability due to the limited extent of occurrences and the analytes involved.

A review of the chromatographs led to the conclusion that the DRO and residual-range organics (RRO) results in the sediment samples are elevated due to naturally occurring biogenic interference. A silica gel cleanup applied during the sample extraction reduced but did not eliminate the interference. See Section 4.3.2 of the 2018 Site 28 Sediment Mapping and Sampling Report (Appendix F) and the Biogenic Chromatograms (Exhibit F2-5) for more discussion of the impacts of biogenic interference.

The qualifications applied during data validation did not adversely affect data usability. Limitations are discussed in this DQA and ADEC laboratory data review checklists (Exhibit F2-3).

(intentionally blank)

#### 3.0 REFERENCES

- ADEC (Alaska Department of Environmental Conservation). 2017a (22 March). Underground Storage Tanks Procedures Manual, Guidance for Treatment of Petroleum-Contaminated Soil and Water and Standard Sampling Procedures. Division of Spill Prevention and Response, Contaminated Sites Program.
- ADEC. 2017b (August). *Field Sampling Guidance*. Final. Division of Spill Prevention and Response, Contaminated Sites Program.
- DoD (U.S. Department of Defense). 2017 (4 January). Department of Defense (DoD)/Department of Energy (DOE) Consolidated Quality Systems Manual (QSM) for Environmental Laboratories. Version 5.1.
- EPA (U.S. Environmental Protection Agency). 2014 (July). *Test Methods for Evaluating Solid Waste*. SW846, Third Edition, Update V.
- USACE (U.S. Army Corps of Engineers) 2009 (September). *Decision Document: Hazardous, Toxic, and Radioactive Waste Project #F10AK096903. Northeast Cape Formerly Used Defense Site St. Lawrence Island, Alaska.* Signed 3 September 2009. F10AK09603\_05.09\_0500\_a.
- USACE 2018 (July). 2018 Remedial Action Review Work Plan. Final. Prepared by Jacobs Engineering Group Inc. F10AK096903 07.04 0514 a.

(intentionally blank)

# **EXHIBIT F2-1 Sample Summary Table and Analytical Data Tables**

|               |               |                        |         | Location ID:       | S28-01          | S28-02           | S28-02            | S28-03          | S28-04          | S28-05          | S28-06          |
|---------------|---------------|------------------------|---------|--------------------|-----------------|------------------|-------------------|-----------------|-----------------|-----------------|-----------------|
|               |               |                        |         | Sample ID:         | 18NEC-S28-SD-01 | 18NEC-S28-SD-02  | 18NEC-S28-SD-02-8 | 18NEC-S28-SD-03 | 18NEC-S28-SD-04 | 18NEC-S28-SD-05 | 18NEC-S28-SD-06 |
|               |               |                        |         | Sample Date:       | 8/7/2018        | 8/7/2018         | 8/7/2018          | 8/7/2018        | 8/7/2018        | 8/7/2018        | 8/7/2018        |
|               |               |                        |         | Sample Type:       | SD              | SD               | SD                | SD              | SD              | SD              | SD              |
|               |               |                        |         | SDG:               | 1184373         | 1184373          | 1184373           | 1184373         | 1184373         | 1184373         | 1184373         |
|               |               |                        |         | Laboratory:        | SGSA            | SGSA             | SGSA              | SGSA            | SGSA            | SGSA            | SGSA            |
|               |               |                        |         | QAQC:              | Primary         | Primary          | Duplicate         | Primary         | Primary         | Primary         | Primary         |
|               |               | 1                      | 1       |                    |                 |                  |                   |                 |                 |                 |                 |
| Method        | C             | Amaluta                | Units   | Screening          |                 |                  |                   |                 |                 |                 |                 |
| Wethou        | Group         | Analyte                | Units   | Level <sup>1</sup> |                 |                  |                   |                 |                 |                 |                 |
| Fuels         |               |                        |         |                    |                 |                  |                   |                 |                 |                 |                 |
| AK102_103     | Fuels         | DRO                    | mg/kg   | 3500               | 717 [44.6]      | 786 [42.4]       | 853 [38]          | 375 [29.4]      | 519 [31.6]      | 1540 [54]       | 429 [57]        |
| AK102 103 SG  | Fuels         | DRO                    | mg/kg   | 3500               | 414 [44.6]      | 546 [42.4]       | 484 [38]          | 265 [29.4]      | 387 [31.6]      | 1110 [54]       | 237 [57]        |
| AK102 103     | Fuels         | RRO                    | mg/kg   | 3500               | 2430 [44.6]     | 2270 [42.4]      | 2310 [38]         | 1060 [29.4]     | 1100 [31.6]     | 2220 [54]       | 1020 [57]       |
| AK102 103 SG  | Fuels         | RRO                    | mg/kg   | 3500               | 984 [44.6]      | 785 [42.4]       | 727 [38]          | 396 [29.4]      | 396 [31.6]      | 835 [54]        | 351 [57]        |
| PAHs          |               |                        |         |                    |                 |                  |                   | -               |                 |                 |                 |
| 8270SIM       | PAHs          | Acenaphthene           | mg/kg   | 0.5                | ND [0.279]      | ND [0.266]       | ND [0.234]        | ND [0.181]      | ND [0.199]      | ND [0.335]      | ND [0.353]      |
| 8270SIM       | PAHs          | Acenaphthylene         | mg/kg   | -                  | ND [0.279]      | ND [0.266]       | ND [0.234]        | ND [0.181]      | ND [0.199]      | ND [0.335]      | ND [0.353]      |
| 8270SIM       | PAHs          | Anthracene             | mg/kg   | -                  | ND [0.279]      | ND [0.266]       | ND [0.234]        | ND [0.181]      | ND [0.199]      | ND [0.335]      | ND [0.353]      |
| 8270SIM       | PAHs          | Benzo(a)anthracene     | mg/kg   | -                  | ND [0.279]      | ND [0.266]       | ND [0.234]        | ND [0.181]      | ND [0.199]      | ND [0.335]      | ND [0.353]      |
| 8270SIM       | PAHs          | Benzo(a)pyrene         | mg/kg   | -                  | ND [0.279]      | ND [0.266]       | ND [0.234]        | ND [0.181]      | ND [0.199]      | ND [0.335]      | ND [0.353]      |
| 8270SIM       | PAHs          | Benzo(b)fluoranthene   | mg/kg   | _                  | ND [0.279]      | ND [0.266]       | ND [0.234]        | ND [0.181]      | ND [0.199]      | ND [0.335]      | ND [0.353]      |
| 8270SIM       | PAHs          | Benzo(g,h,i)perylene   | mg/kg   | 1.7                | ND [0.279]      | ND [0.266]       | ND [0.234]        | ND [0.181]      | ND [0.199]      | ND [0.335]      | ND [0.353]      |
| 8270SIM       | PAHs          | Benzo(k)fluoranthene   | mg/kg   | -                  | ND [0.279]      | ND [0.266]       | ND [0.234]        | ND [0.181]      | ND [0.199]      | ND [0.335]      | ND [0.353]      |
| 8270SIM       | PAHs          | Chrysene               | mg/kg   | _                  | ND [0.279]      | ND [0.266]       | ND [0.234]        | ND [0.181]      | ND [0.199]      | ND [0.335]      | ND [0.353]      |
| 8270SIM       | PAHs          | Dibenzo(a,h)anthracene | mg/kg   | -                  | ND [0.279]      | ND [0.266]       | ND [0.234]        | ND [0.181]      | ND [0.199]      | ND [0.335]      | ND [0.353]      |
| 8270SIM       | PAHs          | Fluoranthene           | mg/kg   | 2                  | ND [0.279]      | ND [0.266]       | ND [0.234]        | ND [0.181]      | ND [0.199]      | ND [0.335]      | ND [0.353]      |
| 8270SIM       | PAHs          | Fluorene               | mg/kg   | 0.8                | ND [0.279]      | ND [0.266]       | ND [0.234]        | ND [0.181]      | ND [0.199]      | ND [0.335]      | ND [0.353]      |
| 8270SIM       | PAHs          | Indeno(1,2,3-cd)pyrene | mg/kg   | 3.2                | ND [0.279]      | ND [0.266]       | ND [0.234]        | ND [0.181]      | ND [0.199]      | ND [0.335]      | ND [0.353]      |
| 8270SIM       | PAHs          | 1-Methylnaphthalene    | mg/kg   | -                  | ND [0.279]      | ND [0.266]       | ND [0.234]        | ND [0.181]      | 0.106 [0.199] J | ND [0.335]      | ND [0.353]      |
| 8270SIM       | PAHs          | 2-Methylnaphthalene    | mg/kg   | 0.6                | ND [0.279]      | ND [0.266]       | ND [0.234]        | ND [0.181]      | ND [0.199]      | ND [0.335]      | ND [0.353]      |
| 8270SIM       | PAHs          | Naphthalene            | mg/kg   | 1.7                | ND [0.223]      | ND [0.212]       | ND [0.187]        | 0.428 [0.145]   | ND [0.159]      | ND [0.268]      | ND [0.283]      |
| 8270SIM       | PAHs          | Phenanthrene           | mg/kg   | 4.8                | ND [0.279]      | ND [0.266]       | ND [0.234]        | ND [0.181]      | ND [0.199]      | ND [0.335]      | ND [0.353]      |
| 8270SIM       | PAHs          | Pyrene                 | mg/kg   | -                  | ND [0.279]      | ND [0.266]       | ND [0.234]        | ND [0.181]      | ND [0.199]      | ND [0.335]      | ND [0.353]      |
| NR            | PAHs          | Total HPAHs            | mg/kg   | 9.6                | ND []           | ND []            | ND []             | ND []           | ND []           | ND []           | ND []           |
| NR            | PAHs          | Total LPAHs            | mg/kg   | 7.8                | ND []           | ND []            | ND []             | 0.428 []        | ND []           | ND []           | ND []           |
| PCBs          |               |                        |         |                    |                 |                  |                   |                 |                 |                 |                 |
| 8082          | PCBs          | Aroclor-1016           | mg/kg   | 0.7                | ND [0.055]      | ND [0.053]       | ND [0.0468]       | ND [0.0366]     | ND [0.0399]     | ND [0.067]      | ND [0.072]      |
| 8082          | PCBs          | Aroclor-1221           | mg/kg   | 0.7                | ND [0.22]       | ND [0.212]       | ND [0.187]        | ND [0.146]      | ND [0.16]       | ND [0.268]      | ND [0.288]      |
| 8082          | PCBs          | Aroclor-1232           | mg/kg   | 0.7                | ND [0.055]      | ND [0.053]       | ND [0.0468]       | ND [0.0366]     | ND [0.0399]     | ND [0.067]      | ND [0.072]      |
| 8082          | PCBs          | Aroclor-1242           | mg/kg   | 0.7                | ND [0.055]      | ND [0.053]       | ND [0.0468]       | ND [0.0366]     | ND [0.0399]     | ND [0.067]      | ND [0.072]      |
| 8082          | PCBs          | Aroclor-1248           | mg/kg   | 0.7                | ND [0.055]      | ND [0.053]       | ND [0.0468]       | ND [0.0366]     | ND [0.0399]     | ND [0.067]      | ND [0.072]      |
| 8082          | PCBs          | Aroclor-1254           | mg/kg   | 0.7                | ND [0.055]      | ND [0.053]       | ND [0.0468]       | ND [0.0366]     | ND [0.0399]     | ND [0.067]      | ND [0.072]      |
| 8082          | PCBs          | Aroclor-1260           | mg/kg   | 0.7                | ND [0.055]      | ND [0.053]       | ND [0.0468]       | ND [0.0366]     | ND [0.0399]     | ND [0.067]      | ND [0.072]      |
| 8082          | PCBs          | PCBs                   | mg/kg   | 0.7                | ND [0.055]      | ND [0.053]       | ND [0.0468]       | ND [0.0366]     | ND [0.0399]     | ND [0.067]      | ND [0.072]      |
| Metals        |               |                        |         |                    |                 |                  |                   |                 |                 |                 |                 |
| 6020          | Metals        | Arsenic                | mg/kg   | 93                 | 5.88 [1.02]     | 7.76 [1.02]      | 6.28 [0.88]       | 2.64 [0.7]      | 3.21 [0.765]    | 19.7 [1.24]     | 30.3 [1.44]     |
| 6020          | Metals        | Chromium               | mg/kg   | 270                | 15.5 [0.409]    | 15.3 [0.41]      | 12.6 [0.352]      | 8.6 [0.281]     | 6.77 [0.307]    | 11.4 [0.497]    | 6.73 [0.575]    |
| 6020          | Metals        | Lead                   | mg/kg   | 530                | 14.7 [0.205]    | 9.71 [0.205]     | 7.67 [0.176]      | 6.32 [0.141]    | 5.41 [0.154]    | 8.09 [0.249]    | 5.78 [0.287]    |
| 6020          | Metals        | Selenium               | mg/kg   | _                  | 0.918 [1.02] J  | 1.37 [1.02] J,QN | 0.804 [0.88] J,QN | 0.522 [0.7] J   | ND [0.765]      | 1.07 [1.24] J   | ND [1.44]       |
| 6020          | Metals        | Zinc                   | mg/kg   | 960                | 47.3 [2.56]     | 35.3 [2.56]      | 29.2 [2.2]        | 22.8 [1.75]     | 19.4 [1.92]     | 39.8 [3.11]     | 32.2 [3.59]     |
| IonsNutrients |               |                        |         |                    |                 |                  |                   |                 |                 |                 |                 |
| 9060          | IonsNutrients | TOC                    | percent | -                  | 6.13            | 7.3              | 6.05              | 2.93            | 2.75            | 7.5             | 5.4             |
| Other         |               |                        |         |                    |                 |                  |                   |                 |                 |                 |                 |
| A2540G        | Other         | Total Solids           | percent | _                  | 44.5            | 46.9             | 52.5              | 67.6            | 62.7            | 37.1            | 34.6            |
| Notes:        |               | •                      |         |                    | -               |                  |                   |                 |                 |                 |                 |

<sup>&</sup>lt;sup>1</sup> Decision Document cleanup level (USACE 2009).

<sup>[]</sup> denotes the LOD or no number if no LOD was reported

**Bold** = Result is greater than or equal to the screening level<sup>1</sup>

<sup>=</sup> LOD greater than or equal to the screening level1

<sup>— =</sup> method or screening level not available or analysis not conducted

For data qualifiers, refer to the Analytical Data Qualifiers section of the DQA.

For definitions, refer to the Acronyms and Abbreviations section of the DQA.

|                    |               |                                         |                | Location ID:<br>Sample ID:<br>Sample Date:<br>Sample Type:<br>SDG:<br>Laboratory:<br>QAQC: | \$28-07<br>18NEC-\$28-\$D-07<br>8/7/2018<br>\$D<br>1184373<br>\$G\$A<br>Primary | \$28-08<br>18NEC-\$28-\$D-08<br>8/7/2018<br>\$D<br>1184373<br>\$G\$A<br>Primary | \$28-09<br>18NEC-\$28-\$D-09<br>8/7/2018<br>\$D<br>1184373<br>\$G\$A<br>Primary | \$28-10<br>18NEC-\$28-\$D-10<br>8/7/2018<br>\$D<br>1184373<br>\$G\$A<br>Primary | \$28-11<br>18NEC-\$28-SD-11<br>8/7/2018<br>\$D<br>1184373<br>\$G\$A<br>Primary | \$28-12<br>18NEC-\$28-\$D-12<br>8/7/2018<br>\$D<br>1184373<br>\$G\$A<br>Primary | \$28-13<br>18NEC-\$28-\$D-13<br>8/7/2018<br>\$D<br>1184373<br>\$G\$A<br>Primary |
|--------------------|---------------|-----------------------------------------|----------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Method             | Group         | Analyte                                 | Units          | Screening<br>Level <sup>1</sup>                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                |                                                                                 |                                                                                 |
| Fuels              |               |                                         |                |                                                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                |                                                                                 |                                                                                 |
| AK102_103          | Fuels         | DRO                                     | mg/kg          | 3500                                                                                       | 214 [26.6]                                                                      | 300 [65.5]                                                                      | 445 [46.3]                                                                      | 617 [39.1]                                                                      | 1410 [70.5]                                                                    | 483 [51.5]                                                                      | 2230 [53.5]                                                                     |
| AK102_103_SG       | Fuels         | DRO                                     | mg/kg          | 3500                                                                                       | 102 [26.6]                                                                      | 171 [65.5]                                                                      | 301 [46.3]                                                                      | 450 [39.1]                                                                      | 954 [70.5]                                                                     | 270 [51.5]                                                                      | 1890 [53.5]                                                                     |
| AK102_103          | Fuels         | RRO                                     | mg/kg          | 3500                                                                                       | 1080 [26.6]                                                                     | 844 [65.5]                                                                      | 1280 [46.3]                                                                     | 1270 [39.1]                                                                     | 3840 [70.5]                                                                    | 1940 [51.5]                                                                     | 1280 [53.5]                                                                     |
| AK102 103 SG       | Fuels         | RRO                                     | mg/kg          | 3500                                                                                       | 366 [26.6]                                                                      | 296 [65.5]                                                                      | 503 [46.3]                                                                      | 487 [39.1]                                                                      | 1660 [70.5]                                                                    | 656 [51.5]                                                                      | 698 [53.5]                                                                      |
| PAHs               |               |                                         |                |                                                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                |                                                                                 |                                                                                 |
| 8270SIM            | PAHs          | Acenaphthene                            | mg/kg          | 0.5                                                                                        | ND [0.167]                                                                      | ND [0.407]                                                                      | 0.268 [0.291] J                                                                 | ND [0.246]                                                                      | ND [0.443]                                                                     | ND [0.321]                                                                      | ND [0.332]                                                                      |
| 8270SIM            | PAHs          | Acenaphthylene                          | mg/kg          | _                                                                                          | ND [0.167]                                                                      | ND [0.407]                                                                      | ND [0.291]                                                                      | ND [0.246]                                                                      | ND [0.443]                                                                     | ND [0.321]                                                                      | ND [0.332]                                                                      |
| 8270SIM            | PAHs          | Anthracene                              | mg/kg          | -                                                                                          | ND [0.167]                                                                      | ND [0.407]                                                                      | ND [0.291]                                                                      | ND [0.246]                                                                      | ND [0.443]                                                                     | ND [0.321]                                                                      | ND [0.332]                                                                      |
| 8270SIM            | PAHs          | Benzo(a)anthracene                      | mg/kg          | -                                                                                          | ND [0.167]                                                                      | ND [0.407]                                                                      | ND [0.291]                                                                      | ND [0.246]                                                                      | ND [0.443]                                                                     | ND [0.321]                                                                      | ND [0.332]                                                                      |
| 8270SIM            | PAHs          | Benzo(a)pyrene                          | mg/kg          | -                                                                                          | ND [0.167]                                                                      | ND [0.407]                                                                      | ND [0.291]                                                                      | ND [0.246]                                                                      | ND [0.443]                                                                     | ND [0.321]                                                                      | ND [0.332]                                                                      |
| 8270SIM            | PAHs          | Benzo(b)fluoranthene                    | mg/kg          | -                                                                                          | ND [0.167]                                                                      | ND [0.407]                                                                      | ND [0.291]                                                                      | ND [0.246]                                                                      | ND [0.443]                                                                     | ND [0.321]                                                                      | ND [0.332]                                                                      |
| 8270SIM            | PAHs          | Benzo(g,h,i)perylene                    | mg/kg          | 1.7                                                                                        | ND [0.167]                                                                      | ND [0.407]                                                                      | ND [0.291]                                                                      | ND [0.246]                                                                      | ND [0.443]                                                                     | ND [0.321]                                                                      | ND [0.332]                                                                      |
| 8270SIM            | PAHs          | Benzo(k)fluoranthene                    | mg/kg          | -                                                                                          | ND [0.167]                                                                      | ND [0.407]                                                                      | ND [0.291]                                                                      | ND [0.246]                                                                      | ND [0.443]                                                                     | ND [0.321]                                                                      | ND [0.332]                                                                      |
| 8270SIM            | PAHs          | Chrysene                                | mg/kg          | -                                                                                          | ND [0.167]                                                                      | ND [0.407]                                                                      | ND [0.291]                                                                      | ND [0.246]                                                                      | ND [0.443]                                                                     | ND [0.321]                                                                      | ND [0.332]                                                                      |
| 8270SIM            | PAHs          | Dibenzo(a,h)anthracene                  | mg/kg          | -                                                                                          | ND [0.167]                                                                      | ND [0.407]                                                                      | ND [0.291]                                                                      | ND [0.246]                                                                      | ND [0.443]                                                                     | ND [0.321]                                                                      | ND [0.332]                                                                      |
| 8270SIM            | PAHs          | Fluoranthene                            | mg/kg          | 2                                                                                          | ND [0.167]                                                                      | ND [0.407]                                                                      | 0.437 [0.291] J                                                                 | ND [0.246]                                                                      | ND [0.443]                                                                     | ND [0.321]                                                                      | ND [0.332]                                                                      |
| 8270SIM            | PAHs          | Fluorene                                | mg/kg          | 0.8                                                                                        | ND [0.167]                                                                      | ND [0.407]                                                                      | 0.238 [0.291] J                                                                 | ND [0.246]                                                                      | ND [0.443]                                                                     | ND [0.321]                                                                      | ND [0.332]                                                                      |
| 8270SIM            | PAHs<br>PAHs  | Indeno(1,2,3-cd)pyrene                  | mg/kg          | 3.2                                                                                        | ND [0.167]<br>ND [0.167]                                                        | ND [0.407]<br>ND [0.407]                                                        | ND [0.291]<br>0.17 [0.291] J                                                    | ND [0.246]<br>ND [0.246]                                                        | ND [0.443]<br>ND [0.443]                                                       | ND [0.321]<br>ND [0.321]                                                        | ND [0.332]<br>ND [0.332]                                                        |
| 8270SIM<br>8270SIM | PAHS          | 1-Methylnaphthalene 2-Methylnaphthalene | mg/kg<br>mg/kg | 0.6                                                                                        | ND [0.167]                                                                      | ND [0.407]<br>ND [0.407]                                                        | 0.17 [0.291] J<br>0.232 [0.291] J                                               | 0.125 [0.246] J                                                                 | 0.233 [0.443] J                                                                | ND [0.321]                                                                      | ND [0.332]                                                                      |
| 8270SIM            | PAHS          | Naphthalene                             | mg/kg          | 1.7                                                                                        | ND [0.187]                                                                      | ND [0.407]<br>ND [0.326]                                                        | 0.232 [0.291] J                                                                 | ND [0.196]                                                                      | 0.233 [0.443] 3<br>ND [0.354]                                                  | ND [0.321]<br>ND [0.257]                                                        | ND [0.332]<br>ND [0.266]                                                        |
| 8270SIM            | PAHs          | Phenanthrene                            | mg/kg          | 4.8                                                                                        | ND [0.167]                                                                      | ND [0.407]                                                                      | 0.608 [0.291]                                                                   | ND [0.190]                                                                      | ND [0.443]                                                                     | ND [0.321]                                                                      | ND [0.332]                                                                      |
| 8270SIM            | PAHs          | Pyrene                                  | mg/kg          | -                                                                                          | ND [0.167]                                                                      | ND [0.407]                                                                      | 0.28 [0.291] J                                                                  | ND [0.246]                                                                      | ND [0.443]                                                                     | ND [0.321]                                                                      | ND [0.332]                                                                      |
| NR                 | PAHs          | Total HPAHs                             | mg/kg          | 9.6                                                                                        | ND []                                                                           | ND []                                                                           | 0.717 []                                                                        | ND [0.240]                                                                      | ND [0.443]                                                                     | ND [0.321]                                                                      | ND []                                                                           |
| NR                 | PAHs          | Total LPAHs                             | mg/kg          | 7.8                                                                                        | ND []                                                                           | ND []                                                                           | 1.45 []                                                                         | ND []                                                                           | ND []                                                                          | ND []                                                                           | ND []                                                                           |
| PCBs               | 17410         | TOTAL EL 71110                          | ingrig         | 7.0                                                                                        | ПВП                                                                             | HO []                                                                           | 1.40 []                                                                         | NO II                                                                           | ПОП                                                                            | I NO II                                                                         | Пеп                                                                             |
| 8082               | PCBs          | Aroclor-1016                            | mg/kg          | 0.7                                                                                        | ND [0.0333]                                                                     | ND [0.082]                                                                      | ND [0.0575]                                                                     | ND [0.0494]                                                                     | ND [0.0885]                                                                    | ND [0.064]                                                                      | ND [0.067]                                                                      |
| 8082               | PCBs          | Aroclor-1221                            | mg/kg          | 0.7                                                                                        | ND [0.0333]                                                                     | ND [0.062]<br>ND [0.327]                                                        | ND [0.0375]<br>ND [0.23]                                                        | ND [0.0494]                                                                     | ND [0.0665]                                                                    | ND [0.064]<br>ND [0.256]                                                        | ND [0.067]<br>ND [0.269]                                                        |
| 8082               | PCBs          | Aroclor-1232                            | mg/kg          | 0.7                                                                                        | ND [0.133]                                                                      | ND [0.082]                                                                      | ND [0.25]                                                                       | ND [0.196]                                                                      | ND [0.0885]                                                                    | ND [0.250]                                                                      | ND [0.269]                                                                      |
| 8082               | PCBs          | Aroclor-1242                            | mg/kg          | 0.7                                                                                        | ND [0.0333]                                                                     | ND [0.082]                                                                      | ND [0.0575]                                                                     | ND [0.0494]                                                                     | ND [0.0885]                                                                    | ND [0.064]                                                                      | ND [0.067]                                                                      |
| 8082               | PCBs          | Aroclor-1248                            | mg/kg          | 0.7                                                                                        | ND [0.0333]                                                                     | ND [0.082]                                                                      | ND [0.0575]                                                                     | ND [0.0494]                                                                     | ND [0.0885]                                                                    | ND [0.064]                                                                      | ND [0.067]                                                                      |
| 8082               | PCBs          | Aroclor-1254                            | mg/kg          | 0.7                                                                                        | ND [0.0333]                                                                     | ND [0.082]                                                                      | ND [0.0575]                                                                     | ND [0.0494]                                                                     | ND [0.0885]                                                                    | ND [0.064]                                                                      | ND [0.067]                                                                      |
| 8082               | PCBs          | Aroclor-1260                            | mg/kg          | 0.7                                                                                        | ND [0.0333]                                                                     | ND [0.082]                                                                      | ND [0.0575]                                                                     | ND [0.0494]                                                                     | ND [0.0885]                                                                    | ND [0.064]                                                                      | ND [0.067]                                                                      |
| 8082               | PCBs          | PCBs                                    | mg/kg          | 0.7                                                                                        | ND [0.0333]                                                                     | ND [0.082]                                                                      | ND [0.0575]                                                                     | ND [0.0494]                                                                     | ND [0.0885]                                                                    | ND [0.064]                                                                      | ND [0.067]                                                                      |
| Metals             |               |                                         |                |                                                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                |                                                                                 |                                                                                 |
| 6020               | Metals        | Arsenic                                 | mg/kg          | 93                                                                                         | 4.95 [0.615]                                                                    | 32.7 [1.5]                                                                      | 16.9 [1.12]                                                                     | 9.09 [0.95]                                                                     | 25.4 [1.66]                                                                    | 21.6 [1.18]                                                                     | 45.4 [1.3]                                                                      |
| 6020               | Metals        | Chromium                                | mg/kg          | 270                                                                                        | 22.8 [0.246]                                                                    | 7.91 [0.6]                                                                      | 9.59 [0.446]                                                                    | 9.14 [0.379]                                                                    | 20 [0.665]                                                                     | 18.1 [0.47]                                                                     | 6.1 [0.525]                                                                     |
| 6020               | Metals        | Lead                                    | mg/kg          | 530                                                                                        | 9.45 [0.123]                                                                    | 6.62 [0.3]                                                                      | 7.63 [0.223]                                                                    | 7.27 [0.19]                                                                     | 13.3 [0.332]                                                                   | 9.78 [0.235]                                                                    | 5.74 [0.262]                                                                    |
| 6020               | Metals        | Selenium                                | mg/kg          | -                                                                                          | 0.472 [0.615] J                                                                 | 1.13 [1.5] J                                                                    | ND [1.12]                                                                       | ND [0.95]                                                                       | 1.66 [1.66] J                                                                  | 0.964 [1.18] J                                                                  | 1.5 [1.3] J                                                                     |
| 6020               | Metals        | Zinc                                    | mg/kg          | 960                                                                                        | 45 [1.54]                                                                       | 37.8 [3.75]                                                                     | 35.2 [2.79]                                                                     | 28.4 [2.37]                                                                     | 67.5 [4.14]                                                                    | 53.2 [2.94]                                                                     | 36 [3.27]                                                                       |
| IonsNutrients      |               |                                         |                |                                                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                |                                                                                 |                                                                                 |
| 9060               | IonsNutrients | ITOC                                    | percent        | _                                                                                          | 3                                                                               | 6                                                                               | 5.85                                                                            | 3.49                                                                            | 13                                                                             | 6.47                                                                            | 6.7                                                                             |
| Other              |               | 1                                       | porcont        |                                                                                            |                                                                                 | <u> </u>                                                                        | 0.00                                                                            | 0.10                                                                            |                                                                                | J                                                                               | <b>5</b>                                                                        |
| A2540G             | Other         | Total Solids                            | percent        |                                                                                            | 74.9                                                                            | 30.5                                                                            | 42.9                                                                            | 50.4                                                                            | 28                                                                             | 38.8                                                                            | 37                                                                              |
| Notes:             | Other         | Total Sullus                            | percent        |                                                                                            | 14.5                                                                            | 30.3                                                                            | <b>4</b> ∠.3                                                                    | JU. <del>4</del>                                                                | 20                                                                             | 30.0                                                                            | 31                                                                              |

<sup>&</sup>lt;sup>1</sup> Decision Document cleanup level (USACE 2009).

<sup>[]</sup> denotes the LOD or no number if no LOD was reported

**Bold** = Result is greater than or equal to the screening level<sup>1</sup>

<sup>=</sup> LOD greater than or equal to the screening level1

<sup>— =</sup> method or screening level not available or analysis not conducted

For data qualifiers, refer to the Analytical Data Qualifiers section of the DQA.

| -             |               |                        |            |                                                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                             |                                                                                     |                                                                                 |                                                                                 |
|---------------|---------------|------------------------|------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
|               |               |                        |            | Location ID:<br>Sample ID:<br>Sample Date:<br>Sample Type:<br>SDG:<br>Laboratory:<br>QAQC: | \$28-14<br>18NEC-\$28-\$D-14<br>877/2018<br>\$D<br>1184373<br>\$G\$A<br>Primary | \$28-15<br>18NEC-\$28-\$D-15<br>8/7/2018<br>\$D<br>1184373<br>\$G\$A<br>Primary | \$28-16<br>18NEC-\$28-\$D-16<br>8/7/2018<br>\$D<br>1184373<br>\$G\$A<br>Primary | \$28-17<br>18NEC-\$28-SD-17<br>8/7/2018<br>SD<br>1184430<br>SGSA<br>Primary | \$28-17<br>18NEC-\$28-\$D-17-8<br>8/7/2018<br>\$D<br>1184430<br>\$G\$A<br>Duplicate | \$28-18<br>18NEC-\$28-\$D-18<br>8/7/2018<br>\$D<br>1184430<br>\$G\$A<br>Primary | \$28-19<br>18NEC-\$28-\$D-19<br>8/7/2018<br>\$D<br>1184430<br>\$G\$A<br>Primary |
| Method        | Group         | Analyte                | Units      | Screening<br>Level <sup>1</sup>                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                             |                                                                                     |                                                                                 |                                                                                 |
| Fuels         |               |                        |            |                                                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                             |                                                                                     |                                                                                 |                                                                                 |
| AK102_103     | Fuels         | DRO                    | mg/kg      | 3500                                                                                       | 27900 [600]                                                                     | 105000 [2665]                                                                   | 76000 [2375]                                                                    | 57800 [2185]                                                                | 48700 [2910]                                                                        | 74600 [3265]                                                                    | 51600 [2315]                                                                    |
| AK102_103_SG  | Fuels         | DRO                    | mg/kg      | 3500                                                                                       | 22700 [600]                                                                     | 77200 [2665]                                                                    | 64100 [2375]                                                                    | 52500 [2185]                                                                | 43100 [2910]                                                                        | 62200 [3265]                                                                    | 38600 [2315]                                                                    |
| AK102_103     | Fuels         | RRO                    | mg/kg      | 3500                                                                                       | 10300 [600]                                                                     | 28600 [2665]                                                                    | 23100 [2375]                                                                    | 15100 [2185]                                                                | 14900 [2910]                                                                        | 14900 [3265]                                                                    | 13100 [2315]                                                                    |
| AK102 103 SG  | Fuels         | RRO                    | mg/kg      | 3500                                                                                       | 6380 [600]                                                                      | 19800 [2665]                                                                    | 16500 [2375]                                                                    | 12100 [2185]                                                                | 11800 [2910]                                                                        | 10800 [3265]                                                                    | 8450 [2315]                                                                     |
| PAHs          |               |                        |            |                                                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                             |                                                                                     |                                                                                 |                                                                                 |
| 8270SIM       | PAHs          | Acenaphthene           | mg/kg      | 0.5                                                                                        | 1.49 [0.373]                                                                    | 11.5 [4.17]                                                                     | 3.45 [0.37]                                                                     | 4.23 [0.273]                                                                | 3.91 [0.366]                                                                        | ND [0.407]                                                                      | 3.55 [0.284]                                                                    |
| 8270SIM       | PAHs          | Acenaphthylene         | mg/kg      | _                                                                                          | ND [0.373]                                                                      | ND [4.17]                                                                       | ND [0.37]                                                                       | ND [0.273]                                                                  | ND [0.366]                                                                          | ND [0.407]                                                                      | ND [0.284]                                                                      |
| 8270SIM       | PAHs          | Anthracene             | mg/kg      | -                                                                                          | ND [0.373]                                                                      | ND [4.17]                                                                       | ND [0.37]                                                                       | ND [0.273]                                                                  | ND [0.366]                                                                          | ND [0.407]                                                                      | ND [0.284]                                                                      |
| 8270SIM       | PAHs          | Benzo(a)anthracene     | mg/kg      | -                                                                                          | ND [0.373]                                                                      | ND [0.416]                                                                      | ND [0.37]                                                                       | 0.171 [0.273] J,QN                                                          | ND [0.366] QN                                                                       | ND [0.407]                                                                      | ND [0.284]                                                                      |
| 8270SIM       | PAHs          | Benzo(a)pyrene         | mg/kg      | _                                                                                          | ND [0.373]                                                                      | ND [0.416]                                                                      | ND [0.37]                                                                       | ND [0.273]                                                                  | ND [0.366]                                                                          | ND [0.407]                                                                      | ND [0.284]                                                                      |
| 8270SIM       | PAHs          | Benzo(b)fluoranthene   | mg/kg      | _                                                                                          | ND [0.373]                                                                      | ND [0.416]                                                                      | ND [0.37]                                                                       | ND [0.273]                                                                  | ND [0.366]                                                                          | ND [0.407]                                                                      | ND [0.284]                                                                      |
| 8270SIM       | PAHs          | Benzo(g,h,i)perylene   | mg/kg      | 1.7                                                                                        | ND [0.373]                                                                      | ND [0.416]                                                                      | ND [0.37]                                                                       | ND [0.273]                                                                  | ND [0.366]                                                                          | ND [0.407]                                                                      | ND [0.284]                                                                      |
| 8270SIM       | PAHs          | Benzo(k)fluoranthene   | mg/kg      | _                                                                                          | ND [0.373]                                                                      | ND [0.416]                                                                      | ND [0.37]                                                                       | ND [0.273]                                                                  | ND [0.366]                                                                          | ND [0.407]                                                                      | ND [0.284]                                                                      |
| 8270SIM       | PAHs          | Chrysene               | mg/kg      | -                                                                                          | ND [0.373]                                                                      | 0.279 [0.416] J                                                                 | 0.226 [0.37] J                                                                  | 0.437 [0.273] J                                                             | 0.332 [0.366] J                                                                     | 0.263 [0.407] J                                                                 | 0.196 [0.284] J                                                                 |
| 8270SIM       | PAHs          | Dibenzo(a,h)anthracene | mg/kg      | -                                                                                          | ND [0.373]                                                                      | ND [0.416]                                                                      | ND [0.37]                                                                       | ND [0.273]                                                                  | ND [0.366]                                                                          | ND [0.407]                                                                      | ND [0.284]                                                                      |
| 8270SIM       | PAHs          | Fluoranthene           | mg/kg      | 2                                                                                          | 0.262 [0.373] J                                                                 | 0.596 [0.416] J                                                                 | 0.621 [0.37] J                                                                  | 1.4 [0.273]                                                                 | 1.03 [0.366]                                                                        | ND [0.407]                                                                      | 0.677 [0.284]                                                                   |
| 8270SIM       | PAHs          | Fluorene               | mg/kg      | 0.8                                                                                        | 2.03 [0.373]                                                                    | 17.5 [4.17]                                                                     | 5.17 [0.37]                                                                     | 5.15 [0.273]                                                                | 4.76 [0.366]                                                                        | 10.1 [0.407]                                                                    | 6.57 [0.284]                                                                    |
| 8270SIM       | PAHs          | Indeno(1,2,3-cd)pyrene | mg/kg      | 3.2                                                                                        | ND [0.373]                                                                      | ND [0.416]                                                                      | ND [0.37]                                                                       | ND [0.273]                                                                  | ND [0.366]                                                                          | ND [0.407]                                                                      | ND [0.284]                                                                      |
| 8270SIM       | PAHs          | 1-Methylnaphthalene    | mg/kg      | -                                                                                          | 9.44 [0.373]                                                                    | 67.2 [4.17]                                                                     | 26.5 [1.85]                                                                     | 62.4 [2.73]                                                                 | 62.2 [3.67]                                                                         | 73.2 [4.07]                                                                     | 103 [5.7]                                                                       |
| 8270SIM       | PAHs          | 2-Methylnaphthalene    | mg/kg      | 0.6                                                                                        | 11.1 [0.373]                                                                    | 68.5 [4.17]                                                                     | 27.8 [1.85]                                                                     | 98.7 [2.73]                                                                 | 99.6 [3.67]                                                                         | 99.9 [4.07]                                                                     | 161 [5.7]                                                                       |
| 8270SIM       | PAHs          | Naphthalene            | mg/kg      | 1.7                                                                                        | 4.45 [0.298]                                                                    | 26.2 [3.33]                                                                     | 8.67 [0.295]                                                                    | 53.6 [2.18]                                                                 | 55.4 [2.94]                                                                         | 35.3 [3.26]                                                                     | 61.3 [4.54]                                                                     |
| 8270SIM       | PAHs          | Phenanthrene           | mg/kg      | 4.8                                                                                        | 1.24 [0.373]                                                                    | 8.8 [4.17]                                                                      | 3.11 [0.37]                                                                     | 3.45 [0.273]                                                                | 3.14 [0.366]                                                                        | 5.67 [0.407]                                                                    | 3.4 [0.284]                                                                     |
| 8270SIM       | PAHs          | Pyrene                 | mg/kg      | -                                                                                          | 0.427 [0.373] J                                                                 | 1.17 [0.416]                                                                    | 0.951 [0.37]                                                                    | 1.28 [0.273]                                                                | 0.937 [0.366]                                                                       | 0.649 [0.407] J                                                                 | 0.623 [0.284]                                                                   |
| NR            | PAHs          | Total HPAHs            | mg/kg      | 9.6                                                                                        | 0.689 []                                                                        | 2.045 []                                                                        | 1.798 []                                                                        | 3.288 []                                                                    | 2.299 []                                                                            | 0.912 []                                                                        | 1.496 []                                                                        |
| NR            | PAHs          | Total LPAHs            | mg/kg      | 7.8                                                                                        | 9.21 []                                                                         | 64 []                                                                           | 20.4 []                                                                         | 66.43 []                                                                    | 67.21 []                                                                            | 51.07 []                                                                        | 74.82 []                                                                        |
| PCBs          |               |                        |            |                                                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                             |                                                                                     |                                                                                 |                                                                                 |
| 8082          | PCBs          | Aroclor-1016           | mg/kg      | 0.7                                                                                        | ND [0.0745]                                                                     | ND [0.0825]                                                                     | ND [0.073]                                                                      | ND [0.055]                                                                  | ND [0.0735]                                                                         | ND [0.0825]                                                                     | ND [0.058]                                                                      |
| 8082          | PCBs          | Aroclor-1221           | mg/kg      | 0.7                                                                                        | ND [0.298]                                                                      | ND [0.331]                                                                      | ND [0.292]                                                                      | ND [0.221]                                                                  | ND [0.293]                                                                          | ND [0.329]                                                                      | ND [0.231]                                                                      |
| 8082          | PCBs          | Aroclor-1232           | mg/kg      | 0.7                                                                                        | ND [0.0745]                                                                     | ND [0.0825]                                                                     | ND [0.073]                                                                      | ND [0.055]                                                                  | ND [0.0735]                                                                         | ND [0.0825]                                                                     | ND [0.058]                                                                      |
| 8082          | PCBs          | Aroclor-1242           | mg/kg      | 0.7                                                                                        | ND [0.0745]                                                                     | ND [0.0825]                                                                     | ND [0.073]                                                                      | ND [0.055]                                                                  | ND [0.0735]                                                                         | ND [0.0825]                                                                     | ND [0.058]                                                                      |
| 8082          | PCBs          | Aroclor-1248           | mg/kg      | 0.7                                                                                        | ND [0.0745]                                                                     | ND [0.0825]                                                                     | ND [0.073]                                                                      | ND [0.055]                                                                  | ND [0.0735]                                                                         | ND [0.0825]                                                                     | ND [0.058]                                                                      |
| 8082          | PCBs          | Aroclor-1254           | mg/kg      | 0.7                                                                                        | ND [0.0745]                                                                     | ND [0.0825]                                                                     | ND [0.073]                                                                      | ND [0.055]                                                                  | ND [0.0735]                                                                         | ND [0.0825]                                                                     | ND [0.058]                                                                      |
| 8082          | PCBs          | Aroclor-1260           | mg/kg      | 0.7                                                                                        | 0.196 [0.0745]                                                                  | 0.349 [0.0825]                                                                  | 0.331 [0.073]                                                                   | 0.482 [0.055]                                                               | 0.367 [0.0735]                                                                      | 0.284 [0.0825]                                                                  | 0.127 [0.058]                                                                   |
| 8082          | PCBs          | PCBs                   | mg/kg      | 0.7                                                                                        | 0.196 [0.0745]                                                                  | 0.349 [0.0825]                                                                  | 0.331 [0.073]                                                                   | 0.482 [0.055]                                                               | 0.367 [0.0735]                                                                      | 0.284 [0.0825]                                                                  | 0.127 [0.058]                                                                   |
| Metals        |               |                        |            |                                                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                             |                                                                                     |                                                                                 |                                                                                 |
| 6020          | Metals        | Arsenic                | mg/kg      | 93                                                                                         | 9.83 [1.5]                                                                      | 16.3 [1.56]                                                                     | 26.4 [1.38]                                                                     | 10.7 [1.08]                                                                 | 16.9 [1.44]                                                                         | 31.9 [1.65]                                                                     | 6.92 [1.14]                                                                     |
| 6020          | Metals        | Chromium               | mg/kg      | 270                                                                                        | 20.7 [0.595]                                                                    | 31.5 [0.625]                                                                    | 23.1 [0.55]                                                                     | 27.2 [0.431]                                                                | 24 [0.575]                                                                          | 18.8 [0.66]                                                                     | 21.2 [0.455]                                                                    |
| 6020          | Metals        | Lead                   | mg/kg      | 530                                                                                        | 19.3 [0.298]                                                                    | 58.5 [0.312]                                                                    | 35.7 [0.276]                                                                    | 33.3 [0.216]                                                                | 27.8 [0.288]                                                                        | 31.5 [0.329]                                                                    | 21.5 [0.227]                                                                    |
| 6020          | Metals        | Selenium               | mg/kg      | -                                                                                          | 1.72 [1.5] J                                                                    | 1.66 [1.56] J                                                                   | 1.56 [1.38] J                                                                   | 1.82 [1.08] J                                                               | 2.23 [1.44] J                                                                       | 1.73 [1.65] J                                                                   | 2.02 [1.14] J                                                                   |
| 6020          | Metals        | Zinc                   | mg/kg      | 960                                                                                        | 82.2 [3.73]                                                                     | 192 [3.9]                                                                       | 165 [3.44]                                                                      | 168 [2.69]                                                                  | 178 [3.6]                                                                           | 116 [4.11]                                                                      | 81.4 [2.84]                                                                     |
| IonsNutrients |               |                        |            |                                                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                             |                                                                                     |                                                                                 |                                                                                 |
| 9060          | IonsNutrients | TOC                    | percent    | -                                                                                          | 15.7                                                                            | 17.9                                                                            | 11.6                                                                            | 15.2                                                                        | 13.1                                                                                | 16.8                                                                            | 14.2                                                                            |
| Other         |               |                        |            |                                                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                             |                                                                                     |                                                                                 |                                                                                 |
| A2540G        | Other         | Total Solids           | percent    | _                                                                                          | 33.2                                                                            | 29.9                                                                            | 33.6                                                                            | 45.2                                                                        | 34.1                                                                                | 30.3                                                                            | 43.1                                                                            |
| Notes:        |               |                        | F 2. 30110 |                                                                                            |                                                                                 |                                                                                 | - 3.0                                                                           |                                                                             |                                                                                     |                                                                                 |                                                                                 |

<sup>&</sup>lt;sup>1</sup> Decision Document cleanup level (USACE 2009).

<sup>[]</sup> denotes the LOD or no number if no LOD was reported

**Bold** = Result is greater than or equal to the screening level<sup>1</sup>

<sup>=</sup> LOD greater than or equal to the screening level1

<sup>— =</sup> method or screening level not available or analysis not conducted

For data qualifiers, refer to the Analytical Data Qualifiers section of the DQA. For definitions, refer to the Acronyms and Abbreviations section of the DQA.

| i                  |                  |                                  |                |                                                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |
|--------------------|------------------|----------------------------------|----------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
|                    |                  |                                  |                | Location ID:<br>Sample ID:<br>Sample Date:<br>Sample Type:<br>SDG:<br>Laboratory:<br>QAQC: | \$28-20<br>18NEC-\$28-\$D-20<br>8/7/2018<br>\$D<br>1184430<br>\$G\$A<br>Primary | \$28-21<br>18NEC-\$28-\$D-21<br>8/7/2018<br>\$D<br>1184430<br>\$G\$A<br>Primary | \$28-22<br>18NEC-\$28-\$D-22<br>8/7/2018<br>\$D<br>1184430<br>\$G\$A<br>Primary | \$28-23<br>18NEC-\$28-\$D-23<br>8/7/2018<br>\$D<br>1184430<br>\$G\$A<br>Primary | \$28-24<br>18NEC-\$28-\$D-24<br>8/7/2018<br>\$D<br>1184430<br>\$G\$A<br>Primary | \$28-25<br>18NEC-\$28-\$D-25<br>8/8/2018<br>\$D<br>1184430<br>\$G\$A<br>Primary | \$28-26<br>18NEC-\$28-\$D-26<br>8/8/2018<br>\$D<br>1184430<br>\$G\$A<br>Primary |
| Method             | Group            | Analyte                          | Units          | Screening<br>Level <sup>1</sup>                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |
| Fuels              |                  |                                  |                |                                                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |
| AK102_103          | Fuels            | DRO                              | mg/kg          | 3500                                                                                       | 44800 [2135]                                                                    | 4000 [365]                                                                      | 2420 [685]                                                                      | 7210 [482]                                                                      | 4390 [433]                                                                      | 8730 [695]                                                                      | 8970 [675]                                                                      |
| AK102_103_SG       | Fuels            | DRO                              | mg/kg          | 3500                                                                                       | 34900 [2135]                                                                    | 3390 [365]                                                                      | 1910 [685]                                                                      | 5710 [482]                                                                      | 3460 [433]                                                                      | 6810 [695]                                                                      | 7970 [675]                                                                      |
| AK102_103          | Fuels            | RRO                              | mg/kg          | 3500                                                                                       | 12200 [2135]                                                                    | 1900 [365]                                                                      | 3370 [685]                                                                      | 3300 [482]                                                                      | 2170 [433]                                                                      | 1670 [695]                                                                      | 3640 [675]                                                                      |
| AK102_103_SG       | Fuels            | RRO                              | mg/kg          | 3500                                                                                       | 7950 [2135]                                                                     | 850 [365]                                                                       | 1150 [685] J                                                                    | 985 [482]                                                                       | 634 [433] J                                                                     | 563 [695] J                                                                     | 2780 [675]                                                                      |
| PAHs               | •                |                                  |                |                                                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |
| 8270SIM            | PAHs             | Acenaphthene                     | mg/kg          | 0.5                                                                                        | 3.47 [0.267]                                                                    | 0.364 [0.227] J                                                                 | ND [0.426]                                                                      | 0.427 [0.301] J                                                                 | 0.234 [0.267] J                                                                 | ND [0.435]                                                                      | ND [0.423]                                                                      |
| 8270SIM            | PAHs             | Acenaphthylene                   | mg/kg          | -                                                                                          | ND [0.267]                                                                      | ND [0.227]                                                                      | ND [0.426]                                                                      | ND [0.301]                                                                      | ND [0.267]                                                                      | ND [0.435]                                                                      | ND [0.423]                                                                      |
| 8270SIM            | PAHs             | Anthracene                       | mg/kg          | -                                                                                          | ND [0.267]                                                                      | ND [0.227]                                                                      | ND [0.426]                                                                      | ND [0.301]                                                                      | ND [0.267]                                                                      | ND [0.435]                                                                      | ND [0.423]                                                                      |
| 8270SIM            | PAHs             | Benzo(a)anthracene               | mg/kg          | -                                                                                          | ND [0.267]                                                                      | ND [0.227]                                                                      | ND [0.426]                                                                      | ND [0.301]                                                                      | ND [0.267]                                                                      | ND [0.435]                                                                      | ND [0.423]                                                                      |
| 8270SIM            | PAHs             | Benzo(a)pyrene                   | mg/kg          | -                                                                                          | ND [0.267]                                                                      | ND [0.227]                                                                      | ND [0.426]                                                                      | ND [0.301]                                                                      | ND [0.267]                                                                      | ND [0.435]                                                                      | ND [0.423]                                                                      |
| 8270SIM            | PAHs             | Benzo(b)fluoranthene             | mg/kg          | -                                                                                          | ND [0.267]                                                                      | ND [0.227]                                                                      | ND [0.426]                                                                      | ND [0.301]                                                                      | ND [0.267]                                                                      | ND [0.435]                                                                      | ND [0.423]                                                                      |
| 8270SIM<br>8270SIM | PAHs<br>PAHs     | Benzo(g,h,i)perylene             | mg/kg          | 1.7                                                                                        | ND [0.267]<br>ND [0.267]                                                        | ND [0.227]                                                                      | ND [0.426]                                                                      | ND [0.301]                                                                      | ND [0.267]                                                                      | ND [0.435]                                                                      | ND [0.423]                                                                      |
| 8270SIM<br>8270SIM | PAHS             | Benzo(k)fluoranthene<br>Chrysene | mg/kg          | <u>-</u><br>-                                                                              | 0.203 [0.267] J                                                                 | ND [0.227]<br>0.231 [0.227] J                                                   | ND [0.426]<br>ND [0.426]                                                        | ND [0.301]<br>ND [0.301]                                                        | ND [0.267]<br>ND [0.267]                                                        | ND [0.435]<br>ND [0.435]                                                        | ND [0.423]<br>ND [0.423]                                                        |
| 8270SIM            | PAHS             | Dibenzo(a,h)anthracene           | mg/kg<br>mg/kg |                                                                                            | 0.203 [0.267] J<br>ND [0.267]                                                   | 0.231 [0.227] J<br>ND [0.227]                                                   | ND [0.426]<br>ND [0.426]                                                        | ND [0.301]<br>ND [0.301]                                                        | ND [0.267]<br>ND [0.267]                                                        | ND [0.435]<br>ND [0.435]                                                        | ND [0.423]<br>ND [0.423]                                                        |
| 8270SIM            | PAHS             | Fluoranthene                     | mg/kg          | 2                                                                                          | 0.682 [0.267]                                                                   | 1.87 [0.227]                                                                    | ND [0.426]                                                                      | ND [0.301]                                                                      | ND [0.267]                                                                      | ND [0.435]                                                                      | ND [0.423]                                                                      |
| 8270SIM            | PAHs             | Fluorene                         | mg/kg          | 0.8                                                                                        | 5.11 [0.267]                                                                    | 0.866 [0.227]                                                                   | ND [0.426]                                                                      | 0.503 [0.301] J                                                                 | 0.311 [0.267] J                                                                 | 0.252 [0.435] J                                                                 | ND [0.423]                                                                      |
| 8270SIM            | PAHs             | Indeno(1,2,3-cd)pyrene           | mg/kg          | 3.2                                                                                        | ND [0.267]                                                                      | ND [0.227]                                                                      | ND [0.426]                                                                      | ND [0.301]                                                                      | ND [0.267]                                                                      | ND [0.435]                                                                      | ND [0.423]                                                                      |
| 8270SIM            | PAHs             | 1-Methylnaphthalene              | mg/kg          | -                                                                                          | 97.1 [5.35]                                                                     | 0.531 [0.227]                                                                   | 2.89 [0.426]                                                                    | 12.7 [0.301]                                                                    | 8.68 [0.267]                                                                    | 0.821 [0.435] J                                                                 | ND [0.423]                                                                      |
| 8270SIM            | PAHs             | 2-Methylnaphthalene              | mg/kg          | 0.6                                                                                        | 152 [5.35]                                                                      | 0.738 [0.227]                                                                   | 3.95 [0.426]                                                                    | 23 [1.21]                                                                       | 14.3 [0.535]                                                                    | 0.962 [0.435]                                                                   | ND [0.423]                                                                      |
| 8270SIM            | PAHs             | Naphthalene                      | mg/kg          | 1.7                                                                                        | 53.7 [4.28]                                                                     | 0.491 [0.181]                                                                   | 2.12 [0.342]                                                                    | 5.24 [0.24]                                                                     | 6.88 [0.213]                                                                    | 0.372 [0.348] J                                                                 | 0.476 [0.339] J                                                                 |
| 8270SIM            | PAHs             | Phenanthrene                     | mg/kg          | 4.8                                                                                        | 3.33 [0.267]                                                                    | 4.02 [0.227]                                                                    | ND [0.426]                                                                      | 0.202 [0.301] J                                                                 | ND [0.267]                                                                      | ND [0.435]                                                                      | ND [0.423]                                                                      |
| 8270SIM            | PAHs             | Pyrene                           | mg/kg          | -                                                                                          | 0.567 [0.267]                                                                   | 1.05 [0.227]                                                                    | ND [0.426]                                                                      | ND [0.301]                                                                      | ND [0.267]                                                                      | ND [0.435]                                                                      | ND [0.423]                                                                      |
| NR                 | PAHs             | Total HPAHs                      | mg/kg          | 9.6                                                                                        | 1.452 []                                                                        | 3.151 []                                                                        | ND []                                                                           | ND []                                                                           | ND []                                                                           | ND []                                                                           | ND []                                                                           |
| NR                 | PAHs             | Total LPAHs                      | mg/kg          | 7.8                                                                                        | 65.61 []                                                                        | 5.741 []                                                                        | 2.12 []                                                                         | 6.372 []                                                                        | 7.425 []                                                                        | 0.624 []                                                                        | 0.476 []                                                                        |
| PCBs               |                  |                                  |                |                                                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |
| 8082               | PCBs             | Aroclor-1016                     | mg/kg          | 0.7                                                                                        | ND [0.0535]                                                                     | ND [0.0456]                                                                     | ND [0.085]                                                                      | ND [0.06]                                                                       | ND [0.0535]                                                                     | ND [0.0865]                                                                     | ND [0.0845]                                                                     |
| 8082               | PCBs             | Aroclor-1221                     | mg/kg          | 0.7                                                                                        | ND [0.213]                                                                      | ND [0.183]                                                                      | ND [0.341]                                                                      | ND [0.24]                                                                       | ND [0.214]                                                                      | ND [0.347]                                                                      | ND [0.339]                                                                      |
| 8082               | PCBs             | Aroclor-1232                     | mg/kg          | 0.7                                                                                        | ND [0.0535]                                                                     | ND [0.0456]                                                                     | ND [0.085]                                                                      | ND [0.06]                                                                       | ND [0.0535]                                                                     | ND [0.0865]                                                                     | ND [0.0845]                                                                     |
| 8082               | PCBs             | Aroclor-1242                     | mg/kg          | 0.7                                                                                        | ND [0.0535]                                                                     | ND [0.0456]                                                                     | ND [0.085]                                                                      | ND [0.06]                                                                       | ND [0.0535]                                                                     | ND [0.0865]                                                                     | ND [0.0845]                                                                     |
| 8082               | PCBs             | Aroclor-1248                     | mg/kg          | 0.7                                                                                        | ND [0.0535]                                                                     | ND [0.0456]                                                                     | ND [0.085]                                                                      | ND [0.06]                                                                       | ND [0.0535]                                                                     | ND [0.0865]                                                                     | ND [0.0845]                                                                     |
| 8082               | PCBs             | Aroclor-1254                     | mg/kg          | 0.7                                                                                        | ND [0.0535]                                                                     | ND [0.0456]                                                                     | ND [0.085]                                                                      | ND [0.06]                                                                       | ND [0.0535]                                                                     | ND [0.0865]                                                                     | ND [0.0845]                                                                     |
| 8082               | PCBs             | Aroclor-1260                     | mg/kg          | 0.7                                                                                        | 0.177 [0.0535]                                                                  | ND [0.0456]                                                                     | ND [0.085]                                                                      | ND [0.06]                                                                       | ND [0.0535]                                                                     | ND [0.0865]                                                                     | 0.0669 [0.0845] J                                                               |
| 8082               | PCBs             | PCBs                             | mg/kg          | 0.7                                                                                        | 0.177 [0.0535]                                                                  | ND [0.0456]                                                                     | ND [0.085]                                                                      | ND [0.06]                                                                       | ND [0.0535]                                                                     | ND [0.0865]                                                                     | 0.0669 [0.0845]                                                                 |
| Metals             |                  | T                                |                |                                                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |
| 6020               | Metals           | Arsenic                          | mg/kg          | 93                                                                                         | 8.99 [1.05]                                                                     | 20.1 [0.87]                                                                     | 22.7 [1.65]                                                                     | 20.5 [1.14]                                                                     | 20.9 [1.04]                                                                     | 52.7 [1.69]                                                                     | 60.1 [1.61]                                                                     |
| 6020               | Metals           | Chromium                         | mg/kg          | 270                                                                                        | 24.6 [0.42]                                                                     | 8.27 [0.347]                                                                    | 13.9 [0.66]                                                                     | 16.9 [0.454]                                                                    | 12.3 [0.416]                                                                    | 17.6 [0.675]                                                                    | 11.1 [0.64]                                                                     |
| 6020               | Metals           | Lead                             | mg/kg          | 530                                                                                        | 23.6 [0.21]                                                                     | 10.4 [0.173]                                                                    | 8.32 [0.33]                                                                     | 8.05 [0.227]                                                                    | 6.01 [0.208]                                                                    | 12.6 [0.339]                                                                    | 13.1 [0.321]                                                                    |
| 6020<br>6020       | Metals<br>Metals | Selenium<br>Zinc                 | mg/kg          | 960                                                                                        | 2.01 [1.05] J<br>103 [2.63]                                                     | 0.708 [0.87] J<br>83.7 [2.17]                                                   | 2.01 [1.65] J<br>30.8 [4.12]                                                    | 1.89 [1.14] J<br>37.4 [2.84]                                                    | 1.57 [1.04] J<br>31.7 [2.6]                                                     | 1.49 [1.69] J<br>52 [4.23]                                                      | 2.09 [1.61] J<br>53.4 [4]                                                       |
|                    | ivietais         | ZIIIC                            | mg/kg          | 900                                                                                        | 103 [2.63]                                                                      | 83.7 [2.17]                                                                     | 30.8 [4.12]                                                                     | 37.4 [2.84]                                                                     | 31./ [2.6]                                                                      | 52 [4.23]                                                                       | 53.4 [4]                                                                        |
| IonsNutrients      |                  | Tro o                            | , ,            | +                                                                                          |                                                                                 |                                                                                 | 100                                                                             | - 10                                                                            |                                                                                 |                                                                                 |                                                                                 |
| 9060               | IonsNutrients    | TIOC                             | percent        | -                                                                                          | 11.6                                                                            | 3.74                                                                            | 12.8                                                                            | 10                                                                              | 7.17                                                                            | 8.36                                                                            | 7.88                                                                            |
| Other              |                  |                                  |                |                                                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |
| A2540G             | Other            | Total Solids                     | percent        | -                                                                                          | 46.6                                                                            | 54                                                                              | 29.2                                                                            | 41                                                                              | 46                                                                              | 28.5                                                                            | 29.4                                                                            |
| Notes:             |                  |                                  |                |                                                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |

<sup>&</sup>lt;sup>1</sup> Decision Document cleanup level (USACE 2009).

<sup>[]</sup> denotes the LOD or no number if no LOD was reported

**Bold** = Result is greater than or equal to the screening level<sup>1</sup>

<sup>=</sup> LOD greater than or equal to the screening level<sup>1</sup>

<sup>— =</sup> method or screening level not available or analysis not conducted

For data qualifiers, refer to the Analytical Data Qualifiers section of the DQA. For definitions, refer to the Acronyms and Abbreviations section of the DQA.

| 1                  |               |                          |                |                                                                                            |                                                                                 |                                                                                     |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |
|--------------------|---------------|--------------------------|----------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
|                    |               |                          |                | Location ID:<br>Sample ID:<br>Sample Date:<br>Sample Type:<br>SDG:<br>Laboratory:<br>QAQC: | \$28-27<br>18NEC-\$28-\$D-27<br>8/8/2018<br>\$D<br>1184430<br>\$G\$A<br>Primary | \$28-27<br>18NEC-\$28-\$D-27-8<br>8/8/2018<br>\$D<br>1184430<br>\$G\$A<br>Duplicate | \$28-28<br>18NEC-\$28-\$D-28<br>8/8/2018<br>\$D<br>1184430<br>\$G\$A<br>Primary | \$28-29<br>18NEC-\$28-\$D-29<br>8/8/2018<br>\$D<br>1184430<br>\$G\$A<br>Primary | \$28-30<br>18NEC-\$28-\$D-30<br>8/8/2018<br>\$D<br>1184430<br>\$G\$A<br>Primary | \$28-31<br>18NEC-\$28-\$D-31<br>8/8/2018<br>\$D<br>1184430<br>\$G\$A<br>Primary | \$28-32<br>18NEC-\$28-\$D-32<br>8/8/2018<br>\$D<br>1184430<br>\$G\$A<br>Primary |
| Method             | Group         | Analyte                  | Units          | Screening<br>Level <sup>1</sup>                                                            |                                                                                 |                                                                                     |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |
| Fuels              |               |                          |                |                                                                                            |                                                                                 |                                                                                     |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |
| AK102_103          | Fuels         | DRO                      | mg/kg          | 3500                                                                                       | 9770 [775]                                                                      | 6890 [805]                                                                          | 101000 [4990]                                                                   | 62100 [2535]                                                                    | 38000 [2775]                                                                    | 12200 [443]                                                                     | 23400 [500]                                                                     |
| AK102_103_SG       | Fuels         | DRO                      | mg/kg          | 3500                                                                                       | 6020 [775]                                                                      | 4720 [805]                                                                          | 94100 [4990]                                                                    | 51600 [5050]                                                                    | 40500 [555]                                                                     | 10800 [443]                                                                     | 19600 [500]                                                                     |
| AK102_103          | Fuels         | RRO                      | mg/kg          | 3500                                                                                       | 12100 [775]                                                                     | 11000 [805]                                                                         | 16700 [4990]                                                                    | 13400 [2535]                                                                    | 7060 [2775]                                                                     | 5700 [443]                                                                      | 4010 [500]                                                                      |
| AK102 103 SG       | Fuels         | RRO                      | mg/kg          | 3500                                                                                       | 3540 [775]                                                                      | 3530 [805]                                                                          | 15700 [4990]                                                                    | 10700 [5050]                                                                    | 3400 [555]                                                                      | 3570 [443]                                                                      | 2020 [500]                                                                      |
| PAHs               |               |                          |                |                                                                                            |                                                                                 |                                                                                     |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |
| 8270SIM            | PAHs          | Acenaphthene             | mg/kg          | 0.5                                                                                        | ND [0.491]                                                                      | ND [0.499]                                                                          | 16 [12.5] J                                                                     | 4.45 [0.314]                                                                    | 1.97 [0.344]                                                                    | ND [0.276]                                                                      | ND [0.314]                                                                      |
| 8270SIM            | PAHs          | Acenaphthylene           | mg/kg          | -                                                                                          | ND [0.491]                                                                      | ND [0.499]                                                                          | ND [12.5]                                                                       | ND [0.314]                                                                      | ND [0.344]                                                                      | ND [0.276]                                                                      | ND [0.314]                                                                      |
| 8270SIM            | PAHs          | Anthracene               | mg/kg          | -                                                                                          | ND [0.491]                                                                      | ND [0.499]                                                                          | ND [12.5]                                                                       | ND [0.314]                                                                      | ND [0.344]                                                                      | ND [0.276]                                                                      | ND [0.314]                                                                      |
| 8270SIM            | PAHs          | Benzo(a)anthracene       | mg/kg          | -                                                                                          | ND [0.491]                                                                      | ND [0.499]                                                                          | ND [0.251]                                                                      | ND [0.314]                                                                      | ND [0.344]                                                                      | ND [0.276]                                                                      | ND [0.314]                                                                      |
| 8270SIM            | PAHs          | Benzo(a)pyrene           | mg/kg          | -                                                                                          | ND [0.491]                                                                      | ND [0.499]                                                                          | ND [0.251]                                                                      | ND [0.314]                                                                      | ND [0.344]                                                                      | ND [0.276]                                                                      | ND [0.314]                                                                      |
| 8270SIM            | PAHs          | Benzo(b)fluoranthene     | mg/kg          | -                                                                                          | ND [0.491]                                                                      | ND [0.499]                                                                          | ND [0.251]                                                                      | ND [0.314]                                                                      | ND [0.344]                                                                      | ND [0.276]                                                                      | ND [0.314]                                                                      |
| 8270SIM            | PAHs          | Benzo(g,h,i)perylene     | mg/kg          | 1.7                                                                                        | ND [0.491]                                                                      | ND [0.499]                                                                          | ND [0.251]                                                                      | ND [0.314]                                                                      | ND [0.344]                                                                      | ND [0.276]                                                                      | ND [0.314]                                                                      |
| 8270SIM            | PAHs          | Benzo(k)fluoranthene     | mg/kg          | -                                                                                          | ND [0.491]                                                                      | ND [0.499]                                                                          | ND [0.251]                                                                      | ND [0.314]                                                                      | ND [0.344]                                                                      | ND [0.276]                                                                      | ND [0.314]                                                                      |
| 8270SIM            | PAHs          | Chrysene                 | mg/kg          | -                                                                                          | ND [0.491]<br>ND [0.491]                                                        | ND [0.499]                                                                          | 0.16 [0.251] J                                                                  | ND [0.314]                                                                      | ND [0.344]                                                                      | ND [0.276]                                                                      | ND [0.314]                                                                      |
| 8270SIM<br>8270SIM | PAHs<br>PAHs  | Dibenzo(a,h)anthracene   | mg/kg          | _<br>2                                                                                     |                                                                                 | ND [0.499]<br>ND [0.499]                                                            | ND [0.251]                                                                      | ND [0.314]                                                                      | ND [0.344]                                                                      | ND [0.276]<br>ND [0.276]                                                        | ND [0.314]                                                                      |
| 8270SIM            | PAHS          | Fluoranthene<br>Fluorene | mg/kg<br>mg/kg | 0.8                                                                                        | ND [0.491]<br>0.253 [0.491] J,QN                                                | ND [0.499]<br>ND [0.499] QN                                                         | ND [0.251]<br>25.3 [12.5]                                                       | ND [0.314]<br>7.72 [0.314]                                                      | ND [0.344]<br>3.33 [0.344]                                                      | 0.176 [0.276] J                                                                 | ND [0.314]<br>0.519 [0.314] J                                                   |
| 8270SIM            | PAHS          | Indeno(1,2,3-cd)pyrene   | mg/kg          | 3.2                                                                                        | ND [0.491]                                                                      | ND [0.499] QN                                                                       | ND [0.251]                                                                      | ND [0.314]                                                                      | ND [0.344]                                                                      | ND [0.276] 3                                                                    | ND [0.314] 3                                                                    |
| 8270SIM            | PAHs          | 1-Methylnaphthalene      | mg/kg          | J.Z<br>-                                                                                   | 6.68 [0.491]                                                                    | 6.34 [0.499]                                                                        | 310 [12.5]                                                                      | 49.4 [3.14]                                                                     | 33.1 [1.72]                                                                     | 0.97 [0.276]                                                                    | 4.67 [0.314]                                                                    |
| 8270SIM            | PAHs          | 2-Methylnaphthalene      | mg/kg          | 0.6                                                                                        | 5.49 [0.491]                                                                    | 5.79 [0.499]                                                                        | 425 [12.5]                                                                      | 29.3 [3.14]                                                                     | 42.2 [1.72]                                                                     | 0.606 [0.276]                                                                   | 4.51 [0.314]                                                                    |
| 8270SIM            | PAHs          | Naphthalene              | mg/kg          | 1.7                                                                                        | 1.92 [0.393]                                                                    | 1.69 [0.399]                                                                        | 144 [10]                                                                        | 8.16 [0.251]                                                                    | 5.7 [0.275]                                                                     | 0.94 [0.221]                                                                    | 3.67 [0.251]                                                                    |
| 8270SIM            | PAHs          | Phenanthrene             | mg/kg          | 4.8                                                                                        | ND [0,491]                                                                      | ND [0.499]                                                                          | 12.8 [12.5] J                                                                   | 4.02 [0.314]                                                                    | 1.82 [0.344]                                                                    | ND [0.276]                                                                      | 0.242 [0.314] J                                                                 |
| 8270SIM            | PAHs          | Pyrene                   | mg/kg          | -                                                                                          | ND [0.491]                                                                      | ND [0.499]                                                                          | 0.431 [0.251] J                                                                 | 0.336 [0.314] J                                                                 | ND [0.344]                                                                      | ND [0.276]                                                                      | ND [0.314]                                                                      |
| NR                 | PAHs          | Total HPAHs              | mg/kg          | 9.6                                                                                        | ND []                                                                           | ND []                                                                               | 0.591 ∏                                                                         | 0.336 ∏                                                                         | ND []                                                                           | ND II                                                                           | ND []                                                                           |
| NR                 | PAHs          | Total LPAHs              | mg/kg          | 7.8                                                                                        | 2.173 []                                                                        | 1.69 ∏                                                                              | 198.1 ∏                                                                         | 24.35 []                                                                        | 12.82 ∏                                                                         | 1.116 ∏                                                                         | 4.431 ∏                                                                         |
| PCBs               |               |                          |                |                                                                                            |                                                                                 |                                                                                     |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |
| 8082               | PCBs          | Aroclor-1016             | mg/kg          | 0.7                                                                                        | ND [0.0985]                                                                     | ND [0.1]                                                                            | ND [0.0497]                                                                     | ND [0.063]                                                                      | ND [0.0695]                                                                     | ND [0.0545]                                                                     | ND [0.063]                                                                      |
| 8082               | PCBs          | Aroclor-1221             | mg/kg          | 0.7                                                                                        | ND [0.394]                                                                      | ND [0.401]                                                                          | ND [0.199]                                                                      | ND [0.253]                                                                      | ND [0.279]                                                                      | ND [0.219]                                                                      | ND [0.252]                                                                      |
| 8082               | PCBs          | Aroclor-1232             | mg/kg          | 0.7                                                                                        | ND [0.0985]                                                                     | ND [0.1]                                                                            | ND [0.0497]                                                                     | ND [0.063]                                                                      | ND [0.0695]                                                                     | ND [0.0545]                                                                     | ND [0.063]                                                                      |
| 8082               | PCBs          | Aroclor-1242             | mg/kg          | 0.7                                                                                        | ND [0.0985]                                                                     | ND [0.1]                                                                            | ND [0.0497]                                                                     | ND [0.063]                                                                      | ND [0.0695]                                                                     | ND [0.0545]                                                                     | ND [0.063]                                                                      |
| 8082               | PCBs          | Aroclor-1248             | mg/kg          | 0.7                                                                                        | ND [0.0985]                                                                     | ND [0.1]                                                                            | ND [0.0497]                                                                     | ND [0.063]                                                                      | ND [0.0695]                                                                     | ND [0.0545]                                                                     | ND [0.063]                                                                      |
| 8082               | PCBs          | Aroclor-1254             | mg/kg          | 0.7                                                                                        | ND [0.0985]                                                                     | ND [0.1]                                                                            | ND [0.0497]                                                                     | ND [0.063]                                                                      | ND [0.0695]                                                                     | ND [0.0545]                                                                     | ND [0.063]                                                                      |
| 8082               | PCBs          | Aroclor-1260             | mg/kg          | 0.7                                                                                        | 0.0928 [0.0985] J                                                               | 0.108 [0.1] J                                                                       | 0.218 [0.0497]                                                                  | 0.107 [0.063] J                                                                 | 0.0514 [0.0695] J                                                               | 0.0835 [0.0545] J                                                               | 0.0464 [0.063] J                                                                |
| 8082               | PCBs          | PCBs                     | mg/kg          | 0.7                                                                                        | 0.0928 [0.0985]                                                                 | 0.108 [0.1]                                                                         | 0.218 [0.0497]                                                                  | 0.107 [0.063]                                                                   | 0.0514 [0.0695]                                                                 | 0.0835 [0.0545]                                                                 | 0.0464 [0.063]                                                                  |
| Metals             |               |                          |                |                                                                                            |                                                                                 |                                                                                     |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |
| 6020               | Metals        | Arsenic                  | mg/kg          | 93                                                                                         | 7.5 [1.9]                                                                       | 6.81 [1.93]                                                                         | 5.34 [0.925]                                                                    | 7.99 [1.2]                                                                      | 17.5 [1.35]                                                                     | 11.1 [1.03]                                                                     | 24.5 [1.17]                                                                     |
| 6020               | Metals        | Chromium                 | mg/kg          | 270                                                                                        | 12.8 [0.755]                                                                    | 8.84 [0.77]                                                                         | 5.56 [0.37]                                                                     | 15.5 [0.478]                                                                    | 13 [0.54]                                                                       | 17.7 [0.412]                                                                    | 9.71 [0.469]                                                                    |
| 6020               | Metals        | Lead                     | mg/kg          | 530                                                                                        | 16.1 [0.379] QN                                                                 | 8.17 [0.386] QN                                                                     | 5.53 [0.185]                                                                    | 18.8 [0.239]                                                                    | 13.4 [0.269]                                                                    | 19.9 [0.206]                                                                    | 8.47 [0.234]                                                                    |
| 6020               | Metals        | Selenium                 | mg/kg          | -                                                                                          | 2.2 [1.9] J                                                                     | 3.26 [1.93] J                                                                       | 1.21 [0.925] J                                                                  | 2.11 [1.2] J                                                                    | 2.24 [1.35] J                                                                   | 1.76 [1.03] J                                                                   | 1.36 [1.17] J                                                                   |
| 6020               | Metals        | Zinc                     | mg/kg          | 960                                                                                        | 51.1 [4.74] QN                                                                  | 24.8 [4.83] QN                                                                      | 28.2 [2.31]                                                                     | 60.4 [2.99]                                                                     | 84.4 [3.36]                                                                     | 91.9 [2.58]                                                                     | 46.4 [2.93]                                                                     |
| IonsNutrients      |               |                          |                |                                                                                            |                                                                                 |                                                                                     |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |
| 9060               | IonsNutrients | TOC                      | percent        | -                                                                                          | 29.3                                                                            | 27.9                                                                                | 18.8                                                                            | 18.1                                                                            | 15.2                                                                            | 6.23                                                                            | 8.82                                                                            |
| Other              |               |                          |                |                                                                                            |                                                                                 |                                                                                     |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |
| A2540G             | Other         | Total Solids             | percent        | -                                                                                          | 25.3                                                                            | 24.6                                                                                | 49.8                                                                            | 39.3                                                                            | 35.9                                                                            | 44.9                                                                            | 39.4                                                                            |
| Notes:             | •             |                          |                |                                                                                            |                                                                                 |                                                                                     |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |

<sup>&</sup>lt;sup>1</sup> Decision Document cleanup level (USACE 2009).

<sup>[]</sup> denotes the LOD or no number if no LOD was reported

**Bold** = Result is greater than or equal to the screening level<sup>1</sup>

<sup>=</sup> LOD greater than or equal to the screening level1

<sup>— =</sup> method or screening level not available or analysis not conducted

For data qualifiers, refer to the Analytical Data Qualifiers section of the DQA.

| i             |                |                              |                |                                                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                     |
|---------------|----------------|------------------------------|----------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|               |                |                              |                | Location ID:<br>Sample ID:<br>Sample Date:<br>Sample Type:<br>SDG:<br>Laboratory:<br>QAQC: | \$28-33<br>18NEC-\$28-\$D-33<br>8/8/2018<br>\$D<br>1184430<br>\$G\$A<br>Primary | \$28-34<br>18NEC-\$28-\$D-34<br>8/8/2018<br>\$D<br>1184430<br>\$G\$A<br>Primary | \$28-35<br>18NEC-\$28-\$D-35<br>8/8/2018<br>\$D<br>1184430<br>\$G\$A<br>Primary | \$28-36<br>18NEC-\$28-\$D-36<br>8/8/2018<br>\$D<br>1184430<br>\$G\$A<br>Primary | \$28-37<br>18NEC-\$28-\$D-37<br>8/8/2018<br>\$D<br>1184430<br>\$G\$A<br>Primary | \$28-38<br>18NEC-\$28-\$D-38<br>8/8/2018<br>\$D<br>1184430<br>\$G\$A<br>Primary | \$28-38<br>18NEC-\$28-\$D-38-8<br>8/8/2018<br>\$D<br>1184430<br>\$G\$A<br>Duplicate |
| Method        | Group          | Analyte                      | Units          | Screening<br>Level <sup>1</sup>                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                     |
| Fuels         |                |                              |                |                                                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                     |
| AK102_103     | Fuels          | DRO                          | mg/kg          | 3500                                                                                       | 45300 [1970]                                                                    | 8780 [1320]                                                                     | 1270 [1515] J                                                                   | 4120 [1675]                                                                     | 4490 [1200]                                                                     | 3230 [525] QN                                                                   | 6620 [520] QN                                                                       |
| AK102_103_SG  | Fuels          | DRO                          | mg/kg          | 3500                                                                                       | 29800 [394]                                                                     | 7160 [1320]                                                                     | 1330 [1515] J                                                                   | 2960 [1675] J                                                                   | 3440 [1200]                                                                     | 2120 [525] QN                                                                   | 4610 [520] QN                                                                       |
| AK102_103     | Fuels          | RRO                          | mg/kg          | 3500                                                                                       | 7180 [1970]                                                                     | 5290 [1320]                                                                     | 4080 [1515]                                                                     | 7990 [1675]                                                                     | 5660 [1200]                                                                     | 7580 [525]                                                                      | 8490 [520]                                                                          |
| AK102_103_SG  | Fuels          | RRO                          | mg/kg          | 3500                                                                                       | 2800 [394]                                                                      | 3030 [1320]                                                                     | 1960 [1515] J                                                                   | 1720 [1675] J                                                                   | 1430 [1200] J                                                                   | 2000 [525]                                                                      | 2550 [520]                                                                          |
| PAHs          |                |                              |                |                                                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                     |
| 8270SIM       | PAHs           | Acenaphthene                 | mg/kg          | 0.5                                                                                        | 1.17 [0.246]                                                                    | ND [0.82]                                                                       | ND [0.935]                                                                      | ND [1.04]                                                                       | 0.422 [0.75] J                                                                  | ND [0.329] QN                                                                   | 1.37 [0.329] QN                                                                     |
| 8270SIM       | PAHs           | Acenaphthylene               | mg/kg          | -                                                                                          | ND [0.246]                                                                      | ND [0.82]                                                                       | ND [0.935]                                                                      | ND [1.04]                                                                       | ND [0.75]                                                                       | ND [0.329]                                                                      | ND [0.329]                                                                          |
| 8270SIM       | PAHs           | Anthracene                   | mg/kg          | -                                                                                          | ND [0.246]                                                                      | ND [0.82]                                                                       | ND [0.935]                                                                      | ND [1.04]                                                                       | ND [0.75]                                                                       | ND [0.329]                                                                      | ND [0.329]                                                                          |
| 8270SIM       | PAHs           | Benzo(a)anthracene           | mg/kg          | -                                                                                          | ND [0.246]                                                                      | ND [0.82]                                                                       | ND [0.935]                                                                      | ND [1.04]                                                                       | ND [0.75]                                                                       | ND [0.329]                                                                      | ND [0.329]                                                                          |
| 8270SIM       | PAHs           | Benzo(a)pyrene               | mg/kg          | -                                                                                          | ND [0.246]                                                                      | ND [0.82]                                                                       | ND [0.935]                                                                      | ND [1.04]                                                                       | ND [0.75]                                                                       | ND [0.329]                                                                      | ND [0.329]                                                                          |
| 8270SIM       | PAHs           | Benzo(b)fluoranthene         | mg/kg          | -                                                                                          | ND [0.246]                                                                      | ND [0.82]                                                                       | ND [0.935]                                                                      | ND [1.04]                                                                       | ND [0.75]                                                                       | ND [0.329]                                                                      | ND [0.329]                                                                          |
| 8270SIM       | PAHs           | Benzo(g,h,i)perylene         | mg/kg          | 1.7                                                                                        | ND [0.246]                                                                      | ND [0.82]                                                                       | ND [0.935]                                                                      | ND [1.04]                                                                       | ND [0.75]                                                                       | ND [0.329]                                                                      | ND [0.329]                                                                          |
| 8270SIM       | PAHs           | Benzo(k)fluoranthene         | mg/kg          | -                                                                                          | ND [0.246]                                                                      | ND [0.82]                                                                       | ND [0.935]                                                                      | ND [1.04]                                                                       | ND [0.75]                                                                       | ND [0.329]                                                                      | ND [0.329]                                                                          |
| 8270SIM       | PAHs           | Chrysene                     | mg/kg          | -                                                                                          | ND [0.246]                                                                      | ND [0.82]                                                                       | ND [0.935]                                                                      | ND [1.04]                                                                       | ND [0.75]                                                                       | ND [0.329]                                                                      | ND [0.329]                                                                          |
| 8270SIM       | PAHs           | Dibenzo(a,h)anthracene       | mg/kg          | -                                                                                          | ND [0.246]                                                                      | ND [0.82]                                                                       | ND [0.935]                                                                      | ND [1.04]                                                                       | ND [0.75]                                                                       | ND [0.329]                                                                      | ND [0.329]                                                                          |
| 8270SIM       | PAHs           | Fluoranthene                 | mg/kg          | 2                                                                                          | ND [0.246]                                                                      | ND [0.82]                                                                       | ND [0.935]                                                                      | ND [1.04]                                                                       | ND [0.75]                                                                       | ND [0.329]                                                                      | ND [0.329]                                                                          |
| 8270SIM       | PAHs           | Fluorene                     | mg/kg          | 0.8                                                                                        | 1.56 [0.246]                                                                    | 0.497 [0.82] J                                                                  | 0.705 [0.935] J                                                                 | ND [1.04]                                                                       | 0.754 [0.75] J                                                                  | 0.244 [0.329] J,QN                                                              | 2.31 [0.329] QN                                                                     |
| 8270SIM       | PAHs           | Indeno(1,2,3-cd)pyrene       | mg/kg          | 3.2                                                                                        | ND [0.246]                                                                      | ND [0.82]                                                                       | ND [0.935]                                                                      | ND [1.04]                                                                       | ND [0.75]                                                                       | ND [0.329]                                                                      | ND [0.329]                                                                          |
| 8270SIM       | PAHs           | 1-Methylnaphthalene          | mg/kg          | -                                                                                          | 6.04 [0.246]                                                                    | ND [0.82]                                                                       | 1.14 [0.935] J                                                                  | 4.42 [1.04]                                                                     | 8.74 [0.75]                                                                     | 7.79 [0.329] QN                                                                 | 34.2 [3.29] QN                                                                      |
| 8270SIM       | PAHs           | 2-Methylnaphthalene          | mg/kg          | 0.6                                                                                        | 4.2 [0.246]                                                                     | ND [0.82]                                                                       | 0.511 [0.935] J                                                                 | 5.84 [1.04]                                                                     | 12.5 [0.75]                                                                     | 13 [0.329] QN                                                                   | 55 [3.29] QN                                                                        |
| 8270SIM       | PAHs           | Naphthalene                  | mg/kg          | 1.7                                                                                        | 2.23 [0.197]                                                                    | 0.857 [0.655] J                                                                 | 1.8 [0.745]                                                                     | 2.89 [0.835]                                                                    | 6.82 [0.6]                                                                      | 12.1 [0.263] QN                                                                 | 21 [2.63] QN                                                                        |
| 8270SIM       | PAHs           | Phenanthrene                 | mg/kg          | 4.8                                                                                        | 0.651 [0.246]                                                                   | ND [0.82]                                                                       | ND [0.935]                                                                      | ND [1.04]                                                                       | 0.456 [0.75] J                                                                  | ND [0.329] QN                                                                   | 1.17 [0.329] QN                                                                     |
| 8270SIM       | PAHs           | Pyrene                       | mg/kg          | -                                                                                          | ND [0.246]                                                                      | ND [0.82]                                                                       | ND [0.935]                                                                      | ND [1.04]                                                                       | ND [0.75]                                                                       | ND [0.329]                                                                      | ND [0.329]                                                                          |
| NR<br>NR      | PAHs<br>PAHs   | Total HPAHs Total LPAHs      | mg/kg          | 9.6                                                                                        | ND []                                                                           | ND []                                                                           | ND []<br>2.505 []                                                               | ND []<br>2.89 []                                                                | ND []<br>8.452 ∏                                                                | ND []<br>12.344 []                                                              | ND []<br>25.85 []                                                                   |
|               | PARS           | Total LPARS                  | mg/kg          | 7.8                                                                                        | 5.611 []                                                                        | 1.354 []                                                                        | 2.505 []                                                                        | 2.89 []                                                                         | 8.452 [J                                                                        | 12.344 []                                                                       | 25.85 []                                                                            |
| PCBs          |                | 1                            |                |                                                                                            | 110 10 0 1001                                                                   | 110 10 10 1                                                                     | 110.10.1001                                                                     | 110 10 0001                                                                     | 110 10 1101                                                                     | 110.00.000                                                                      | 110 10 0001                                                                         |
| 8082          | PCBs           | Aroclor-1016                 | mg/kg          | 0.7                                                                                        | ND [0.0499]                                                                     | ND [0.164]                                                                      | ND [0.189]                                                                      | ND [0.208]                                                                      | ND [0.149]                                                                      | ND [0.065]                                                                      | ND [0.065]                                                                          |
| 8082          | PCBs           | Aroclor-1221                 | mg/kg          | 0.7                                                                                        | ND [0.2]                                                                        | ND [0.655]                                                                      | ND [0.755]                                                                      | ND [0.835]                                                                      | ND [0.595]                                                                      | ND [0.26]                                                                       | ND [0.26]                                                                           |
| 8082<br>8082  | PCBs<br>PCBs   | Aroclor-1232<br>Aroclor-1242 | mg/kg          | 0.7<br>0.7                                                                                 | ND [0.0499]<br>ND [0.0499]                                                      | ND [0.164]<br>ND [0.164]                                                        | ND [0.189]<br>ND [0.189]                                                        | ND [0.208]<br>ND [0.208]                                                        | ND [0.149]<br>ND [0.149]                                                        | ND [0.065]<br>ND [0.065]                                                        | ND [0.065]<br>ND [0.065]                                                            |
| 8082          | PCBs           | Aroclor-1242<br>Aroclor-1248 | mg/kg<br>mg/kg | 0.7                                                                                        | ND [0.0499]<br>ND [0.0499]                                                      | ND [0.164]<br>ND [0.164]                                                        | ND [0.189]<br>ND [0.189]                                                        | ND [0.208]                                                                      | ND [0.149]<br>ND [0.149]                                                        | ND [0.065]                                                                      | ND [0.065]                                                                          |
| 8082          | PCBs           | Aroclor-1254                 | mg/kg          | 0.7                                                                                        | ND [0.0499]                                                                     | ND [0.164]                                                                      | ND [0.189]                                                                      | ND [0.208]                                                                      | ND [0.149]                                                                      | ND [0.065]                                                                      | ND [0.065]                                                                          |
| 8082          | PCBs           | Aroclor-1260                 | mg/kg          | 0.7                                                                                        | 0.0621 [0.0499] J                                                               | 0.118 [0.164] J                                                                 | 0.106 [0.189] J                                                                 | ND [0.208]                                                                      | ND [0.149]                                                                      | ND [0.065] QN                                                                   | 0.056 [0.065] J.QN                                                                  |
| 8082          | PCBs           | PCBs                         | mg/kg          | 0.7                                                                                        | 0.0621 [0.0499]                                                                 | 0.118 [0.164]                                                                   | 0.106 [0.189]                                                                   | ND [0.208]                                                                      | ND [0.149]                                                                      | ND [0.065]                                                                      | 0.056 [0.065]                                                                       |
| Metals        |                | 1                            | 111391139      | ·                                                                                          | 2.0021 [0.0100]                                                                 | 00 [00.]                                                                        | 0.100 [0.100]                                                                   | 115 [0.200]                                                                     | 115 [0.110]                                                                     |                                                                                 | 0.000 [0.000]                                                                       |
| 6020          | Metals         | Arsenic                      | mg/kg          | 93                                                                                         | 6.36 [0.995]                                                                    | 86.2 [3.27]                                                                     | 47.5 [3.71]                                                                     | 10.6 [3.89]                                                                     | 8 [2.83]                                                                        | 8.1 [1.23]                                                                      | 7.99 [1.23]                                                                         |
| 6020          | Metals         | Chromium                     | mg/kg          | 270                                                                                        | 16.9 [0.399]                                                                    | 11.9 [1.3]                                                                      | 14.1 [1.49]                                                                     | 13 [1.55]                                                                       | 16.3 [1.14]                                                                     | 25.7 [0.491]                                                                    | 24.1 [0.491]                                                                        |
| 6020          | Metals         | Lead                         | mg/kg          | 530                                                                                        | 9.95 [0.399]                                                                    | 15.9 [0.655]                                                                    | 24.6 [0.74]                                                                     | 18 [0.78]                                                                       | 18.7 [0.565]                                                                    | 13.1 [0.246]                                                                    | 14.3 [0.246]                                                                        |
| 6020          | Metals         | Selenium                     | mg/kg          | -                                                                                          | 1.35 [0.995] J                                                                  | 4.34 [3.27] J                                                                   | 3.07 [3.71] J                                                                   | 3 [3.89] J                                                                      | 3.05 [2.83] J                                                                   | 2.74 [1.23]                                                                     | 2.42 [1.23] J                                                                       |
| 6020          | Metals         | Zinc                         | mg/kg          | 960                                                                                        | 47.8 [2.49]                                                                     | 122 [8.15]                                                                      | 217 [9.25]                                                                      | 57.8 [9.7]                                                                      | 42.9 [7.1]                                                                      | 42.3 [3.08]                                                                     | 46.8 [3.07]                                                                         |
| IonsNutrients | ivictalo       | IE.i.o                       | тіяля          | 300                                                                                        | 17.0 [2.70]                                                                     | 122 [0.10]                                                                      | 217 [0.20]                                                                      | 07.0 [0.7]                                                                      | 72.0 [7.1]                                                                      | 72.0 [0.00]                                                                     | 40.0 [0.07]                                                                         |
| 9060          | IonsNutrients  | ITOC                         | percent        | 1                                                                                          | 8.51                                                                            | 23.8                                                                            | 23.3                                                                            | 26                                                                              | 29.7                                                                            | 18.5                                                                            | 15.7                                                                                |
|               | ionsivutilents | 100                          | регсепі        | -                                                                                          | 16.0                                                                            | 23.0                                                                            | ۷۵.۵                                                                            | 20                                                                              | 29.1                                                                            | 10.0                                                                            | 10.7                                                                                |
| Other         | T 0.11         | I=                           |                |                                                                                            |                                                                                 |                                                                                 | 1 101                                                                           |                                                                                 | 10.0                                                                            | 1                                                                               |                                                                                     |
| A2540G        | Other          | Total Solids                 | percent        | -                                                                                          | 50.1                                                                            | 15                                                                              | 13.1                                                                            | 11.9                                                                            | 16.6                                                                            | 37.9                                                                            | 38                                                                                  |
| Notes:        |                |                              |                |                                                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                     |

<sup>&</sup>lt;sup>1</sup> Decision Document cleanup level (USACE 2009).

<sup>[]</sup> denotes the LOD or no number if no LOD was reported

**Bold** = Result is greater than or equal to the screening level<sup>1</sup>

<sup>=</sup> LOD greater than or equal to the screening level1

 <sup>=</sup> method or screening level not available or analysis not conducted

For data qualifiers, refer to the Analytical Data Qualifiers section of the DQA. For definitions, refer to the Acronyms and Abbreviations section of the DQA.

| 1                  |               |                                  |                |                                                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                                     |                                                                                 |                                                                                 |                                                                                 |
|--------------------|---------------|----------------------------------|----------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
|                    |               |                                  |                | Location ID:<br>Sample ID:<br>Sample Date:<br>Sample Type:<br>SDG:<br>Laboratory:<br>QAQC: | \$28-39<br>18NEC-\$28-\$D-39<br>8/8/2018<br>\$D<br>1184430<br>\$G\$A<br>Primary | \$28-40<br>18NEC-\$28-\$D-40<br>8/8/2018<br>\$D<br>1184430<br>\$G\$A<br>Primary | \$28-41<br>18NEC-\$28-\$D-41<br>8/8/2018<br>\$D<br>1184430<br>\$G\$A<br>Primary | \$28-41<br>18NEC-\$28-\$D-41-8<br>8/8/2018<br>\$D<br>1184430<br>\$G\$A<br>Duplicate | \$28-42<br>18NEC-\$28-\$D-42<br>8/8/2018<br>\$D<br>1184430<br>\$G\$A<br>Primary | \$28-43<br>18NEC-\$28-\$D-43<br>8/8/2018<br>\$D<br>1184430<br>\$G\$A<br>Primary | \$28-44<br>18NEC-\$28-\$D-44<br>8/8/2018<br>\$D<br>1184430<br>\$G\$A<br>Primary |
| Method             | Group         | Analyte                          | Units          | Screening<br>Level <sup>1</sup>                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                                     |                                                                                 |                                                                                 |                                                                                 |
| Fuels              |               |                                  |                |                                                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                                     |                                                                                 |                                                                                 |                                                                                 |
| AK102_103          | Fuels         | DRO                              | mg/kg          | 3500                                                                                       | 1450 [550]                                                                      | 45400 [765]                                                                     | 368 [39]                                                                        | 425 [41.8]                                                                          | 21100 [5650]                                                                    | 12500 [473]                                                                     | 13500 [545]                                                                     |
| AK102_103_SG       | Fuels         | DRO                              | mg/kg          | 3500                                                                                       | 1020 [550] J                                                                    | 36400 [765]                                                                     | 115 [39] QN                                                                     | 195 [41.8] QN                                                                       | 17500 [5650]                                                                    | 9180 [473]                                                                      | 10500 [545]                                                                     |
| AK102_103          | Fuels         | RRO                              | mg/kg          | 3500                                                                                       | 6360 [550]                                                                      | 10800 [765]                                                                     | 2840 [39]                                                                       | 1950 [41.8]                                                                         | 127000 [5650]                                                                   | 12300 [473]                                                                     | 5090 [545]                                                                      |
| AK102 103 SG       | Fuels         | RRO                              | mg/kg          | 3500                                                                                       | 1840 [550]                                                                      | 5110 [765]                                                                      | 813 [39]                                                                        | 493 [41.8]                                                                          | 106000 [5650]                                                                   | 6410 [473]                                                                      | 2370 [545]                                                                      |
| PAHs               |               |                                  |                |                                                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                                     |                                                                                 |                                                                                 |                                                                                 |
| 8270SIM            | PAHs          | Acenaphthene                     | mg/kg          | 0.5                                                                                        | ND [0.347]                                                                      | 3.91 [0.478]                                                                    | ND [0.0965]                                                                     | ND [0.105]                                                                          | ND [0.284]                                                                      | 0.698 [0.292]                                                                   | 0.603 [0.136]                                                                   |
| 8270SIM            | PAHs          | Acenaphthylene                   | mg/kg          | -                                                                                          | ND [0.347]                                                                      | ND [0.478]                                                                      | ND [0.0965]                                                                     | ND [0.105]                                                                          | ND [0.284]                                                                      | ND [0.292]                                                                      | ND [0.136]                                                                      |
| 8270SIM            | PAHs          | Anthracene                       | mg/kg          | -                                                                                          | ND [0.347]                                                                      | ND [0.478]                                                                      | ND [0.0965]                                                                     | ND [0.105]                                                                          | ND [0.284]                                                                      | ND [0.292]                                                                      | ND [0.136]                                                                      |
| 8270SIM            | PAHs          | Benzo(a)anthracene               | mg/kg          | -                                                                                          | ND [0.347]                                                                      | ND [0.478]                                                                      | ND [0.0965]                                                                     | ND [0.105]                                                                          | ND [0.284]                                                                      | ND [0.292]                                                                      | ND [0.136]                                                                      |
| 8270SIM            | PAHs          | Benzo(a)pyrene                   | mg/kg          | -                                                                                          | ND [0.347]                                                                      | ND [0.478]                                                                      | ND [0.0965]                                                                     | ND [0.105]                                                                          | ND [0.284]                                                                      | ND [0.292]                                                                      | ND [0.136]                                                                      |
| 8270SIM            | PAHs          | Benzo(b)fluoranthene             | mg/kg          | -                                                                                          | ND [0.347]                                                                      | ND [0.478]                                                                      | ND [0.0965]                                                                     | ND [0.105]                                                                          | ND [0.284]                                                                      | ND [0.292]                                                                      | ND [0.136]                                                                      |
| 8270SIM<br>8270SIM | PAHs<br>PAHs  | Benzo(g,h,i)perylene             | mg/kg          | 1.7                                                                                        | ND [0.347]                                                                      | ND [0.478]                                                                      | ND [0.0965]<br>ND [0.0965]                                                      | ND [0.105]                                                                          | ND [0.284]                                                                      | ND [0.292]                                                                      | ND [0.136]                                                                      |
| 8270SIM<br>8270SIM | PAHS          | Benzo(k)fluoranthene<br>Chrysene | mg/kg<br>mg/kg | -                                                                                          | ND [0.347]<br>ND [0.347]                                                        | ND [0.478]<br>ND [0.478]                                                        | ND [0.0965]<br>ND [0.0965]                                                      | ND [0.105]<br>ND [0.105]                                                            | ND [0.284]<br>ND [0.284]                                                        | ND [0.292]<br>0.21 [0.292] J                                                    | ND [0.136]<br>ND [0.136]                                                        |
| 8270SIM            | PAHS          | Dibenzo(a,h)anthracene           | mg/kg          | _                                                                                          | ND [0.347]                                                                      | ND [0.478]                                                                      | ND [0.0965]<br>ND [0.0965]                                                      | ND [0.105]                                                                          | ND [0.284]                                                                      | ND [0.292] 3                                                                    | ND [0.136]                                                                      |
| 8270SIM            | PAHs          | Fluoranthene                     | mg/kg          | 2                                                                                          | ND [0.347]                                                                      | ND [0.478]                                                                      | ND [0.0965]                                                                     | ND [0.105]                                                                          | ND [0.284]                                                                      | 0.187 [0.292] J                                                                 | 0.159 [0.136] J                                                                 |
| 8270SIM            | PAHs          | Fluorene                         | mg/kg          | 0.8                                                                                        | ND [0.347]                                                                      | 5.59 [0.478]                                                                    | ND [0.0965]                                                                     | ND [0.105]                                                                          | ND [0.284]                                                                      | 1.05 [0.292]                                                                    | 0.938 [0.136]                                                                   |
| 8270SIM            | PAHs          | Indeno(1,2,3-cd)pyrene           | mg/kg          | 3.2                                                                                        | ND [0.347]                                                                      | ND [0.478]                                                                      | ND [0.0965]                                                                     | ND [0.105]                                                                          | ND [0.284]                                                                      | ND [0.292]                                                                      | ND [0.136]                                                                      |
| 8270SIM            | PAHs          | 1-Methylnaphthalene              | mg/kg          | -                                                                                          | 0.339 [0.347] J                                                                 | 105 [4.78]                                                                      | ND [0.0965]                                                                     | ND [0.105]                                                                          | ND [0.284]                                                                      | 4.84 [0.292]                                                                    | 9.65 [0.68]                                                                     |
| 8270SIM            | PAHs          | 2-Methylnaphthalene              | mg/kg          | 0.6                                                                                        | 0.471 [0.347] J                                                                 | 166 [4.78]                                                                      | ND [0.0965]                                                                     | ND [0.105]                                                                          | ND [0.284]                                                                      | 4.67 [0.292]                                                                    | 13.6 [0.68]                                                                     |
| 8270SIM            | PAHs          | Naphthalene                      | mg/kg          | 1.7                                                                                        | 0.226 [0.277] J                                                                 | 59.7 [3.83]                                                                     | 0.0674 [0.077] J                                                                | 0.0581 [0.0835] J                                                                   | ND [0.227]                                                                      | 0.876 [0.234]                                                                   | 5.24 [0.109]                                                                    |
| 8270SIM            | PAHs          | Phenanthrene                     | mg/kg          | 4.8                                                                                        | ND [0.347]                                                                      | 4.62 [0.478]                                                                    | ND [0.0965]                                                                     | ND [0.105]                                                                          | ND [0.284]                                                                      | 0.845 [0.292]                                                                   | 0.724 [0.136]                                                                   |
| 8270SIM            | PAHs          | Pyrene                           | mg/kg          | -                                                                                          | ND [0.347]                                                                      | 0.304 [0.478] J                                                                 | ND [0.0965]                                                                     | ND [0.105]                                                                          | ND [0.284]                                                                      | 0.295 [0.292] J                                                                 | 0.195 [0.136] J                                                                 |
| NR                 | PAHs          | Total HPAHs                      | mg/kg          | 9.6                                                                                        | ND []                                                                           | 0.304 []                                                                        | ND []                                                                           | ND []                                                                               | ND []                                                                           | 0.692 []                                                                        | 0.354 []                                                                        |
| NR                 | PAHs          | Total LPAHs                      | mg/kg          | 7.8                                                                                        | 0.226 []                                                                        | 73.82 []                                                                        | 0.0674 []                                                                       | 0.0581 []                                                                           | ND []                                                                           | 3.469 []                                                                        | 7.505 []                                                                        |
| PCBs               |               |                                  |                |                                                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                                     |                                                                                 |                                                                                 |                                                                                 |
| 8082               | PCBs          | Aroclor-1016                     | mg/kg          | 0.7                                                                                        | ND [0.069]                                                                      | ND [0.095]                                                                      | ND [0.0488]                                                                     | ND [0.0525]                                                                         | ND [0.056] QL                                                                   | ND [0.0595]                                                                     | ND [0.0675]                                                                     |
| 8082               | PCBs          | Aroclor-1221                     | mg/kg          | 0.7                                                                                        | ND [0.277]                                                                      | ND [0.38]                                                                       | ND [0.195]                                                                      | ND [0.209]                                                                          | ND [0.225] QL                                                                   | ND [0.237]                                                                      | ND [0.269]                                                                      |
| 8082               | PCBs          | Aroclor-1232                     | mg/kg          | 0.7                                                                                        | ND [0.069]                                                                      | ND [0.095]                                                                      | ND [0.0488]                                                                     | ND [0.0525]                                                                         | ND [0.056] QL                                                                   | ND [0.0595]                                                                     | ND [0.0675]                                                                     |
| 8082               | PCBs          | Aroclor-1242                     | mg/kg          | 0.7                                                                                        | ND [0.069]                                                                      | ND [0.095]                                                                      | ND [0.0488]                                                                     | ND [0.0525]                                                                         | ND [0.056] QL                                                                   | ND [0.0595]                                                                     | ND [0.0675]                                                                     |
| 8082<br>8082       | PCBs<br>PCBs  | Aroclor-1248<br>Aroclor-1254     | mg/kg          | 0.7<br>0.7                                                                                 | ND [0.069]<br>ND [0.069]                                                        | ND [0.095]<br>ND [0.095]                                                        | ND [0.0488]<br>ND [0.0488]                                                      | ND [0.0525]<br>ND [0.0525]                                                          | ND [0.056] QL<br>ND [0.056] QL                                                  | ND [0.0595]<br>ND [0.0595]                                                      | ND [0.0675]<br>0.2 [0.0675]                                                     |
| 8082               | PCBs          | Aroclor-1254<br>Aroclor-1260     | mg/kg<br>ma/ka | 0.7                                                                                        | ND [0.069]<br>ND [0.069]                                                        | 0.228 [0.095]                                                                   | ND [0.0488]<br>ND [0.0488]                                                      | ND [0.0525]<br>ND [0.0525]                                                          | ND [0.056] QL                                                                   | 0.361 [0.0595]                                                                  | 0.2 [0.0675]<br>0.0843 [0.0675] J                                               |
| 8082               | PCBs          | PCBs                             | mg/kg          | 0.7                                                                                        | ND [0.069]                                                                      | 0.228 [0.095]                                                                   | ND [0.0488]                                                                     | ND [0.0525]<br>ND [0.0525]                                                          | ND [0.056] QL                                                                   | 0.361 [0.0595]                                                                  | 0.2843 [0.0675]                                                                 |
| Metals             | 1 000         | 1. 020                           | тідлід         | 0.1                                                                                        | 145 [0.000]                                                                     | 0.220 [0.000]                                                                   | 110 [0.0400]                                                                    | 140 [0.0020]                                                                        | 145 [0.000]                                                                     | . 0.001 [0.0000]                                                                | 3.2040 [0.0070]                                                                 |
| 6020               | Metals        | Arsenic                          | mg/kg          | 93                                                                                         | 6.12 [1.39]                                                                     | 6.69 [1.79]                                                                     | 5.46 [0.98]                                                                     | 4.48 [1]                                                                            | 14.5 [1.1]                                                                      | 9.41 [1.13]                                                                     | 7.68 [1.3]                                                                      |
| 6020               | Metals        | Chromium                         | mg/kg          | 270                                                                                        | 23.2 [0.555]                                                                    | 16.6 [0.72]                                                                     | 26.3 [0.392]                                                                    | 19 [0.402]                                                                          | 48.3 [0.441]                                                                    | 30.7 [0.453]                                                                    | 19.4 [0.52]                                                                     |
| 6020               | Metals        | Lead                             | mg/kg          | 530                                                                                        | 16 [0.277]                                                                      | 22.2 [0.359]                                                                    | 17.9 [0.196]                                                                    | 16 [0.201]                                                                          | 57.8 [0.221]                                                                    | 98.9 [0.227]                                                                    | 26.6 [0.261]                                                                    |
| 6020               | Metals        | Selenium                         | mg/kg          | -                                                                                          | 2.82 [1.39]                                                                     | 3.09 [1.79] J                                                                   | 1.92 [0.98] J                                                                   | 1.39 [1] J                                                                          | 1.63 [1.1] J                                                                    | 1.66 [1.13] J                                                                   | 1.12 [1.3] J                                                                    |
| 6020               | Metals        | Zinc                             | mg/kg          | 960                                                                                        | 71.1 [3.46]                                                                     | 90.5 [4.49]                                                                     | 57 [2.45]                                                                       | 42 [2.51]                                                                           | 280 [2.75]                                                                      | 219 [2.83]                                                                      | 71 [3.25]                                                                       |
| IonsNutrients      |               |                                  |                |                                                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                                     |                                                                                 |                                                                                 |                                                                                 |
| 9060               | IonsNutrients | Toc                              | percent        | _                                                                                          | 14.6                                                                            | 21.8                                                                            | 7.47                                                                            | 8.17                                                                                | 17.9                                                                            | 12.8                                                                            | 11.5                                                                            |
| Other              |               |                                  | F              |                                                                                            |                                                                                 | =                                                                               |                                                                                 |                                                                                     |                                                                                 |                                                                                 |                                                                                 |
| A2540G             | Other         | Total Solids                     | percent        |                                                                                            | 35.9                                                                            | 26                                                                              | 51                                                                              | 47.2                                                                                | 43.8                                                                            | 42.1                                                                            | 36.4                                                                            |
| Notes:             | Other         | . otal oolido                    | percent        | -                                                                                          | 00.0                                                                            | 20                                                                              | 01                                                                              | 71.2                                                                                | 70.0                                                                            | 76.1                                                                            | JU7                                                                             |

<sup>&</sup>lt;sup>1</sup> Decision Document cleanup level (USACE 2009).

<sup>[]</sup> denotes the LOD or no number if no LOD was reported

**Bold** = Result is greater than or equal to the screening level<sup>1</sup>

<sup>=</sup> LOD greater than or equal to the screening level<sup>1</sup>

<sup>— =</sup> method or screening level not available or analysis not conducted

For data qualifiers, refer to the Analytical Data Qualifiers section of the DQA.

For definitions, refer to the Acronyms and Abbreviations section of the DQA.

| -                  |                  |                                              |                |                                                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                     |                                                                                 |                                                                                 |
|--------------------|------------------|----------------------------------------------|----------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
|                    |                  |                                              |                | Location ID:<br>Sample ID:<br>Sample Date:<br>Sample Type:<br>SDG:<br>Laboratory:<br>QAQC: | \$28-45<br>18NEC-\$28-\$D-45<br>8/8/2018<br>\$D<br>1184430<br>\$G\$A<br>Primary | \$28-46<br>18NEC-\$28-\$D-46<br>8/8/2018<br>\$D<br>1184430<br>\$G\$A<br>Primary | \$28-47<br>18NEC-\$28-\$D-47<br>8/8/2018<br>\$D<br>1184430<br>\$G\$A<br>Primary | \$28-48<br>18NEC-\$28-\$D-48<br>8/8/2018<br>\$D<br>1184430<br>\$G\$A<br>Primary | \$28-48<br>18NEC-\$28-\$D-48-8<br>8/8/2018<br>\$D<br>1184430<br>\$G\$A<br>Duplicate | \$28-49<br>18NEC-\$28-\$D-49<br>8/8/2018<br>\$D<br>1184430<br>\$G\$A<br>Primary | \$28-50<br>18NEC-\$28-\$D-50<br>8/8/2018<br>\$D<br>1184430<br>\$G\$A<br>Primary |
| Method             | Group            | Analyte                                      | Units          | Screening<br>Level <sup>1</sup>                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                     |                                                                                 |                                                                                 |
| Fuels              |                  |                                              |                |                                                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                     |                                                                                 |                                                                                 |
| AK102_103          | Fuels            | DRO                                          | mg/kg          | 3500                                                                                       | 2670 [314]                                                                      | 26900 [402]                                                                     | 55300 [810]                                                                     | 50400 [2515]                                                                    | 49900 [2295]                                                                        | 72400 [4400]                                                                    | 34700 [3115]                                                                    |
| AK102_103_SG       | Fuels            | DRO                                          | mg/kg          | 3500                                                                                       | 1870 [314]                                                                      | 21000 [402]                                                                     | 55400 [810]                                                                     | 43900 [2515]                                                                    | 40500 [459]                                                                         | 59500 [4400]                                                                    | 27600 [3115]                                                                    |
| AK102_103          | Fuels            | RRO                                          | mg/kg          | 3500                                                                                       | 4110 [314]                                                                      | 5440 [402]                                                                      | 13300 [810]                                                                     | 6980 [2515]                                                                     | 6050 [2295]                                                                         | 6390 [4400] J                                                                   | 3460 [3115] J                                                                   |
| AK102 103 SG       | Fuels            | RRO                                          | mg/kg          | 3500                                                                                       | 1370 [314]                                                                      | 1010 [402]                                                                      | 11200 [810]                                                                     | 2020 [2515] J                                                                   | 2230 [459]                                                                          | 5200 [4400] J                                                                   | 3260 [3115] J                                                                   |
| PAHs               |                  |                                              |                |                                                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                     |                                                                                 |                                                                                 |
| 8270SIM            | PAHs             | Acenaphthene                                 | mg/kg          | 0.5                                                                                        | 0.132 [0.0785] J                                                                | 2.51 [0.251]                                                                    | 3.92 [4.07] J                                                                   | 8.06 [15.7] J                                                                   | 5.15 [5.7] J                                                                        | 8.49 [4.42] J                                                                   | ND [0.383]                                                                      |
| 8270SIM            | PAHs             | Acenaphthylene                               | mg/kg          | -                                                                                          | ND [0.0785]                                                                     | ND [0.251]                                                                      | ND [4.07]                                                                       | ND [15.7]                                                                       | ND [5.7]                                                                            | ND [4.42]                                                                       | ND [0.383]                                                                      |
| 8270SIM            | PAHs             | Anthracene                                   | mg/kg          | -                                                                                          | ND [0.0785]                                                                     | ND [0.251]                                                                      | ND [4.07]                                                                       | ND [15.7]                                                                       | ND [5.7]                                                                            | ND [4.42]                                                                       | ND [0.383]                                                                      |
| 8270SIM            | PAHs             | Benzo(a)anthracene                           | mg/kg          | -                                                                                          | ND [0.0785]                                                                     | ND [0.251]                                                                      | ND [0.204]                                                                      | ND [0.315]                                                                      | ND [0.286]                                                                          | ND [0.111]                                                                      | ND [0.0765]                                                                     |
| 8270SIM            | PAHs             | Benzo(a)pyrene                               | mg/kg          | -                                                                                          | ND [0.0785]                                                                     | ND [0.251]                                                                      | ND [0.204]                                                                      | ND [0.315]                                                                      | ND [0.286]                                                                          | ND [0.111]                                                                      | ND [0.0765]                                                                     |
| 8270SIM            | PAHs             | Benzo(b)fluoranthene                         | mg/kg          | -                                                                                          | ND [0.0785]                                                                     | ND [0.251]                                                                      | ND [0.204]                                                                      | ND [0.315]                                                                      | ND [0.286]                                                                          | ND [0.111]                                                                      | ND [0.0765]                                                                     |
| 8270SIM<br>8270SIM | PAHs<br>PAHs     | Benzo(g,h,i)perylene<br>Benzo(k)fluoranthene | mg/kg<br>ma/ka | 1.7                                                                                        | ND [0.0785]<br>ND [0.0785]                                                      | ND [0.251]<br>ND [0.251]                                                        | ND [0.204]<br>ND [0.204]                                                        | ND [0.315]<br>ND [0.315]                                                        | ND [0.286]<br>ND [0.286]                                                            | ND [0.111]<br>ND [0.111]                                                        | ND [0.0765]<br>ND [0.0765]                                                      |
| 8270SIM            | PAHS             | Chrysene                                     | mg/kg          | _                                                                                          | ND [0.0785]                                                                     | ND [0.251]<br>ND [0.251]                                                        | ND [0.204]<br>ND [0.204]                                                        | ND [0.315]                                                                      | ND [0.286]                                                                          | ND [0.111]<br>ND [0.111]                                                        | ND [0.0765]                                                                     |
| 8270SIM            | PAHS             | Dibenzo(a,h)anthracene                       | mg/kg          | _                                                                                          | ND [0.0785]                                                                     | ND [0.251]                                                                      | ND [0.204]                                                                      | ND [0.315]                                                                      | ND [0.286]                                                                          | ND [0.111]<br>ND [0.111]                                                        | ND [0.0765]                                                                     |
| 8270SIM            | PAHs             | Fluoranthene                                 | mg/kg          | 2                                                                                          | ND [0.0785]                                                                     | ND [0.251]                                                                      | ND [0.204]                                                                      | ND [0.315]                                                                      | ND [0.286]                                                                          | ND [0.111]                                                                      | ND [0.0765]                                                                     |
| 8270SIM            | PAHs             | Fluorene                                     | mg/kg          | 0.8                                                                                        | 0.234 [0.0785]                                                                  | 3.56 [0.251]                                                                    | 6.37 [4.07] J                                                                   | 15.7 [15.7] J                                                                   | 10 [5.7] J                                                                          | 15.1 [4.42]                                                                     | 1.8 [0.383]                                                                     |
| 8270SIM            | PAHs             | Indeno(1,2,3-cd)pyrene                       | mg/kg          | 3.2                                                                                        | ND [0.0785]                                                                     | ND [0.251]                                                                      | ND [0.204]                                                                      | ND [0.315]                                                                      | ND [0.286]                                                                          | ND [0.111]                                                                      | ND [0.0765]                                                                     |
| 8270SIM            | PAHs             | 1-Methylnaphthalene                          | mg/kg          | -                                                                                          | 2.01 [0.0785]                                                                   | 69.5 [5]                                                                        | 91.1 [4.07]                                                                     | 213 [15.7] QN                                                                   | 121 [5.7] QN                                                                        | 317 [22.1]                                                                      | 26.7 [1.92]                                                                     |
| 8270SIM            | PAHs             | 2-Methylnaphthalene                          | mg/kg          | 0.6                                                                                        | 2.61 [0.0785]                                                                   | 107 [5]                                                                         | 145 [4.07]                                                                      | 303 [15.7] QN                                                                   | 170 [5.7] QN                                                                        | 529 [22.1]                                                                      | 41 [1.92]                                                                       |
| 8270SIM            | PAHs             | Naphthalene                                  | mg/kg          | 1.7                                                                                        | 1.62 [0.063]                                                                    | 32.6 [4.02]                                                                     | 70 [3.25]                                                                       | 122 [12.6] QN                                                                   | 72.1 [4.58] QN                                                                      | 191 [3.54]                                                                      | 15.8 [0.306]                                                                    |
| 8270SIM            | PAHs             | Phenanthrene                                 | mg/kg          | 4.8                                                                                        | 0.134 [0.0785] J                                                                | 2.75 [0.251]                                                                    | 3.69 [4.07] J                                                                   | 9.99 [15.7] J,QN                                                                | 5.72 [5.7] J,QN                                                                     | 7.42 [4.42] J                                                                   | 1.04 [0.383]                                                                    |
| 8270SIM            | PAHs             | Pyrene                                       | mg/kg          | -                                                                                          | ND [0.0785]                                                                     | ND [0.251]                                                                      | 0.357 [0.204] J                                                                 | 0.25 [0.315] J                                                                  | 0.236 [0.286] J                                                                     | 0.172 [0.111] J                                                                 | 0.109 [0.0765] J                                                                |
| NR                 | PAHs             | Total HPAHs                                  | mg/kg          | 9.6                                                                                        | ND []                                                                           | ND []                                                                           | 0.357 []                                                                        | 0.25 []                                                                         | 0.236 []                                                                            | 0.172 []                                                                        | 0.109 []                                                                        |
| NR                 | PAHs             | Total LPAHs                                  | mg/kg          | 7.8                                                                                        | 2.12 []                                                                         | 41.42 []                                                                        | 83.98 []                                                                        | 155.75 []                                                                       | 92.97 []                                                                            | 222.01 []                                                                       | 18.64 []                                                                        |
| PCBs               |                  |                                              |                |                                                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                     |                                                                                 |                                                                                 |
| 8082               | PCBs             | Aroclor-1016                                 | mg/kg          | 0.7                                                                                        | ND [0.0388]                                                                     | ND [0.0498]                                                                     | ND [0.0403]                                                                     | ND [0.062]                                                                      | ND [0.057]                                                                          | ND [0.054]                                                                      | ND [0.0389]                                                                     |
| 8082               | PCBs             | Aroclor-1221                                 | mg/kg          | 0.7                                                                                        | ND [0.155]                                                                      | ND [0.199]                                                                      | ND [0.162]                                                                      | ND [0.249]                                                                      | ND [0.229]                                                                          | ND [0.217]                                                                      | ND [0.156]                                                                      |
| 8082               | PCBs             | Aroclor-1232                                 | mg/kg          | 0.7                                                                                        | ND [0.0388]                                                                     | ND [0.0498]                                                                     | ND [0.0403]                                                                     | ND [0.062]                                                                      | ND [0.057]                                                                          | ND [0.054]                                                                      | ND [0.0389]                                                                     |
| 8082               | PCBs             | Aroclor-1242                                 | mg/kg          | 0.7                                                                                        | ND [0.0388]                                                                     | ND [0.0498]                                                                     | ND [0.0403]                                                                     | ND [0.062]                                                                      | ND [0.057]                                                                          | ND [0.054]                                                                      | ND [0.0389]                                                                     |
| 8082               | PCBs             | Aroclor-1248                                 | mg/kg          | 0.7                                                                                        | ND [0.0388]                                                                     | ND [0.0498]                                                                     | ND [0.0403]                                                                     | ND [0.062]                                                                      | ND [0.057]                                                                          | ND [0.054]                                                                      | ND [0.0389]                                                                     |
| 8082               | PCBs             | Aroclor-1254                                 | mg/kg          | 0.7                                                                                        | ND [0.0388]                                                                     | ND [0.0498]                                                                     | ND [0.0403]                                                                     | ND [0.062]                                                                      | ND [0.057]                                                                          | ND [0.054]                                                                      | ND [0.0389]                                                                     |
| 8082               | PCBs             | Aroclor-1260                                 | mg/kg          | 0.7                                                                                        | ND [0.0388]                                                                     | ND [0.0498]                                                                     | 0.482 [0.0403]                                                                  | 0.0426 [0.062] J,QN                                                             | 0.246 [0.057] QN                                                                    | 0.0728 [0.054] J                                                                | 0.15 [0.0389]                                                                   |
| 8082               | PCBs             | PCBs                                         | mg/kg          | 0.7                                                                                        | ND [0.0388]                                                                     | ND [0.0498]                                                                     | 0.482 [0.0403]                                                                  | 0.0426 [0.062]                                                                  | 0.246 [0.057]                                                                       | 0.0728 [0.054]                                                                  | 0.15 [0.0389]                                                                   |
| Metals             |                  | 1                                            | a T            |                                                                                            |                                                                                 | - 10 10 00=1                                                                    |                                                                                 | 1                                                                               |                                                                                     |                                                                                 | - 00 to -01                                                                     |
| 6020               | Metals           | Arsenic                                      | mg/kg          | 93                                                                                         | 5.32 [0.76]                                                                     | 5.43 [0.985]                                                                    | 5.21 [0.79]                                                                     | 4.26 [1.21]                                                                     | 5.92 [1.1]                                                                          | 3.03 [1.02]                                                                     | 5.29 [0.73]                                                                     |
| 6020               | Metals           | Chromium                                     | mg/kg          | 270                                                                                        | 26.3 [0.304]                                                                    | 20.6 [0.395]                                                                    | 29.5 [0.317]                                                                    | 17.5 [0.482]                                                                    | 23.1 [0.441]                                                                        | 12.2 [0.408]                                                                    | 23.3 [0.292]                                                                    |
| 6020<br>6020       | Metals<br>Metals | Lead                                         | mg/kg          | 530                                                                                        | 22.9 [0.152]                                                                    | 18.3 [0.198]                                                                    | 81 [0.158]                                                                      | 15.7 [0.241] QN                                                                 | 32.2 [0.22] QN                                                                      | 13 [0.204]                                                                      | 60.3 [0.146]<br>0.829 [0.73] J                                                  |
| 6020               | Metals<br>Metals | Selenium<br>Zinc                             | mg/kg          | 960                                                                                        | 1.47 [0.76] J<br>62.2 [1.9]                                                     | 1.87 [0.985] J<br>41.6 [2.47]                                                   | 0.738 [0.79] J<br>145 [1.98]                                                    | 1.9 [1.21] J<br>29.4 [3.02] QN                                                  | 1.57 [1.1] J<br>65.3 [2.75] QN                                                      | 1.37 [1.02] J<br>24.1 [2.55]                                                    | 0.829 [0.73] J<br>86 [1.83]                                                     |
|                    | ivietais         | IZIIIC                                       | mg/kg          | 900                                                                                        | 02.2 [1.9]                                                                      | 41.0 [2.47]                                                                     | 145 [1.98]                                                                      | 29.4 [3.02] QN                                                                  | 05.3 [2.75] QIN                                                                     | Z4.1 [Z.55]                                                                     | 80 [1.83]                                                                       |
| IonsNutrients      | L to call (2)    | ITOO                                         |                | +                                                                                          | 0.00                                                                            | 45.0                                                                            | 0.40                                                                            | 1 00.0                                                                          |                                                                                     | 40.0                                                                            | 4.00                                                                            |
| 9060               | IonsNutrients    | IIUC                                         | percent        | -                                                                                          | 8.63                                                                            | 15.2                                                                            | 8.49                                                                            | 20.6                                                                            | 14.4                                                                                | 13.8                                                                            | 4.23                                                                            |
| Other              |                  | <del></del>                                  |                |                                                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                     |                                                                                 |                                                                                 |
| A2540G             | Other            | Total Solids                                 | percent        | -                                                                                          | 63.1                                                                            | 49.2                                                                            | 61.1                                                                            | 39.5                                                                            | 43.2                                                                                | 45.3                                                                            | 64                                                                              |
| Notes:             |                  |                                              |                |                                                                                            |                                                                                 |                                                                                 |                                                                                 |                                                                                 |                                                                                     |                                                                                 |                                                                                 |

<sup>&</sup>lt;sup>1</sup> Decision Document cleanup level (USACE 2009).

<sup>[]</sup> denotes the LOD or no number if no LOD was reported

**Bold** = Result is greater than or equal to the screening level<sup>1</sup>

<sup>=</sup> LOD greater than or equal to the screening level1

<sup>— =</sup> method or screening level not available or analysis not conducted

For data qualifiers, refer to the Analytical Data Qualifiers section of the DQA.

For definitions, refer to the Acronyms and Abbreviations section of the DQA.

|               |               |                        |         | Location ID:<br>Sample ID:<br>Sample Date:<br>Sample Type:<br>SDG:<br>Laboratory:<br>QAQC: | \$28-51<br>18NEC-\$28-\$D-51<br>8/8/2018<br>\$D<br>1184430<br>\$G\$A<br>Primary | \$28-52<br>18NEC\$28-\$D-52<br>8/8/2018<br>\$D<br>1184430<br>\$G\$A<br>Primary | \$28-53<br>18NEC-S28-SD-53<br>8/8/2018<br>SD<br>1184430<br>SGSA<br>Primary | \$28-54<br>18NEC-\$28-\$D-54<br>8/8/2018<br>\$D<br>1184430<br>\$G\$A<br>Primary |
|---------------|---------------|------------------------|---------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Method        | Group         | Analyte                | Units   | Screening<br>Level <sup>1</sup>                                                            |                                                                                 |                                                                                |                                                                            |                                                                                 |
| Fuels         |               |                        |         | •                                                                                          |                                                                                 |                                                                                |                                                                            |                                                                                 |
| AK102 103     | Fuels         | DRO                    | mg/kg   | 3500                                                                                       | 61100 [2130]                                                                    | 62000 [2240]                                                                   | 58100 [3065]                                                               | 51900 [2480]                                                                    |
| AK102 103 SG  | Fuels         | DRO                    | mg/kg   | 3500                                                                                       | 51800 [4265]                                                                    | 50000 [2240]                                                                   | 33000 [615]                                                                | 37200 [496]                                                                     |
| AK102_103     | Fuels         | RRO                    | mg/kg   | 3500                                                                                       | 5330 [2130]                                                                     | 13400 [2240]                                                                   | 10600 [3065]                                                               | 7040 [2480]                                                                     |
| AK102_103_SG  | Fuels         | RRO                    | mg/kg   | 3500                                                                                       | 5010 [4265] J                                                                   | 9210 [2240]                                                                    | 1870 [615]                                                                 | 2290 [496]                                                                      |
| PAHs          |               |                        |         |                                                                                            | _                                                                               |                                                                                |                                                                            |                                                                                 |
| 8270SIM       | PAHs          | Acenaphthene           | mg/kg   | 0.5                                                                                        | 6.49 [4.26] J                                                                   | 7.48 [2.8]                                                                     | 9.36 [7.65] J                                                              | 9.34 [15.5] J                                                                   |
| 8270SIM       | PAHs          | Acenaphthylene         | mg/kg   | _                                                                                          | ND [4.26]                                                                       | ND [2.8]                                                                       | ND [7.65]                                                                  | ND [15.5]                                                                       |
| 8270SIM       | PAHs          | Anthracene             | mg/kg   | -                                                                                          | ND [4.26]                                                                       | ND [2.8]                                                                       | ND [7.65]                                                                  | ND [15.5]                                                                       |
| 8270SIM       | PAHs          | Benzo(a)anthracene     | mg/kg   | -                                                                                          | ND [0.107]                                                                      | 0.359 [0.28] J                                                                 | ND [0.383]                                                                 | ND [0.311]                                                                      |
| 8270SIM       | PAHs          | Benzo(a)pyrene         | mg/kg   | -                                                                                          | ND [0.107]                                                                      | ND [0.28]                                                                      | ND [0.383]                                                                 | ND [0.311]                                                                      |
| 8270SIM       | PAHs          | Benzo(b)fluoranthene   | mg/kg   | -                                                                                          | ND [0.107]                                                                      | ND [0.28]                                                                      | ND [0.383]                                                                 | ND [0.311]                                                                      |
| 8270SIM       | PAHs          | Benzo(g,h,i)perylene   | mg/kg   | 1.7                                                                                        | ND [0.107]                                                                      | ND [0.28]                                                                      | ND [0.383]                                                                 | ND [0.311]                                                                      |
| 8270SIM       | PAHs          | Benzo(k)fluoranthene   | mg/kg   | -                                                                                          | ND [0.107]                                                                      | ND [0.28]                                                                      | ND [0.383]                                                                 | ND [0.311]                                                                      |
| 8270SIM       | PAHs          | Chrysene               | mg/kg   | 1                                                                                          | ND [0.107]                                                                      | 0.702 [0.28]                                                                   | ND [0.383]                                                                 | ND [0.311]                                                                      |
| 8270SIM       | PAHs          | Dibenzo(a,h)anthracene | mg/kg   | -                                                                                          | ND [0.107]                                                                      | ND [0.28]                                                                      | ND [0.383]                                                                 | ND [0.311]                                                                      |
| 8270SIM       | PAHs          | Fluoranthene           | mg/kg   | 2                                                                                          | 0.0937 [0.107] J                                                                | 3.42 [0.28]                                                                    | ND [0.383]                                                                 | ND [0.311]                                                                      |
| 8270SIM       | PAHs          | Fluorene               | mg/kg   | 0.8                                                                                        | 11 [4.26]                                                                       | 9.4 [2.8]                                                                      | 12.5 [7.65] J                                                              | 17.4 [15.5] J                                                                   |
| 8270SIM       | PAHs          | Indeno(1,2,3-cd)pyrene | mg/kg   | 3.2                                                                                        | ND [0.107]                                                                      | ND [0.28]                                                                      | ND [0.383]                                                                 | ND [0.311]                                                                      |
| 8270SIM       | PAHs          | 1-Methylnaphthalene    | mg/kg   | -                                                                                          | 224 [21.4]                                                                      | 58.5 [2.8]                                                                     | 170 [7.65]                                                                 | 301 [15.5]                                                                      |
| 8270SIM       | PAHs          | 2-Methylnaphthalene    | mg/kg   | 0.6                                                                                        | 350 [21.4]                                                                      | 77.5 [2.8]                                                                     | 239 [7.65]                                                                 | 496 [15.5]                                                                      |
| 8270SIM       | PAHs          | Naphthalene            | mg/kg   | 1.7                                                                                        | 134 [3.42]                                                                      | 44.4 [2.24]                                                                    | 94.6 [6.15]                                                                | 230 [12.4]                                                                      |
| 8270SIM       | PAHs          | Phenanthrene           | mg/kg   | 4.8                                                                                        | 6.14 [4.26] J                                                                   | 8.33 [2.8]                                                                     | 13.3 [7.65] J                                                              | 9.91 [15.5] J                                                                   |
| 8270SIM       | PAHs          | Pyrene                 | mg/kg   | -                                                                                          | 0.173 [0.107] J                                                                 | 2.45 [0.28]                                                                    | 0.391 [0.383] J                                                            | 0.235 [0.311] J                                                                 |
| NR            | PAHs          | Total HPAHs            | mg/kg   | 9.6                                                                                        | 0.2667 []                                                                       | 6.931 []                                                                       | 0.391 []                                                                   | 0.235 []                                                                        |
| NR            | PAHs          | Total LPAHs            | mg/kg   | 7.8                                                                                        | 157.63 []                                                                       | 69.61 []                                                                       | 129.76 []                                                                  | 266.65 []                                                                       |
| PCBs          |               |                        |         |                                                                                            |                                                                                 |                                                                                |                                                                            |                                                                                 |
| 8082          | PCBs          | Aroclor-1016           | mg/kg   | 0.7                                                                                        | ND [0.053]                                                                      | ND [0.056]                                                                     | ND [0.077]                                                                 | ND [0.0625]                                                                     |
| 8082          | PCBs          | Aroclor-1221           | mg/kg   | 0.7                                                                                        | ND [0.212]                                                                      | ND [0.224]                                                                     | ND [0.308]                                                                 | ND [0.249]                                                                      |
| 8082          | PCBs          | Aroclor-1232           | mg/kg   | 0.7                                                                                        | ND [0.053]                                                                      | ND [0.056]                                                                     | ND [0.077]                                                                 | ND [0.0625]                                                                     |
| 8082          | PCBs          | Aroclor-1242           | mg/kg   | 0.7                                                                                        | ND [0.053]                                                                      | ND [0.056]                                                                     | ND [0.077]                                                                 | ND [0.0625]                                                                     |
| 8082          | PCBs          | Aroclor-1248           | mg/kg   | 0.7                                                                                        | ND [0.053]                                                                      | ND [0.056]                                                                     | ND [0.077]                                                                 | ND [0.0625]                                                                     |
| 8082          | PCBs          | Aroclor-1254           | mg/kg   | 0.7                                                                                        | ND [0.053]                                                                      | ND [0.056]                                                                     | ND [0.077]                                                                 | ND [0.0625]                                                                     |
| 8082<br>8082  | PCBs<br>PCBs  | Aroclor-1260<br>PCBs   | mg/kg   | 0.7<br>0.7                                                                                 | 0.117 [0.053]                                                                   | 0.174 [0.056]                                                                  | 0.0677 [0.077] J                                                           | 0.0532 [0.0625] J                                                               |
|               | PCBS          | I LCR8                 | mg/kg   | U./                                                                                        | 0.117 [0.053]                                                                   | 0.174 [0.056]                                                                  | 0.0677 [0.077]                                                             | 0.0532 [0.0625]                                                                 |
| Metals        |               | 1                      |         |                                                                                            |                                                                                 |                                                                                |                                                                            |                                                                                 |
| 6020          | Metals        | Arsenic                | mg/kg   | 93                                                                                         | 3.33 [1.01]                                                                     | 9.06 [1.06]                                                                    | 6.64 [1.52]                                                                | 4.02 [1.19]                                                                     |
| 6020          | Metals        | Chromium               | mg/kg   | 270                                                                                        | 10.9 [0.404]                                                                    | 22.6 [0.426]                                                                   | 25.2 [0.61]                                                                | 17.2 [0.475]                                                                    |
| 6020          | Metals        | Lead                   | mg/kg   | 530                                                                                        | 15.5 [0.202]                                                                    | 28.2 [0.213]                                                                   | 17 [0.305]                                                                 | 20.7 [0.237]                                                                    |
| 6020          | Metals        | Selenium               | mg/kg   | -                                                                                          | 1.06 [1.01] J                                                                   | 1.01 [1.06] J                                                                  | 2.27 [1.52] J                                                              | 1.9 [1.19] J                                                                    |
| 6020          | Metals        | Zinc                   | mg/kg   | 960                                                                                        | 29.1 [2.52]                                                                     | 120 [2.66]                                                                     | 55.8 [3.82]                                                                | 39 [2.97]                                                                       |
| IonsNutrients |               |                        |         |                                                                                            |                                                                                 |                                                                                |                                                                            |                                                                                 |
| 9060          | IonsNutrients | TOC                    | percent | -                                                                                          | 9.13                                                                            | 10.2                                                                           | 21.4                                                                       | 15.6                                                                            |
| Other         |               |                        | _       |                                                                                            | _                                                                               |                                                                                |                                                                            |                                                                                 |
| A2540G        | Other         | Total Solids           | percent | -                                                                                          | 46.8                                                                            | 44.6                                                                           | 32.3                                                                       | 39.8                                                                            |
| Notes:        |               |                        |         |                                                                                            |                                                                                 |                                                                                |                                                                            |                                                                                 |

<sup>&</sup>lt;sup>1</sup> Decision Document cleanup level (USACE 2009).

<sup>[]</sup> denotes the LOD or no number if no LOD was reported

**Bold** = Result is greater than or equal to the screening level<sup>1</sup>

<sup>=</sup> LOD greater than or equal to the screening level1

<sup>— =</sup> method or screening level not available or analysis not conducted

For data qualifiers, refer to the Analytical Data Qualifiers section of the DQA.

For definitions, refer to the Acronyms and Abbreviations section of the DQA.

## 2018 Site 28 Sediment Mapping and Sampling Report at Northeast Cape Table F-1.2 Sample Summary

| COC Sample ID     | Location ID | Collection<br>Date | Collection<br>Time | Sampler | Qty | Container<br>Type | Container<br>Volume | Preservative | Matrix | Analytical Method Requested                                                                                                                               | QC<br>Type | TAT     | Site    | COC<br>Number | Cooler<br>Name | CoolerDate | Laboratory | SDG<br>Number | Sample Depth<br>(feet) |
|-------------------|-------------|--------------------|--------------------|---------|-----|-------------------|---------------------|--------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|---------|---------------|----------------|------------|------------|---------------|------------------------|
| 18NEC-S28-SD-01   | S28-01      | 7-Aug-18           | 1017               | AD/JB   | 2   | Amber Glass Jar   | 8 oz                | 0°C to 6°C   | SD     | AK102/103, AK102/103 w silica gel cleanup,<br>SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A                                               |            | 14 Days | Site 28 | 18NEC-29      | Snuggie        | 8-Aug-18   | SGS        | 1184373       | 0 - 1.0                |
| 18NEC-S28-SD-02   | S28-02      | 7-Aug-18           | 1035               | AD/JB   | 2   | Amber Glass Jar   | 8 oz                | 0°C to 6°C   | SD     | AK102/103, AK102/103 w silica gel cleanup,<br>SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A                                               |            | 14 Days | Site 28 | 18NEC-29      | Snuggie        | 8-Aug-18   | SGS        | 1184373       | 0 - 0.7                |
| 18NEC-S28-SD-02-8 | S28-02      | 7-Aug-18           | 1035               | AD/JB   | 2   | Amber Glass Jar   | 8 oz                | 0°C to 6°C   | SD     | AK102/103, AK102/103 w silica gel cleanup,<br>SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A                                               | DUP        | 14 Days | Site 28 | 18NEC-29      | Snuggie        | 8-Aug-18   | SGS        | 1184373       | 0 - 0.7                |
| 18NEC-S28-SD-03   | S28-03      | 7-Aug-18           | 1050               | AD/JB   | 4   | Amber Glass Jar   | 8 oz                | 0°C to 6°C   | SD     | AK102/103, AK102/103 w silica gel cleanup,<br>SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A                                               | MS/MSD     | 14 Days | Site 28 | 18NEC-29      | Snuggie        | 8-Aug-18   | SGS        | 1184373       | 0 - 1.8                |
| 18NEC-S28-SD-04   | S28-04      | 7-Aug-18           | 1108               | AD/JB   | 2   | Amber Glass Jar   | 8 oz                | 0°C to 6°C   | SD     | AK102/103, AK102/103 w silica gel cleanup,<br>SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A                                               |            | 14 Days | Site 28 | 18NEC-29      | Snuggie        | 8-Aug-18   | SGS        | 1184373       | 0 - 0.8                |
| 18NEC-S28-SD-05   | S28-05      | 7-Aug-18           | 1115               | AD/JB   | 2   | Amber Glass Jar   | 8 oz                | 0°C to 6°C   | SD     | AK102/103, AK102/103 w silica gel cleanup,<br>SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A<br>AK102/103, AK102/103 w silica gel cleanup, |            | 14 Days | Site 28 | 18NEC-29      | Snuggie        | 8-Aug-18   | SGS        | 1184373       | 0 - 0.8                |
| 18NEC-S28-SD-06   | S28-06      | 7-Aug-18           | 1125               | AD/JB   | 2   | Amber Glass Jar   | 8 oz                | 0°C to 6°C   | SD     | SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A<br>AK102/103, AK102/103 w silica gel cleanup,                                               |            | 14 Days | Site 28 | 18NEC-29      | Snuggie        | 8-Aug-18   | SGS        | 1184373       | 0 - 2.0                |
| 18NEC-S28-SD-07   | S28-07      | 7-Aug-18           | 1133               | AD/JB   | 2   | Amber Glass Jar   | 8 oz                | 0°C to 6°C   | SD     | SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A<br>JAK102/103, AK102/103 w silica gel cleanup,                                              |            | 14 Days | Site 28 | 18NEC-29      | Snuggie        | 8-Aug-18   | SGS        | 1184373       | 0 - 1.0                |
| 18NEC-S28-SD-08   | S28-08      | 7-Aug-18           | 1145               | AD/JB   | 2   | Amber Glass Jar   | 8 oz                | 0°C to 6°C   | SD     | SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A<br>JAK102/103, AK102/103 w silica gel cleanup,                                              |            | 14 Days | Site 28 | 18NEC-29      | Snuggie        | 8-Aug-18   | SGS        | 1184373       | 0 - 2.0                |
| 18NEC-S28-SD-09   | S28-09      | 7-Aug-18           | 1153               | AD/JB   | 2   | Amber Glass Jar   | 8 oz                | 0°C to 6°C   | SD     | SW8270DSIM, SW8082A, SW6020A (As, Cr, Pb, Se, Zn), SW9060A AK102/103, AK102/103 w silica gel cleanup,                                                     |            | 14 Days | Site 28 | 18NEC-29      | Snuggie        | 8-Aug-18   | SGS        | 1184373       | 0 - 2.0                |
| 18NEC-S28-SD-10   | S28-10      | 7-Aug-18           | 1201               | AD/JB   | 2   | Amber Glass Jar   | 8 oz                | 0°C to 6°C   | SD     | SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A<br>JAK102/103, AK102/103 w silica gel cleanup,                                              |            | 14 Days | Site 28 | 18NEC-29      | Snuggie        | 8-Aug-18   | SGS        | 1184373       | 0 - 2.0                |
| 18NEC-S28-SD-11   | S28-11      | 7-Aug-18           | 1211               | AD/JB   | 2   | Amber Glass Jar   | 8 oz                | 0°C to 6°C   | SD     | SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A<br>JAK102/103, AK102/103 w silica gel cleanup,                                              |            | 14 Days | Site 28 | 18NEC-29      | Snuggie        | 8-Aug-18   | SGS        | 1184373       | 0 - 2.0                |
| 18NEC-S28-SD-12   | S28-12      | 7-Aug-18           | 1221               | AD/JB   | 2   | Amber Glass Jar   | 8 oz                | 0°C to 6°C   | SD     | SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A<br>AK102/103, AK102/103 w silica gel cleanup,                                               |            | 14 Days | Site 28 | 18NEC-29      | Snuggie        | 8-Aug-18   | SGS        | 1184373       | 0 - 2.0                |
| 18NEC-S28-SD-13   | S28-13      | 7-Aug-18           | 1448               | AD/JB   | 2   | Amber Glass Jar   | 8 oz                | 0°C to 6°C   | SD     | SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A<br>AK102/103, AK102/103 w silica gel cleanup,                                               |            | 14 Days | Site 28 | 18NEC-29      | Snuggie        | 8-Aug-18   | SGS        | 1184373       | 0 - 2.0                |
| 18NEC-S28-SD-14   | S28-14      | 7-Aug-18           | 1500               | AD/JB   | 2   | Amber Glass Jar   | 8 oz                | 0°C to 6°C   | SD     | SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A<br>AK102/103, AK102/103 w silica gel cleanup,                                               |            | 14 Days | Site 28 | 18NEC-29      | Snuggie        | 8-Aug-18   | SGS        | 1184373       | 0 - 1.5                |
| 18NEC-S28-SD-15   | S28-15      | 7-Aug-18           | 1517               | AD/JB   | 2   | Amber Glass Jar   | 8 oz                | 0°C to 6°C   | SD     | SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A<br>AK102/103, AK102/103 w silica gel cleanup,                                               |            | 14 Days | Site 28 | 18NEC-29      | Snuggie        | 8-Aug-18   | SGS        | 1184373       | 0 - 2.0                |
| 18NEC-S28-SD-16   | S28-16      | 7-Aug-18           | 1528               | AD/JB   | 2   | Amber Glass Jar   | 8 oz                | 0°C to 6°C   | SD     | SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A<br>AK102/103, AK102/103 w silica gel cleanup,                                               |            | 14 Days | Site 28 | 18NEC-29      | Snuggie        | 8-Aug-18   | SGS        | 1184373       | 0 - 2.0                |
| 18NEC-S28-SD-17   | S28-17      | 7-Aug-18           | 1546               | AD/JB   | 2   | Amber Glass Jar   | 8 oz                | 0°C to 6°C   | SD     | SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A<br>AK102/103, AK102/103 w silica gel cleanup,                                               |            | 14 Days | Site 28 | 18NEC-30      | Pillow Pet     | 10-Aug-18  | SGS        | 1184430       | 0 - 2.0                |
| 18NEC-S28-SD-17-8 | S28-17      | 7-Aug-18           | 1546               | AD/JB   | 2   | Amber Glass Jar   | 8 oz                | 0°C to 6°C   | SD     | SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A<br>AK102/103, AK102/103 w silica gel cleanup,                                               | DUP        | 14 Days | Site 28 | 18NEC-30      | Pillow Pet     | 10-Aug-18  | SGS        | 1184430       | 0 - 2.0                |
| 18NEC-S28-SD-18   | S28-18      | 7-Aug-18           | 1603               | AD/JB   | 2   | Amber Glass Jar   | 8 oz                | 0°C to 6°C   | SD     | SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A<br>AK102/103, AK102/103 w silica gel cleanup,                                               |            | 14 Days | Site 28 | 18NEC-30      | Pillow Pet     | 10-Aug-18  | SGS        | 1184430       | 0 - 1.0                |
| 18NEC-S28-SD-19   | S28-19      | 7-Aug-18           | 1625               | AD/JB   | 2   | Amber Glass Jar   | 8 oz                | 0°C to 6°C   | SD     | SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A<br>AK102/103, AK102/103 w silica gel cleanup,                                               |            | 14 Days | Site 28 | 18NEC-30      | Pillow Pet     | 10-Aug-18  | SGS        | 1184430       | 0 - 2.0                |
| 18NEC-S28-SD-20   | S28-20      | 7-Aug-18           | 1632               | AD/JB   | 2   | Amber Glass Jar   | 8 oz                | 0°C to 6°C   | SD     | SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A<br>AK102/103, AK102/103 w silica gel cleanup,                                               |            | 14 Days | Site 28 | 18NEC-30      | Pillow Pet     | 10-Aug-18  | SGS        | 1184430       | 0 - 1.0                |
| 18NEC-S28-SD-21   | S28-21      | 7-Aug-18           | 1644               | AD/JB   | 2   | Amber Glass Jar   | 8 oz                | 0°C to 6°C   | SD     | SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A<br>AK102/103, AK102/103 w silica gel cleanup,                                               | _          | 14 Days | Site 28 | 18NEC-30      | Pillow Pet     | 10-Aug-18  | SGS        | 1184430       | 0 - 1.0                |
| 18NEC-S28-SD-22   | S28-22      | 7-Aug-18           | 1653               | AD/JB   | 2   | Amber Glass Jar   | 8 oz                | 0°C to 6°C   | SD     | SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A<br>AK102/103, AK102/103 w silica gel cleanup,                                               | _          | 14 Days | Site 28 | 18NEC-30      | Pillow Pet     | 10-Aug-18  | SGS        | 1184430       | 0 - 1.0                |
| 18NEC-S28-SD-23   | S28-23      | 7-Aug-18           | 1702               | AD/JB   | 2   | Amber Glass Jar   | 8 oz                | 0°C to 6°C   | SD     | SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A<br>AK102/103, AK102/103 w silica gel cleanup,                                               | _          | 14 Days | Site 28 | 18NEC-30      | Pillow Pet     | 10-Aug-18  | SGS        | 1184430       | 0 - 2.0                |
| 18NEC-S28-SD-24   | S28-24      | 7-Aug-18           | 1713               | AD/JB   | 2   | Amber Glass Jar   | 8 oz                | 0°C to 6°C   | SD     | SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A                                                                                             |            | 14 Days | Site 28 | 18NEC-30      | Pillow Pet     | 10-Aug-18  | SGS        | 1184430       | 0 - 2.0                |

## 2018 Site 28 Sediment Mapping and Sampling Report at Northeast Cape Table F-1.2 Sample Summary

| COC Sample ID                      | Location ID      | Collection<br>Date   | Collection<br>Time | Sampler        | Qty | Container<br>Type                | Container<br>Volume | Preservative | Matrix   | Analytical Method Requested                                                                                                                               | QC<br>Type | TAT     | Site            | COC<br>Number        | Cooler<br>Name     | CoolerDate             | Laboratory | SDG<br>Number | Sample Depth<br>(feet) |
|------------------------------------|------------------|----------------------|--------------------|----------------|-----|----------------------------------|---------------------|--------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|-----------------|----------------------|--------------------|------------------------|------------|---------------|------------------------|
| 18NEC-S28-SD-25                    | S28-25           | 8-Aug-18             | 0920               | AD/JB          | 2   | Amber Glass Jar                  | 8 oz                | 0°C to 6°C   | SD       | AK102/103, AK102/103 w silica gel cleanup,<br>SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A                                               |            | 14 Days | Site 28         | 18NEC-30             | Pillow Pet         | 10-Aug-18              | SGS        | 1184430       | 0 - 1.0                |
| 18NEC-S28-SD-26                    | S28-26           | 8-Aug-18             | 0951               | AD/JB          | 2   | Amber Glass Jar                  | 8 oz                | 0°C to 6°C   | SD       | AK102/103, AK102/103 w silica gel cleanup,<br>SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A                                               |            | 14 Days | Site 28         | 18NEC-30             | Pillow Pet         | 10-Aug-18              | SGS        | 1184430       | 0 - 1.0                |
| 18NEC-S28-SD-27                    | S28-27           | 8-Aug-18             | 1001               | AD/JB          | 2   | Amber Glass Jar                  | 8 oz                | 0°C to 6°C   | SD       | AK102/103, AK102/103 w silica gel cleanup,<br>SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A                                               |            | 14 Days | Site 28         | 18NEC-30             | Pillow Pet         | 10-Aug-18              | SGS        | 1184430       | 0 - 1.5                |
| 18NEC-S28-SD-27-8                  | S28-27           | 8-Aug-18             | 1001               | AD/JB          | 2   | Amber Glass Jar                  | 8 oz                | 0°C to 6°C   | SD       | AK102/103, AK102/103 w silica gel cleanup,<br>SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A                                               | DUP        | 14 Days | Site 28         | 18NEC-30             | Pillow Pet         | 10-Aug-18              | SGS        | 1184430       | 0 - 1.5                |
| 18NEC-S28-SD-28                    | S28-28           | 8-Aug-18             | 1012               | AD/JB          | 4   | Amber Glass Jar                  | 8 oz                | 0°C to 6°C   | SD       | AK102/103, AK102/103 w silica gel cleanup,<br>SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A                                               | MS/MSD     | 14 Days | Site 28         | 18NEC-30             | Pillow Pet         | 10-Aug-18              | SGS        | 1184430       | 0 - 1.5                |
| 18NEC-S28-SD-29                    | S28-29           | 8-Aug-18             | 1025               | AD/JB          | 2   | Amber Glass Jar                  | 8 oz                | 0°C to 6°C   | SD       | AK102/103, AK102/103 w silica gel cleanup,<br>SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A<br>AK102/103, AK102/103 w silica gel cleanup, |            | 14 Days | Site 28         | 18NEC-30             | Pillow Pet         | 10-Aug-18              | SGS        | 1184430       | 0 - 1.0                |
| 18NEC-S28-SD-30                    | S28-30           | 8-Aug-18             | 1040               | AD/JB          | 2   | Amber Glass Jar                  | 8 oz                | 0°C to 6°C   | SD       | SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A<br>IAK102/103, AK102/103 w silica gel cleanup,                                              |            | 14 Days | Site 28         | 18NEC-30             | Pillow Pet         | 10-Aug-18              | SGS        | 1184430       | 0 - 1.5                |
| 18NEC-S28-SD-31                    | S28-31           | 8-Aug-18             | 1048               | AD/JB          | 2   | Amber Glass Jar                  | 8 oz                | 0°C to 6°C   | SD       | SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A<br>AK102/103, AK102/103 w silica gel cleanup,                                               |            | 14 Days | Site 28         | 18NEC-30             | Pillow Pet         | 10-Aug-18              | SGS        | 1184430       | 0 - 1.5                |
| 18NEC-S28-SD-32                    | S28-32           | 8-Aug-18             | 1058               | AD/JB          | 2   | Amber Glass Jar                  | 8 oz                | 0°C to 6°C   | SD       | SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A<br>AK102/103, AK102/103 w silica gel cleanup,                                               |            | 14 Days | Site 28         | 18NEC-31             | ShamWow            | 10-Aug-18              | SGS        | 1184430       | 0 - 1.0                |
| 18NEC-S28-SD-33                    | S28-33           | 8-Aug-18             | 1106               | AD/JB          | 2   | Amber Glass Jar                  | 8 oz                | 0°C to 6°C   | SD       | SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A<br>AK102/103, AK102/103 w silica gel cleanup,                                               |            | 14 Days | Site 28         | 18NEC-31             | ShamWow            | 10-Aug-18              | SGS        | 1184430       | 0 - 0.8                |
| 18NEC-S28-SD-34                    | S28-34           | 8-Aug-18             | 1114               | AD/JB          | 2   | Amber Glass Jar                  | 8 oz                | 0°C to 6°C   | SD       | SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A<br>AK102/103, AK102/103 w silica gel cleanup,                                               |            | 14 Days | Site 28         | 18NEC-31             | ShamWow            | 10-Aug-18              | SGS        | 1184430       | 0 - 1.0                |
| 18NEC-S28-SD-35                    | S28-35           | 8-Aug-18             | 1125               | AD/JB          | 2   | Amber Glass Jar                  | 8 oz                | 0°C to 6°C   | SD       | SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A<br>AK102/103, AK102/103 w silica gel cleanup,                                               |            | 14 Days | Site 28         | 18NEC-31             | ShamWow            | 10-Aug-18              | SGS        | 1184430       | 0 - 1.0                |
| 18NEC-S28-SD-38                    | S28-38           | 8-Aug-18             | 1143               | AD/JB          | 2   | Amber Glass Jar                  | 8 oz                | 0°C to 6°C   | SD       | SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A<br>AK102/103, AK102/103 w silica gel cleanup,                                               |            | 14 Days | Site 28         | 18NEC-31             | ShamWow            | 10-Aug-18              | SGS        | 1184430       | 0 - 2.0                |
| 18NEC-S28-SD-38-8                  | S28-38           | 8-Aug-18             | 1143               | AD/JB          | 2   | Amber Glass Jar                  | 8 oz                | 0°C to 6°C   | SD       | SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A<br>AK102/103, AK102/103 w silica gel cleanup,                                               | DUP        | 14 Days | Site 28         | 18NEC-31             | ShamWow            | 10-Aug-18              | SGS        | 1184430       | 0 - 2.0                |
| 18NEC-S28-SD-39                    | S28-39           | 8-Aug-18             | 1154               | AD/JB          | 2   | Amber Glass Jar                  | 8 oz                | 0°C to 6°C   | SD       | SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A<br>AK102/103, AK102/103 w silica gel cleanup,                                               |            | 14 Days | Site 28         | 18NEC-31             | ShamWow            | 10-Aug-18              | SGS        | 1184430       | 0 - 2.0                |
| 18NEC-S28-SD-40<br>18NEC-S28-SD-42 | S28-40<br>S28-42 | 8-Aug-18<br>8-Aug-18 | 1202               | AD/JB<br>AD/JB | 2   | Amber Glass Jar  Amber Glass Jar | 8 oz<br>8 oz        | 0°C to 6°C   | SD<br>SD | SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A<br>AK102/103, AK102/103 w silica gel cleanup,<br>SW8270DSIM, SW8082A, SW6020A               |            | 14 Days | Site 28 Site 28 | 18NEC-31<br>18NEC-31 | ShamWow<br>ShamWow | 10-Aug-18<br>10-Aug-18 | SGS        | 1184430       | 0 - 1.0                |
| 18NEC-S28-SD-52                    | S28-52           | 8-Aug-18             | 1440               | AD/JB          | 2   | Amber Glass Jar                  | 8 oz                | 0°C to 6°C   | SD       | (As, Cr, Pb, Se, Zn), SW9060A<br>AK102/103, AK102/103 w silica gel cleanup,<br>SW8270DSIM, SW8082A, SW6020A                                               |            | 14 Days | Site 28         | 18NEC-31             | ShamWow            | 10-Aug-18              | SGS        | 1184430       | 0 - 0.8                |
| 18NEC-S28-SD-53                    | S28-53           | 8-Aug-18             | 1504               | AD/JB          | 2   | Amber Glass Jar                  | 8 oz                | 0°C to 6°C   | SD       | (As, Cr, Pb, Se, Zn), SW9060A<br>AK102/103, AK102/103 w silica gel cleanup,<br>SW8270DSIM, SW8082A, SW6020A                                               |            | 14 Days | Site 28         | 18NEC-31             | ShamWow            | 10-Aug-18              | SGS        | 1184430       | 0 - 1.5                |
| 18NEC-S28-SD-37                    | S28-37           | 8-Aug-18             | 1540               | AD/JB          | 2   | Amber Glass Jar                  | 8 oz                | 0°C to 6°C   | SD       | (As, Cr, Pb, Se, Zn), SW9060A<br>AK102/103, AK102/103 w silica gel cleanup,<br>SW8270DSIM, SW8082A, SW6020A                                               |            | 14 Days | Site 28         | 18NEC-31             | ShamWow            | 10-Aug-18              | SGS        | 1184430       | 0 - 0.2                |
| 18NEC-S28-SD-36                    | S28-36           | 8-Aug-18             | 1553               | AD/JB          | 2   | Amber Glass Jar                  | 8 oz                | 0°C to 6°C   | SD       | (As, Cr, Pb, Se, Zn), SW9060A<br>AK102/103, AK102/103 w silica gel cleanup,<br>SW8270DSIM, SW8082A, SW6020A                                               |            | 14 Days | Site 28         | 18NEC-31             | ShamWow            | 10-Aug-18              | SGS        | 1184430       | 0 - 0.2                |
| 18NEC-S28-SD-41                    | S28-41           | 8-Aug-18             | 1605               | AD/JB          | 2   | Amber Glass Jar                  | 8 oz                | 0°C to 6°C   | SD       | (As, Cr, Pb, Se, Zn), SW9060A<br>AK102/103, AK102/103 w silica gel cleanup,<br>SW8270DSIM, SW8082A, SW6020A                                               |            | 14 Days | Site 28         | 18NEC-32             | Oxiclean           | 10-Aug-18              | SGS        | 1184430       | 0 - 1.0                |
| 18NEC-S28-SD-41-8                  | S28-41           | 8-Aug-18             | 1605               | AD/JB          | 2   | Amber Glass Jar                  | 8 oz                | 0°C to 6°C   | SD       | (As, Cr, Pb, Se, Zn), SW9060A<br>AK102/103, AK102/103 w silica gel cleanup,<br>SW8270DSIM, SW8082A, SW6020A                                               | DUP        | 14 Days | Site 28         | 18NEC-32             | Oxiclean           | 10-Aug-18              | SGS        | 1184430       | 0 - 1.0                |
| 18NEC-S28-SD-44                    | S28-44           | 8-Aug-18             | 1624               | AD/JB          | 2   | Amber Glass Jar                  | 8 oz                | 0°C to 6°C   | SD       | (As, Cr, Pb, Se, Zn), SW9060A<br>AK102/103, AK102/103 w silica gel cleanup,<br>SW8270DSIM, SW8082A, SW6020A                                               |            | 14 Days | Site 28         | 18NEC-32             | Oxiclean           | 10-Aug-18              | SGS        | 1184430       | 0 - 1.0                |
| 18NEC-S28-SD-45                    | S28-45           | 8-Aug-18             | 1640               | AD/JB          | 2   | Amber Glass Jar                  | 8 oz                | 0°C to 6°C   | SD       | (As, Cr, Pb, Se, Zn), SW9060A<br>AK102/103, AK102/103 w silica gel cleanup,<br>SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A              |            | 14 Days | Site 28         | 18NEC-32             | Oxiclean           | 10-Aug-18              | SGS        | 1184430       | 0 - 1.5                |
| 18NEC-S28-SD-46                    | S28-46           | 8-Aug-18             | 1646               | AD/JB          | 2   | Amber Glass Jar                  | 8 oz                | 0°C to 6°C   | SD       | AK102/103, AK102/103 w silica gel cleanup,<br>SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A                                               |            | 14 Days | Site 28         | 18NEC-32             | Oxiclean           | 10-Aug-18              | SGS        | 1184430       | 0 - 0.8                |

## 2018 Site 28 Sediment Mapping and Sampling Report at Northeast Cape Table F-1.2 Sample Summary

| COC Sample ID     | Location ID | Collection<br>Date | Collection<br>Time | Sampler | Qty | Container<br>Type | Container<br>Volume | Preservative | Matrix | Analytical Method Requested                                                                                 | QC<br>Type | TAT     | Site    | COC<br>Number | Cooler<br>Name | CoolerDate | Laboratory | SDG<br>Number | Sample Depth (feet) |
|-------------------|-------------|--------------------|--------------------|---------|-----|-------------------|---------------------|--------------|--------|-------------------------------------------------------------------------------------------------------------|------------|---------|---------|---------------|----------------|------------|------------|---------------|---------------------|
| 18NEC-S28-SD-43   | S28-43      | 8-Aug-18           | 1700               | AD/JB   | 2   | Amber Glass Jar   | 8 oz                | 0°C to 6°C   | SD     | AK102/103, AK102/103 w silica gel cleanup,<br>SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A |            | 14 Days | Site 28 | 18NEC-32      | Oxiclean       | 10-Aug-18  | SGS        | 1184430       | 0 - 1.0             |
| 18NEC-S28-SD-54   | S28-54      | 8-Aug-18           | 1710               | AD/JB   | 4   | Amber Glass Jar   | 8 oz                | 0°C to 6°C   | SD     | AK102/103, AK102/103 w silica gel cleanup,<br>SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A | MS/MSE     | 14 Days | Site 28 | 18NEC-32      | Oxiclean       | 10-Aug-18  | SGS        | 1184430       | 0 - 1.0             |
| 18NEC-S28-SD-47   | S28-47      | 8-Aug-18           | 1720               | AD/JB   | 2   | Amber Glass Jar   | 8 oz                | 0°C to 6°C   | SD     | AK102/103, AK102/103 w silica gel cleanup,<br>SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A |            | 14 Days | Site 28 | 18NEC-32      | Oxiclean       | 10-Aug-18  | SGS        | 1184430       | 0 - 1.0             |
| 18NEC-S28-SD-48   | S28-48      | 8-Aug-18           | 1726               | AD/JB   | 2   | Amber Glass Jar   | 8 oz                | 0°C to 6°C   | SD     | AK102/103, AK102/103 w silica gel cleanup,<br>SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A |            | 14 Days | Site 28 | 18NEC-32      | Oxiclean       | 10-Aug-18  | SGS        | 1184430       | 0 - 1.0             |
| 18NEC-S28-SD-48-8 | S28-48      | 8-Aug-18           | 1726               | AD/JB   | 2   | Amber Glass Jar   | 8 oz                | 0°C to 6°C   | SD     | AK102/103, AK102/103 w silica gel cleanup,<br>SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A | DUP        | 14 Days | Site 28 | 18NEC-32      | Oxiclean       | 10-Aug-18  | SGS        | 1184430       | 0 - 1.0             |
| 18NEC-S28-SD-49   | S28-49      | 8-Aug-18           | 1733               | AD/JB   | 2   | Amber Glass Jar   | 8 oz                | 0°C to 6°C   | SD     | AK102/103, AK102/103 w silica gel cleanup,<br>SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A |            | 14 Days | Site 28 | 18NEC-32      | Oxiclean       | 10-Aug-18  | SGS        | 1184430       | 0 - 1.0             |
| 18NEC-S28-SD-50   | S28-50      | 8-Aug-18           | 1739               | AD/JB   | 2   | Amber Glass Jar   | 8 oz                | 0°C to 6°C   | SD     | AK102/103, AK102/103 w silica gel cleanup,<br>SW8270DSIM, SW8082A, SW6020A<br>(As, Cr, Pb, Se, Zn), SW9060A |            | 14 Days | Site 28 | 18NEC-32      | Oxiclean       | 10-Aug-18  | SGS        | 1184430       | 0 - 1.0             |
| 18NEC-S28-SD-51   | S28-51      | 8-Aug-18           | 1750               | AD/JB   | 2   | Amber Glass Jar   | 8 oz                | 0°C to 6°C   | SD     | AK102/103, AK102/103 w silica gel cleanup,<br>SW8270DSIM, SW8082A, SW6020A<br>(As. Cr. Pb. Se. Zn), SW9060A |            | 14 Days | Site 28 | 18NEC-32      | Oxiclean       | 10-Aug-18  | SGS        | 1184430       | 0 - 1.0             |

Notes:
Project NPDL number 18-053
ID = identification
oz = ounce
qty = quantity
For additional definitions, refer to the Acronyms and Abbreviations section of the DQA.

# **EXHIBIT F2-2 Qualified Sample Results Tables**

## 2018 Site 28 Sediment Mapping and Sampling Report at Northeast Cape Table F-2.1 Surrogate Recoveries

| SDG     | Sample ID       | Lab<br>Sample ID | Method  | Analyte            | Result<br>(mg/L) | LOD<br>(mg/L) | LOQ<br>(mg/L) | Recovery<br>(%) | LCL<br>(%) | UCL<br>(%) | Units   | Lab Lot<br>Number | Qualifier |
|---------|-----------------|------------------|---------|--------------------|------------------|---------------|---------------|-----------------|------------|------------|---------|-------------------|-----------|
| 1184430 | 18NEC-S28-SD-42 | 1184430028       | SW8082A | Aroclor-1016       | 0                | 0             | 0.112         |                 |            |            | mg/kg   | XXX40262          | QL        |
| 1184430 | 18NEC-S28-SD-42 | 1184430028       | SW8082A | Aroclor-1221       | 0                | 0             | 0.449         |                 |            | -          | mg/kg   | XXX40262          | QL        |
| 1184430 | 18NEC-S28-SD-42 | 1184430028       | SW8082A | Aroclor-1232       | 0                | 0             | 0.112         |                 |            | -          | mg/kg   | XXX40262          | QL        |
| 1184430 | 18NEC-S28-SD-42 | 1184430028       | SW8082A | Aroclor-1242       | 0                | 0             | 0.112         |                 |            | -          | mg/kg   | XXX40262          | QL        |
| 1184430 | 18NEC-S28-SD-42 | 1184430028       | SW8082A | Aroclor-1248       | 0                | 0             | 0.112         |                 |            | -          | mg/kg   | XXX40262          | QL        |
| 1184430 | 18NEC-S28-SD-42 | 1184430028       | SW8082A | Aroclor-1254       | 0                | 0             | 0.112         |                 |            |            | mg/kg   | XXX40262          | QL        |
| 1184430 | 18NEC-S28-SD-42 | 1184430028       | SW8082A | Aroclor-1260       | 0                | 0             | 0.112         |                 |            | -          | mg/kg   | XXX40262          | QL        |
| 1184430 | 18NEC-S28-SD-42 | 1184430028       | SW8082A | Decachlorobiphenyl | 34.9             | 0             |               | 34.9            | 60         | 125        | PERCENT | XXX40262          |           |

#### Notes:

For data qualifiers, refer to the Analytical Data Qualifiers section of the DQA. For definitions, refer to the Acronyms and Abbreviations section of the DQA.

## 2018 Site 28 Sediment Mapping and Sampling Report at Northeast Cape Table F-2.2 Duplicate Sample RPD

| SDG     | Parent Sample ID | Parent Lab<br>Sample ID | Dup Sample ID     | Dup Lab Sample<br>ID | Method  | Analyte             | Parent Sample<br>Result | Parent Sample<br>Result Type | Duplicate<br>Sample Result | Duplicate<br>Sample Result<br>Type | RPD (%) | Problem  | matrix | Parent Sample<br>Dilution Factor | Dup Sample<br>Dilution Factor | Parent Sample<br>Date | Dup Sample Date | Parent<br>Qualifier | Duplicate<br>Qualifier |
|---------|------------------|-------------------------|-------------------|----------------------|---------|---------------------|-------------------------|------------------------------|----------------------------|------------------------------------|---------|----------|--------|----------------------------------|-------------------------------|-----------------------|-----------------|---------------------|------------------------|
| 1184373 | 18NEC-S28-SD-02  | 1184373002              | 18NEC-S28-SD-02-8 | 1184373003           | SW6020A | Selenium            | 1.37                    | =                            | 0.804                      | =                                  | 52.1    | Over 50% | SD     | 10                               | 10                            | 07-Aug-18             | 07-Aug-18       | J,QN                | J,QN                   |
| 1184430 | 18NEC-S28-SD-17  | 1184430001              | 18NEC-S28-SD-17-8 | 1184430002           | 8270SIM | Benzo(a)anthracene  | 0.171                   | =                            | 0.366                      | ND                                 | 72.6    | Over 50% | SD     | 10                               | 10                            | 07-Aug-18             | 07-Aug-18       | J,QN                | QN                     |
| 1184430 | 18NEC-S28-SD-27  | 1184430012              | 18NEC-S28-SD-27-8 | 1184430013           | 8270SIM | Fluorene            | 0.253                   | =                            | 0.499                      | ND                                 | 65.4    | Over 50% | SD     | 10                               | 10                            | 08-Aug-18             | 08-Aug-18       | J,QN                | QN                     |
| 1184430 | 18NEC-S28-SD-27  | 1184430012              | 18NEC-S28-SD-27-8 | 1184430013           | SW6020A | Lead                | 16.1                    | =                            | 8.17                       | =                                  | 65.3    | Over 50% | SD     | 10                               | 10                            | 08-Aug-18             | 08-Aug-18       | QN                  | QN                     |
| 1184430 | 18NEC-S28-SD-27  | 1184430012              | 18NEC-S28-SD-27-8 | 1184430013           | SW6020A | Zinc                | 51.1                    | =                            | 24.8                       | =                                  | 69.3    | Over 50% | SD     | 10                               | 10                            | 08-Aug-18             | 08-Aug-18       | QN                  | QN                     |
| 1184430 | 18NEC-S28-SD-38  | 1184430024              | 18NEC-S28-SD-38-8 | 1184430025           | 8270SIM | 1-Methylnaphthalene | 7.79                    | =                            | 34.2                       | =                                  | 125.8   | Over 50% | SD     | 10                               | 100                           | 08-Aug-18             | 08-Aug-18       | QN                  | QN                     |
| 1184430 | 18NEC-S28-SD-38  | 1184430024              | 18NEC-S28-SD-38-8 | 1184430025           | 8270SIM | 2-Methylnaphthalene | 13                      | =                            | 55                         | =                                  | 123.5   | Over 50% | SD     | 10                               | 100                           | 08-Aug-18             | 08-Aug-18       | QN                  | QN                     |
| 1184430 | 18NEC-S28-SD-38  | 1184430024              | 18NEC-S28-SD-38-8 | 1184430025           | 8270SIM | Acenaphthene        | 0.329                   | ND                           | 1.37                       | =                                  | 122.5   | Over 50% | SD     | 10                               | 10                            | 08-Aug-18             | 08-Aug-18       | QN                  | QN                     |
| 1184430 | 18NEC-S28-SD-38  | 1184430024              | 18NEC-S28-SD-38-8 | 1184430025           | AK102SG | DRO                 | 2120                    | =                            | 4610                       | =                                  | 74.0    | Over 50% | SD     | 1                                | 1                             | 08-Aug-18             | 08-Aug-18       | QN                  | QN                     |
| 1184430 | 18NEC-S28-SD-38  | 1184430024              | 18NEC-S28-SD-38-8 | 1184430025           | AK102   | DRO                 | 3230                    | =                            | 6620                       | =                                  | 68.8    | Over 50% | SD     | 10                               | 10                            | 08-Aug-18             | 08-Aug-18       | QN                  | QN                     |
| 1184430 | 18NEC-S28-SD-38  | 1184430024              | 18NEC-S28-SD-38-8 | 1184430025           | 8270SIM | Fluorene            | 0.244                   | =                            | 2.31                       | =                                  | 161.8   | Over 50% | SD     | 10                               | 10                            | 08-Aug-18             | 08-Aug-18       | J,QN                | QN                     |
| 1184430 | 18NEC-S28-SD-38  | 1184430024              | 18NEC-S28-SD-38-8 | 1184430025           | 8270SIM | Naphthalene         | 12.1                    | =                            | 21                         | =                                  | 53.8    | Over 50% | SD     | 10                               | 100                           | 08-Aug-18             | 08-Aug-18       | QN                  | QN                     |
| 1184430 | 18NEC-S28-SD-38  | 1184430024              | 18NEC-S28-SD-38-8 | 1184430025           | 8270SIM | Phenanthrene        | 0.329                   | ND                           | 1.17                       | =                                  | 112.2   | Over 50% | SD     | 10                               | 10                            | 08-Aug-18             | 08-Aug-18       | QN                  | QN                     |
| 1184430 | 18NEC-S28-SD-48  | 1184430039              | 18NEC-S28-SD-48-8 | 1184430040           | 8270SIM | 1-Methylnaphthalene | 213                     | =                            | 121                        | =                                  | 55.1    | Over 50% | SD     | 500                              | 200                           | 08-Aug-18             | 08-Aug-18       | QN                  | QN                     |
| 1184430 | 18NEC-S28-SD-48  | 1184430039              | 18NEC-S28-SD-48-8 | 1184430040           | 8270SIM | 2-Methylnaphthalene | 303                     | =                            | 170                        | =                                  | 56.2    | Over 50% | SD     | 500                              | 200                           | 08-Aug-18             | 08-Aug-18       | QN                  | QN                     |
| 1184430 | 18NEC-S28-SD-48  | 1184430039              | 18NEC-S28-SD-48-8 | 1184430040           | SW8082A | Aroclor-1260        | 0.0426                  | =                            | 0.246                      | =                                  | 141.0   | Over 50% | SD     | 1                                | 1                             | 08-Aug-18             | 08-Aug-18       | J,QN                | QN                     |
| 1184430 | 18NEC-S28-SD-48  | 1184430039              | 18NEC-S28-SD-48-8 | 1184430040           | SW6020A | Lead                | 15.7                    | =                            | 32.2                       | =                                  | 68.9    | Over 50% | SD     | 10                               | 10                            | 08-Aug-18             | 08-Aug-18       | QN                  | QN                     |
| 1184430 | 18NEC-S28-SD-48  | 1184430039              | 18NEC-S28-SD-48-8 | 1184430040           | 8270SIM | Naphthalene         | 122                     | =                            | 72.1                       | =                                  | 51.4    | Over 50% | SD     | 500                              | 200                           | 08-Aug-18             | 08-Aug-18       | QN                  | QN                     |
| 1184430 | 18NEC-S28-SD-48  | 1184430039              | 18NEC-S28-SD-48-8 | 1184430040           | 8270SIM | Phenanthrene        | 9.99                    | =                            | 5.72                       | =                                  | 54.4    | Over 50% | SD     | 500                              | 200                           | 08-Aug-18             | 08-Aug-18       | J,QN                | J,QN                   |
| 1184430 | 18NEC-S28-SD-48  | 1184430039              | 18NEC-S28-SD-48-8 | 1184430040           | SW6020A | Zinc                | 29.4                    | =                            | 65.3                       | =                                  | 75.8    | Over 50% | SD     | 10                               | 10                            | 08-Aug-18             | 08-Aug-18       | QN                  | QN                     |
| 1184430 | 18NEC-S28-SD-41  | 1184430044              | 18NEC-S28-SD-41-8 | 1184430045           | AK102SG | DRO                 | 115                     | =                            | 195                        | =                                  | 51.6    | Over 50% | SD     | 1                                | 1                             | 08-Aug-18             | 08-Aug-18       | QN                  | QN                     |

Notes:
For data qualifiers, refer to the Analytical Data Qualifiers section of the DQA. For definitions, refer to the Acronyms and Abbreviations section of the DQA.

## 2018 Site 28 Sediment Mapping and Sampling Report at Northeast Cape Table F-2.3 Nondetect Results with Reporting Limits Greater Than Cleanup Levels

| SDG     | Sample ID       | Lab Sample ID | Method  | Analyte             | Cleanup Level | Result | LOD   | LOQ  | Units | Dilution Factor |
|---------|-----------------|---------------|---------|---------------------|---------------|--------|-------|------|-------|-----------------|
| 1184430 | 18NEC-S28-SD-34 | 1184430022    | 8270SIM | 2-Methylnaphthalene | 0.6           | ND     | 0.82  | 1.64 | mg/kg | 10              |
| 1184430 | 18NEC-S28-SD-34 | 1184430022    | 8270SIM | Acenaphthene        | 0.5           | ND     | 0.82  | 1.64 | mg/kg | 10              |
| 1184430 | 18NEC-S28-SD-35 | 1184430023    | 8270SIM | Acenaphthene        | 0.5           | ND     | 0.935 | 1.87 | mg/kg | 10              |
| 1184430 | 18NEC-S28-SD-35 | 1184430023    | SW8082A | Aroclor-1221        | 0.7           | ND     | 0.755 | 1.51 | mg/kg | 1               |
| 1184430 | 18NEC-S28-SD-36 | 1184430032    | 8270SIM | Acenaphthene        | 0.5           | ND     | 1.04  | 2.09 | mg/kg | 10              |
| 1184430 | 18NEC-S28-SD-36 | 1184430032    | 8270SIM | Fluorene            | 0.8           | ND     | 1.04  | 2.09 | mg/kg | 10              |
| 1184430 | 18NEC-S28-SD-36 | 1184430032    | SW8082A | Aroclor-1221        | 0.7           | ND     | 0.835 | 1.67 | mg/kg | 1               |

#### Notes:

For data qualifiers, refer to the Analytical Data Qualifiers section of the DQA. For definitions, refer to the Acronyms and Abbreviations section of the DQA.

| SDG     | Sample ID     | Lab Sample ID | Method  | Analyte     | Result    | Units |
|---------|---------------|---------------|---------|-------------|-----------|-------|
| 1184430 | 18NEC-EB01-WG | 1184430048    | 8270SIM | Naphthalene | 0.0000079 | mg/L  |
| 1184430 | 18NEC-EB01-WG | 1184430048    | E200.8  | Zinc        | 0.00622   | mg/L  |

#### Notes:

For data qualifiers, refer to the Analytical Data Qualifiers section of the DQA. For definitions, refer to the Acronyms and Abbreviations section of the DQA.

# **EXHIBIT F2-3 ADEC Laboratory Data Review Checklists**

Alaska Department of Environmental Conservation • Spill Prevention and Response Division • Contaminated Sites Program

### **Laboratory Data Review Checklist**

| Completed by:                   |
|---------------------------------|
| Nathaniel Gingery               |
| Title:                          |
| Project Chemist                 |
| Date:                           |
| 10/17/2018                      |
| CS Report Name:                 |
| Northeast Cape Five-Year Review |
| Report Date:                    |
| 12/20/2018                      |
| Consultant Firm:                |
| Jacobs                          |
| Laboratory Name:                |
| SGS North America Inc.          |
| Laboratory Report Number:       |
| 1184373                         |
| ADEC File Number:               |
| ST LAW MOC 475.38.013           |
|                                 |
| Hazard Identification Number:   |
| 221                             |

July 2017 Page 1 of 8

| 1. <u>Laboratory</u>                   |                                  |                                                                                                                              |
|----------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| a. Did an AI                           | DEC CS appro                     | oved laboratory receive and <u>perform</u> all of the submitted sample analyses?                                             |
| • Yes                                  | ○ No                             | Comments:                                                                                                                    |
| All analyses were                      | performed by So                  | GS North America Inc. in Anchorage, AK.                                                                                      |
|                                        |                                  | nsferred to another "network" laboratory or sub-contracted to an alternate oratory performing the analyses ADEC CD approved? |
| ○ Yes                                  | <ul><li>No</li></ul>             | Comments:                                                                                                                    |
| Not applicable.                        |                                  |                                                                                                                              |
| 2. Chain of Cust                       | tody (CoC)                       |                                                                                                                              |
| a. CoC infor                           | mation comp                      | leted, signed, and dated (including released/received by)?                                                                   |
| • Yes                                  | ○ No                             | Comments:                                                                                                                    |
|                                        |                                  |                                                                                                                              |
| b. Correct ar                          | nalyses reques                   | sted?                                                                                                                        |
| • Yes                                  | ○ No                             | Comments:                                                                                                                    |
|                                        |                                  |                                                                                                                              |
| 3. <u>Laboratory Sa</u>                | ample Receip                     | t Documentation                                                                                                              |
| a. Sample/co                           | ooler tempera                    | ture documented and within range at receipt $(0^{\circ} \pm 6^{\circ} \text{ C})$ ?                                          |
| • Yes                                  | ○ No                             | Comments:                                                                                                                    |
| Cooler name, temp<br>1. Snuggie 0.3 °C | perature blank te                | emp °C                                                                                                                       |
| 1 1                                    | reservation ac<br>Chlorinated So | cceptable - acidified waters, Methanol preserved VOC soil (GRO, BTEX, blvents, etc.)?                                        |
| • Yes                                  | ○ No                             | Comments:                                                                                                                    |
|                                        |                                  |                                                                                                                              |
| c. Sample co                           | ondition docu                    | mented - broken, leaking (Methanol), zero headspace (VOC vials)?                                                             |
| • Yes                                  | ○ No                             | Comments:                                                                                                                    |
| No discrepancies v                     | were noted.                      |                                                                                                                              |

July 2017 Page 2 of 8

|                       | s/preservation     | , sample temperature outside of acceptable range, insufficient or missing |
|-----------------------|--------------------|---------------------------------------------------------------------------|
| ○ Yes                 | ○ No               | Comments:                                                                 |
| N/A                   |                    |                                                                           |
| e. Data qua           | lity or usabilit   | y affected? Explain.                                                      |
|                       |                    | Comments:                                                                 |
| Data quality and u    | usability were no  | t affected.                                                               |
| 4. Case Narrati       | <u>ve</u>          |                                                                           |
| a. Present a          | nd understand      | able?                                                                     |
| • Yes                 | ○ No               | Comments:                                                                 |
|                       |                    |                                                                           |
| b. Discrepancie       | es, errors or Qo   | C failures identified by the lab?                                         |
| • Yes                 | ○ No               | Comments:                                                                 |
|                       |                    |                                                                           |
| c. Were all           | corrective acti    | ions documented?                                                          |
| • Yes                 | ○ No               | Comments:                                                                 |
| The lab noted all     | corrective action  | s taken.                                                                  |
| d. What is t          | he effect on da    | ata quality/usability according to the case narrative?                    |
|                       |                    | Comments:                                                                 |
| Discrepancies wil     | ll be discussed in | their related sections below.                                             |
| 5. <u>Samples Res</u> | <u>ults</u>        |                                                                           |
| a. Correct a          | nalyses perfor     | rmed/reported as requested on COC?                                        |
| Yes                   | ○ No               | Comments:                                                                 |
|                       |                    |                                                                           |
| b. All appli          | cable holding      | times met?                                                                |
| • Yes                 | ○ No               | Comments:                                                                 |
|                       |                    |                                                                           |

July 2017 Page 3 of 8

| c             | . All solls i               | reported on a dr    | y weight basis?                                                                               |
|---------------|-----------------------------|---------------------|-----------------------------------------------------------------------------------------------|
|               | • Yes                       | ○ No                | Comments:                                                                                     |
|               |                             |                     |                                                                                               |
| d             | l. Are the re<br>the projec | -                   | ess than the Cleanup Level or the minimum required detection level for                        |
|               | • Yes                       | ○ No                | Comments:                                                                                     |
| All L         | ODs for non                 | detect samples we   | re less than the project cleanup level.                                                       |
| e             | . Data qual                 | ity or usability    | affected? Explain.                                                                            |
|               |                             |                     | Comments:                                                                                     |
| N/A           |                             |                     |                                                                                               |
| 6. <u>Q</u> ( | C Samples                   |                     |                                                                                               |
| a             | . Method B                  | Blank               |                                                                                               |
|               | i. One m                    | ethod blank rep     | ported per matrix, analysis and 20 samples                                                    |
|               | • Yes                       | ○ No                | Comments:                                                                                     |
|               |                             |                     |                                                                                               |
|               | ii. All m                   | ethod blank res     | ults less than PQL?                                                                           |
|               | • Yes                       | ○ No                | Comments:                                                                                     |
|               |                             | etected above the d | letection limit in method blank 1466142 but all associated samples were greater than ination. |
|               | iii. If abo                 | ove PQL, what       | samples are affected?                                                                         |
|               |                             |                     | Comments:                                                                                     |
| N/A           |                             |                     |                                                                                               |
|               | iv. Do th                   | e affected sam      | ple(s) have data flags? If so, are the data flags clearly defined?                            |
|               | • Yes                       | ○ No                | Comments:                                                                                     |
| N/A           |                             |                     |                                                                                               |
|               | v. Data o                   | quality or usabi    | lity affected? Explain.                                                                       |
|               |                             |                     | Comments:                                                                                     |
| The           | data quality a              | nd usability were i | not affected.                                                                                 |

July 2017 Page 4 of 8

| i.                 | _                 |                                               | D reported per matrix, analysis and 20 samples? (LCS/LCSD LCS required per SW846)                                                                                                                |
|--------------------|-------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •                  | Yes               | ○ No                                          | Comments:                                                                                                                                                                                        |
| An LCS/I<br>SD-03. | LCSD was          | analyzed for all meth                         | ods. A DoD QSM required MS/MSD was assigned to sample 18NEC-S28-                                                                                                                                 |
| ii                 | . Metals/         | •                                             | LCS and one sample duplicate reported per matrix, analysis and 20                                                                                                                                |
| •                  | Yes               | ○ No                                          | Comments:                                                                                                                                                                                        |
| An LCS/<br>SD-03.  | LCSD was          | s analyzed for all meth                       | nods. A DoD QSM required MS/MSD was assigned to sample 18NEC-S28-                                                                                                                                |
| ii                 | And pro           | ject specified DQ                             | ecoveries (%R) reported and within method or laboratory limits? Os, if applicable. (AK Petroleum methods: AK101 60%-120%, 03 60%-120%; all other analyses see the laboratory QC pages)           |
| 0                  | Yes               | <ul><li>No</li></ul>                          | Comments:                                                                                                                                                                                        |
| All LCS/           | LCSD acci         | uracy requirements we                         | ere met.                                                                                                                                                                                         |
|                    |                   | 18NEC-S28-SD-03 M<br>d 10X, thus no qualifi   | AS and MSD had several recoveries outside of control limit. However, the cation was needed.                                                                                                      |
|                    |                   | C-S28-SD-03 MS fail<br>on, no samples were qu | ed high for RRO at 191%; however, the spike amount was less than the parent palified.                                                                                                            |
| iv                 | laborato<br>MS/MS | ory limits? And pro                           | percent differences (RPD) reported and less than method or object specified DQOs, if applicable. RPD reported from LCS/LCSD sample duplicate. (AK Petroleum methods 20%; all other analyses res) |
| •                  | Yes               | ○ No                                          | Comments:                                                                                                                                                                                        |
| All LCS/           | LCSD pred         | cision requirements we                        | ere met.                                                                                                                                                                                         |
| SW82708            | SIM - the f       | following analytes exc                        | e met with the following exception. eeded the RPD limit of 20%: fluoranthene (88%), phenanthrene (91%), and due to a dilution of 10X.                                                            |
| V                  | . If %R c         | or RPD is outside of                          | of acceptable limits, what samples are affected?                                                                                                                                                 |
|                    |                   |                                               | Comments:                                                                                                                                                                                        |
| N/A                |                   |                                               |                                                                                                                                                                                                  |
| V                  | i. Do the         | affected sample(s                             | ) have data flags? If so, are the data flags clearly defined?                                                                                                                                    |
| •                  | Yes               | ○ No                                          | Comments:                                                                                                                                                                                        |

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

| N/A                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| vii. Data quality or usability affected? (Use comment box to explain)                                                                                                                                                       |
| Comments:                                                                                                                                                                                                                   |
| Data quality and usability were not affected.                                                                                                                                                                               |
| c. Surrogates - Organics Only                                                                                                                                                                                               |
| i. Are surrogate recoveries reported for organic analyses - field, QC and laboratory samples?                                                                                                                               |
| • Yes O No Comments:                                                                                                                                                                                                        |
| All organic analyses were reported with surrogates.                                                                                                                                                                         |
| ii. Accuracy - All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other analyses see the laboratory report pages) |
| ○ Yes • No Comments:                                                                                                                                                                                                        |
| <b>SW8082:</b> Samples 18NEC-S28-SD-01, 18NEC-S28-SD-08, and 18NEC-S28-SD-13 recovered high for Decachlorobiphenyl, however the results were nondetect and did not need qualification.                                      |
| iii. Do the sample results with failed surrogate recoveries have data flags? If so, are the data flags clearly defined?                                                                                                     |
| ○ Yes ○ No Comments:                                                                                                                                                                                                        |
| N/A                                                                                                                                                                                                                         |
| iv. Data quality or usability affected? (Use the comment box to explain.)                                                                                                                                                   |
| ○ Yes    No    Comments:                                                                                                                                                                                                    |
| Data quality and usability were not affected.                                                                                                                                                                               |
| d. Trip blank - Volatile analyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): Water and Soil                                                                                                                     |
| i. One trip blank reported per matrix, analysis and cooler?                                                                                                                                                                 |
| ○ Yes                                                                                                                                                                                                                       |
| Volatile analyses were not included with this SDG, therefore a trip blank was not required.                                                                                                                                 |
| ii. Is the cooler used to transport the trip blank and VOA samples clearly indicated on the COO (If not, a comment explaining why must be entered below)                                                                    |
| ○ Yes    No    Comments:                                                                                                                                                                                                    |
| N/A                                                                                                                                                                                                                         |

July 2017 Page 6 of 8

| iii. All                         | results less         | than PQL?                                                                                                                                          |
|----------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| ○ Yes                            | <ul><li>No</li></ul> | Comments:                                                                                                                                          |
| N/A                              |                      |                                                                                                                                                    |
| iv. If a                         | bove PQL, v          | what samples are affected?                                                                                                                         |
|                                  |                      | Comments:                                                                                                                                          |
| N/A                              |                      |                                                                                                                                                    |
| v. Dat                           | a quality or u       | asability affected? Explain.                                                                                                                       |
|                                  |                      | Comments:                                                                                                                                          |
| Data quality an                  | d usability were     | e not affected.                                                                                                                                    |
| e. Field D                       | ruplicate            |                                                                                                                                                    |
| i. One                           | field duplica        | ate submitted per matrix, analysis and 10 project samples?                                                                                         |
| ○ Yes                            | <ul><li>No</li></ul> | Comments:                                                                                                                                          |
| One duplicate v<br>See SDG 11844 |                      | ith 16 primary samples, though the requirement for one FD per 10 project samples was met.                                                          |
| ii. Sub                          | mitted blind         | to lab?                                                                                                                                            |
| • Yes                            | ○ No                 | Comments:                                                                                                                                          |
| Sample / Dupli<br>18NEC-S28-SI   |                      | S28-SD-02-8                                                                                                                                        |
|                                  |                      | relative percent differences (RPD) less than specified DQOs? 30% water, 50% soil)                                                                  |
|                                  |                      | RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{(R_1+R_2)} \times 100$                                                                              |
|                                  |                      | Where: $R_1$ = Sample Concentration                                                                                                                |
|                                  |                      | $R_2$ = Field Duplicate Concentration ( $R_1$ - $R_2$ )                                                                                            |
| ○ Yes                            | <ul><li>No</li></ul> | Comments:                                                                                                                                          |
| The following a Selenium (52%)   | •                    | Ds greater than 50% in the sample/duplicate 18NEC-S28-SD-02 / 18NEC-S28-SD-02-8:                                                                   |
| iv. Da                           | ta quality or        | usability affected? (Use the comment box to explain why or why not.)                                                                               |
| • Yes                            | $\bigcirc$ No        | Comments:                                                                                                                                          |
|                                  |                      | minimally affected. The analytes listed above are flagged QN in both the parent and un unknown bias. The higher result will be used for reporting. |

| f.           | Decontambelow.) | ination or Equ       | uipment Blank (If not applicable, a comment stating why must be entered |
|--------------|-----------------|----------------------|-------------------------------------------------------------------------|
|              | ○ Yes           | <ul><li>No</li></ul> | Comments:                                                               |
| No ed        | quipment blar   | ıks were submit      | ted with this SDG. See the checklist for SDG 1184430.                   |
|              | i. All rest     | ults less than       | PQL?                                                                    |
|              | ○ Yes           | ○ No                 | Comments:                                                               |
| N/A          |                 |                      |                                                                         |
|              | ii. If abov     | ve PQL, what         | samples are affected?                                                   |
|              |                 |                      | Comments:                                                               |
| N/A          |                 |                      |                                                                         |
|              | iii. Data o     | quality or usa       | bility affected? Explain.                                               |
|              |                 |                      | Comments:                                                               |
| Data         | quality and us  | sability were no     | t affected.                                                             |
| 7. <u>Ot</u> | her Data Fl     | ags/Qualifier        | s (ACOE, AFCEE, Lab Specific, etc.)                                     |
| a.           | . Defined a     | nd appropriat        | e?                                                                      |
|              | • Yes           | ○ No                 | Comments:                                                               |
| Quali        | ifiers applied  | to this data are o   | defined in the Data Quality Assessment appendix of this report.         |

July 2017

Alaska Department of Environmental Conservation • Spill Prevention and Response Division • Contaminated Sites Program

### **Laboratory Data Review Checklist**

| Completed by:                           |
|-----------------------------------------|
| Nathaniel Gingery                       |
| Title:                                  |
|                                         |
| Project Chemist                         |
| Date:                                   |
| 10/19/2018                              |
|                                         |
| CS Report Name:                         |
| Northeast Cape Five-Year Review         |
| Report Date:                            |
| 12/20/2018                              |
| 12/20/2016                              |
| Consultant Firm:                        |
| Jacobs                                  |
| Laboratory Name:                        |
| SGS North America Inc.                  |
|                                         |
| Laboratory Report Number:               |
| 1184430                                 |
| ADEC Ell. Ml                            |
| ADEC File Number: ST LAW MOC 475.38.013 |
| S1 LAW WOC 4/3.30.013                   |
|                                         |
| Hazard Identification Number:           |
|                                         |

| 1. <u>Laboratory</u>                                                                                 |                      |                                                                                                                              |
|------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------|
| a. Did an AI                                                                                         | DEC CS appr          | oved laboratory receive and <u>perform</u> all of the submitted sample analyses?                                             |
| • Yes                                                                                                | ○ No                 | Comments:                                                                                                                    |
| All analyses were                                                                                    | performed by S       | GS North America Inc. in Anchorage, AK.                                                                                      |
|                                                                                                      |                      | nsferred to another "network" laboratory or sub-contracted to an alternate oratory performing the analyses ADEC CD approved? |
| ○ Yes                                                                                                | <ul><li>No</li></ul> | Comments:                                                                                                                    |
| Not applicable.                                                                                      |                      |                                                                                                                              |
| 2. Chain of Cus                                                                                      | tody (CoC)           |                                                                                                                              |
| a. CoC infor                                                                                         | rmation comp         | pleted, signed, and dated (including released/received by)?                                                                  |
| • Yes                                                                                                | ○ No                 | Comments:                                                                                                                    |
|                                                                                                      |                      |                                                                                                                              |
| b. Correct ar                                                                                        | nalyses reque        | sted?                                                                                                                        |
| • Yes                                                                                                | ○ No                 | Comments:                                                                                                                    |
|                                                                                                      |                      |                                                                                                                              |
| 3. <u>Laboratory Sa</u>                                                                              | ample Receip         | ot Documentation                                                                                                             |
| a. Sample/co                                                                                         | ooler tempera        | ture documented and within range at receipt $(0^{\circ} \pm 6^{\circ} \text{ C})$ ?                                          |
| • Yes                                                                                                | ○ No                 | Comments:                                                                                                                    |
| Cooler name, temp<br>1. Pillow Pet 0.9°<br>2. Sham Wow 2.0<br>3. Oxiclean 0.2°C<br>4. Magic Mesh 0.8 | °C                   | emp °C                                                                                                                       |
|                                                                                                      |                      | cceptable - acidified waters, Methanol preserved VOC soil (GRO, BTEX, olvents, etc.)?                                        |
| • Yes                                                                                                | ○ No                 | Comments:                                                                                                                    |
|                                                                                                      |                      |                                                                                                                              |
| c. Sample co                                                                                         | ondition docu        | mented - broken, leaking (Methanol), zero headspace (VOC vials)?                                                             |
| • Yes                                                                                                | ○ No                 | Comments:                                                                                                                    |
| No discrepancies v                                                                                   | were noted.          |                                                                                                                              |

July 2017 Page 2 of 9

|                         | s/preservation     | n, sample temperature outside of acceptable range, insufficient or missing |
|-------------------------|--------------------|----------------------------------------------------------------------------|
| ○ Yes                   | ○ No               | Comments:                                                                  |
| N/A                     |                    |                                                                            |
| e. Data qual            | lity or usabilit   | ry affected? Explain.                                                      |
|                         |                    | Comments:                                                                  |
| Data quality and u      | usability were no  | ot affected.                                                               |
| 4. <u>Case Narrativ</u> | <u>ve</u>          |                                                                            |
| a. Present a            | nd understand      | lable?                                                                     |
| • Yes                   | ○ No               | Comments:                                                                  |
|                         |                    |                                                                            |
| b. Discrepancie         | es, errors or Q    | C failures identified by the lab?                                          |
| • Yes                   | ○ No               | Comments:                                                                  |
|                         |                    |                                                                            |
| c. Were all             | corrective act     | ions documented?                                                           |
| • Yes                   | ○ No               | Comments:                                                                  |
| The lab noted all       | corrective action  | is taken.                                                                  |
| d. What is t            | he effect on d     | ata quality/usability according to the case narrative?                     |
|                         |                    | Comments:                                                                  |
| Discrepancies wil       | ll be discussed in | their related sections below.                                              |
| 5. <u>Samples Res</u>   | <u>ults</u>        |                                                                            |
| a. Correct a            | nalyses perfor     | rmed/reported as requested on COC?                                         |
| • Yes                   | ○ No               | Comments:                                                                  |
|                         |                    |                                                                            |
| b. All applie           | cable holding      | times met?                                                                 |
| • Yes                   | ○ No               | Comments:                                                                  |
|                         |                    |                                                                            |

July 2017 Page 3 of 9

| C. All Soils                       | reported on a d                    | ry weight basis?                                                                                                                                                                               |         |
|------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| • Yes                              | ○ No                               | Comments:                                                                                                                                                                                      |         |
|                                    |                                    |                                                                                                                                                                                                |         |
| d. Are the re                      | _                                  | ess than the Cleanup Level or the minimum required detection le                                                                                                                                | vel for |
| ○ Yes                              | No                                 | Comments:                                                                                                                                                                                      |         |
| The following and 18NEC-S28-SD-3   |                                    | greater than the project cleanup level:                                                                                                                                                        |         |
| SW8270SIM: 2-N                     |                                    | e, Acenaphthene                                                                                                                                                                                |         |
| 18NEC-S28-SD-3<br>SW8082: Aroclor  |                                    |                                                                                                                                                                                                |         |
| SW8270SIM: Ac                      |                                    |                                                                                                                                                                                                |         |
| 18NEC-S28-SD-3<br>SW8082: Aroclor  |                                    |                                                                                                                                                                                                |         |
| SW8270SIM: Ac                      |                                    | ene                                                                                                                                                                                            |         |
| e. Data qual                       | lity or usability                  | affected? Explain.                                                                                                                                                                             |         |
|                                    |                                    | Comments:                                                                                                                                                                                      |         |
| results crosstab inc               | dicate a possible for the found at | ODs greater than the project screening levels are italicized and highlighted in alse nonexceedance.  Site 28 in the past or in current samples, so this analyte is not likely to be presented. |         |
| 6. QC Samples                      |                                    |                                                                                                                                                                                                |         |
| a. Method F                        | Blank                              |                                                                                                                                                                                                |         |
| i. One m                           | nethod blank re                    | ported per matrix, analysis and 20 samples                                                                                                                                                     |         |
| Yes                                | ○ No                               | Comments:                                                                                                                                                                                      |         |
|                                    |                                    |                                                                                                                                                                                                |         |
| ii. All m                          | ethod blank re                     | sults less than PQL?                                                                                                                                                                           |         |
| • Yes                              | ○ No                               | Comments:                                                                                                                                                                                      |         |
| Zinc was detected equipment blank. | l in the method bla                | ank for batch MXX31843. The only sample associated with this method blank                                                                                                                      | is the  |
| iii. If ab                         | ove PQL, what                      | samples are affected?                                                                                                                                                                          |         |
|                                    |                                    | Comments:                                                                                                                                                                                      |         |
| N/A                                |                                    |                                                                                                                                                                                                |         |
|                                    |                                    |                                                                                                                                                                                                |         |

|                         | iv. Do th                              | e arrected sam                                       | iple(s) have data flags? If so, are the data flags clearly defined?                                                                                                                                                                                                                              |
|-------------------------|----------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (                       | • Yes                                  | ○ No                                                 | Comments:                                                                                                                                                                                                                                                                                        |
| N/A                     |                                        |                                                      |                                                                                                                                                                                                                                                                                                  |
|                         | v. Data q                              | uality or usabi                                      | ility affected? Explain.                                                                                                                                                                                                                                                                         |
|                         |                                        |                                                      | Comments:                                                                                                                                                                                                                                                                                        |
| The dat                 | ta quality a                           | nd usability were                                    | not affected.                                                                                                                                                                                                                                                                                    |
| b. I                    | Laborator                              | y Control Sam                                        | nple/Duplicate (LCS/LCSD)                                                                                                                                                                                                                                                                        |
|                         | _                                      |                                                      | /LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD hods, LCS required per SW846)                                                                                                                                                                                                      |
| (                       | ○ Yes                                  | <ul><li>No</li></ul>                                 | Comments:                                                                                                                                                                                                                                                                                        |
| DoD Q<br>MS/MS<br>MS/MS | SM require<br>SD was not<br>SD was not | ed MS/MSDs wer<br>analyzed in AK1<br>analyzed in SW8 | ed for all methods as required. The assigned to samples 18NEC-S28-SD-28 and 18NEC-S28-SD-54. A project specific 02 and AK103 batches XXX40205, XXX40206, and XXX40207. A project specific 3082 batches XXX40175, XXX40180 and XXX40262. A project specific MS/MSD was ges XXX40169 and XXX40174. |
|                         | ii. Metals                             | •                                                    | one LCS and one sample duplicate reported per matrix, analysis and 20                                                                                                                                                                                                                            |
| (                       | • Yes                                  | ○ No                                                 | Comments:                                                                                                                                                                                                                                                                                        |
|                         | S was analy<br>S-S28-SD-5              |                                                      | ods. DoD QSM required MS/MSDs were assigned to samples 18NEC-S28-SD-28 and                                                                                                                                                                                                                       |
|                         | And pi                                 | roject specified                                     | cent recoveries (%R) reported and within method or laboratory limits? d DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK103 60%-120%; all other analyses see the laboratory QC pages)                                                                                              |
| (                       | ○ Yes                                  | <ul><li>No</li></ul>                                 | Comments:                                                                                                                                                                                                                                                                                        |
| All LC                  | S/LCSD ac                              | curacy requireme                                     | ents were met.                                                                                                                                                                                                                                                                                   |
|                         |                                        |                                                      | d MSDs had several recoveries outside of control limits. However, the samples were diffication was needed.                                                                                                                                                                                       |
|                         |                                        |                                                      | nd AK103 MS/MSD recoveries are outside of control limits. The spike amount is less on and no samples were qualified.                                                                                                                                                                             |
|                         | laborat<br>MS/M                        | tory limits? Ar                                      | tive percent differences (RPD) reported and less than method or and project specified DQOs, if applicable. RPD reported from LCS/LCSD, apple/sample duplicate. (AK Petroleum methods 20%; all other analyses C pages)                                                                            |
| (                       | • Yes                                  | ○ No                                                 | Comments:                                                                                                                                                                                                                                                                                        |

| All LCS/LCSD pro    | ecision requirement                 | s were met.                                                                                                                                            |
|---------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| All MS/MSD prec     | ision requirements                  | were met.                                                                                                                                              |
| v. If %R            | or RPD is outsid                    | de of acceptable limits, what samples are affected?                                                                                                    |
|                     |                                     | Comments:                                                                                                                                              |
| N/A                 |                                     |                                                                                                                                                        |
| vi. Do th           | e affected sampl                    | le(s) have data flags? If so, are the data flags clearly defined?                                                                                      |
| • Yes               | ○ No                                | Comments:                                                                                                                                              |
| N/A                 |                                     |                                                                                                                                                        |
| vii. Data           | quality or usabi                    | lity affected? (Use comment box to explain)                                                                                                            |
|                     |                                     | Comments:                                                                                                                                              |
| Data quality and us | sability were not af                | fected.                                                                                                                                                |
| c. Surrogates       | s - Organics On                     | ly                                                                                                                                                     |
| i. Are sur          | rogate recoverie                    | es reported for organic analyses - field, QC and laboratory samples?                                                                                   |
| Yes                 | ○ No                                | Comments:                                                                                                                                              |
| All organic analyse | es were reported wi                 | th surrogates.                                                                                                                                         |
| And pr              | roject specified I                  | nt recoveries (%R) reported and within method or laboratory limits? DQOs, if applicable. (AK Petroleum methods 50-150 %R; all other tory report pages) |
| ○ Yes               | No                                  | Comments:                                                                                                                                              |
| SW8082: Sample      | 18NEC-S28-SD-42                     | 2 recovered low for Decachlorobiphenyl (35%).                                                                                                          |
| AK102 and AK10      | 3 - Several samples                 | s have surrogate failures but are not qualified due dilutions of 5X or greater.                                                                        |
|                     | e sample results<br>learly defined? | with failed surrogate recoveries have data flags? If so, are the data                                                                                  |
| • Yes               | ○ No                                | Comments:                                                                                                                                              |
| SW8082: Sample      | 18NEC-S28-SD-42                     | was labeled QL to indicate a potential low bias.                                                                                                       |
| AK102/103 - Sam     | ples are not qualifie               | ed because they have a dilution 5X or greater.                                                                                                         |
| iv. Data o          | quality or usabil                   | ity affected? (Use the comment box to explain.)                                                                                                        |
| ○ Yes               | No                                  | Comments:                                                                                                                                              |
| Data quality and us | sability were minin                 | nally affected. Results qualified QL are considered estimated with a low bias.                                                                         |

July 2017 Page 6 of 9

| d. Trip blanl<br><u>and Soil</u>                                                                            | k - Volatile a                                                       | nalyses only (GRO, BTEX, Volatile Chlorinated Solvents, etc.): Water                                           |
|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| i. One tri                                                                                                  | ip blank repor                                                       | rted per matrix, analysis and cooler?                                                                          |
| ○ Yes                                                                                                       | <ul><li>No</li></ul>                                                 | Comments:                                                                                                      |
| Volatile analyses                                                                                           | were not include                                                     | ed with this SDG, therefore a trip blank was not required.                                                     |
|                                                                                                             |                                                                      | o transport the trip blank and VOA samples clearly indicated on the COC? explaining why must be entered below) |
| ○ Yes                                                                                                       | <ul><li>No</li></ul>                                                 | Comments:                                                                                                      |
| N/A                                                                                                         |                                                                      |                                                                                                                |
| iii. All re                                                                                                 | esults less tha                                                      | n PQL?                                                                                                         |
| ○ Yes                                                                                                       | <ul><li>No</li></ul>                                                 | Comments:                                                                                                      |
| N/A                                                                                                         |                                                                      |                                                                                                                |
| iv. If abo                                                                                                  | ove PQL, wha                                                         | at samples are affected?                                                                                       |
|                                                                                                             |                                                                      | Comments:                                                                                                      |
| N/A                                                                                                         |                                                                      |                                                                                                                |
| v. Data c                                                                                                   | quality or usal                                                      | pility affected? Explain.                                                                                      |
|                                                                                                             |                                                                      | Comments:                                                                                                      |
| Data quality and u                                                                                          | sability were no                                                     | t affected.                                                                                                    |
| e. Field Dup                                                                                                | olicate                                                              |                                                                                                                |
| i. One fie                                                                                                  | eld duplicate                                                        | submitted per matrix, analysis and 10 project samples?                                                         |
| ○ Yes                                                                                                       | <ul><li>No</li></ul>                                                 | Comments:                                                                                                      |
| Five duplicates we                                                                                          | ere included with                                                    | n 38 primary samples.                                                                                          |
| ii. Subm                                                                                                    | itted blind to                                                       | lab?                                                                                                           |
| • Yes                                                                                                       | ○ No                                                                 | Comments:                                                                                                      |
| Sample / Duplicat<br>18NEC-S28-SD-1<br>18NEC-S28-SD-2<br>18NEC-S28-SD-3<br>18NEC-S28-SD-4<br>18NEC-S28-SD-4 | 7 / 18NEC-S28-<br>7 / 18NEC-S28-<br>8 / 18NEC-S28-<br>1 / 18NEC-S28- | -SD-27-8<br>-SD-38-8<br>-SD-41-8                                                                               |

July 2017 Page 7 of 9

| (Recommended: 30% water, 50% soil)                                                                                                                                                                                                          |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| RPD (%) = Absolute value of: $\frac{(R_1-R_2)}{(R_1+R_2)} \times 100$                                                                                                                                                                       |  |  |  |  |
| Where: $R_1$ = Sample Concentration $R_2 = \text{Field Duplicate Concentration } (R_1-R_2)$ Comments:                                                                                                                                       |  |  |  |  |
| ○ Yes    No                                                                                                                                                                                                                                 |  |  |  |  |
| The following analyte had RPDs greater than 50%:  18NEC-S28-SD-17 / 18NEC-S28-SD-17-8:  SW8270SIM: Benzo(a)anthracene (72.6%)                                                                                                               |  |  |  |  |
| 18NEC-S28-SD-27 / 18NEC-S28-SD-27-8                                                                                                                                                                                                         |  |  |  |  |
| SW6020:<br>Lead (65.3%)<br>Zinc (69.3%)<br>SW8270SIM:<br>Fluorene (65.4%)                                                                                                                                                                   |  |  |  |  |
| 18NEC-S28-SD-38 / 18NEC-S28-SD-38-8 AK102: DRO (74%) AK102SG: DRO (68.8%) SW8270SIM: 1-Methylnaphthalene (125.8%) 2-Methylnaphthalene (123.5%) Acenaphthalene (122.5%) Fluorene (161.8%) Naphthalene (53.8%) Phenanthrene (112.2%)          |  |  |  |  |
| 18NEC-S28-SD-41 / 18NEC-S28-SD-41-8<br>AK102SG:<br>DRO (51.6%)                                                                                                                                                                              |  |  |  |  |
| 18NEC-S28-SD-48 / 18NEC-S28-SD-48-8<br>SW6020:<br>Lead (68.9%)<br>Zinc (75.8%)<br>SW8082:<br>Aroclor-1260 (141%)<br>SW8270SIM:<br>1-Methylnaphthalene (55.1%)<br>2-Methylnaphthanele (56.2%)<br>Naphthalene (51.4%)<br>Phenanthrene (54.4%) |  |  |  |  |
| iv. Data quality or usability affected? (Use the comment box to explain why or why not.)                                                                                                                                                    |  |  |  |  |
|                                                                                                                                                                                                                                             |  |  |  |  |

iii. Precision - All relative percent differences (RPD) less than specified DQOs?

duplicate samples to indicate an unknown bias. The higher result will be used for reporting.

Data quality and usability are minimally affected. The analytes listed above are flagged QN in both the parent and

| f. Decontam below.) | ination or Equ       | ipment Blank (If not applicable, a comment stating why must be entered                                                                               |
|---------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| ○ Yes               | <ul><li>No</li></ul> | Comments:                                                                                                                                            |
| One equipment bla   | ank, 18NEC-EBO       | 1-WG, was included with this SDG.                                                                                                                    |
| i. All res          | ults less than l     | QL?                                                                                                                                                  |
| • Yes               | ○ No                 | Comments:                                                                                                                                            |
| 1 * *               |                      | of Naphthalene (0.0000079 mg/kg) and Zinc (0.00622 mg/kg). All samples were mes the equipment blank contamination, thus no qualification was needed. |
| ii. If abo          | ve PQL, what         | samples are affected?                                                                                                                                |
|                     |                      | Comments:                                                                                                                                            |
| N/A                 |                      |                                                                                                                                                      |
| iii. Data           | quality or usal      | ility affected? Explain.                                                                                                                             |
|                     |                      | Comments:                                                                                                                                            |
| Data quality and u  | sability were not    | affected.                                                                                                                                            |
| 7. Other Data Fl    | lags/Qualifiers      | (ACOE, AFCEE, Lab Specific, etc.)                                                                                                                    |
| a. Defined a        | nd appropriate       | ?                                                                                                                                                    |
| • Yes               | ○ No                 | Comments:                                                                                                                                            |
| Qualifiers applied  | to this data are d   | efined in the Data Quality Assessment appendix of this report.                                                                                       |

July 2017 Page 9 of 9

# **EXHIBIT F2-4 Laboratory Deliverables**

(Provided electronically on CD)

## **EXHIBIT F2-5 Biogenic Chromatograms**

Signal: 15011.D/FID2B.ch

```
Quantitation Report
```

3:42 pm Acq On : 15 Aug 2018 Signal(s) : FID2B.ch Data File : 15011.D Data Path : Y:\08\SF\DATA\081518B.SEC\

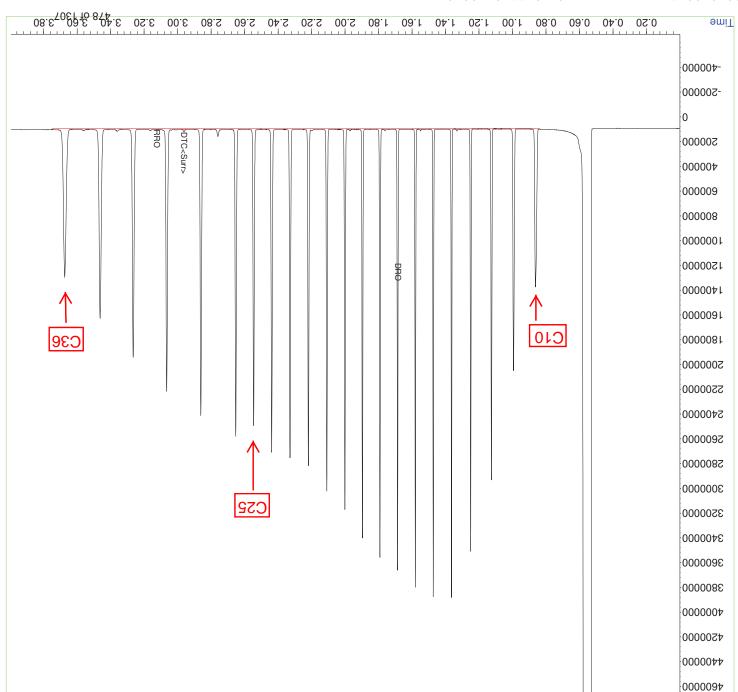
Operator : CMS

SAN : Sample

Sample Multiplier: 1 z : IsiV 21A Misc

Integration File: autointl.e

Quant Title : DRO/RRO by Method AK 102/103 Quant Method : Y:\08\SF\METHOD\SFR2018-0815A.M \$1:83:71 21 puA :9miT JnsuQ


QLast Update : Wed Aug 15 17:10:45 2018

Response via : Initial Calibration

Integrator: ChemStation

Signal Info : Signal Phase: .țal əmuloV

\_esnodseA



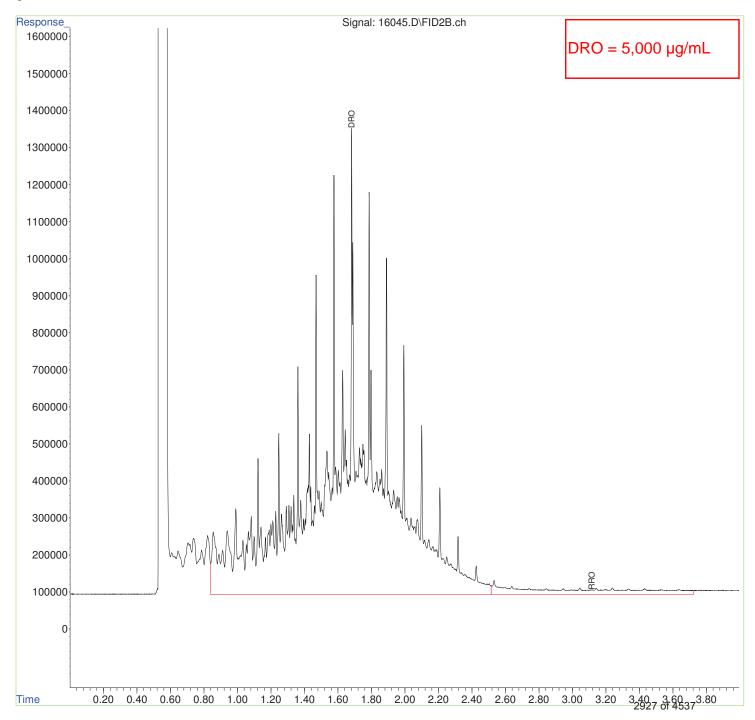
Data Path: Y:\08\SF\DATA\081618A.SEC\

Data File : 16045.D Signal(s) : FID2B.ch

Acq On : 16 Aug 2018 6:47 pm

Operator : VDL Sample : CCVB

Misc


ALS Vial : 3 Sample Multiplier: 1

Integration File: autoint1.e Quant Time: Aug 20 10:37:46 2018

Quant Method: Y:\08\SF\METHOD\SFR2018-0815C.M Quant Title : DRO/RRO by Method AK 102/103 QLast Update : Wed Aug 15 17:10:45 2018 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info :



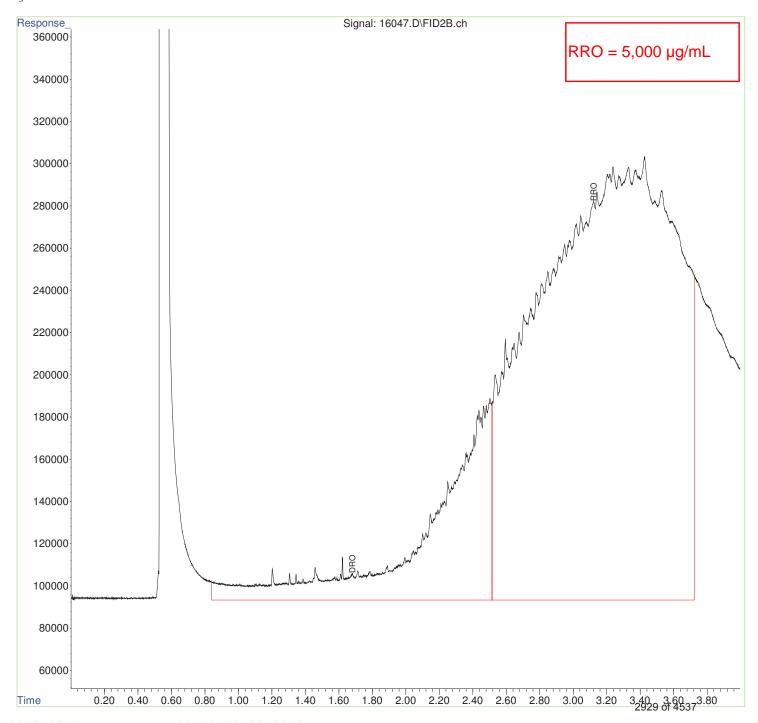
Data Path: Y:\08\SF\DATA\081618A.SEC\

Data File : 16047.D Signal(s) : FID2B.ch

Acq On : 16 Aug 2018 6:56 pm

Acq On : 16 . Operator : VDL Sample : CCVR

Misc


ALS Vial : 4 Sample Multiplier: 1

Integration File: autoint1.e Quant Time: Aug 20 10:38:07 2018

Quant Method: Y:\08\SF\METHOD\SFR2018-0815C.M Quant Title : DRO/RRO by Method AK 102/103 QLast Update : Wed Aug 15 17:10:45 2018 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info :



Data Path : Y:\08\SF\DATA\081518B.SEC\

Data File : 15103.D
Signal(s) : FID2B.ch

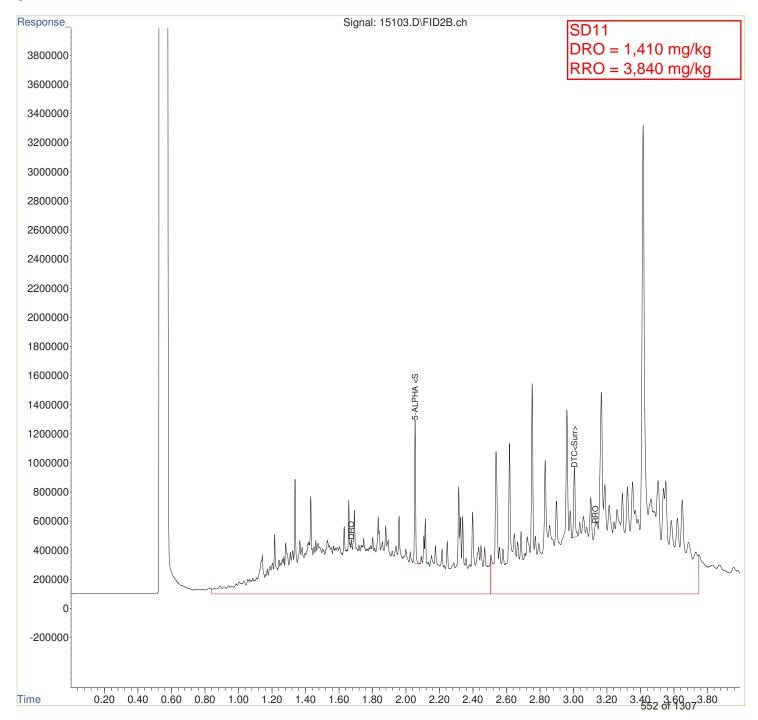
Acq On : 15 Aug 2018 11:17 pm

Operator : CMS

Sample : 1184373014

Misc :

ALS Vial: 92 Sample Multiplier: 1


Integration File: autoint1.e
Quant Time: Aug 16 12:38:08 2018

Quant Method: Y:\08\SF\METHOD\SFR2018-0815A.M Quant Title: DRO/RRO by Method AK 102/103 QLast Update: Wed Aug 15 17:10:45 2018

Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. : Signal Phase : Signal Info :



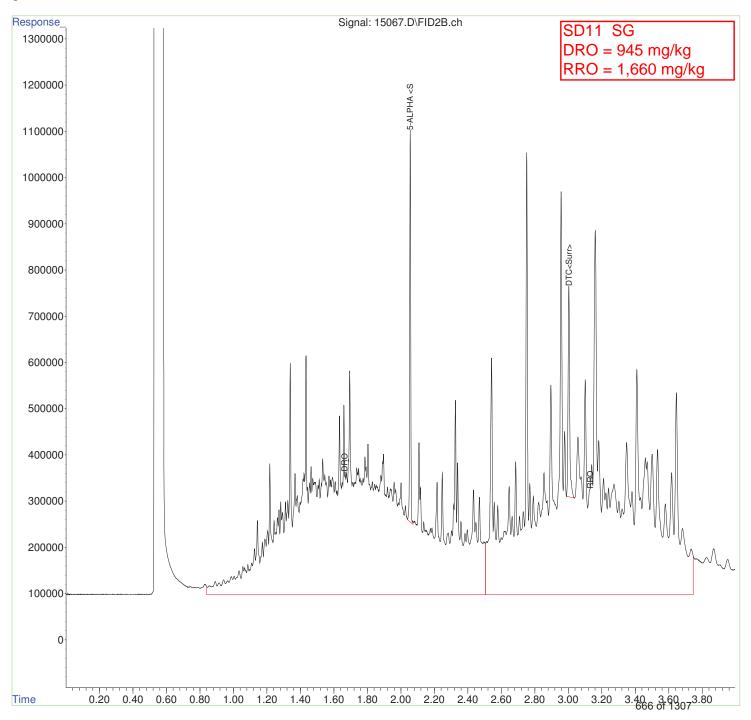
Data Path: Y:\08\SF\DATA\081518B.SEC\

Data File: 15067.D Signal(s) : FID2B.ch

Acq On : 15 Aug 2018 8:21 pm

Operator : CMS

Sample : 1184373014 SG


Misc

ALS Vial : 76 Sample Multiplier: 1

Integration File: autoint1.e Quant Time: Aug 16 12:10:56 2018

Quant Method: Y:\08\SF\METHOD\SFR2018-0815A.M Quant Title : DRO/RRO by Method AK 102/103 QLast Update : Wed Aug 15 17:10:45 2018 Response via : Initial Calibration

Integrator: ChemStation

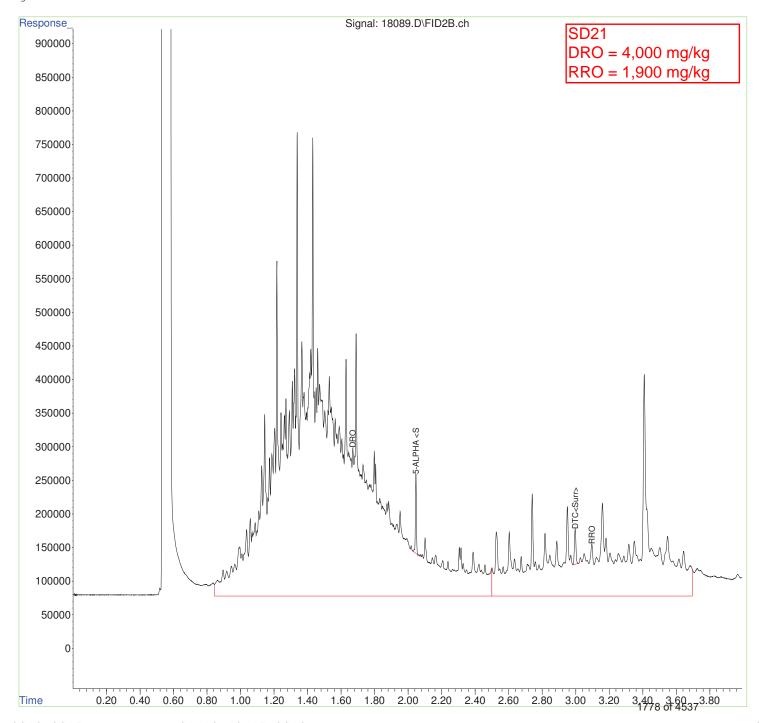


Data File : 18089.D Signal(s) : FID2B.ch

Acq On : 18 Aug 2018 4:41 pm

Operator : VDL

Sample : 1184430006 10X


Misc

ALS Vial : 131 Sample Multiplier: 10

Integration File: autoint1.e
Quant Time: Aug 20 19:10:25 2018

Quant Method : Y:\08\SF\METHOD\SFR2018-0815E.M Quant Title : DRO/RRO by Method AK 102/103 QLast Update : Wed Aug 15 17:10:45 2018 Response via : Initial Calibration

Integrator: ChemStation

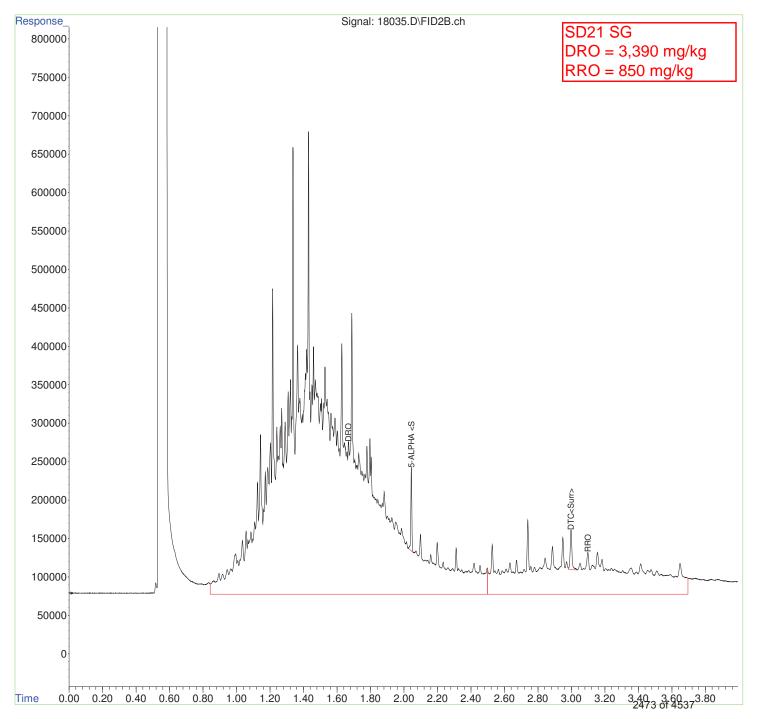


Data File: 18035.D Signal(s) : FID2B.ch

Acq On : 18 Aug 2018 12:11 pm

Operator : VDL

: 1184430006 SG Sample


Misc

ALS Vial : 109 Sample Multiplier: 1

Integration File: autoint1.e Quant Time: Aug 21 10:25:58 2018

Quant Method : Y:\08\SF\METHOD\SFR2018-0815E.M Quant Title : DRO/RRO by Method AK 102/103 QLast Update : Wed Aug 15 17:10:45 2018 Response via : Initial Calibration

Integrator: ChemStation



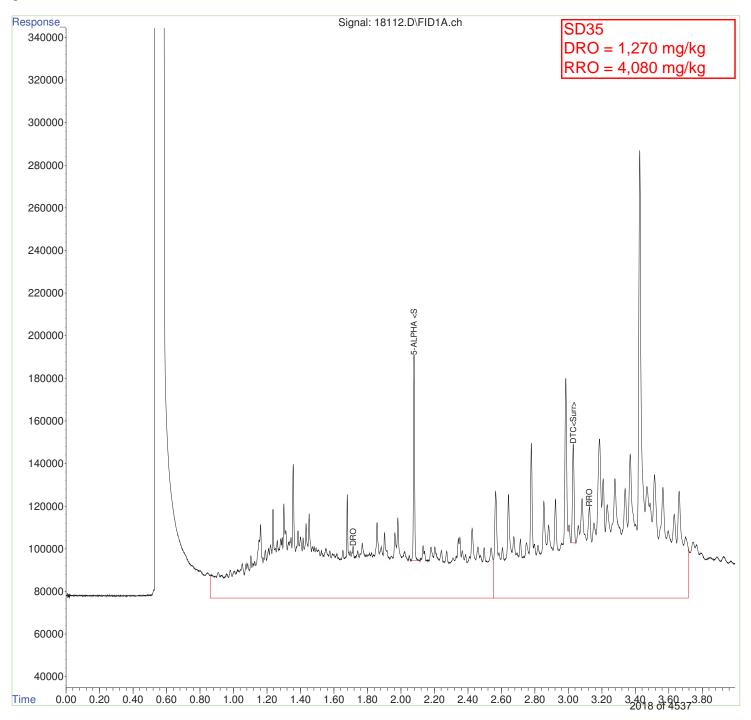
Data File : 18112.D Signal(s) : FID1A.ch

Acq On : 18 Aug 2018 6:10 pm

Operator : VDL

Sample : 1184430023 10X

Misc


ALS Vial : 43 Sample Multiplier: 10

Integration File: autoint1.e
Quant Time: Aug 21 15:18:00 2018

Quant Method: Y:\08\SF\METHOD\SFF2018-0815F.M Quant Title: DRO/RRO by Method AK 102/103 QLast Update: Wed Aug 15 13:06:29 2018

Response via : Initial Calibration

Integrator: ChemStation



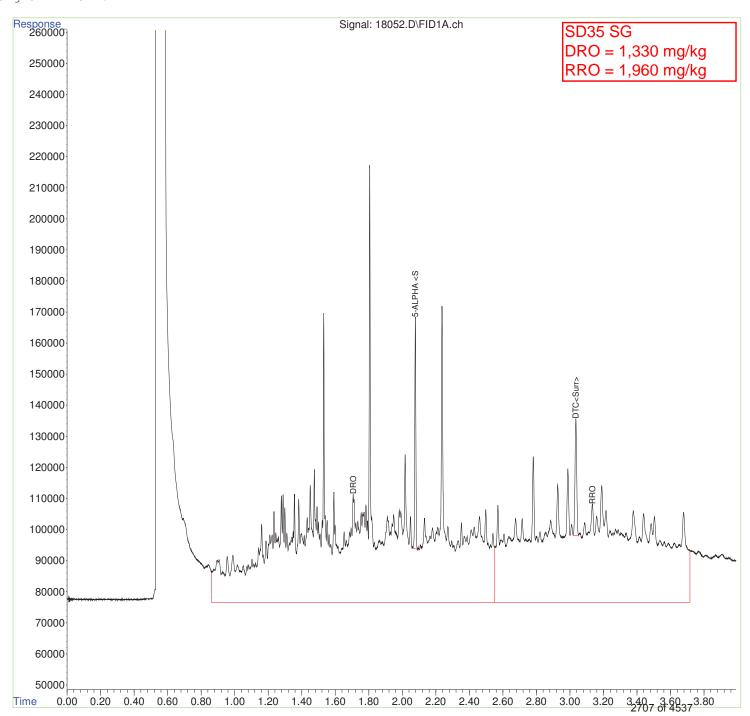
Data File : 18052.D Signal(s) : FID1A.ch

Acq On : 18 Aug 2018 1:31 pm

Operator : VDL

sample : 1184430023 SG

Misc


ALS Vial : 20 Sample Multiplier: 1

Integration File: autoint1.e
Quant Time: Aug 21 14:55:25 2018

Quant Method: Y:\08\SF\METHOD\SFF2018-0815F.M Quant Title: DRO/RRO by Method AK 102/103 QLast Update: Wed Aug 15 13:06:29 2018

Response via : Initial Calibration

Integrator: ChemStation

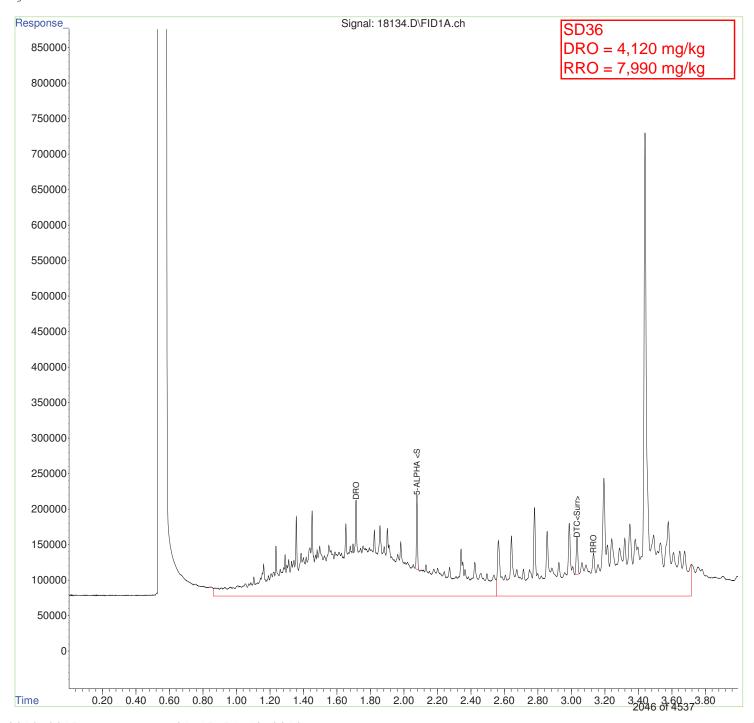


Data File: 18134.D Signal(s) : FID1A.ch

Acq On : 18 Aug 2018 8:01 pm

Operator : VDL

Sample : 1184430032 10X


Misc

ALS Vial : 62 Sample Multiplier: 10

Integration File: autoint1.e Quant Time: Aug 21 15:27:29 2018

Quant Method: Y:\08\SF\METHOD\SFF2018-0815F.M Quant Title : DRO/RRO by Method AK 102/103 QLast Update : Wed Aug 15 13:06:29 2018 Response via : Initial Calibration

Integrator: ChemStation



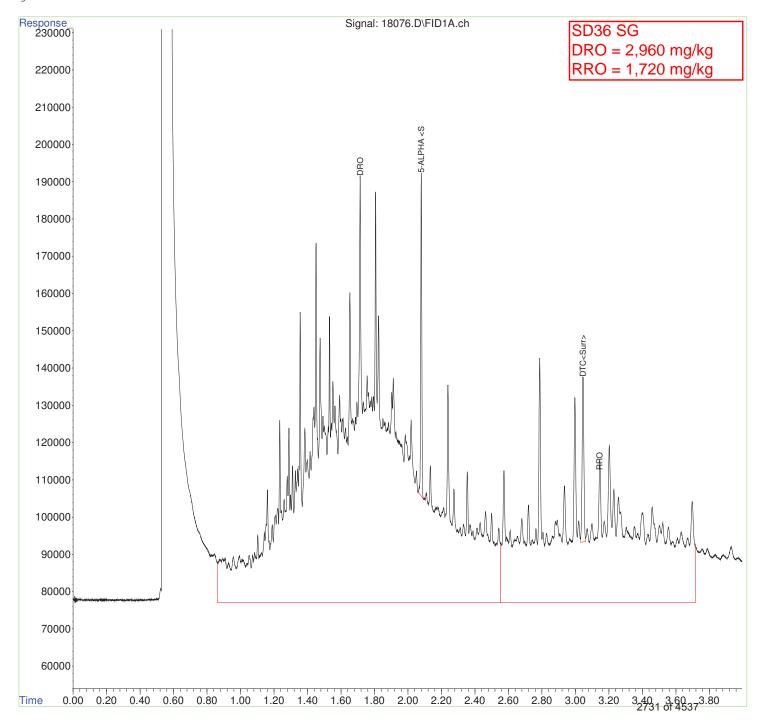
Data File : 18076.D Signal(s) : FID1A.ch

Acq On : 18 Aug 2018 3:31 pm

Operator : VDL

Sample : 1184430032 SG

Misc


ALS Vial : 29 Sample Multiplier: 1

Integration File: autoint1.e
Quant Time: Aug 21 15:06:01 2018

Quant Method: Y:\08\SF\METHOD\SFF2018-0815F.M Quant Title: DRO/RRO by Method AK 102/103 QLast Update: Wed Aug 15 13:06:29 2018

Response via : Initial Calibration

Integrator: ChemStation

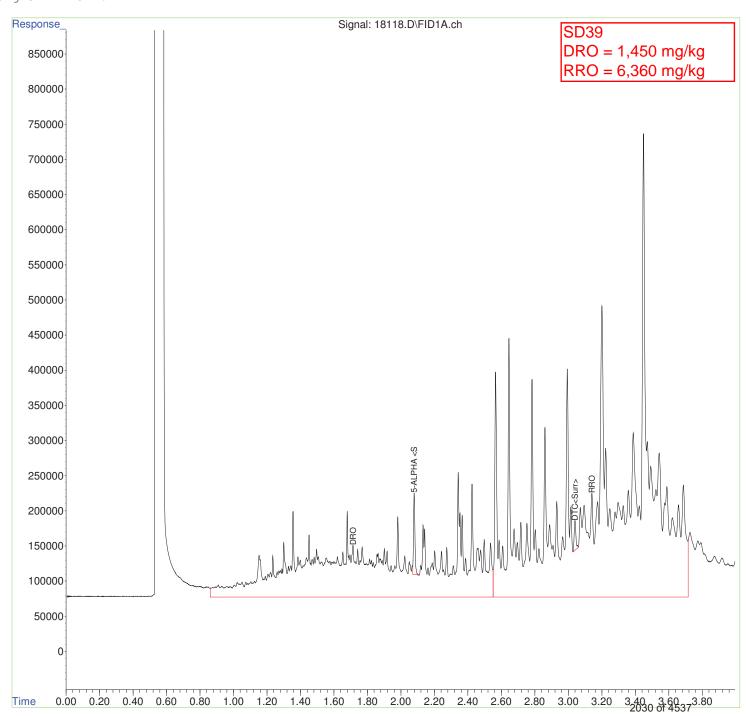


Data File: 18118.D Signal(s) : FID1A.ch

Acq On : 18 Aug 2018 6:40 pm

Operator : VDL

: 1184430026 10X Sample


Misc

ALS Vial Sample Multiplier: 10 : 46

Integration File: autoint1.e Quant Time: Aug 21 15:22:22 2018

Quant Method: Y:\08\SF\METHOD\SFF2018-0815F.M Quant Title : DRO/RRO by Method AK 102/103 QLast Update : Wed Aug 15 13:06:29 2018 Response via : Initial Calibration

Integrator: ChemStation



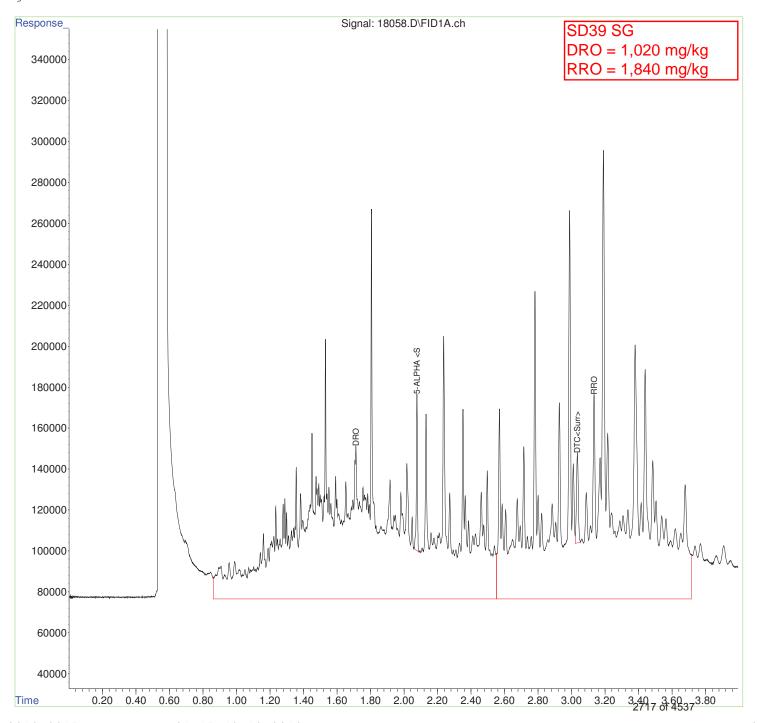
Data File : 18058.D Signal(s) : FID1A.ch

Acq On : 18 Aug 2018 2:01 pm

Operator : VDL

Sample : 1184430026 SG

Misc :


ALS Vial : 23 Sample Multiplier: 1

Integration File: autoint1.e
Quant Time: Aug 21 14:58:36 2018

Quant Method: Y:\08\SF\METHOD\SFF2018-0815F.M Quant Title: DRO/RRO by Method AK 102/103 QLast Update: Wed Aug 15 13:06:29 2018

Response via : Initial Calibration

Integrator: ChemStation



Data File : 18120.D Signal(s) : FID1A.ch

Acq On : 18 Aug 2018 6:50 pm

Operator : VDL

sample : 1184430027 10X

Misc

ALS Vial : 47 Sample Multiplier: 10

Integration File: autoint1.e
Quant Time: Aug 21 15:24:10 2018

Quant Method: Y:\08\SF\METHOD\SFF2018-0815F.M Quant Title: DRO/RRO by Method AK 102/103 QLast Update: Wed Aug 15 13:06:29 2018

Response via : Initial Calibration

Integrator: ChemStation



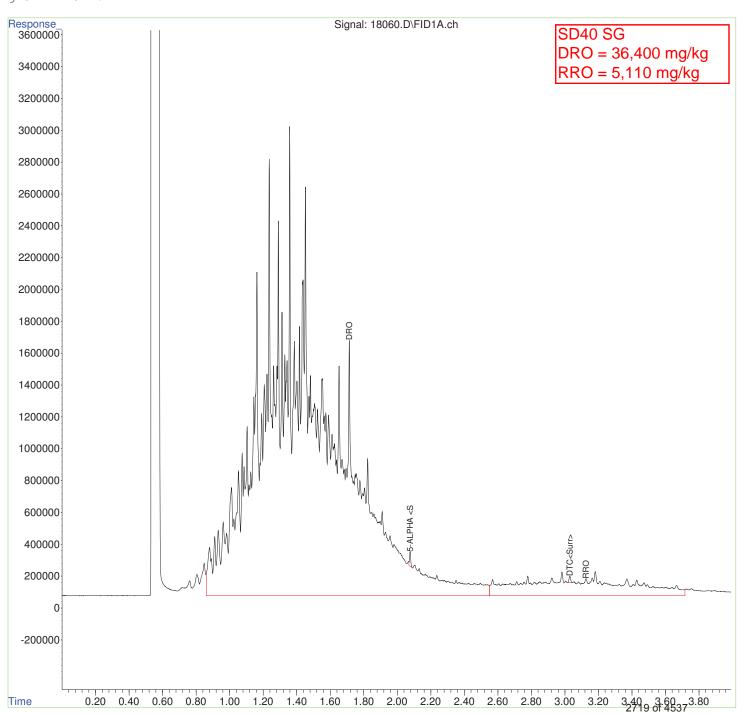
Data File : 18060.D Signal(s) : FID1A.ch

Acq On : 18 Aug 2018 2:11 pm

Operator : VDL

Sample : 1184430027 SG

Misc


ALS Vial : 24 Sample Multiplier: 1

Integration File: autoint1.e
Quant Time: Aug 21 14:59:50 2018

Quant Method: Y:\08\SF\METHOD\SFF2018-0815F.M Quant Title: DRO/RRO by Method AK 102/103 QLast Update: Wed Aug 15 13:06:29 2018

Response via : Initial Calibration

Integrator: ChemStation



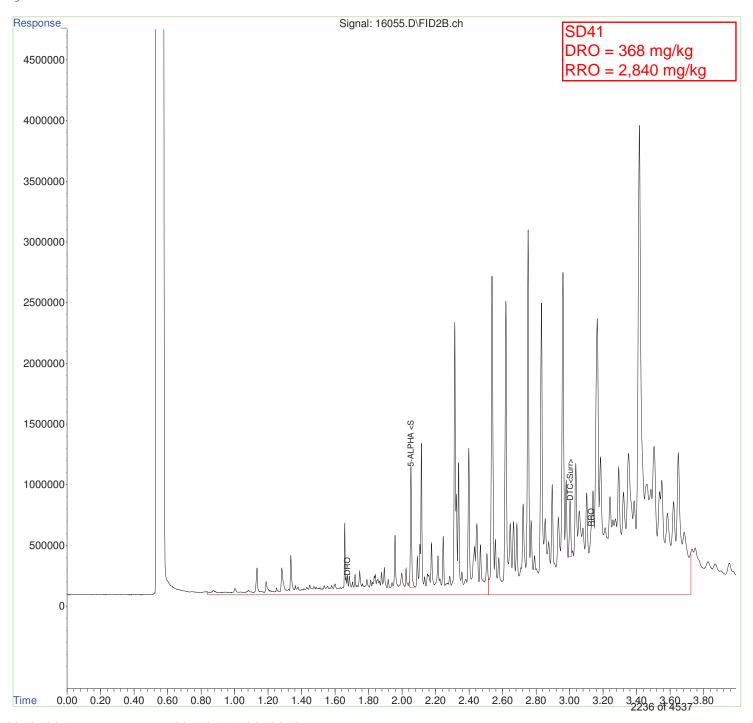
Data Path: Y:\08\SF\DATA\081618A.SEC\

Data File : 16055.D Signal(s) : FID2B.ch

Acq On : 16 Aug 2018 7:36 pm

Operator : VDL

Sample : 1184430044


Misc :

ALS Vial : 118 Sample Multiplier: 1

Integration File: autoint1.e
Quant Time: Aug 20 10:40:57 2018

Quant Method: Y:\08\SF\METHOD\SFR2018-0815C.M Quant Title: DRO/RRO by Method AK 102/103 QLast Update: Wed Aug 15 17:10:45 2018 Response via: Initial Calibration

Integrator: ChemStation



Data Path: Y:\08\SF\DATA\081618A.SEC\

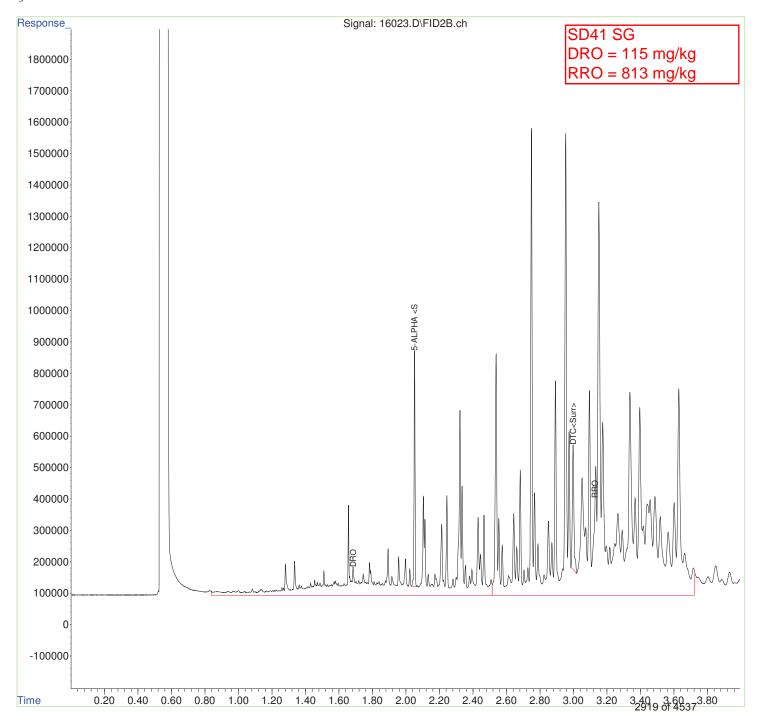
Data File : 16023.D Signal(s) : FID2B.ch

Acq On : 16 Aug 2018 4:59 pm

Operator : VDL

Sample : 1184430044 SG

Misc :


ALS Vial: 104 Sample Multiplier: 1

Integration File: autoint1.e
Quant Time: Aug 20 14:51:19 2018

Quant Method: Y:\08\SF\METHOD\SFR2018-0815C.M Quant Title: DRO/RRO by Method AK 102/103 QLast Update: Wed Aug 15 17:10:45 2018

Response via: Initial Calibration

Integrator: ChemStation



## **ATTACHMENT F-3** Field Documentation



| A | C | 26 | P |
|---|---|----|---|
|   |   | 25 | > |

|       |            | 10          |             | BS° PROJECT: Northeast Cape DATE: \$ Aug 18                                                                                   |
|-------|------------|-------------|-------------|-------------------------------------------------------------------------------------------------------------------------------|
|       | SEDIM      | IENT S      |             | G FORM SITE ID: 51 to 28 SITE LOCATION:                                                                                       |
|       | depth (ft) | Lithology   | Sample Int. | Start time H:17 1017                                                                                                          |
|       | -          | 0,0         | ES .        | Description (lithology, odor/staining, sample ID)  Location ID: 18NEC - 528-50-01  Sotustated Sandy Silt, no odar or Staining |
|       |            | 0.5         |             | Contains some root mass                                                                                                       |
| ao te |            | 1.0         |             | substrate (rock/gravel)                                                                                                       |
|       |            | <i>t</i> .5 |             |                                                                                                                               |
|       |            |             |             |                                                                                                                               |

| depth (ft) | Lithology | Sample Int. | Start time 1035  Description (lithology, odor/staining, sample ID)  Location ID: 18NEC - SUS-SD-02                            |
|------------|-----------|-------------|-------------------------------------------------------------------------------------------------------------------------------|
|            | 0.5       |             | saturated sandy silt, no odor or staining (sheen)  timited root mass minimal  sample 1D 18NEC-S28-SD-02 Dup 18NEC-528-SD-02-8 |
|            | 0.8       |             | substrate (rock/gravel)                                                                                                       |
|            |           |             |                                                                                                                               |
|            |           |             |                                                                                                                               |

| <b>JACOBS</b>          |  |
|------------------------|--|
| SEDIMENT SAMPLING FORM |  |

PROJECT: Northeast Cape DATE: 17 Aug. 2018 SITE ID: Site 28 SITE LOCATION:

| FIEL | D PEF | RSON | NEL: |
|------|-------|------|------|
|------|-------|------|------|

|         | depth (ft) | Lithology | Sample Int. | Start time 1050  Description (lithology, odor/staining, sample ID)  Location ID: -03 |
|---------|------------|-----------|-------------|--------------------------------------------------------------------------------------|
| *       |            | 5.0       |             | saturated silty sand no odor, no sheen no vegetation, timited as minimal root mass   |
| ang veg | er-        | 05        |             | sample ID 18NEC-528-SD-08 Collected MS/MSD total 4 802 jacks                         |
| u veg   |            | 18        |             | substrate (rock/gravel)                                                              |
|         |            |           |             |                                                                                      |
|         | Ξ          |           |             |                                                                                      |

| depth (ft) | Lithology | Sample Int. | Start time 1108  Description (lithology, odor/staining, sample ID)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Location ID: -04        |
|------------|-----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|            | 0.0       |             | Saturated silty sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nowor no sheen          |
|            | 0.5       |             | sample 10 18NEC-528-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50-04                   |
| _          | 0:7       |             | location moved see log<br>substrate (rock/gravel)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | book/due to vegetation) |
|            | 0.8       |             | substrate (10CK/gravel)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |
|            |           |             | The Man and the Control of the Contr |                         |
|            |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75.001.00 10.002.20     |
|            |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
|            | 1000      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
|            |           | _           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |

PROJECT: Northeast Cape DATE: 7 Aug. 18

SEDIMENT SAMPLING FORM

SITE ID: Site 28 SITE LOCATION:

| depth (ft) | Lithology | Sample Int. | Sample time 1115  Description (lithology, odor/staining, sample ID)  Location ID: -05 |
|------------|-----------|-------------|---------------------------------------------------------------------------------------|
|            | 0.0       |             | saturated silty sand no odor, no sheen                                                |
|            |           |             | 3                                                                                     |
|            |           |             | the minimal root mass                                                                 |
| _          | 0.5       |             | Sample 1D 18NEC-528-50-05                                                             |
| -          | 0 57      |             | 34 MARCE 23 28 30 03                                                                  |
|            | 0.1       |             | -substrate (10ck, gravel)                                                             |
|            | 10        |             |                                                                                       |
|            |           |             |                                                                                       |
|            |           |             |                                                                                       |
|            |           |             |                                                                                       |
| -          |           |             |                                                                                       |
|            |           |             | Combined in Market Market and Combined and Combined                                   |
| - 81       |           |             |                                                                                       |
| _          |           |             |                                                                                       |
| -          |           |             |                                                                                       |
|            |           |             |                                                                                       |

| depth (ft) | Lithology | Sample Int. | Sample time 1125  Description (lithology, odor/staining, sample ID)  Location ID: -06 |
|------------|-----------|-------------|---------------------------------------------------------------------------------------|
|            | 0.0       |             | saturated silty sand no odor, no sheer                                                |
| _          |           |             | minimal root mass                                                                     |
|            | 0.5       |             | sample 10 18NEC-528-50-06                                                             |
|            | 1.5       |             |                                                                                       |
|            | 2.0       |             | substrate (rock, gravel)                                                              |
|            |           |             | Bottelland                                                                            |
|            |           |             |                                                                                       |
|            |           |             |                                                                                       |

JACOBS\*
SEDIMENT SAMPLING FORM

PROJECT: Northeast Cape DATE: 17 Aug. 2018

SITE ID: Si +c 28 SITE LOCATION:

| Lithology | Sample Int. | sample time 1133                                                 |                   |
|-----------|-------------|------------------------------------------------------------------|-------------------|
| 5         | San         | Description (lithology, odor/staining, sample ID)                | Location ID: 07   |
| 0.0       |             | saturated sitty sand                                             | no sheen, no odor |
|           |             | some root mass                                                   |                   |
| 0.5       |             |                                                                  |                   |
| 0.6       |             | 1 2116                                                           |                   |
| 1.0       | Su          | Sandy to sitt<br>sorge Sample 10 13NEC-528-50-03<br>Frock/gravel |                   |
|           |             |                                                                  |                   |
|           |             |                                                                  |                   |
| 3 3 3     | _           |                                                                  |                   |
|           |             |                                                                  |                   |
|           | _           |                                                                  |                   |
|           |             |                                                                  |                   |
|           |             |                                                                  |                   |

| depth (ft) | Lithology | Sample Int. | Sample time 1145  Description (lithology, odor/staining, sample ID)  Location ID: -08 |
|------------|-----------|-------------|---------------------------------------------------------------------------------------|
|            | 0.0       |             | saturated sandy silt no odor, no sheen                                                |
|            | 0.5       |             | some root mass                                                                        |
|            | 1.0       |             |                                                                                       |
|            | 1.5       |             |                                                                                       |
|            | 2.0       |             | substrate sample 10 ISNEC-S28-S0-08                                                   |

PROJECT: Northeast Cape DATE: 8-7-18

SEDIMENT SAMPLING FORM

SITE ID: Site 28

SITE LOCATION:

| depth (ft) | Lithology | Sample Int. | Sample time 1153  Description (lithology, odor/staining, sample ID) | Location ID: - 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------|-----------|-------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | 0.0       |             | saturated sandy silt                                                | no odor, no sheen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | 0.5       |             | Some root mass<br>saturated silty Sand<br>some root mass            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | 1.0       |             |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | 1.5       |             |                                                                     | DESIGNATO TO THE PERSON OF THE |
| =          | 2.0       |             | stopped Sample 10 18 NEC                                            | 528-50-09<br>K Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| depth (ft) | Lithology | Sample Int. | Sample time (201  Description (lithology, odor/staining, sample ID) | Location ID: - 10          |
|------------|-----------|-------------|---------------------------------------------------------------------|----------------------------|
|            | 0.0       |             | saturated silty sand                                                | no odor ino sheen          |
|            | 0.5       |             | some root mass                                                      | Strong organic sme         |
|            | į. V      |             |                                                                     |                            |
|            | 1.5       |             |                                                                     |                            |
|            | 2.0       |             | stopped Sample 10 18NE reached max depth according to               | EC-528-50-10]<br>work plan |

PROJECT: Northeast Cape DATE: 7 Aug. 18

SITE ID: SITE LOCATION: SEDIMENT SAMPLING FORM

| depth (ft) | Lithology | Sample Int. | Sample time 1211  Description (lithology, odor/staining, sample ID)                                  | Location ID: - 11            |
|------------|-----------|-------------|------------------------------------------------------------------------------------------------------|------------------------------|
|            | 0.0       |             | saturated sandy silt                                                                                 | no odor, no sheen            |
|            | 0.5       |             | some root mass                                                                                       |                              |
|            | 1.0       |             |                                                                                                      |                              |
|            | 1.5       |             |                                                                                                      |                              |
|            | 2.0       |             | Stopped Sample 10: 18NEC-52 reached max depth according location moved ('s to work plan' vegetation. | 28-SD-11) ee logbook) due to |

| depth (ft) | Lithology | Sample Int. | Sample time 1221  Description (lithology, odor/staining, sample ID)  Location ID: -12 |
|------------|-----------|-------------|---------------------------------------------------------------------------------------|
|            | 0.0       |             | saturated sandy silt no odor, no sheen                                                |
| _          | 0.5       |             |                                                                                       |
| =          | 6-1       |             |                                                                                       |
|            | 1.5       |             |                                                                                       |
|            | 2.0       |             | stopped Sample 1D 18 NEC-528-5D-12 Greached max depth according to Work Plan          |

PROJECT: Northeast Cape DATE: 7 Aug. 18

SITE ID: Site 28 SEDIMENT SAMPLING FORM

SITE LOCATION:

| Lithology | Sample Int. | Sample time: 1448  Description (lithology, odor/staining, sample ID) | Location ID: ~13        |
|-----------|-------------|----------------------------------------------------------------------|-------------------------|
| 0.0       |             | saturated sandy sit                                                  | petroleum odor<br>Sheen |
| 0.5       |             | some root mats                                                       |                         |
| (.6)      |             |                                                                      |                         |
| 1.5       |             |                                                                      |                         |
| 2.0       |             | Stopireach max depth according                                       | to workplan             |
|           |             | Sample ID: 18NEC-528-50                                              | )-13                    |

| depth (ft) | Sample Int. | Sample time 1500  Description (lithology, odor/staining, sample ID) | Location ID:             |
|------------|-------------|---------------------------------------------------------------------|--------------------------|
| 0.0        | E           | Saturated Sandy Silt                                                | petrole um odor<br>Sheen |
| 0.5        | E           | an Some root mass<br>moderate                                       |                          |
| -1.0       |             |                                                                     |                          |
| i.5        |             | refusal; hard to sta thick sitt                                     | System sales             |
| 2.0        |             | Sample ID 18NEC-528-                                                | 50-14                    |

| <b>JACOBS</b>          |  |
|------------------------|--|
| SEDIMENT SAMPLING FORM |  |

PROJECT: Northeast Cape DATE: 7 Aug. 18

SITE ID: Site 28 SITE LOCATION:

| FIELD | <b>PERSO</b> | NNEL: |
|-------|--------------|-------|
|-------|--------------|-------|

| depth (ft) | Lithology | Sample Int. | Sample time. 1517  Description (lithology, odor/staining, sample ID) | Location ID: 45         |
|------------|-----------|-------------|----------------------------------------------------------------------|-------------------------|
|            | 0.0       |             | Saturated Sandy silt                                                 | petroleum odor<br>Sheen |
|            | 0.5       |             | moderate root mass                                                   |                         |
|            | 1.0       |             |                                                                      |                         |
|            | 1.5       |             |                                                                      |                         |
|            | 20        |             | sample ID: 18NEC                                                     | according to work plan  |
|            |           |             |                                                                      |                         |

| Lithology Sample Int. | Sample time 1528  Description (lithology, odor/staining, sample ID) | Location ID: -16        |
|-----------------------|---------------------------------------------------------------------|-------------------------|
| 0.0                   | saturated silty sand                                                | petroleum odor<br>Sheen |
| 0.5                   |                                                                     |                         |
| 1.0                   |                                                                     |                         |
| 1.5                   | sample 10: 18 NEC-                                                  | 528 -50-16              |
| 20                    | stopped, max depth according to u                                   | sork plan               |

| J | A | C | 0 | B | 5 |  |
|---|---|---|---|---|---|--|
|   |   |   |   |   |   |  |

PROJECT: Northeast Cape DATE: 7 Aug. 18

SEDIMENT SAMPLING FORM

SITE ID: Site 28 SITE LOCATION:

| lithology | Sample Int. | Description (lithology, odor/staining, sample ID)  Location ID: 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.        | 0           | Saturated sandy silt Strong petroleum odar Sheen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|           |             | moderate root mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0.5       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -1.0      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1.5       |             | Company of the state of the sta |
|           | E           | Sample 10: 18 NEC-528-50-17 DUD: 18 NEC-528-50-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2.        | 0           | stopped; max depth according to work plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| depth (ft) | Lithology | Sample Int. | Sample time : 1603  Description (lithology, odor/staining, sample ID) | Location ID: -18        |
|------------|-----------|-------------|-----------------------------------------------------------------------|-------------------------|
|            | 0.0       |             | saturated silty sand<br>moderate root mass                            | petroleum odor<br>Sheen |
|            | 0.5       |             |                                                                       | والمن                   |
|            | 1.0       |             | refusat vegetative mat                                                |                         |
|            |           |             | Sample 1D: 18NEC-528-5D-18                                            | 8                       |
| Y          |           |             |                                                                       |                         |
|            |           |             | wooden debris-sampled u                                               | lithin a foot of Stake  |

| <b>JACOBS</b>             |  |
|---------------------------|--|
| CEDIMENT CANADI INC EODIA |  |

PROJECT: Noitheast Cape

DATE: 7 Aug. 18

SEDIMENT SAMPLING FORM SITE ID: Site 28

SITE LOCATION:

| depth (ft) | Lithology | Sample Int. | Sample time: 16 25  Description (lithology, odor/staining, sample ID)  Location ID: |  |
|------------|-----------|-------------|-------------------------------------------------------------------------------------|--|
|            | 0.0       |             | Saturated sandy Silt petroleum color                                                |  |
| - 7        | 0.5       |             | moderate root mass                                                                  |  |
|            | 1.0       |             |                                                                                     |  |
|            | 1.5       |             |                                                                                     |  |
|            |           |             | Sample 1D: 18NEC-528-5D-19                                                          |  |
|            | 2.0       |             | stopped; max depth according to workplan                                            |  |
|            |           |             |                                                                                     |  |

| depth (ft) | Lithology | Sample Int. | Sample time: 1632  Description (lithology, odor/staining, sample ID)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Location ID:             |
|------------|-----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|            | 0.0       |             | saturate sandy silt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sheen<br>petroleum od or |
| _          | 0.5       |             | moderate root mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |
| _          | 1.0       |             | refusal-regarative matt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |
| _          | 1         |             | Sample (D: 18NEC-S28-SD-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20                       |
| _          |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
|            |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| _          |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| _          |           | _           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| -          | - 1       | _           | and the summation of the last winds, against a consideration to be about the constant of the last of the constant of the const |                          |

| J   | A     | CO          | BS      |
|-----|-------|-------------|---------|
| SEL | DIMEN | IT SAMDI IN | IC FORM |

PROJECT: Northeast Cape DATE: 7 Aug. 18

SITE ID: Site 28 SITE LOCATION:

| depth (ft) | Lithology | Sample Int. | Sample time 1644  Description (lithology, odor/staining, sample ID)  Location ID: -21 |  |
|------------|-----------|-------------|---------------------------------------------------------------------------------------|--|
|            | 0.0       |             | Satvated Silty sand odor<br>Sheen<br>moderate root mass                               |  |
| , ja       | 0.5       |             |                                                                                       |  |
|            | 0.9       |             | refusal-rock<br>Sample 1D: 18NEC-528-50-21                                            |  |
|            | 1.5       |             |                                                                                       |  |
|            | 2.0       |             |                                                                                       |  |

| Lithology | Sample Int. | Sample time: 1653  Description (lithology, odor/staining, sample ID) | ocation ID: -22 |
|-----------|-------------|----------------------------------------------------------------------|-----------------|
| 0.0       |             | sawrated silty sand                                                  | slight odor     |
| 0.5       |             | moderate root mass                                                   |                 |
| 1.0       |             | refusal-silt                                                         |                 |
| 1.5       |             | Sample 10: 18NEC-528-5D-22                                           | 113 50609       |
| 2.0       |             |                                                                      |                 |
|           |             |                                                                      | et spirat sa    |

| JA       | CO      | BS     |
|----------|---------|--------|
| SEDIMENT | CAMPIIN | G FORM |

PROJECT: Northeast Cape

DATE: 7 Aug. 18

DIMENT SAMPLING FORM SITE ID: Site 28

\_ SITE LOCATION: \_\_\_

| depth (ft) | Lithology | Sample Int. | Sample time: 1702  Description (lithology, odor/staining, sample ID) | Location ID: -23    |
|------------|-----------|-------------|----------------------------------------------------------------------|---------------------|
|            | 0.5       |             | Silty sand<br>moderate root mass                                     | no sheen<br>no odov |
|            | 1.0       |             |                                                                      |                     |
|            | 1.5       |             | Sandy Silt                                                           |                     |
|            | 2.0       |             | vegetative matt ——— Sample ID: 18NEC-528                             | 3-SD-23             |

| depth (ft) | Lithology | Sample Int. | Sample time: 1713  Description (lithology, odor/staining, sample ID) | Location ID: -24            |
|------------|-----------|-------------|----------------------------------------------------------------------|-----------------------------|
|            | 0.0       |             | Saturated Silty sand                                                 | - odor-slight<br>- no sheen |
| Ξ          | 05        |             | moderate root mass                                                   | - I'ron mottlet are         |
|            | 1.0       |             |                                                                      |                             |
| -          | 1.5       |             | Sandy Silt                                                           |                             |
| Ξ          | 20        |             | refisal-silt sample 10: 18NEC-528                                    | -SD-24                      |
|            |           |             |                                                                      |                             |

| J     | <b>4CO</b>     | BS      |
|-------|----------------|---------|
| CEDIA | AENT CANADI II | NC EODM |

PROJECT: Northeast Cape DATE: 8 Hvg 18

SITE ID: Site 28 SITE LOCATION:

| £          | 25        | it.        | C 10 Lava 19970                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------|-----------|------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| depth (ft) | Lithology | Sample Int | Description (lithology, odor/staining, sample ID) | Location ID: -25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | 0.0       |            | saturated Silty sand.                             | no Sheen<br>no odor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|            |           |            |                                                   | no odor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | 0.5       |            | moderate root mass                                | - Iron mottle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            |           |            | The Carrier of the Services                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | 1.0       |            | sample 10: 18NEC-SI8.                             | -50-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            | , ii      |            |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |           |            | location moved see la<br>original location b      | had veg. mat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | 1.5       |            |                                                   | Research Control of the Control of t |
|            | 0         |            |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _          | 20        |            |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0          | 2.0       | N          |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 34         | 1.1       |            |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| depth (ft) | Lithology | Sample Int. | Sample time 6951  Description (lithology, odor/staining, sample ID)  Location ID: -26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
|------------|-----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|            | 00        |             | saturated silty sand minimal odor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|            |           |             | no sheen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
|            | 0.5       |             | moderate root mass - iron mottle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 |
|            |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|            | 1.0       |             | refusal-vegetertive matt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
|            |           |             | sample 10: 18 NEC-528-50-26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
|            |           |             | COLUMN ON THE SECTION OF THE SECTION |   |
|            |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
| -          |           |             | TOTAL PROPERTY OF THE PARTY OF  |   |
|            |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |
|            | 15h       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |

| J | ACO | BS |
|---|-----|----|
|   |     |    |

PROJECT: Northeast Cape

DATE: 8-8-18

SEDIMENT SAMPLING FORM SITE ID: Site 28

SITE LOCATION:

| depth (ft) | Lithology | Sample Int. | Sample time: 1001  Description (lithology, odor/staining, sample ID) | Location ID: $-27$ |
|------------|-----------|-------------|----------------------------------------------------------------------|--------------------|
|            | 0.0       | 1.44        | satiated silty sand                                                  | no sheen           |
|            |           |             | moderate root                                                        | no odor            |
|            | 0.5       |             |                                                                      |                    |
|            |           |             |                                                                      |                    |
|            | 1.0       |             | saturated sandy silt                                                 |                    |
|            |           |             |                                                                      | 110 307 543        |
|            | 1.5       |             | refusal-hard silt                                                    |                    |
|            |           |             | Sample ID: 18NEC-SZ                                                  | 28-50-27           |
| 7 5        |           |             | Dup T8NEC-S                                                          | 28-50-27-8         |
|            |           |             |                                                                      |                    |
|            |           |             | ,                                                                    |                    |
|            |           |             |                                                                      |                    |

| depth (ft) | Lithology | Sample Int. | Sample time! 1012  Description (lithology, odor/staining, sample ID) | Location ID: -28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------|-----------|-------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | P.0 F     |             | Saturated Sitty sand                                                 | odor-petroleum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _          | 1         |             | minimal root mass                                                    | no sheen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            | 0.5       |             | saturated sandy silt                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |           |             | minimal root mass                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | 1.0       |             |                                                                      | TO A STATE OF THE |
|            | 1         |             |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | 1.5       |             | refusal - hard silt                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | 1         |             | sample 1D: 18NEC-528                                                 | -SD-28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | 2.0       |             | collected ms/1                                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | 1         |             |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -          | 1         | -           | 8-                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

JACOBS\* PROJECT: Northeast Cape DATE: 8-8-18 SEDIMENT SAMPLING FORM

SITE ID: Si +e 28 SITE LOCATION:

| depth (ft) | Sample Int. | Sample time 1025  Description (lithology, odor/staining, sample ID)  Location ID: -29 |
|------------|-------------|---------------------------------------------------------------------------------------|
| 0.0        |             | Saturated Sitty sand odar-petrole um minimal root mass no sheen                       |
| l.ú        |             | refusal-rock————————————————————————————————————                                      |
| -1.5       | 5           |                                                                                       |
| 2.         | 0           |                                                                                       |
|            |             |                                                                                       |

| Saturated silty sand light petroleum odo  Minimal root mass no sheen  100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 10 | deptn (rt) | Lithology | Sample Int. | Sample time 1040  Description (lithology, odor/staining, sample ID) | Location ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|-------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| minimal root mass no sheen  100  100  1.5  - refusal (rock)  Sample 1D: 18NEC-528-SD-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4          | 0.0       |             | saturated silty sand                                                | light petroleum odo.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1100 mottle  1.5 — refusal (rock)  Sample 1D: 18NEC-528-SD-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |           |             |                                                                     | no sheen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 0.5       |             |                                                                     | Iron mottle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |             |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 1.0       |             |                                                                     | THE REPORT OF THE PROPERTY OF |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |             |                                                                     | 10 M + 14 M = 1040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 1.5       |             | - refusal (rock)                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\exists$  |           |             | Sample 1D: 18NEC-52                                                 | 8-SD-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 2.0       |             | C DEMONICE CONTROL TO THE TANK                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| J     | AC       | OI     | BS   |
|-------|----------|--------|------|
| SEDII | MENT SAN | MPLING | FORM |

PROJECT: Northeast Cape DATE: 8-8-2018

SITE ID: Site 28 SITE LOCATION:

| Lithology | Sample Int. | Sample 1D time 1048  Description (lithology, odor/staining, sample ID)  Location ID: -31 |
|-----------|-------------|------------------------------------------------------------------------------------------|
| 0.0       |             | Saturated Silty sand no sheen light odor-petrole moderate root mass                      |
| 1.0       |             | Sandy Silt                                                                               |
| 1.5       |             | refusal - silt<br>Sample ID: 18NEC-S28-SD-31                                             |
| 2.0       |             |                                                                                          |

| depth (ft) | Lithology | Sample Int. | Sample time: 1058 Description (lithology, odor/staining, sample ID) | Location ID: -32 |
|------------|-----------|-------------|---------------------------------------------------------------------|------------------|
|            | 0.0       |             | saturated Silty sand<br>moderate root mass                          | an -Ao odor -yes |
|            | 0.5       |             |                                                                     | 1100 mottle      |
|            | 1.0       |             | - refusat (rock)                                                    | 00 00 20         |
|            | 1.5       |             | Sample 10: 18NEC-S                                                  | 28-50-32         |
|            | 2.0       |             |                                                                     |                  |
|            |           |             |                                                                     |                  |

SEDIMENT SAMPLING FORM

PROJECT: WOI theast Cape DATE: 8-8-18

SITE ID: Site 28 SITE LOCATION:

| depth (ft) | Sample Int. | Sample time: 1106  Description (lithology, odor/staining, sample ID) | Location ID: $-33$          |
|------------|-------------|----------------------------------------------------------------------|-----------------------------|
| 0.0        |             | Saturated Silty sand<br>moderate voot mass                           | odor-petroleum<br>yes sheen |
| 0.5        |             |                                                                      | *                           |
| -0.8       |             | — refusal-rock<br>Sample ID: 18NEC-S28                               | 1-SD-33                     |
| 15         |             |                                                                      | recommenda - Sa             |
| 2.0        |             |                                                                      |                             |
|            |             |                                                                      |                             |

| depth (ft) | Lithology | Sample Int. | Sample time: 1114  Description (lithology, odor/staining, sample ID) | Location ID: - 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------|-----------|-------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | 0.0       |             | satuated silty sand<br>minimal rootmass                              | odor-petroleum<br>yes sheen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1 5        | 0.5       |             |                                                                      | iron mottle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | 10        |             | refusal-rock<br>sample 10:18NEC-528-                                 | SD-34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|            |           |             |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |           |             |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |           |             |                                                                      | n in the state of |

| <b>JACOBS</b>          |  |
|------------------------|--|
| SEDIMENT SAMPLING FORM |  |

PROJECT: Northeast Cape DATE: 8-8-18

SITE ID: SITE 28

SITE LOCATION:

| FIELD | PERSONNEL: |
|-------|------------|
|-------|------------|

| depth (ft) | Lithology | Sample time; 1125  Description (lithology, odor/staining, sample ID)          | Location ID: - 35                          |
|------------|-----------|-------------------------------------------------------------------------------|--------------------------------------------|
|            | 0.0       | Saturated Silty sand<br>Moderate root mass                                    | odor petroleum<br>Sheen yes<br>iron mottle |
|            | 05        |                                                                               | (10A MOTTIE                                |
|            | 6.0       | Vegetative most -refusal Sample 10: 18NEC-5: Near This location is Athe start |                                            |
|            | 1.5 -     | VI foot from spring.                                                          | or the Spring                              |
|            |           |                                                                               |                                            |

| depth (ft) | Lithology | Sample Int. | Sample time: 1143 Description (lithology, odor/staining, sample ID)        | Location ID: $-38$                             |
|------------|-----------|-------------|----------------------------------------------------------------------------|------------------------------------------------|
|            | 0.0       |             | Saturated silty sand<br>moderate root mass                                 | odor-petroleum<br>Sheen yes                    |
|            | 0.5       |             |                                                                            | iron mottle                                    |
|            | 1.0       |             |                                                                            |                                                |
|            | 1.5       |             | -Suturated sandy Sitt -<br>1 - sample ID: 18NE                             | EC-S28-SD-38                                   |
|            | 2.0       |             | - sample location n<br>max depth due to veyetati<br>according to work plan | noved; see 10g book<br>on<br>18NEC-S28-SD-38-8 |

| J   | A    | CO         | BS      |
|-----|------|------------|---------|
| SEL | MAEN | IT SAMDI I | NG FORM |

PROJECT: Not theast ('ape date: 8-8-18)

SITE ID: Si'te 28 SITE LOCATION:

| depth (ft) | Lithology | Sample Int. | Sample Lime: 154  Description (lithology, odor/staining, sample ID) | Location ID: -39           |
|------------|-----------|-------------|---------------------------------------------------------------------|----------------------------|
|            | 0.0       |             | saturated Sandy silt<br>Moderate root mass                          | no Sheen-yes<br>light odor |
|            | 1.0       |             | •                                                                   |                            |
|            | 1.5       |             |                                                                     |                            |
|            | 2.0       |             | stopped max depth according to a                                    | 801Kplan<br>S28-SD-39      |

| depth (ft) Lithology | Sample time; 1202  Description (lithology, odor/staining, sample ID) | Location ID: -40                   |
|----------------------|----------------------------------------------------------------------|------------------------------------|
| -00 -                | Minimal root mass                                                    | heavy sheen<br>Odo 1 - petrole v m |
| 05                   |                                                                      | i                                  |
| -1.0                 | refusal Silt heavy<br>Sample (D: 18NEC-528                           | -s D-40                            |
| -15                  |                                                                      | OB SHEET                           |
| 2.0                  | 1 199-y Fro. 1996 1 195-3 195                                        |                                    |

PROJECT: Northeast cape SITE ID: Site 28

DATE: 8-8-18

SITE LOCATION:

| F >                     | i.          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| depth (ft)<br>Lithology | Sample Int. | Sample time: 1218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| dep                     | Sam         | Description (lithology, odor/staining, sample ID)  Location ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.0                     |             | Saturated Sandy silt no sheen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -                       |             | moderate root mass no odor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -0.5                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 708                     |             | - refusal - hard silt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.0                     |             | Sample 10: 18NEC-528-50-42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                         |             | location moved due to vegetation;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -1.5                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -                       |             | See logbook                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                         | F           | Linda British and |
|                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -                       | -           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| h (ft)                  | le Int.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| depth (ft)              | Sample Int. | Description (lithology, order/staining, sample ID)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| depth (ft)              | Sample Int. | Description (lithology, odor/staining, sample ID)  Location ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| depth (ft)              | Sample Int. | Description (lithology, odor/staining, sample ID)  Location ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| depth (ft)              | Sample Int. | Description (lithology, odor/staining, sample ID)  Location ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| depth (ft)              | Sample Int. | Description (lithology, odor/staining, sample ID)  Location ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| depth (ft)              | Sample Int. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| <b>JACOBS</b>          |
|------------------------|
| SEDIMENT SAMPLING FORM |

PROJECT: Northeast Cape DATE: 8-8-18 SITE ID: Site 28 SITE LOCATION:

| depth (ft) | Lithology | Sample Int. | Sample time: 1440                                                                                         |
|------------|-----------|-------------|-----------------------------------------------------------------------------------------------------------|
| dep        | Eth       | Samı        | Description (lithology, odor/staining, sample ID)  Location ID:                                           |
|            | 00        | . F. 1      | saturated silty sand yes-sheen petroleum odor                                                             |
|            |           |             | minimal root mass                                                                                         |
|            | 0.5       |             |                                                                                                           |
|            |           |             |                                                                                                           |
|            | 10        |             | refusal-vegetation mat                                                                                    |
|            | 10        |             | Sample 10: 18NEC-528-50-52                                                                                |
|            |           |             | - Aeaf upgradient from Stake 20                                                                           |
|            |           | - B         | - Heaf upgradient from Stake 20<br>- location of opportunity in Area 2.<br>- See logbook for measurements |
|            |           |             | See 19 Jook 10. Milasorement                                                                              |
|            |           |             |                                                                                                           |

| depth (ft) | Lithology | Sample Int. | Sample time: 1504  Description (lithology, odor/staining, sample ID)  Location ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------|-----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | 00        | _ 5         | awraked silty sand .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            |           |             | moderate root mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | 0.5       |             | Sandy silt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _          | 1.0       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ξ          |           |             | Parloucio de la outra en esta de la companya de la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            | 1.5       |             | regetation bottom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -          |           |             | CONTROL OF THE CONTRO |
|            |           |             | sample 10: 18 NEC-528-5D-53 -sample of opportunity in Area ** 4see log book for measurements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| J | A | C | 0 | B | S |
|---|---|---|---|---|---|
|   |   |   |   |   |   |

PROJECT: Northeast Cape DATE: 8-8-18

SEDIMENT SAMPLING FORM

SITE ID: Site 28

SITE LOCATION:

| F | ı | E | L | D | P | E | RS | SC | 1 | IV | ΙE | L: |  |
|---|---|---|---|---|---|---|----|----|---|----|----|----|--|
|   |   |   |   |   |   |   |    |    |   |    |    |    |  |

| depth (ft) Lithology Sample Int. | Sample time 1540  Description (lithology, odor/staining, sample ID)  Location ID: 737              |
|----------------------------------|----------------------------------------------------------------------------------------------------|
| 7.2                              | silty sand (saturated) no odor<br>no sheen<br>moderate root mass<br>-rock et 0.2. limited sediment |
|                                  | composite sample collected from within a foot of stake #37                                         |
|                                  | Sample 10- 18NEC-S28-SD-37<br>used shovel                                                          |
|                                  | 26-8619 8-15 1954                                                                                  |
|                                  |                                                                                                    |

| depth (ft)<br>Lithology | Sample Int. | Sample time 1553  Description (lithology, odor/staining, sample ID)  Location ID: -36 |
|-------------------------|-------------|---------------------------------------------------------------------------------------|
| 0.0<br>-0.2<br>-0.5     |             | Silty sand no odor<br>moderater root mass no sheen<br>rockat 0.2. limited Sediment    |
| 1.0                     |             | composite sample collected from within a foot of stake #36                            |
|                         |             | sample 1D 18 NEC-528-S.D-36<br>shove( used                                            |
|                         |             |                                                                                       |

| JA | CO | BS |
|----|----|----|
|    |    |    |

PROJECT: Northeast Cape DATE: 8-8-18

SEDIMENT SAMPLING FORM SITE ID: SITE 28 SITE LOCATION:

| _ | ICI |    | PEF | 200 | AIA  | ITI. |
|---|-----|----|-----|-----|------|------|
| г | ICL | ·U | PER | SU  | HVIV | ILL: |

| depth (ft) | Lithology | Sample Int. | Sample time 1605  Description (lithology, odor/staining, sample ID)  Location ID: -41 |
|------------|-----------|-------------|---------------------------------------------------------------------------------------|
|            | 00        |             | 511ty sandy (saturated) no odor<br>moderate root was no sheen                         |
|            | 0.5       |             | 1 Sandy si H                                                                          |
|            | 10        |             | refusal - rock                                                                        |
|            |           |             | Sample 1D: 18NEC-528-50-41                                                            |
|            |           |             | Dup 18 NEC- 528-50-41-8                                                               |
|            |           |             |                                                                                       |
|            |           |             |                                                                                       |

| depth (ft) | Lithology  | Sample Int. | Sample time 1646  Description (lithology, odor/staining, sample ID) | Location ID: 46            |
|------------|------------|-------------|---------------------------------------------------------------------|----------------------------|
|            | 0.0        |             | saturated sandy silt<br>moderate vootmass                           | petroleum odor<br>no sheen |
|            | 0.8<br>i.0 |             | - vegetative refusal<br>Sample 10:18 NEC-                           | S28-SD-46                  |
|            |            |             |                                                                     |                            |
|            |            |             |                                                                     |                            |

JACOBS\*
SEDIMENT SAMPLING FORM

PROJECT: Northeast Cape DATE: 8-818

SITE ID: Site 28 SITE LOCATION:

FIELD PERSONNEL:

| depth (ft) | Lithology | Sample Int. | Sample time (1624  Description (lithology, odor/staining, sample ID) | Location ID: -44            |
|------------|-----------|-------------|----------------------------------------------------------------------|-----------------------------|
|            | 0.0       |             | Saturated Silty sand<br>Moderate root mass                           | light petroleum<br>no sheen |
|            | 0.5       |             |                                                                      | (101 moltle                 |
|            | 1-0       |             | vegetative matt - refusal                                            |                             |
|            |           |             | sample ID: 18NEC- S28-SD                                             | -44                         |
|            |           |             |                                                                      |                             |
|            |           |             |                                                                      |                             |

| depth (ft) | Lithology | Sample Int. | Sample time: 1640  Description (lithology, odor/staining, sample ID)  Location ID: -45 |
|------------|-----------|-------------|----------------------------------------------------------------------------------------|
|            | 0.0       |             | saturated sandy silt light sheen moderate root mass petroleum odor                     |
|            | (.0       |             |                                                                                        |
|            | 1.5       |             | vegetation matt-refusal Sample 10 18NEC-528-50-45                                      |
|            |           |             |                                                                                        |

JACOBS\* PROJECT: Northeast Cape DATE: 8-8-(8)
SEDIMENT SAMPLING FORM SITE ID: 51 + 2 8 SITE LOCATION:

FIELD PERSONNEL:

| depth (ft) | Lithology | Sample Int. | Sample hae 1700  Description (lithology, odor/staining, sample ID)  Location ID: -43 |        |
|------------|-----------|-------------|--------------------------------------------------------------------------------------|--------|
|            | 00        |             | saturated sandy silt.  moderate root mass petroleum odor light sheer                 | ·<br>1 |
| =          | 0.5       |             |                                                                                      |        |
|            | 1.0       |             | refusal-silt<br>Sample 10: 18NEC-528-50-43                                           |        |
|            |           |             |                                                                                      |        |
|            |           |             |                                                                                      |        |
|            |           |             |                                                                                      |        |

| depth (ft) | Sample Int. | Sample time 1710                                       |                                    |
|------------|-------------|--------------------------------------------------------|------------------------------------|
| de Lit     | San         | Description (lithology, odor/staining, sample ID) Loca | ation ID: -54                      |
| 0.0        |             | Saturated sandy silt<br>minimal root mass              | teavy Sheen<br>teavy petroleum ode |
| = 1.0      |             | -refusal -silt                                         |                                    |
| 1.5        |             | - sample of opportunity in - see logbook for measuren  |                                    |
| 2:         | 0           | - Sample 1D 18NEC-528-50<br>MS/MSD - 4 x802 ja         | -54                                |

PROJECT: Northeast Cape 51te 28

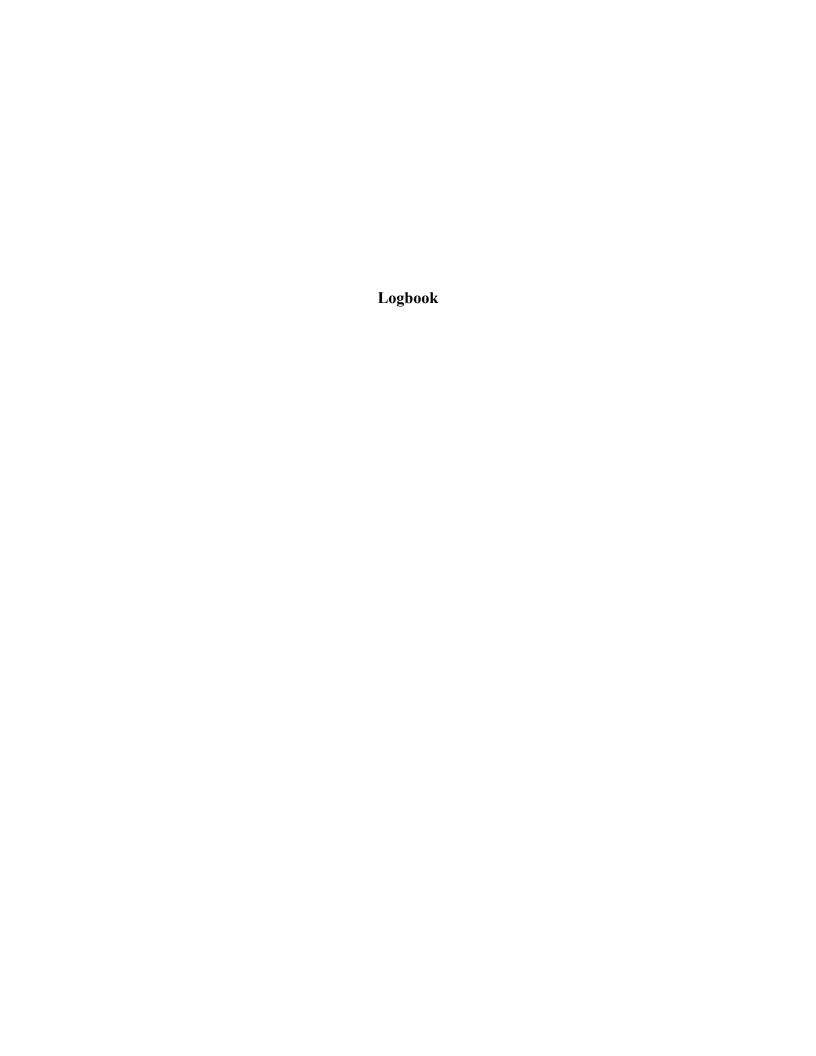
SITE ID:

SITE LOCATION:

| depth (ft) | Lithology         | Sample Int. | Sample hime 1720  Description (lithology, odor/staining, sample ID)                         | Location ID: -47     |
|------------|-------------------|-------------|---------------------------------------------------------------------------------------------|----------------------|
|            | 0.0               |             | saturated sandy silt                                                                        | sheen                |
|            | 05                |             | moderate teget root mass                                                                    | petroleum odor       |
|            | i.0               |             | refusal-silt                                                                                |                      |
| _          |                   |             | Sample TD: 18 NEC-528-50-                                                                   | 47                   |
|            |                   |             |                                                                                             |                      |
|            |                   |             |                                                                                             |                      |
| _          |                   |             |                                                                                             |                      |
|            |                   | 15.44       |                                                                                             |                      |
|            | 1 1               |             |                                                                                             | 7                    |
| £          | \Sa               | lit.        | cample time 1726                                                                            |                      |
| depth (ft) | Lithology         | Sample Int. | Sample time 1726                                                                            | -40                  |
| depth (ft) | C Lithology       | Sample Int. | Sample time 1726  Description (lithology, odor/staining, sample ID)  Saturated Sandy Si H   | Location ID: -48     |
| depth (ft) |                   | Sample Int. | Description (lithology, odor/staining, sample ID)                                           | -40                  |
| depth (ft) | 0.0               | Sample Int. | Description (lithology, odor/staining, sample ID)  Saturated Sandy Sift                     | Location ID: -48     |
| depth (ft) | 0.0<br>0.5<br>i.0 | Sample Int. | Description (lithology, odor/staining, sample ID)  Saturated Sandy Si H  moderate voot mass | Location ID: -48     |
| depth (ft) | 0.0<br>0.5        | Sample Int. | Description (lithology, odor/staining, sample ID)  Saturated Sandy Si H  moderate voot mass | Sheen petroleum odor |

| <b>JACOBS</b>            |
|--------------------------|
| CEDIMENT CANADI INC FORM |

PROJECT: Northeast Cape DATE: 8-8-18


SITE ID: Site 28 SITE LOCATION:

FIELD PERSONNEL:

| depth (ft) | Lithology | Sample time 1733  Description (lithology, odor/staining, sample ID)  Location ID: -49 |
|------------|-----------|---------------------------------------------------------------------------------------|
|            | 0.0       | saturated Sandy Silt Sheen - Yes Moderate regetat root mass petroleum odi             |
|            | [.0       | refusal-silt<br>Sample 10'. i8NEC-S28-SD-49                                           |
|            |           |                                                                                       |

| depth (ft) | Lithology<br>Sample Int. | Sample time 1739  Description (lithology, odor/staining, sample ID)  Location ID: | -50                |
|------------|--------------------------|-----------------------------------------------------------------------------------|--------------------|
|            | O E                      | saturated silty sand Shee moderate root mass perm                                 | n-yes<br>leum odor |
|            | 5                        |                                                                                   |                    |
|            | .D                       | refusal-silt<br>sample 1D: 18NEC-S28-SD-50                                        | )                  |
|            |                          |                                                                                   |                    |
|            | E                        |                                                                                   |                    |

| SEDIMENT SAMPLING FORM SITE ID: Site 28  FIELD PERSONNEL:  Sample time: 1750  Description (lithology, odor/staining, sample ID)  Description (lithology, odor/staining, sample ID)  Moderate rootma  O,5  Te fasal-silt  Sample ID: 18  - location moved on dry g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                          |                                                   |                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1C                                                                                                                       | O                                                 | PROJECT: Northeast Cape DATE: 8-8-18                                                                                                                                                                                                                                   |
| SEDIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ENT SA                                                                                                                   | MPLING                                            | Sample time: 1750  cription (lithology, odor/staining, sample ID)  charated Sandy silt sheen petroleum odor  moderate rootmass  fusal-silt  Sample ID: 18NEC-328-SD-51  - location moved due to original location on dry ground  - see logbook for measurement details |
| F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MENT SAMPLING FORM SITE ID: Site 28 SITE LOCATION:  FIELD PERSONNEL:    Sample   Time   Time   Time   Time   Time   Time |                                                   |                                                                                                                                                                                                                                                                        |
| depth (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lithology                                                                                                                | ample Int.                                        | -51                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample 10: 18NEC-328-SD-51                                                                                               | Description (intrology, odor/staining, sample ib) |                                                                                                                                                                                                                                                                        |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                          |                                                   | be trolleum od or                                                                                                                                                                                                                                                      |
| SEDIMENT SAMPLING FORM SITE ID: Site 28 SITE LOCATION:  FIELD PERSONNEL:  Sample time: 1750  Description (lithology, odor/staining, sample ID)  Description (lithology, odor/staining, sample ID)  Location ID: 51  Docation ID: 51 |                                                                                                                          |                                                   |                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ۱.0                                                                                                                      |                                                   | re fusal-silt                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5                                                                                                                      |                                                   | - location moved due to original location on dry ground                                                                                                                                                                                                                |
| depth (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lithology                                                                                                                | Sample Int.                                       | Description (lithology, odor/staining, sample ID)  Location ID:                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                          |                                                   |                                                                                                                                                                                                                                                                        |



# Sediment Sampling



# Authors

Stan Seegers Angela DiBerardino

DCN: AE-ECC-JO7-5FGA4600 -H04-0004



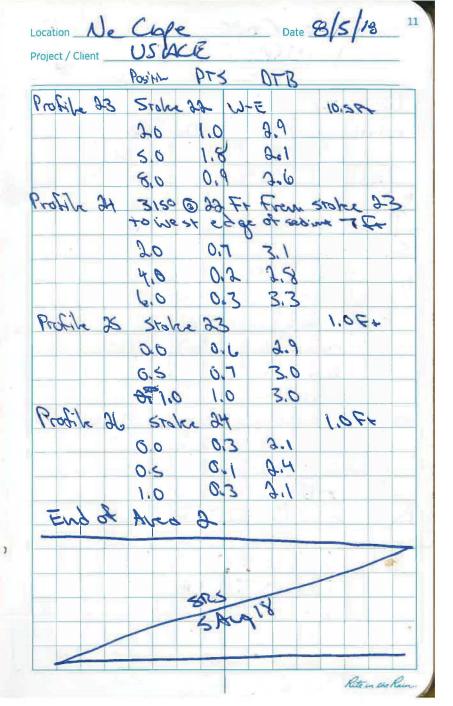
### CONTENTS

| PAGE | REFERENCE                | DATE |
|------|--------------------------|------|
|      |                          |      |
|      |                          |      |
|      |                          |      |
|      |                          | -    |
|      | <u> ما ده و دو می می</u> |      |
|      |                          | *    |
|      |                          | 1    |
|      |                          |      |
|      |                          |      |
|      |                          |      |
|      |                          |      |
|      |                          |      |
|      | -                        |      |
|      |                          |      |
|      |                          |      |
|      | H                        |      |
| N.   |                          |      |
|      |                          |      |
|      |                          |      |
|      | 1 M                      |      |
|      |                          |      |
|      | 2                        |      |
|      |                          |      |
|      |                          |      |
|      |                          |      |
|      |                          |      |
|      |                          |      |

| Location Ne Cope       | Date 8 4 18 | 3 |
|------------------------|-------------|---|
| Project / Client USACE |             |   |

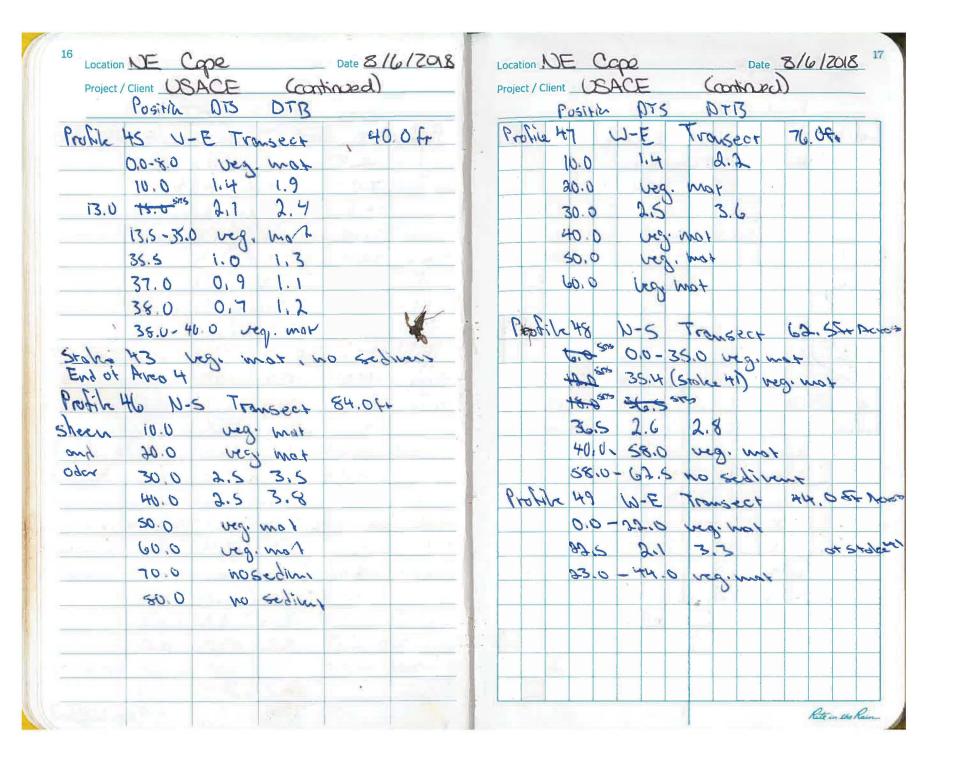
| Weather | aucost    |             |        |
|---------|-----------|-------------|--------|
|         |           |             |        |
|         | 5. le 28  | ond 1       |        |
| Weston  | d         |             | Thelws |
| Eage    | 6.0 40    | n pot       | t.O    |
|         | d 6.5 fro | 1:5 -       | 2,9    |
|         | 1015      | 1,2-        |        |
|         | 25        | 1.7 -       | - 2.15 |
|         | 14.5      | 1.4 -       | 1.95   |
|         | 6.5       | 0.9 -       | 1.05   |
|         | 18,5      | O at e      |        |
|         | End of    | transe et a | 21.75  |
| Test    | Scd; ren  | 10 M        |        |
|         |           |             |        |

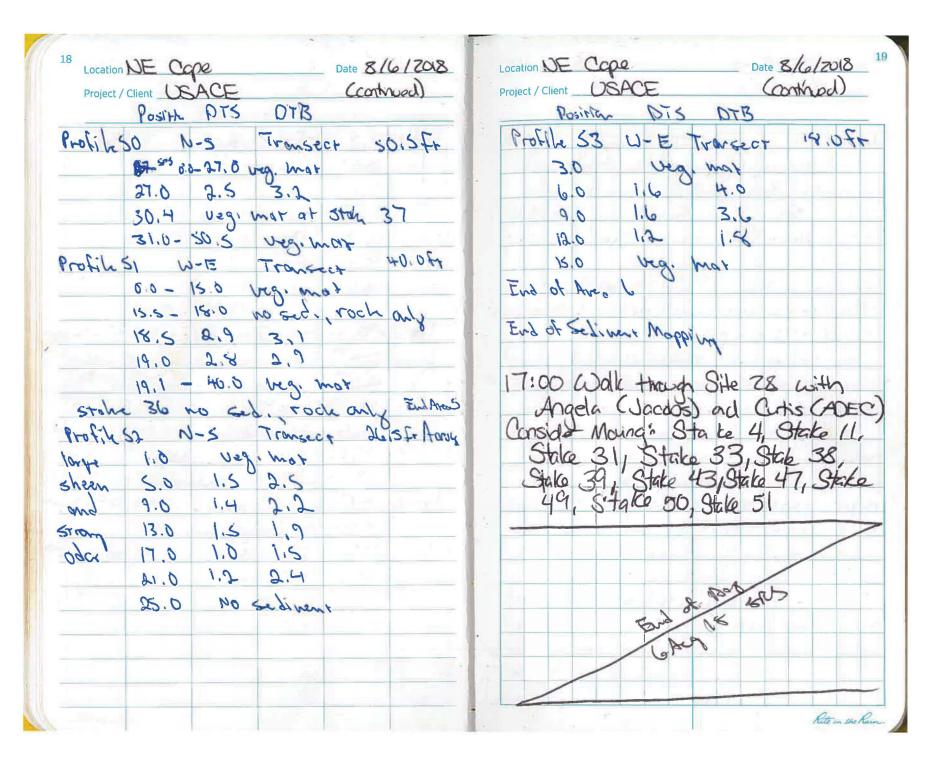
Location NE Cope Date 8/4/2018 Location NE Cope Date 8/4/208 Project / Client USACE (continued) Project / Client USACE (continued) Start End North to South Edge 1.3' depth 0 Start End 3.3 0.4-0.5 Edge at 25.61, Final South Stake at 28.51 5.3 1.0 - 1.8 7.3 1.3 - 1.9 9,3 1,3-1,9 11.3 1.5-2.6 13.3 1.5 - 3.0 15.5 1.0 - 1.0 \*No Sediment 17.3 1.0 - 1.3 19.3 1. - 1.4 21.3 1.3 - 1.5 Rite in the Rain


Date 8/5/18 Location Ne Cope Project / Client USIACE Position DTS DTB SFF ACTOSS Adily 1 Stoke 1 WE 2.2 CM 3.8 25 3.0 4.0 3.9 4.0 3.0 Profiled Stokes 13:0P+ W-E 3.3 1.0 2.0 5.0 2.4 3.7 9.0 17.05°5 1.6 2.6 2.8 12.5 1,7 Profile 3 30 for From 1 W-E 3.5 Ft 4-25/2 2.8 05 2.9 1.5 2.5 1.7 Profile4 154+ Fix B3 U-E 1.0 Fr 0.0 1.7 2.7 0.5 1.2 2,3 1.0 1.2 2.1 Profile 5 Stok 3 W-E 4,584 2.4 0,3 1.0 2.3 0.5 2.0 2.2 3.0

| Location Ne      | Cape     | 30,04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Date 8 5 18 7  |
|------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Project / Client | USACKE   | 1 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 420            |
| *                | Position | 075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DIB            |
| Stolve 4         | in Veg   | , mot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
| 100              | _        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nd light ado   |
|                  | 1        | The state of the s | <u> </u>       |
| Profiles         |          | W-E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.0 FT Across  |
| 7 7 7            | 1,0      | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8,1            |
|                  | 3.0      | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.1            |
|                  | 3.0      | 1,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.7            |
|                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1966           |
| Profile 7        | Stake (  | チーチ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.5 Fr Across |
|                  | Xous     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| -                | 1.0      | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.4            |
|                  | 3.0      | 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.8            |
|                  | 50       | 0,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.5            |
|                  | 7.0      | 6.31.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.0            |
|                  | 9.0      | 1,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.8            |
| Profiles         | 5 more 8 | 7-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MOF+ Across    |
|                  | 20       | 6 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.9            |
|                  | 7.0      | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,9            |
|                  | 12.0     | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 216            |
| -                | 17.0     | 0,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.9            |
| Profile 9        | Stoke?   | 4-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4,0F+ Across   |
| "OFICE           | 1.0      | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.3            |
|                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0            |
|                  | 2.0      | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
|                  | 3.0      | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.1            |

Location Ne Cope Date 8/5/18 Project / Client USACE Position OTS DTB SA Across Profile 10 Stakes W-E 1.5 1.0 2.5 3.9 0.5 3.0 2.9 4.5 0.2 Prolital Stokell 1. 0 Ft Acres U-€ 1.4 0.2 0,0 2.5 1.1 0.5 1.0 2.0 1.0 Profile 12 Stoke 12 9.0 Fr Aoros W-E 1.5 1.0 2,1 4.5 0.1 3.7 end of Arco 1 7.5 0.3 3.5 Profile 13 Stoke 13 3.0 Fr Acros 3-W 2.7 0.5 1.0 Stand-close 211 1.5 0.5 2.5 0:2 2.1 8.58 hors Platiton 9 Stoke H U-E 2.8 1.7 1,5 2.0 3.5 3.5 3,4 5.5 1.7 7.5 1.2 1,5 Profiles 730,8 Stakels U-E 1.7 2.3 2.0 distruction 1711-80 1.9 4.8 2.6 on E. Side 1.6 2.5


| Location                   | Je_   | C     | 6   | De. |     |     |    | Da  | te 2 | 3/5 | -fi  | 0     | 9    |
|----------------------------|-------|-------|-----|-----|-----|-----|----|-----|------|-----|------|-------|------|
| Project / Client           | _     | 150   | 44  | 3   |     | -19 |    | AG  |      |     |      |       |      |
|                            |       | sinic |     |     | 75  |     | D. | TR  |      |     |      |       |      |
| Profile !                  | 6     | 500   | m   | ما  | ١   | 4-6 |    |     | 3    | 00  | Fr   |       | H    |
| 5.B<br>10,0                | 6     | 0     | SRS | 2   | 4   | *   | 3  | 3   |      |     |      |       |      |
| 10,0                       | 13    | es s  | rs. | a   | 0   |     | 2  | 9   | -    |     |      |       |      |
| 15.0                       | 18    | 50    | 5   | 2   | 1   |     | 2  | 8   | - 4  |     |      |       |      |
| 30.0                       | (day) |       |     | 2   | 2   |     | 3  | 5   |      |     |      |       |      |
| 85.0                       |       |       |     | 2   | 7   |     | 9  | 8.  |      |     |      |       |      |
| STRONG<br>Varge<br>Profile | 060   | (     | af  | 7   | 1   | (3) | 8  | lon | ila  | 16  |      |       |      |
| Jaron                      | 6     | لعا   | 5   | he  | esn |     |    |     |      |     |      |       |      |
| Profile                    | 4     | Stal  | rel | 8   |     | W-  | E  |     | 11.  | 0   | 6+   |       |      |
| obstruction                |       |       |     |     |     |     |    |     |      |     |      |       |      |
| East of St                 |       |       |     |     |     |     |    |     |      |     |      |       |      |
| 80+ to 4.1                 |       | 7     |     |     |     |     | 1  |     |      |     |      |       |      |
| roto last                  |       | -     |     | 1,  | 4   |     | 2. | 9   |      |     |      |       |      |
| mashelm                    | 1     |       |     |     | \   |     | 3  |     |      | k.  |      |       |      |
|                            | 1     | 0     |     | L   |     |     | 3  | 8   |      |     |      |       |      |
|                            |       | 0     |     |     |     |     | 3  |     |      |     |      |       |      |
| Profile 19                 |       |       |     |     |     |     |    |     | he   | 19  | 5    | .5    | Sa   |
| o centre à                 |       |       |     |     |     |     |    | 3   |      |     |      |       |      |
| mon                        |       |       |     | 1   |     |     | 1  | -   |      |     |      |       |      |
|                            |       | 5     |     |     | 5   |     |    | 2   |      |     |      |       |      |
| Poble                      | 19    |       |     |     |     | W-1 |    |     | 4    |     | 14   | .05   | +    |
| 1                          | 1     | 0     |     |     | 0   | - 1 | 3  | 4.  |      |     |      |       |      |
|                            |       | 0     |     |     | 0   |     | 2  |     |      |     |      |       |      |
|                            |       | 0     |     | 1   | 2   |     | -  | 4   |      |     |      |       |      |
|                            |       | 0     |     | 1   | 0,  |     |    | 4   |      |     | Rite | n the | Rein |


| 10 Location Ne C    |        |          | Date 9 | 5/18           |
|---------------------|--------|----------|--------|----------------|
| Project / Client US |        | DTS      | OTB    | 2/             |
| Profile 20 Stoke    |        | 013      |        | D-             |
| 1. EI               |        | 0.5      | 3,9    | 14             |
| large hel<br>Sheen  | 1,0    | 1.82. 90 | 9 9    |                |
|                     | 6.6    | 1-16     | 7 7    |                |
| and oder            | 0.11   |          | 3.2    |                |
| of ful              | 0.01   |          |        |                |
|                     | 21.0   |          | 4.0    |                |
| 8-1100              |        | 1.0      |        |                |
| Profik 21 -000      |        |          |        |                |
| - 3.5               | Et Ve  | ross.    | squoè  | 1000+2013.     |
| West                | Bide   | chame    | 1 13   | veg.           |
| Mat                 |        | - 45     | -1.1   |                |
|                     | 1.0    | 0.4      | 2.3    | and the second |
|                     | 2.6    | 0.5      | 3.7    |                |
|                     | 3.0    | 0.5      | 3.7    |                |
| Profile 2 State     | 211    | W-E      | 25     | 170            |
| Wide section        | 1.0    | 0.8      | 2.2    |                |
| w/ veg mot          | 6.0    | 0.4      | 0.6    |                |
| sections in         | 0.11   | 1.0      | 3.2    |                |
| between Sedim       | , 22.0 | 0.5      | 2.1    |                |
| John woom           | 25.0   | 0.5      | 3.0    |                |
| where present.      | -47    |          |        |                |
|                     |        |          |        |                |



Date 8/6/2018 Location NE Cope (contrad) Project / Client USACE DTB Positra DTS 3,0 fo Across Profile 36 stoke 31 0.75 0.3 1,6 0.4 1,5 1.0 1.8 2.25 0.3 Profile 37 stal 300 19ft from state 32 1.0 Fr Across 0.5 1.6 0.0 0.3 1,5 0.5 1.5 0.7 1.0 6.0 Fr Across Profile 38 Stolm 32 0.5 1.6 light 1.0 1.0 11.5 3.0 Sheen 5.0 1.3 0.3 Profile 39 Stolar 33 2.0 Fx Acros Very light 0.5 1:0 0.1 laper of 0.4 0.4 1.0 sodiment 1,5 0.5 0.3 wood no 3.5 Ft Across Profile 40 Stoler 34 0.1 1.5 1.0 1.2 2.12 2.0 3.0 0.8 1.7 Probile 41 Stoke 35 1:0 ga Barans D.80.3 2.5 0.0 0.10 End Aren 0.5

| roject / Cli | DE Cope<br>ent USA | CE (  | Contract | 8/6/2018 |  |
|--------------|--------------------|-------|----------|----------|--|
|              |                    |       | DTB      | 129/     |  |
| Profil       | 142 N              | -5 Tv | wsc. ct  | 49.002   |  |
|              | 710                | VI-2  | q. mot   | 1.4      |  |
|              | 14.0               | ve    | a mad    |          |  |
|              | 21.0               | V.    | 3. mat   |          |  |
| sheen        | 28.0               | 1.2   | 1.5      |          |  |
|              | 35.0               |       | 3.1      |          |  |
|              | 42.0               |       | S. mot   |          |  |
|              |                    | * ILO |          |          |  |
| beali        | 12 43 W            | -E T1 | usect    | 54.084   |  |
| Sheen        | 10.0               |       | 2.2      |          |  |
| Ogen         | 30.0               | veg   |          |          |  |
|              | 30.0               | 2,1   | 3.5      |          |  |
|              | 35.5               | کارل  | 3.8      |          |  |
|              | 40.0               | veg.  |          |          |  |
|              | 50.0               |       | Wat      |          |  |
| Profile      | 4H 11-5            |       | ect 39   | 10 Ft    |  |
|              | 50                 | 0.9   | 1.4      |          |  |
|              | 12.0               | VZA   | tom!     | 6        |  |
|              | 0.61               | veg   | mos .    | X 2      |  |
|              | 26.0               | 2.0   | 2.0      |          |  |
| 3            | 1.0 3.5            | 2.2   | 2.3      |          |  |
|              |                    |       |          |          |  |





Rite in the Rain

Location NE Cape

Project / Client USACE

Project / Client USACE

ACE

Weather: 490 F Party Cloudy Sulary Stoff: Angelo Deberordho, Adman Abuansha, Jessico Bay, Stan Secopers Task: Schivent Sampling Site 28 PPE: Modified here! [ Sedivent Sompling Site 250 -All Somples will be collected in 2-802 grs KNEC-526-50-01 On Stake 1 Soturatel South 5:10 with some root mass no oder or shert 18NEC-524-50-02 10:35 On Stoke 2 sornoted soundy silt Edgar toor laminion timb drivi no odor or show 18NEC-586-50-08-8 10:35 OUP 18 NEC - 528-50-03 10:50 on Stohe 3 Saturorch silvy sand with minimal root moss no ober or meen - collected MS/MSD Sample 4 1150 @ 15.7 Fr From Stake 4 18NEC-528-50-04 11:08 moved do to veg. sotrond silty soul waster robo on even four four found with

18NEC-528-50-05 11:15 On Stoke 5 somore silm sont with minimal root mass no observation 18 NEC - 528-50-06 On Stoke to sprunked silty some with minimal cookings no ober or sheen 18 NEC-548-50-07 11:33 on stake 7 saturated silvy said with some 1001 mass no oder a sharen 18 NEC-588-50-08 11:45 on stake & saturated sound silt with some tool mass no obox as shee 18 NEC-52-50-09 11:53 on stoke 9 saturate & silve sont with some root mass no oder or sheen 18 NEC-528-50-10 13:01 On Stoke 10 Soturoled Silty Sond with some root was no obor or sheen Sample 11 1470012. SFT Form Stoles 11 18 NFC-528-50-11 12:11 moved due to veg. Sotrate & sondy 51/5 with some root mass no oda or shan 5000 PU GRS

Rite in the Rown

Location NE Cope

Date 8/7/2018

Project / Client USACE

(continued)

18NEC - 528-50-17 12:21 on stoke 12 soundtel soundy silt With some roof mass no olar or sheer End of Avro 1 14:48 18 NEC-528-50-13 an Stehn 13 souroted soudy silv with some root mass petroleum oder and them 15:00 18 NEC-528-50-14 On Stoke 14 soruroted sandy silt with some root was petroleumour abshall 18 NEC - 528-50-15 on Stoke 15 saturated soundy silt with moderate root mass petroleum ale and son 18 NEC-528-50-16 15:28 On Stake its saturated silty sound with minimal root moss percolam our and sheen 18 NEC - 528-5D-17 15:40 On Stalne 17 southack south sill + with moderate root mass partisher drandstren 18 NEC- 528-50-17-8 15:46 DUP 18 NEC - 528-50-18 on Stoke 18 Saturated silty Sound with moder spersot mass periodeum odamidatea

18 NEC - 588 - 50 - 19 16:25 on stoke 19 soturated sandy sit with understandor mass petro leum social share 18 NEC-588-50-26 16:32 on Stoke 20 Sotutoke & souly silt with moderate root most pet oferm of and sheer 18 NEC-508-50-21 16:44 on Stake 21 portaleum abor and show 18 NEC-528-50-22 16:53 on Stake 82 saturated silty soul with moderate root mass slight abe we seem 18 NEC-528-50-23 17:02 On stake &3 solmated silty soul with moderal rait mass no odie or sheen 18 NEC - 528-50-24 17:13 ON Stake 24 Saturated Silty Sout with moderate root was all ghat ober we show and with iron mothe End of Area 2 Equipment Blank 18:11 collècte & From aspect tooling

Project / Client USACE

Date 8 / 8 / 7018

(continued)

BIOS | 8 /8 Date

Location NE Cope Project / Client USACE

(contrad)

NECIS - 528-50 - 29 10:25 on stoke 29 sounted silty somb with minimal rout mass some oder hosteen NEC 18 - 528 - 50 - 30 10:40 on Stakes 30 Saturated Silty Soul with winimal root wass some oda hoshed .. sittom mortle NECI6-528-50-31 10:48 on stake 31 saturated silly soul with moderate root mass light oder nosheren iron mottle NEC18-528-50-33 On Stake 32 saturated silty sand with moderak root mass some oder of steer iran motthe NECK - 528-50-33 11:06 On Stake 33 Saturated Silly Soul wish minimal root mass some ober out sheer NEC18-528-50-34 11:14 on stake 34 saturated silly sand with minimal root moss some doi and shear iron mottle NECIS-525-50-35 11:25 ON Stake 35 Saturded silty soul with moderate out moss light our and shown.

- Stoke 35 15 at the spring End of Area 3 NEC18-528-50-38 From 57 dec 35 1570 @ 9.0Fx more & bur to veg. mot Saturated Silly sout ran mottle with moderak 100+ mass oder and sween NECIS - 528-50-38-8 11:43 DUP NECK- 528-50-39 11:54 On Stake 39 Saturate & sondy 5:17 with moderate com too show at in NEC18-528-50-40 12:02 ON Stolve 40 saturated silty some wish wining 1 5001 took seem and old NECIS-528-50-42 12:18 on Stolke 42 saturates with 1390 5 24. 1 Fr From Stoke the world dre to veg mas. with moderate root was some sheen no oder. End of Array

NEC18-528-50-41 16:05

ON STOKE 41 SOTWORD 51/47 Sound

With mo brok roommess no ober or share

NEC18-528-50-41-8 16:05 OUP

with moderale root mass no odrorsher

- collected MS/MSO Rete in the Rain

this To 3 of 3 extra samples

heary Fred sheen and odice

saturand sandy silt

Exam 1007 lominim will

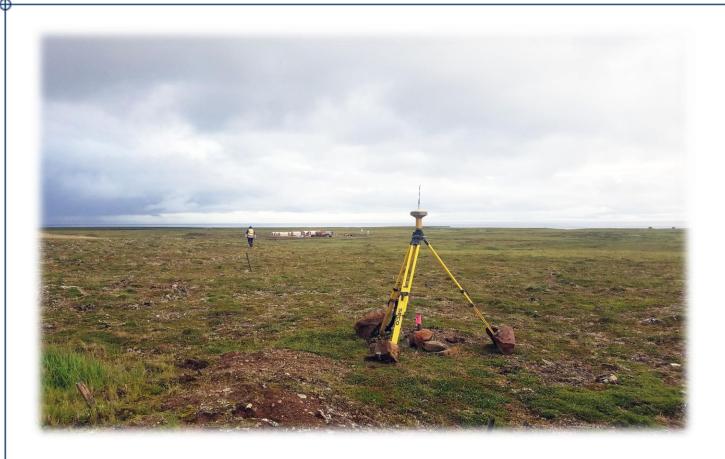


| Area    | Sub Area  | Profile # | Stake # | Transect<br>Direction | Total Transect<br>Distance (feet) | Distance Along<br>Transect (feet) | Sediment Start<br>Depth (feet bgs) | Sediment Refusal<br>Depth (feet bgs) | Total Sediment<br>Depth (feet) | Notes                                                                |
|---------|-----------|-----------|---------|-----------------------|-----------------------------------|-----------------------------------|------------------------------------|--------------------------------------|--------------------------------|----------------------------------------------------------------------|
| Area 11 | N/A       | P1        | S1      | W-E                   | 5.0                               | 1.0                               | 2.2                                | 3.8                                  | 1.6                            |                                                                      |
|         |           | P1        |         |                       |                                   | 2.5                               | 3.0                                | 4.0                                  | 1.0                            |                                                                      |
|         |           | P1        |         |                       |                                   | 4.0                               | 3.0                                | 3.9                                  | 0.9                            |                                                                      |
| Area 11 | Area 11-2 | P2        | S2      | W-E                   | 13.0                              | 1.0                               | 2.0                                | 3.3                                  | 1.3                            |                                                                      |
|         |           | P2        |         |                       |                                   | 5.0                               | 2.4                                | 3.2                                  | 0.8                            |                                                                      |
|         |           | P2        |         |                       |                                   | 9.0                               | 1.6                                | 2.6                                  | 1.0                            |                                                                      |
|         |           | P2        |         |                       |                                   | 12.5                              | 1.7                                | 2.8                                  | 1.1                            |                                                                      |
| Area 11 | N/A       | P3        | -       | W-E                   | 3.5                               | 0.5                               | 1.2                                | 2.8                                  | 1.6                            | 30 feet from P1.                                                     |
|         |           | P3        |         |                       |                                   | 1.5                               | 1.7                                | 2.9                                  | 1.2                            |                                                                      |
|         |           | P3        |         |                       |                                   | 2.5                               | 1.7                                | 3.4                                  | 1.7                            |                                                                      |
| Area 11 | N/A       | P4        | -       | W-E                   | 1.0                               | 0.0                               | 1.2                                | 2.2                                  | 1.0                            | 15 feet south of P3.                                                 |
|         |           | P4        |         |                       |                                   | 0.5                               | 1.2                                | 2.3                                  | 1.1                            |                                                                      |
|         |           | P4        |         |                       |                                   | 1.0                               | 1.2                                | 2.1                                  | 0.9                            |                                                                      |
| Area 11 | Area 11-1 | P5        | S3      | W-E                   | 4.5                               | 1.0                               | 0.3                                | 2.4                                  | 2.1                            |                                                                      |
|         |           | P5        |         |                       |                                   | 2.0                               | 0.5                                | 2.3                                  | 1.8                            |                                                                      |
|         |           | P5        |         |                       |                                   | 3.0                               | 1.3                                | 2.2                                  | 0.9                            |                                                                      |
| Area 10 |           | -         | S4      | -                     | -                                 | -                                 | -                                  | -                                    | -                              | In vegetation mat.                                                   |
|         | Area 10-5 | P6        | S5      | W-E                   | 4.0                               | 1.0                               | 1.1                                | 2.1                                  | 1.0                            | Light sheen and light odor.                                          |
|         |           | P6        |         |                       |                                   | 2.0                               | 1.3                                | 2.1                                  | 0.8                            |                                                                      |
|         |           | P6        |         |                       |                                   | 3.0                               | 1.4                                | 2.2                                  | 0.8                            |                                                                      |
| Area 10 | Area 10-5 | P7        | S6      | W-E                   | 10.5                              | 1.0                               | 0.4                                | 2.4                                  | 2.0                            |                                                                      |
|         |           | P7        |         |                       |                                   | 3.0                               | 0.3                                | 2.8                                  | 2.5                            |                                                                      |
|         |           | P7        |         |                       |                                   | 5.0                               | 0.4                                | 2.5                                  | 2.1                            |                                                                      |
|         |           | P7        |         |                       |                                   | 7.0                               | 1.5                                | 2.0                                  | 0.5                            |                                                                      |
|         |           | P7        |         |                       |                                   | 9.0                               | 1.3                                | 1.8                                  | 0.5                            |                                                                      |
| Area 10 | Area 10-4 | P8        | S8      | W-E                   | 17.0                              | 2.0                               | 0.1                                | 1.9                                  | 1.8                            | According to map, S7 and S8 are located horizontally from eachother. |
|         |           | P8        |         |                       |                                   | 7.0                               | 0.2                                | 1.9                                  | 1.7                            |                                                                      |
|         |           | P8        |         |                       |                                   | 12.0                              | 0.3                                | 2.6                                  | 2.3                            |                                                                      |
|         |           | P8        |         |                       |                                   | 17.0                              | 0.2                                | 1.9                                  | 1.7                            |                                                                      |
| Area 10 | Area 10-4 | P9        | S9      | W-E                   | 4.0                               | 1.0                               | 0.2                                | 1.3                                  | 1.1                            |                                                                      |
|         |           | P9        |         |                       |                                   | 2.0                               | 0.3                                | 2.0                                  | 1.7                            |                                                                      |
|         |           | P9        |         |                       |                                   | 3.0                               | 0.3                                | 2.1                                  | 1.8                            |                                                                      |
| Area 10 | Area 10-3 | P10       | S10     | W-E                   | 5.0                               | 1.5                               | 1.0                                | 2.5                                  | 1.5                            |                                                                      |
|         |           | P10       |         |                       |                                   | 3.0                               | 0.5                                | 3.9                                  | 3.4                            |                                                                      |
|         |           | P10       |         |                       |                                   | 4.5                               | 0.2                                | 2.9                                  | 2.7                            |                                                                      |
| Area 10 | Area 10-2 | P11       | S11     | W-E                   | 1.0                               | 0.0                               | 1.0                                | 2.5                                  | 1.5                            |                                                                      |
|         |           | P11       |         |                       |                                   | 0.5                               | 0.5                                | 3.9                                  | 3.4                            |                                                                      |
|         |           | P11       |         |                       |                                   | 1.0                               | 0.2                                | 2.9                                  | 2.7                            |                                                                      |
| Area 10 | Area 10-1 | P12       | S12     | W-E                   | 9.0                               | 1.5                               | 0.1                                | 2.1                                  | 2.0                            |                                                                      |
|         |           | P12       |         |                       |                                   | 4.5                               | 0.1                                | 2.2                                  | 2.1                            |                                                                      |

| Area   | Sub Area | Profile # | Stake # | Transect<br>Direction | Total Transect<br>Distance (feet) | Distance Along<br>Transect (feet) | Sediment Start<br>Depth (feet bgs) | Sediment Refusal<br>Depth (feet bgs) | Total Sediment<br>Depth (feet) | Notes                                                              |
|--------|----------|-----------|---------|-----------------------|-----------------------------------|-----------------------------------|------------------------------------|--------------------------------------|--------------------------------|--------------------------------------------------------------------|
|        |          | P12       |         |                       |                                   | 7.5                               | 0.3                                | 3.5                                  | 3.2                            |                                                                    |
| Area 9 | N/A      | P13       | S13     | W-E                   | 3.0                               | 0.5                               | 1.0                                | 2.2                                  | 1.2                            | Stand alone.                                                       |
|        |          | P13       |         |                       |                                   | 1.5                               | 0.5                                | 2.1                                  | 1.6                            |                                                                    |
|        |          | P13       |         |                       |                                   | 2.5                               | 0.2                                | 2.1                                  | 1.9                            |                                                                    |
| Area 9 | N/A      | P14       | S14     | W-E                   | 8.5                               | 1.5                               | 1.7                                | 2.8                                  | 1.1                            |                                                                    |
|        |          | P14       |         |                       |                                   | 3.5                               | 2.0                                | 3.5                                  | 1.5                            |                                                                    |
|        |          | P14       |         |                       |                                   | 5.5                               | 1.7                                | 3.4                                  | 1.7                            |                                                                    |
|        |          | P14       |         |                       |                                   | 7.5                               | 1.2                                | 1.5                                  | 0.3                            |                                                                    |
| Area 9 | N/A      | P15       | S15     | W-E                   | 8.0                               | 2.0                               | 1.7                                | 2.3                                  | 0.6                            | Obstruction at 8-11 feet on east side.                             |
|        |          | P15       |         |                       |                                   | 4.0                               | 1.9                                | 2.6                                  | 0.7                            |                                                                    |
|        |          | P15       |         |                       |                                   | 6.0                               | 1.6                                | 2.5                                  | 0.9                            |                                                                    |
| Area 9 | N/A      | P16       | S16     | W-E                   | 30.0                              | 5.0                               | 2.2                                | 3.3                                  | 1.1                            | Strong odor of fuel at profile 16. Large fuel sheen.               |
|        |          | P16       |         |                       |                                   | 10.0                              | 2.0                                | 2.9                                  | 0.9                            |                                                                    |
|        |          | P16       |         |                       |                                   | 15.0                              | 2.2                                | 2.8                                  | 0.6                            |                                                                    |
|        |          | P16       |         |                       |                                   | 20.0                              | 2.2                                | 3.5                                  | 1.3                            |                                                                    |
|        |          | P16       |         |                       |                                   | 25.0                              | 2.2                                | 2.8                                  | 0.6                            |                                                                    |
| Area 9 | N/A      | P17       | S18     | W-E                   | 11.0                              | 1.0                               | 1.4                                | 2.9                                  | 1.5                            | Obstruction east of stake out to 4 feet east. Fuel odor and sheen. |
|        |          | P17       |         |                       |                                   | 4.0                               | 1.1                                | 3.0                                  | 1.9                            | According to map, S17 is horizontally located from S18.            |
|        |          | P17       |         |                       |                                   | 7.0                               | 1.5                                | 3.8                                  | 2.3                            |                                                                    |
|        |          | P17       |         |                       |                                   | 10.0                              | 1.2                                | 3.9                                  | 2.7                            |                                                                    |
| Area 4 | N/A      | P18       | -       | -                     | 5.5                               | 1.5                               | 0.8                                | 2.3                                  | 1.5                            | 44 degrees at 27.5 feet from S19, 5.5 feet to center of stream.    |
|        |          | P18       |         |                       |                                   | 3.0                               | 0.5                                | 3.0                                  | 2.5                            |                                                                    |
|        |          | P18       |         |                       |                                   | 4.5                               | 0.5                                | 3.2                                  | 2.7                            |                                                                    |
| Area 4 | N/A      | P19       | S19     | W-E                   | 14.0                              | 2.0                               | 1.0                                | 3.4                                  | 2.4                            |                                                                    |
|        |          | P19       |         |                       |                                   | 5.0                               | 1.0                                | 2.3                                  | 1.3                            |                                                                    |
|        |          | P19       |         |                       |                                   | 8.0                               | 1.2                                | 2.4                                  | 1.2                            |                                                                    |
|        |          | P19       |         |                       |                                   | 11.0                              | 1.0                                | 3.8                                  | 2.8                            |                                                                    |
| Area 4 | N/A      | P20       | S20     | -                     | 27.0                              | 1.0                               | 0.5                                | 3.9                                  | 3.4                            | Large fuel sheen and odor of fuel.                                 |
|        |          | P20       |         |                       |                                   | 6.0                               | 1.8                                | 2.2                                  | 0.4                            |                                                                    |
|        |          | P20       |         |                       |                                   | 11.0                              | 1.6                                | 3.2                                  | 1.6                            |                                                                    |
|        |          | P20       |         |                       |                                   | 16.0                              | 1.5                                | 3.2                                  | 1.7                            |                                                                    |
|        |          | P20       |         |                       |                                   | 21.0                              | 1.4                                | 4.0                                  | 2.6                            |                                                                    |
|        |          | P20       |         |                       |                                   | 26.0                              | 1.0                                | 3.0                                  | 2.0                            |                                                                    |
| Area 4 | N/A      | P21       | -       | -                     | 3.5                               | 1.0                               | 0.4                                | 2.3                                  | 1.9                            | Located at stake marked by surveyors, but not part of              |
|        |          | P21       |         |                       |                                   | 2.0                               | 0.5                                | 2.2                                  | 1.7                            | proposed sample locations. West side channel 13 vegetation         |
|        |          | P21       |         |                       |                                   | 3.0                               | 0.5                                | 2.2                                  | 1.7                            | mat.                                                               |

|        | Summary of Sediment Transect |           |         |                       |                                   |                                   |                                    |                                      |                                |                                                                                                              |
|--------|------------------------------|-----------|---------|-----------------------|-----------------------------------|-----------------------------------|------------------------------------|--------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------|
| Area   | Sub Area                     | Profile # | Stake # | Transect<br>Direction | Total Transect<br>Distance (feet) | Distance Along<br>Transect (feet) | Sediment Start<br>Depth (feet bgs) | Sediment Refusal<br>Depth (feet bgs) | Total Sediment<br>Depth (feet) | Notes                                                                                                        |
| Area 4 | N/A                          | P22       | S21     | W-E                   | 25.0                              | 1.0                               | 0.8                                | 2.2                                  | 1.4                            |                                                                                                              |
|        |                              | P22       |         |                       |                                   | 6.0                               | 0.4                                | 0.6                                  | 0.2                            | 1                                                                                                            |
|        |                              | P22       |         |                       |                                   | 11.0                              | 1.0                                | 3.2                                  | 2.2                            | Wide section with vegetation mat sections in between. Sediment depths measured where present. Sheen present. |
|        |                              | P22       |         |                       |                                   | 22.0                              | 0.5                                | 2.1                                  | 1.6                            | Countries appare measured where present. Chesh present.                                                      |
|        |                              | P22       |         |                       |                                   | 25.0                              | 0.5                                | 2.0                                  | 1.5                            |                                                                                                              |
| Area 4 | N/A                          | P23       | S22     | W-E                   | 10.5                              | 2.0                               | 1.0                                | 2.9                                  | 1.9                            |                                                                                                              |
|        |                              | P23       |         |                       |                                   | 5.0                               | 1.8                                | 2.1                                  | 0.3                            |                                                                                                              |
|        |                              | P23       |         |                       |                                   | 8.0                               | 0.9                                | 2.6                                  | 1.7                            |                                                                                                              |
| Area 4 | N/A                          | P24       | -       | -                     | 7.0                               | 2.0                               | 0.7                                | 3.1                                  | 2.4                            |                                                                                                              |
|        |                              | P24       |         |                       |                                   | 4.0                               | 0.2                                | 2.8                                  | 2.6                            | 315 degrees at 22 feet from S23 to west edge of sediment.                                                    |
|        |                              | P24       |         |                       |                                   | 6.0                               | 0.3                                | 3.3                                  | 3.0                            |                                                                                                              |
| Area 4 | N/A                          | P25       | S23     | -                     | 1.0                               | 0.0                               | 0.6                                | 2.9                                  | 2.3                            |                                                                                                              |
|        |                              | P25       |         |                       |                                   | 0.5                               | 0.7                                | 3.0                                  | 2.3                            |                                                                                                              |
|        |                              | P25       |         |                       |                                   | 1.0                               | 1.0                                | 3.0                                  | 2.0                            |                                                                                                              |
| Area 4 | N/A                          | P26       | S24     | -                     | 1.0                               | 0.0                               | 0.3                                | 2.1                                  | 1.8                            |                                                                                                              |
|        |                              | P26       |         |                       |                                   | 0.5                               | 0.1                                | 2.4                                  | 2.3                            |                                                                                                              |
|        |                              | P26       |         |                       |                                   | 1.0                               | 0.3                                | 2.1                                  | 1.8                            |                                                                                                              |
| Area 4 | N/A                          | P27       | -       | W-E                   | 1.0                               | 0.0                               | 0.3                                | 2.2                                  | 1.9                            | 41 degrees at 26.5 feet from S25.                                                                            |
|        |                              | P27       |         |                       |                                   | 0.5                               | 0.4                                | 2.3                                  | 1.9                            |                                                                                                              |
|        |                              | P27       |         |                       |                                   | 1.0                               | 0.2                                | 0.5                                  | 0.3                            |                                                                                                              |
| Area 3 | N/A                          | P28       | S25     | W-E                   | 1.5                               | 0.0                               | 0.2                                | 2.2                                  | 2.0                            |                                                                                                              |
|        |                              | P28       |         |                       |                                   | 0.75                              | 0.3                                | 2.1                                  | 1.8                            |                                                                                                              |
|        |                              | P28       |         |                       |                                   | 1.5                               | 0.2                                | 2.0                                  | 1.8                            |                                                                                                              |
| Area 3 | N/A                          | P29       | -       | W-E                   | 2.0                               | 0.0                               | 0.2                                | 1.9                                  | 1.7                            | 2 degrees at 23 feet from S26.                                                                               |
|        |                              | P29       |         |                       |                                   | 1.0                               | 0.3                                | 1.8                                  | 1.5                            |                                                                                                              |
|        |                              | P29       |         |                       |                                   | 2.0                               | 0.3                                | 1.8                                  | 1.5                            |                                                                                                              |
| Area 3 | N/A                          | P30       | S26     | W-E                   | 2.5                               | 0.5                               | 0.3                                | 1.5                                  | 1.2                            |                                                                                                              |
|        |                              | P30       |         |                       |                                   | 1.25                              | 0.3                                | 1.6                                  | 1.3                            |                                                                                                              |
|        |                              | P30       |         |                       |                                   | 2.0                               | 0.2                                | 1.6                                  | 1.4                            |                                                                                                              |
| Area 3 | N/A                          | P31       | S27     | W-E                   | 2.0                               | 0.5                               | 0.2                                | 2.1                                  | 1.9                            |                                                                                                              |
|        |                              | P31       |         |                       |                                   | 1.0                               | 0.1                                | 1.1                                  | 1.0                            |                                                                                                              |
|        |                              | P31       |         |                       |                                   | 1.5                               | 0.1                                | 1.1                                  | 1.0                            |                                                                                                              |
| Area 3 | N/A                          | P32       | -       | W-E                   | 2.0                               | 0.5                               | 0.3                                | 1.2                                  | 0.9                            | 347 degrees at 24 feet from S28.                                                                             |
|        |                              | P32       |         |                       |                                   | 1.0                               | 0.3                                | 1.3                                  | 1.0                            |                                                                                                              |
|        |                              | P32       |         |                       |                                   | 1.5                               | 0.4                                | 1.8                                  | 1.4                            |                                                                                                              |
| Area 3 | N/A                          | P33       | S28     | -                     | 3.0                               | 0.75                              | 0.2                                | 1.4                                  | 1.2                            |                                                                                                              |
|        |                              | P33       |         |                       |                                   | 1.5                               | 0.3                                | 1.3                                  | 1.0                            |                                                                                                              |
|        |                              | P33       |         |                       |                                   | 2.25                              | 0.4                                | 1.4                                  | 1.0                            |                                                                                                              |
| Area 3 | N/A                          | P34       | S29     | -                     | 2.0                               | 0.5                               | 0.5                                | 0.8                                  | 0.3                            |                                                                                                              |
|        |                              | P34       |         |                       |                                   | 1.0                               | 0.6                                | 0.6                                  | 0.0                            |                                                                                                              |

|        | Cultillary of Gedinient Transect |           |         |                       |                                   |                                   |                                    |                                      |                                |                                       |
|--------|----------------------------------|-----------|---------|-----------------------|-----------------------------------|-----------------------------------|------------------------------------|--------------------------------------|--------------------------------|---------------------------------------|
| Area   | Sub Area                         | Profile # | Stake # | Transect<br>Direction | Total Transect<br>Distance (feet) | Distance Along<br>Transect (feet) | Sediment Start<br>Depth (feet bgs) | Sediment Refusal<br>Depth (feet bgs) | Total Sediment<br>Depth (feet) | Notes                                 |
|        |                                  | P34       |         |                       |                                   | 1.5                               | 0.7                                | 1.4                                  | 0.7                            |                                       |
| Area 3 | N/A                              | P35       | S30     | -                     | 1.5                               | 0.0                               | 0.2                                | 2.3                                  | 2.1                            |                                       |
|        |                                  | P35       |         |                       |                                   | 0.75                              | 0.3                                | 2.3                                  | 2.0                            |                                       |
|        |                                  | P35       |         |                       |                                   | 1.5                               | 0.1                                | 2.4                                  | 2.3                            |                                       |
| Area 3 | N/A                              | P36       | S31     | -                     | 3.0                               | 0.75                              | 0.3                                | 1.6                                  | 1.3                            |                                       |
|        |                                  | P36       |         |                       |                                   | 1.5                               | 0.4                                | 1.0                                  | 0.6                            |                                       |
|        |                                  | P36       |         |                       |                                   | 2.25                              | 0.3                                | 1.8                                  | 1.5                            |                                       |
| Area 3 | N/A                              | P37       | -       | -                     | 1.0                               | 0.0                               | 0.5                                | 1.6                                  | 1.1                            | 31 degrees at 19 feet from S32.       |
|        |                                  | P37       |         |                       |                                   | 0.5                               | 0.3                                | 1.5                                  | 1.2                            |                                       |
|        |                                  | P37       |         |                       |                                   | 1.0                               | 0.2                                | 1.5                                  | 1.3                            |                                       |
| Area 3 | N/A                              | P38       | S32     | -                     | 6.0                               | 1.0                               | 0.5                                | 1.6                                  | 1.1                            | Light sheen.                          |
|        |                                  | P38       |         |                       |                                   | 3.0                               | 0.1                                | 1.5                                  | 1.4                            |                                       |
|        |                                  | P38       |         |                       |                                   | 5.0                               | 0.3                                | 1.2                                  | 0.9                            |                                       |
| Area 3 | N/A                              | P39       | S33     | -                     | 2.0                               | 0.5                               | 0.1                                | 0.1                                  | 0.0                            | Very light layer of sediment on rock. |
|        |                                  | P39       |         |                       |                                   | 1.0                               | 0.4                                | 0.4                                  | 0.0                            |                                       |
|        |                                  | P39       |         |                       |                                   | 1.5                               | 0.2                                | 0.2                                  | 0.0                            |                                       |
| Area 3 | N/A                              | P40       | S34     | -                     | 3.5                               | 1.0                               | 1.0                                | 1.5                                  | 0.5                            |                                       |
|        |                                  | P40       |         |                       |                                   | 2.0                               | 1.2                                | 2.2                                  | 1.0                            |                                       |
|        |                                  | P40       |         |                       |                                   | 3.0                               | 0.8                                | 1.2                                  | 0.4                            |                                       |
| Area 3 | N/A                              | P41       | S35     | -                     | 1.0                               | 0.0                               | 0.8                                | 2.5                                  | 1.7                            |                                       |
|        |                                  | P41       |         |                       |                                   | 0.5                               | 1.0                                | 1.5                                  | 0.5                            |                                       |
|        |                                  | P41       |         |                       |                                   | 1.0                               | 0.6                                | 1.5                                  | 0.9                            |                                       |
| Area 7 | N/A                              | P42       | -       | N-S                   | 49.0                              | 7.0                               | -                                  | -                                    | -                              | Vegetation mat.                       |
|        |                                  | P42       |         |                       |                                   | 14.0                              | -                                  | -                                    | -                              | Vegetation mat.                       |
|        |                                  | P42       |         |                       |                                   | 21.0                              | -                                  | -                                    | -                              | Vegetation mat.                       |
|        |                                  | P42       |         |                       |                                   | 28.0                              | 1.2                                | 1.5                                  | 0.3                            | Sheen and odor.                       |
|        |                                  | P42       |         |                       |                                   | 35.0                              | 1.3                                | 3.1                                  | 1.8                            | Sheen and odor.                       |
|        |                                  | P42       |         |                       |                                   | 42.0                              |                                    |                                      | 0.0                            | Vegetation mat.                       |
| Area 7 | N/A                              | P43       | -       | W-E                   | 54.0                              | 10.0                              | 0.2                                | 2.2                                  | 2.0                            |                                       |
|        |                                  | P43       |         |                       |                                   | 20.0                              | -                                  | -                                    | -                              | Vegetation mat. Sheen and odor.       |
|        |                                  | P43       |         |                       |                                   | 30.0                              | 2.1                                | 3.5                                  | 1.4                            |                                       |
|        |                                  | P43       |         |                       |                                   | 35.5                              | 2.6                                | 3.8                                  | 1.2                            |                                       |
|        |                                  | P43       |         |                       |                                   | 40.0                              | -                                  | -                                    | -                              | Vegetation mat. Sheen and odor.       |
|        |                                  | P43       |         | ·                     |                                   | 50.0                              | -                                  | -                                    | -                              | Vegetation mat. Sheen and odor.       |
| Area 8 | N/A                              | P44       | _       | N-S                   | 39.0                              | 5.0                               | 0.9                                | 1.4                                  | 0.5                            |                                       |
|        |                                  | P44       |         |                       |                                   | 12.0                              | -                                  | -                                    | -                              | Vegetation mat.                       |
|        |                                  | P44       |         |                       |                                   | 19.0                              | -                                  | -                                    | -                              | Vegetation mat.                       |
|        |                                  | P44       |         |                       |                                   | 26.0                              | 2.0                                | 2.2                                  | 0.2                            |                                       |
|        |                                  | P44       |         |                       |                                   | 32.0                              | 2.2                                | 2.3                                  | 0.1                            |                                       |
| Area 8 | N/A                              | P45       | S42     | W-E                   | 40.0                              | 0-8.0                             | -                                  | -                                    | -                              | Vegetation mat.                       |


| Area   | Sub Area     | Profile # | Stake # | Transect<br>Direction | Total Transect<br>Distance (feet) | Distance Along<br>Transect (feet) | Sediment Start<br>Depth (feet bgs) | Sediment Refusal<br>Depth (feet bgs) | Total Sediment<br>Depth (feet) | Notes                                             |
|--------|--------------|-----------|---------|-----------------------|-----------------------------------|-----------------------------------|------------------------------------|--------------------------------------|--------------------------------|---------------------------------------------------|
|        |              | P45       |         |                       |                                   | 10.0                              | 1.4                                | 1.9                                  | 0.5                            |                                                   |
|        |              | P45       |         |                       |                                   | 13.0                              | 2.1                                | 2.4                                  | 0.3                            |                                                   |
|        |              | P45       |         |                       |                                   | 13.5-35.0                         | -                                  | -                                    | -                              | Vegetation mat.                                   |
|        |              | P45       |         |                       |                                   | 35.5                              | 1.0                                | 1.3                                  | 0.3                            |                                                   |
|        |              | P45       |         |                       |                                   | 37.0                              | 0.9                                | 1.1                                  | 0.2                            |                                                   |
|        |              | P45       |         |                       |                                   | 38.0                              | 0.7                                | 1.2                                  | 0.5                            |                                                   |
|        |              | P45       |         |                       |                                   | 38-40                             | -                                  | -                                    | -                              | Vegetation mat. S43, vegetation mat no sediments. |
| Area 6 | N/A          | P46       | -       | N-S                   | 84.0                              | 10.0                              | -                                  | -                                    | -                              | Vegetation mat. Sheen and odor.                   |
|        |              | P46       |         |                       |                                   | 20.0                              | -                                  | -                                    | -                              | Vegetation mat. Sheen and odor.                   |
|        |              | P46       |         |                       |                                   | 30.0                              | 2.5                                | 3.5                                  | 1.0                            |                                                   |
|        |              | P46       |         |                       |                                   | 40.0                              | 2.5                                | 3.8                                  | 1.3                            |                                                   |
|        |              | P46       |         |                       |                                   | 50.0                              | -                                  | -                                    | -                              | Vegetation mat. Sheen and odor.                   |
|        |              | P46       |         |                       |                                   | 60.0                              | -                                  | -                                    | -                              | Vegetation mat. Sheen and odor.                   |
|        |              | P46       |         |                       |                                   | 70.0                              | -                                  | -                                    | -                              | No sediment. Sheen and odor.                      |
|        |              | P46       |         |                       |                                   | 80.0                              | -                                  | -                                    | -                              | No sediment. Sheen and odor.                      |
| Area 6 | N/A          | P47       | -       | W-E                   | 76.0                              | 10.0                              | 1.4                                | 2.2                                  | 0.8                            |                                                   |
|        |              | P47       |         |                       |                                   | 20.0                              | -                                  | -                                    | -                              | Vegetation mat.                                   |
|        |              | P47       |         |                       |                                   | 30.0                              | 2.5                                | 3.6                                  | 1.1                            |                                                   |
|        |              | P47       |         |                       |                                   | 40.0                              | -                                  | -                                    | -                              | Vegetation mat.                                   |
|        |              | P47       |         |                       |                                   | 50.0                              | -                                  | -                                    | -                              | Vegitation mat.                                   |
|        |              | P47       |         |                       |                                   | 60.0                              | -                                  | -                                    | -                              | Vegitation mat.                                   |
| Area 5 | Area 5 South | P48       | S41     | N-S                   | 62.5                              | 0-35.0                            | -                                  | -                                    | -                              | Vegetation mat.                                   |
|        |              | P48       |         |                       |                                   | 35.4                              | -                                  | -                                    | -                              | Vegetation mat. Stake 41                          |
|        |              | P48       |         |                       |                                   | 36.5                              | 2.6                                | 2.8                                  | 0.2                            |                                                   |
|        |              | P48       |         |                       |                                   | 40-58                             | -                                  | -                                    | -                              | Vegetation mat.                                   |
|        |              | P48       |         |                       |                                   | 58-62.5                           | -                                  | -                                    | -                              | No sediment.                                      |
| Area 5 | Area 5 South | P49       | S41     | W-E                   | 44.0                              | 0-22.0                            | -                                  | -                                    | -                              | Vegetation mat.                                   |
|        |              | P49       |         |                       |                                   | 22.5                              | 2.1                                | 3.3                                  | 1.2                            | At stake 41.                                      |
|        |              | P49       |         |                       |                                   | 23.0-44.0                         | -                                  | -                                    | -                              | Vegetation mat.                                   |
| Area 5 | Area 5 North | P50       | S37     | N-S                   | 50.5                              | 0-27.0                            | -                                  | -                                    | -                              | Vegetation mat.                                   |
|        |              | P50       |         |                       |                                   | 27.0                              | 2.5                                | 3.2                                  | 0.7                            |                                                   |
|        |              | P50       |         |                       |                                   | 30.4                              | -                                  | -                                    | -                              | Vegetation mat at S37.                            |
|        |              | P50       |         |                       |                                   | 31.0-50.5                         | -                                  | -                                    | -                              | Vegetation mat.                                   |
| Area 5 | Area 5 North | P51       | S36     | W-E                   | 40.0                              | 0-15.0                            | -                                  | -                                    | -                              | Vegetation mat.                                   |
|        |              | P51       |         |                       |                                   | 15.5-18.0                         | -                                  | -                                    | -                              | No sediment, rock only.                           |
|        |              | P51       |         |                       |                                   | 18.5                              | 2.9                                | 3.1                                  | 0.2                            |                                                   |
|        |              | P51       |         |                       |                                   | 19.0                              | 2.8                                | 2.9                                  | 0.1                            |                                                   |
|        |              | P51       |         |                       |                                   | 19.1-40.0                         | -                                  | -                                    | -                              | Vegetation map. S36- no sed, rock only.           |
|        |              | -         | S36     | -                     | -                                 | -                                 | -                                  | -                                    | -                              | S36- no sed, rock only.                           |
| Area 2 | N/A          | P52       | -       | N-S                   | 26.5                              | 1.0                               | -                                  | -                                    | -                              | Vegetation mat. Large sheen and strong odor.      |

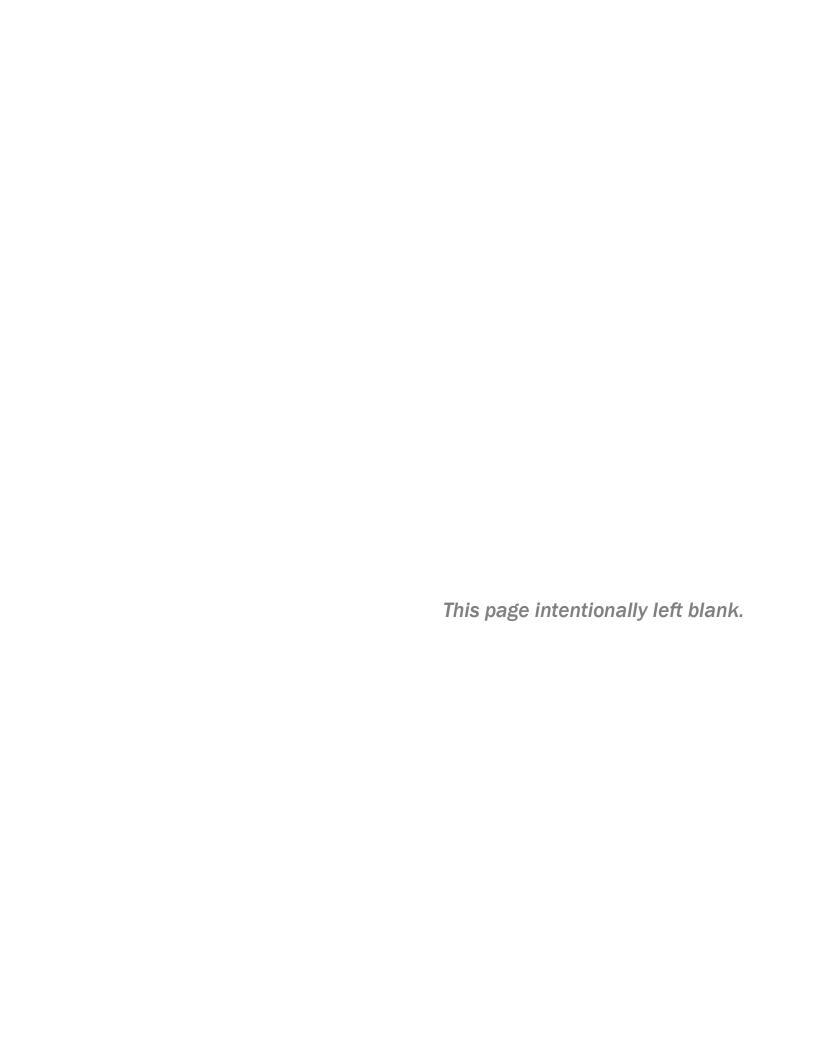
| Area   | Sub Area | Profile # | Stake # | Transect<br>Direction | Total Transect<br>Distance (feet) | Distance Along<br>Transect (feet) | Sediment Start<br>Depth (feet bgs) | Sediment Refusal<br>Depth (feet bgs) | Total Sediment<br>Depth (feet) | Notes           |
|--------|----------|-----------|---------|-----------------------|-----------------------------------|-----------------------------------|------------------------------------|--------------------------------------|--------------------------------|-----------------|
|        |          | P52       |         |                       |                                   | 5.0                               | 1.5                                | 2.5                                  | 1.0                            |                 |
|        |          | P52       |         |                       |                                   | 9.0                               | 1.4                                | 2.2                                  | 0.8                            |                 |
|        |          | P52       |         |                       |                                   | 13.0                              | 1.5                                | 1.9                                  | 0.4                            |                 |
|        |          | P52       |         |                       |                                   | 17.0                              | 1.0                                | 1.5                                  | 0.5                            |                 |
|        |          | P52       |         |                       |                                   | 21.0                              | 1.2                                | 2.4                                  | 1.2                            |                 |
|        |          | P52       |         |                       |                                   | 25.0                              | -                                  | -                                    | -                              | No sediment.    |
| Area 2 | N/A      | P53       | -       | W-E                   | 18.0                              | 3.0                               | -                                  | -                                    | -                              | Vegetation mat. |
|        |          | P53       |         |                       |                                   | 6.0                               | 1.6                                | 4.0                                  | 2.4                            |                 |
|        |          | P53       |         |                       |                                   | 9.0                               | 1.6                                | 3.6                                  | 2.0                            |                 |
|        |          | P53       |         |                       |                                   | 12.0                              | 1.2                                | 1.8                                  | 0.6                            |                 |
|        |          | P53       |         | ·                     |                                   | 15.0                              | -                                  | -                                    | -                              | Vegetation mat. |

#### Note:

For definitions, refer to the Acronyms and Abbreviations section in Appendix F.

| Northeast Cape Remedial Action | n Tanagranhigal Survay D  | onavt |
|--------------------------------|---------------------------|-------|
| Northeast Cape Remedial Action | n Topographical Survey Ko | eport |
|                                |                           |       |
|                                |                           |       |
|                                |                           |       |
|                                |                           |       |
|                                |                           |       |
|                                |                           |       |
|                                |                           |       |




# Northeast Cape Remedial Action Topographic Survey

Final Project Report August, 2018

Contractor Job Number: W911KB18F0020

## **Project Coordinates:**

Latitude: 63°18'37.79"N Longitude: 168°57'47.72"W



## **Table of Contents**

| 1. | PROJECT DESCRIPTION                    | 1  |
|----|----------------------------------------|----|
| 2. | SURVEY CONTROL SUMMARY                 | 1  |
|    | SURVEY REDUCTION NARRATIVE             |    |
| 4. | ISSUES AND PROBLEMS ENCOUNTERED        | 3  |
| 5. | CHECK SHOT / QUALITY REPORTS           | 4  |
|    | 5.1 RTK Check Shots on Project Control | 4  |
|    | 5.2 RTK Observation Quality            | 5  |
| 6. | LEVEL REDUCTION REPORTS                | 41 |
| 7. | TRAVERSE ADJUSTMENT REPORTS            | 42 |
| 0  | CLIDVEV OLIVITA                        | 12 |

## 1. Project Description

### **Project Overview and Summary**

Work for this project will be performed by Lounsbury & Associates, Inc. (Lounsbury) under contract to Environmental Compliance Consultants (ECC). The purpose of this survey will be to provide surveying and mapping support as discussed in the Northeast Cape Remedial Action Statement of Work dated November 8, 2017. Specific survey goals included tying into existing survey control and supplementing it as necessary, perform cross sections and a small topographic survey at Site #7, stake sample spots at Sites #7 and #28, and survey the edge of water at Site #28. Fieldwork for this survey was completed by Lounsbury & Associates, Inc. during August 2018.

**USACE Contract Number:** W911KB-17-D-0017

### **Horizontal Datum and Epoch:**

The horizontal datum and epoch for the Survey is NAD83 (2011) (EPOCH: 2010.00). Coordinates have been provided in UTM Zone 2N, Alaska State Plane Zone 9 (U.S. Survey Feet), and in other datums in the project data table, per agreed-upon scope of work.

### **Vertical Datum and Epoch:**

The vertical datum for the survey is NAVD 88, GEOID 12B. Elevations on project control were determined by GPS elevation transfer. The average of multiple NGS OPUS solutions, observed over different days, was held fixed for each project control point. The integrity of these elevations were confirmed with multiple RTK and static GPS checks.

#### **Number of New Monuments Set:**

This survey set one new project control monument and provided updated coordinates on four existing project control monuments.

## 2. Survey Control Summary

### **Primary Horizontal and Vertical Control Points:**

The table on the following page lists the project primary horizontal and vertical control points.

|                       | Primary Horizontal and Vertical Control Points |                   |                  |                   |               |               |                                                        |                                                        |                                               |                                  |               |
|-----------------------|------------------------------------------------|-------------------|------------------|-------------------|---------------|---------------|--------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------|----------------------------------|---------------|
| Field                 | Latitude                                       | Longitude         | Latitude         | Longitude         | Northing      | Easting       | Northing                                               | Easting                                                | Elevation                                     | Elevation                        | Text          |
| Survey<br>Point<br>ID | (WGS84)                                        | (WGS84)           | (NAD 83 (2011))  | (NAD 83 (2011))   | (UTM Zone 2N) | (UTM Zone 2N) | (Alaska State<br>Plane Zone 9,<br>U.S. Survey<br>Feet) | (Alaska State<br>Plane Zone 9,<br>U.S. Survey<br>Feet) | (NAVD88,<br>GEOID12B,<br>U.S. Survey<br>Feet) | (NAVD88,<br>GEOID12B,<br>Meters) | Descriptor    |
| 1                     | 63°19'32.47895"N                               | 168°58'15.32269"W | 63°19'32.49446"N | 168°58'15.23687"W | 7023485.424   | 601618.564    | 3409053.356                                            | 1809572.561                                            | 28.409                                        | 8.659                            | CP 1 RTK BASE |
| 2                     | 63°18'57.69975"N                               | 168°57'18.33986"W | 63°18'57.71525"N | 168°57'18.25406"W | 7022434.584   | 602445.407    | 3405563.115                                            | 1812231.739                                            | 51.535                                        | 15.708                           | CRBC          |
| 59                    | 63°20'08.83006"N                               | 168°56'24.47121"W | 63°20'08.84555"N | 168°56'24.38532"W | 7024659.259   | 603124.127    | 3412827.77                                             | 1814572.558                                            | 5.248                                         | 1.599                            | СВС           |
| 603                   | 63°18'58.70241"N                               | 168°56'27.27211"W | 63°18'58.71790"N | 168°56'27.18629"W | 7022488.35    | 603154.891    | 3405703.216                                            | 1814562.383                                            | 78.814                                        | 24.023                           | BM B NGS      |
| 2600                  | 63°18'42.73235"N                               | 168°57'29.95052"W | 63°18'42.74785"N | 168°57'29.86474"W | 7021966.361   | 602298.622    | 3404034.336                                            | 1811726.161                                            | 72.924                                        | 22.227                           | CRB           |

### **Static Processing**

Lounsbury & Associates used the NGS OPUS Utility to process all static baselines and obtain the geodetic positions of project control. Values were obtained by averaging multiple solutions on each point, all of which were based upon at least two hours of static GPS observation time. Observations were obtained over multiple days and at different times each day in order to incorporate different satellite geometry. The integrity of the xyz positions on each control point were confirmed through multiple RTK checkshots on each point.

### **Checkshots / Other Control Points:**

The primary control points listed in the table on the previous page were the only control points utilized for this survey.

### 3. Survey Reduction Narrative

### **Procedures Used and Survey Control Held:**

The survey found several issues with the existing project control. Record coordinates on points derived from "Eco-Land" Surveys were listed as Alaska State Plane Zone 9, but initial field checks found this to be wrong. Most of the control set from that survey was found to be too sloppy to use. Furthermore, our OPUS solutions on Point #1 differed from the "Eco-Land" position by approximately 0.7; while our OPUS solutions matched the published position of Point #59 by approximately 0.08'. It was determined that, given the issues with the existing control values and the high latitude of the project site, averaged OPUS solutions should be used on all project control in order to provide the most defensible, up-to-date geodetic coordinates of each control point. The coordinates of each project control point have thus been updated according to the mean OPUS values on each point.

RTK topographic survey data was processed using Topcon Magnet Ver 5.0.1 software. A large number of check shots were performed to ensure good on-the-fly initialization, and to rule out systematic errors. The vast majority of RTK check shots were under 0.10' magnitude in XYZ with a small percentage of outliers, all within the RTK precision specifications of the equipment used. ASCII points were generated in Topcon Magnet software after reviewing the checkshot report and RTK system statistics reports. These reports have been included in the submitted deliverable package and are referenced in this report document.

Survey deliverables were then generated according to the specifications listed in the USACE Alaska District – Environmental Program Manual For Electronic Deliverables, April 2017.

### 4. Issues and Problems Encountered

Other than the discrepancies found with existing "Eco-Land" control described in Section 3 of this report, no significant issues or problems were encountered in this survey.

# **5. Check Shot / Quality Reports**

## **5.1 RTK Check Shots on Project Control**

| From  | То             | Forward Azimuth | Backward Azimuth | Geodetic Dist.<br>(USft) | Ground Dist.<br>(USft) | Slope Dist.<br>(USft) |
|-------|----------------|-----------------|------------------|--------------------------|------------------------|-----------------------|
| 5002  | 59_Mean_OPUS   | 305°20'12.0274" | 125°20'12.0274"  | 0.016                    | 0.016                  | 0.02                  |
| 5421  | 1_Mean_OPUS    | 70°09'22.3000"  | 250°09'22.3001"  | 0.028                    | 0.028                  | 0.038                 |
| 10001 | 1_Mean_OPUS    | 65°16'41.7923"  | 245°16'41.7923"  | 0.011                    | 0.011                  | 0.041                 |
| 10004 | 59_Mean_OPUS   | 322°11'09.9037" | 142°11'09.9036"  | 0.014                    | 0.014                  | 0.05                  |
| 5006  | 2600_Mean_OPUS | 208°28'50.0765" | 28°28'50.0763"   | 0.031                    | 0.031                  | 0.052                 |
| 5115  | 59_Mean_OPUS   | 2°10'08.8688"   | 182°10'08.8688"  | 0.037                    | 0.037                  | 0.052                 |
| 5228  | 1_Mean_OPUS    | 9°17'14.9805"   | 189°17'14.9806"  | 0.007                    | 0.007                  | 0.074                 |
| 10136 | 59_Mean_OPUS   | 343°59'55.2779" | 163°59'55.2778"  | 0.021                    | 0.021                  | 0.079                 |
| 5009  | 1_Mean_OPUS    | 35°02'46.5820"  | 215°02'46.5820"  | 0.009                    | 0.009                  | 0.079                 |
| 10236 | 2_Mean_OPUS    | 210°52'25.3985" | 30°52'25.3984"   | 0.015                    | 0.015                  | 0.103                 |
| 5231  | 2_Mean_OPUS    | 242°16'27.2284" | 62°16'27.2283"   | 0.02                     | 0.02                   | 0.105                 |
| 5229  | 2_Mean_OPUS    | 326°09'36.8126" | 146°09'36.8123"  | 0.043                    | 0.043                  | 0.105                 |
| 10519 | GPS_2_OPUS     | 225°43'35.2393" | 45°43'35.2389"   | 0.057                    | 0.057                  | 0.107                 |
| 10003 | 2_Mean_OPUS    | 341°47'29.2983" | 161°47'29.2981"  | 0.036                    | 0.036                  | 0.108                 |
| 5114  | 2600_Mean_OPUS | 287°32'45.0001" | 107°32'45.0001"  | 0.03                     | 0.03                   | 0.117                 |
| 10235 | 2_Mean_OPUS    | 293°36'20.6271" | 113°36'20.6270"  | 0.05                     | 0.05                   | 0.12                  |
| 5387  | 2600_Mean_OPUS | 200°16'34.6263" | 20°16'34.6260"   | 0.062                    | 0.062                  | 0.12                  |
| 10234 | 2_Mean_OPUS    | 269°56'15.5115" | 89°56'15.5115"   | 0.027                    | 0.027                  | 0.12                  |
| 10002 | 2600_Mean_OPUS | 218°10'29.4533" | 38°10'29.4532"   | 0.023                    | 0.023                  | 0.12                  |
| 10520 | 2600_Mean_OPUS | 208°51'32.0517" | 28°51'32.0514"   | 0.04                     | 0.04                   | 0.127                 |
| 10135 | 2_Mean_OPUS    | 298°19'17.4252" | 118°19'17.4251"  | 0.018                    | 0.018                  | 0.136                 |
| 5391  | GPS_2_OPUS     | 211°52'20.4448" | 31°52'20.4442"   | 0.079                    | 0.079                  | 0.142                 |

## lounsbury & associates, inc.

| From | То              | Forward Azimuth | Backward Azimuth | Geodetic Dist.<br>(USft) | Ground Dist.<br>(USft) | Slope Dist.<br>(USft) |
|------|-----------------|-----------------|------------------|--------------------------|------------------------|-----------------------|
| 5394 | 2 Mean OPUS     | 129°37'22.3715" | 309°37'22.3716"  | 0.019                    | 0.019                  | 0.243                 |
| 3334 | 2_Wcan_0103     | 123 37 22.37 13 | 303 37 22.3710   | 0.013                    | 0.013                  | 0.243                 |
| 5420 | 2_Mean_OPUS     | 322°10'05.7059" | 142°10'05.7057"  | 0.026                    | 0.026                  | 0.256                 |
| 5392 | 2 Mean OPUS     | 63°59'24.8944"  | 243°59'24.8945"  | 0.014                    | 0.014                  | 0.481                 |
| 3332 | Z_IVICATI_OF 03 | 03 39 24.8344   | 243 33 24.8343   | 0.014                    | 0.014                  | 0.481                 |
| 5393 | 2_Mean_OPUS     | 327°19'59.4012" | 147°19'59.4010"  | 0.025                    | 0.025                  | 0.495                 |

## **5.2 RTK Observation Quality**

| Name               | dN (USft) | dE (USft) | dHt (USft) | Horz RMS | Vert RMS |
|--------------------|-----------|-----------|------------|----------|----------|
| 1_Mean_OPUS-5002   | 3774.405  | 5000.011  | -23.214    | 0.012    | 0.015    |
| 1_Mean_OPUS-5003   | 3575.944  | 4892.167  | -23.431    | 0.013    | 0.016    |
| 1_Mean_OPUS-5003   | 3575.954  | 4892.157  | -23.435    | 0.013    | 0.016    |
| 1_Mean_OPUS-5004   | 3322.317  | 4700.852  | -23.927    | 0.012    | 0.015    |
| 1_Mean_OPUS-5004   | 3322.324  | 4700.84   | -23.938    | 0.012    | 0.015    |
| 1_Mean_OPUS-5005   | -5424.463 | 423.411   | 47.584     | 0.011    | 0.013    |
| 1_Mean_OPUS-5006   | -5019.003 | 2153.621  | 45.16      | 0.012    | 0.014    |
| 1_Mean_OPUS-5006   | -5018.993 | 2153.614  | 45.162     | 0.012    | 0.014    |
| 1_Mean_OPUS-5007   | -5418.432 | 1702.719  | 66.116     | 0.013    | 0.017    |
| 1_Mean_OPUS-5008   | -7878.646 | 2407.138  | 212.354    | 0.014    | 0.016    |
| 1_Mean_OPUS-5008   | -7878.622 | 2407.162  | 212.356    | 0.013    | 0.015    |
| 603_Mean_OPUS-5001 | 3305.88   | 2620.741  | -52.192    | 0.011    | 0.014    |
| 603_Mean_OPUS-5009 | 3350.133  | -4989.827 | -48.56     | 0.018    | 0.033    |
| 603_Mean_OPUS-5010 | -1382.478 | -3696.888 | -19.087    | 0.017    | 0.027    |
| 603_Mean_OPUS-5011 | -1394.685 | -3677.133 | -19.074    | 0.011    | 0.015    |
| 603_Mean_OPUS-5012 | -1409.686 | -3667.085 | -19.055    | 0.011    | 0.014    |
| 603_Mean_OPUS-5013 | -1407.245 | -3657.459 | -19.1      | 0.012    | 0.015    |
| 603_Mean_OPUS-5014 | -1394.93  | -3653.609 | -19.138    | 0.012    | 0.015    |

| Name               | dN (USft) | dE (USft) | dHt (USft) | Horz RMS | Vert RMS |
|--------------------|-----------|-----------|------------|----------|----------|
| 603_Mean_OPUS-5015 | -1378.828 | -3649.477 | -19.098    | 0.011    | 0.014    |
| 603_Mean_OPUS-5016 | -1364.455 | -3653.827 | -19.078    | 0.011    | 0.014    |
| 603_Mean_OPUS-5017 | -1364.81  | -3669.486 | -19.119    | 0.012    | 0.015    |
| 603_Mean_OPUS-5018 | -1354.356 | -3678.788 | -19.057    | 0.011    | 0.014    |
| 603_Mean_OPUS-5019 | -1357.804 | -3685.786 | -19.109    | 0.011    | 0.014    |
| 603_Mean_OPUS-5020 | -1377.675 | -3695.28  | -19.064    | 0.011    | 0.014    |
| 603_Mean_OPUS-5021 | -1370.141 | -3588.193 | -18.173    | 0.018    | 0.026    |
| 603_Mean_OPUS-5022 | -1372.319 | -3578.998 | -18.216    | 0.018    | 0.026    |
| 603_Mean_OPUS-5023 | -1364.065 | -3566.953 | -18.177    | 0.018    | 0.026    |
| 603_Mean_OPUS-5024 | -1345.531 | -3571.082 | -18.193    | 0.018    | 0.026    |
| 603_Mean_OPUS-5025 | -1338.042 | -3554.454 | -18.149    | 0.018    | 0.026    |
| 603_Mean_OPUS-5026 | -1322.789 | -3545.684 | -18.192    | 0.018    | 0.026    |
| 603_Mean_OPUS-5027 | -1314.94  | -3554.082 | -18.216    | 0.018    | 0.026    |
| 603_Mean_OPUS-5028 | -1324.361 | -3572.78  | -18.146    | 0.018    | 0.026    |
| 603_Mean_OPUS-5029 | -1339.302 | -3578.247 | -18.079    | 0.018    | 0.026    |
| 603_Mean_OPUS-5030 | -1356.395 | -3585.042 | -18.248    | 0.018    | 0.026    |
| 603_Mean_OPUS-5031 | -1401.479 | -3405.184 | -18.522    | 0.013    | 0.018    |
| 603_Mean_OPUS-5032 | -1386.454 | -3398.304 | -18.496    | 0.013    | 0.018    |
| 603_Mean_OPUS-5033 | -1383.109 | -3385.869 | -18.522    | 0.013    | 0.018    |
| 603_Mean_OPUS-5034 | -1400.734 | -3375.255 | -18.516    | 0.013    | 0.018    |
| 603_Mean_OPUS-5035 | -1415.174 | -3366.668 | -18.41     | 0.014    | 0.019    |
| 603_Mean_OPUS-5036 | -1428.924 | -3372.479 | -18.412    | 0.013    | 0.018    |
| 603_Mean_OPUS-5037 | -1417.508 | -3390.27  | -18.498    | 0.013    | 0.018    |
| 603_Mean_OPUS-5038 | -1339.349 | -3462.828 | -19.444    | 0.013    | 0.017    |
| 603_Mean_OPUS-5039 | -1336.475 | -3445.568 | -19.413    | 0.013    | 0.017    |
| 603_Mean_OPUS-5040 | -1321.827 | -3442.687 | -19.409    | 0.012    | 0.016    |

| Name               | dN (USft) | dE (USft) | dHt (USft) | Horz RMS | Vert RMS |
|--------------------|-----------|-----------|------------|----------|----------|
| 603_Mean_OPUS-5041 | -1309.704 | -3454.94  | -19.394    | 0.012    | 0.016    |
| 603_Mean_OPUS-5042 | -1312.02  | -3464.9   | -19.539    | 0.012    | 0.016    |
| 603_Mean_OPUS-5043 | -1324.833 | -3463.467 | -19.44     | 0.012    | 0.016    |
| 603_Mean_OPUS-5044 | -1136.211 | -3623.722 | -21.98     | 0.011    | 0.013    |
| 603_Mean_OPUS-5045 | -1138.433 | -3622.075 | -21.961    | 0.011    | 0.013    |
| 603_Mean_OPUS-5046 | -1137.061 | -3626.602 | -21.982    | 0.011    | 0.013    |
| 603_Mean_OPUS-5047 | -1127.568 | -3622.953 | -22.216    | 0.011    | 0.013    |
| 603_Mean_OPUS-5048 | -1129.579 | -3622.894 | -22.237    | 0.011    | 0.013    |
| 603_Mean_OPUS-5049 | -1128.093 | -3619.089 | -22.294    | 0.011    | 0.013    |
| 603_Mean_OPUS-5050 | -1126.715 | -3619.856 | -22.364    | 0.011    | 0.013    |
| 603_Mean_OPUS-5051 | -1122.438 | -3617.869 | -22.393    | 0.011    | 0.013    |
| 603_Mean_OPUS-5052 | -1123.324 | -3613.781 | -22.462    | 0.012    | 0.014    |
| 603_Mean_OPUS-5053 | -1118.008 | -3614.809 | -22.423    | 0.011    | 0.013    |
| 603_Mean_OPUS-5054 | -1121.164 | -3618.711 | -22.42     | 0.011    | 0.013    |
| 603_Mean_OPUS-5055 | -1118.112 | -3621.759 | -22.807    | 0.011    | 0.013    |
| 603_Mean_OPUS-5056 | -1115.78  | -3624.3   | -23.326    | 0.011    | 0.013    |
| 603_Mean_OPUS-5057 | -1116.777 | -3626.413 | -23.349    | 0.014    | 0.016    |
| 603_Mean_OPUS-5058 | -1121.215 | -3628.61  | -23.183    | 0.011    | 0.013    |
| 603_Mean_OPUS-5059 | -1120.948 | -3633.823 | -23.166    | 0.011    | 0.013    |
| 603_Mean_OPUS-5060 | -1118.101 | -3633.473 | -23.25     | 0.011    | 0.013    |
| 603_Mean_OPUS-5061 | -1118.076 | -3630.257 | -23.19     | 0.011    | 0.013    |
| 603_Mean_OPUS-5062 | -1116.153 | -3627.365 | -23.394    | 0.011    | 0.013    |
| 603_Mean_OPUS-5063 | -1114.449 | -3626.483 | -23.407    | 0.011    | 0.013    |
| 603_Mean_OPUS-5064 | -1111.087 | -3626.506 | -23.466    | 0.012    | 0.014    |
| 603_Mean_OPUS-5065 | -1106.492 | -3626.128 | -23.777    | 0.012    | 0.014    |
| 603_Mean_OPUS-5066 | -1102.805 | -3624.455 | -24.138    | 0.011    | 0.012    |

| Name               | dN (USft) | dE (USft) | dHt (USft) | Horz RMS | Vert RMS |
|--------------------|-----------|-----------|------------|----------|----------|
| 603_Mean_OPUS-5067 | -1096.092 | -3617.693 | -24.241    | 0.011    | 0.012    |
| 603_Mean_OPUS-5068 | -1114.508 | -3616.996 | -22.537    | 0.011    | 0.012    |
| 603_Mean_OPUS-5069 | -1106.543 | -3618.406 | -24.148    | 0.011    | 0.012    |
| 603_Mean_OPUS-5070 | -1098.799 | -3615.287 | -24.127    | 0.011    | 0.012    |
| 603_Mean_OPUS-5071 | -1115.421 | -3617.635 | -22.482    | 0.011    | 0.012    |
| 603_Mean_OPUS-5072 | -1116.27  | -3620.644 | -22.975    | 0.011    | 0.012    |
| 603_Mean_OPUS-5073 | -1114.4   | -3623.729 | -23.441    | 0.011    | 0.012    |
| 603_Mean_OPUS-5074 | -1111.307 | -3625.126 | -23.438    | 0.011    | 0.012    |
| 603_Mean_OPUS-5075 | -1106.867 | -3625.262 | -23.858    | 0.011    | 0.012    |
| 603_Mean_OPUS-5076 | -1106.827 | -3620.298 | -24.107    | 0.011    | 0.012    |
| 603_Mean_OPUS-5077 | -1086.819 | -3611.26  | -24.716    | 0.01     | 0.011    |
| 603_Mean_OPUS-5078 | -1077.356 | -3612.344 | -24.844    | 0.01     | 0.011    |
| 603_Mean_OPUS-5079 | -1069.345 | -3611.635 | -25.117    | 0.011    | 0.012    |
| 603_Mean_OPUS-5080 | -1061.414 | -3611.136 | -25.472    | 0.011    | 0.012    |
| 603_Mean_OPUS-5081 | -1059.247 | -3609.097 | -25.485    | 0.011    | 0.012    |
| 603_Mean_OPUS-5082 | -1058.097 | -3604.481 | -25.537    | 0.011    | 0.013    |
| 603_Mean_OPUS-5083 | -1055.7   | -3600.536 | -25.557    | 0.011    | 0.013    |
| 603_Mean_OPUS-5084 | -1038.943 | -3596.017 | -26.196    | 0.011    | 0.013    |
| 603_Mean_OPUS-5085 | -1030.01  | -3598.582 | -26.898    | 0.011    | 0.013    |
| 603_Mean_OPUS-5086 | -1017.539 | -3591.352 | -27.273    | 0.011    | 0.013    |
| 603_Mean_OPUS-5087 | -1013.945 | -3588.356 | -27.487    | 0.011    | 0.013    |
| 603_Mean_OPUS-5088 | -1011.797 | -3586.312 | -27.731    | 0.011    | 0.013    |
| 603_Mean_OPUS-5089 | -1009.107 | -3584.365 | -27.968    | 0.011    | 0.013    |
| 603_Mean_OPUS-5090 | -1004.523 | -3588.091 | -28.153    | 0.011    | 0.013    |
| 603_Mean_OPUS-5091 | -995.181  | -3588.872 | -28.748    | 0.011    | 0.013    |
| 603_Mean_OPUS-5092 | -996.649  | -3611.306 | -29.003    | 0.011    | 0.013    |

| Name               | dN (USft) | dE (USft) | dHt (USft) | Horz RMS | Vert RMS |
|--------------------|-----------|-----------|------------|----------|----------|
| 603_Mean_OPUS-5093 | -998.238  | -3612.534 | -29.046    | 0.011    | 0.013    |
| 603_Mean_OPUS-5094 | -997.69   | -3614.035 | -29.073    | 0.011    | 0.013    |
| 603_Mean_OPUS-5095 | -995.77   | -3613.47  | -29.094    | 0.011    | 0.013    |
| 603_Mean_OPUS-5096 | -989.631  | -3590.565 | -29.6      | 0.011    | 0.013    |
| 603_Mean_OPUS-5097 | -984.856  | -3593.787 | -29.998    | 0.011    | 0.013    |
| 603_Mean_OPUS-5098 | -983.498  | -3598.726 | -30.14     | 0.011    | 0.013    |
| 603_Mean_OPUS-5099 | -977.198  | -3606.788 | -30.209    | 0.011    | 0.013    |
| 603_Mean_OPUS-5100 | -969.449  | -3603.688 | -30.282    | 0.012    | 0.013    |
| 603_Mean_OPUS-5101 | -961.904  | -3602.186 | -30.275    | 0.011    | 0.013    |
| 603_Mean_OPUS-5102 | -954.441  | -3599.272 | -30.505    | 0.011    | 0.013    |
| 603_Mean_OPUS-5103 | -947.001  | -3598.69  | -30.738    | 0.011    | 0.013    |
| 603_Mean_OPUS-5104 | -938.545  | -3591.828 | -30.858    | 0.011    | 0.013    |
| 603_Mean_OPUS-5105 | -938.391  | -3588.714 | -30.897    | 0.011    | 0.013    |
| 603_Mean_OPUS-5106 | -937.009  | -3586.514 | -30.891    | 0.011    | 0.013    |
| 603_Mean_OPUS-5107 | -928.999  | -3580.431 | -30.919    | 0.011    | 0.013    |
| 603_Mean_OPUS-5108 | -927.785  | -3574.427 | -30.921    | 0.011    | 0.013    |
| 603_Mean_OPUS-5109 | -928.915  | -3570.71  | -31.052    | 0.011    | 0.013    |
| 603_Mean_OPUS-5110 | -922.907  | -3566.682 | -31.391    | 0.011    | 0.013    |
| 603_Mean_OPUS-5111 | -916.159  | -3565.391 | -31.579    | 0.011    | 0.013    |
| 603 Mean OPUS-5112 | -909.059  | -3560.881 | -32.198    | 0.011    | 0.013    |
| 603 Mean OPUS-5113 | -896.37   | -3555.103 | -32.389    | 0.012    | 0.014    |
| 603 Mean OPUS-5114 | -1668.888 | -2836.194 | -4.12      | 0.012    | 0.014    |
| 603 Mean OPUS-5115 | 7124.517  | 10.174    | -72.321    | 0.012    | 0.015    |
| 603 Mean OPUS-5116 | -893.294  | -3548.971 | -32.301    | 0.018    | 0.033    |
| 603 Mean OPUS-5117 | -883.178  | -3545.074 | -32.559    | 0.012    | 0.015    |
| 603 Mean OPUS-5118 | -868.317  | -3541.973 | -32.785    | 0.012    | 0.013    |

| Name               | dN (USft) | dE (USft) | dHt (USft) | Horz RMS | Vert RMS |
|--------------------|-----------|-----------|------------|----------|----------|
| 603_Mean_OPUS-5119 | -852.188  | -3550.366 | -33.011    | 0.012    | 0.014    |
| 603_Mean_OPUS-5120 | -844.77   | -3560.172 | -33.122    | 0.012    | 0.014    |
| 603_Mean_OPUS-5121 | -826.66   | -3558.889 | -33.141    | 0.012    | 0.014    |
| 603_Mean_OPUS-5122 | -811.723  | -3561.067 | -33.122    | 0.012    | 0.014    |
| 603_Mean_OPUS-5123 | -798.926  | -3567.485 | -33.014    | 0.013    | 0.015    |
| 603_Mean_OPUS-5124 | -792.081  | -3568.802 | -33.128    | 0.012    | 0.014    |
| 603_Mean_OPUS-5125 | -784.577  | -3564.061 | -33.001    | 0.012    | 0.014    |
| 603_Mean_OPUS-5126 | -782.6    | -3555.208 | -32.996    | 0.013    | 0.015    |
| 603_Mean_OPUS-5127 | -792.788  | -3551.667 | -33.039    | 0.013    | 0.015    |
| 603_Mean_OPUS-5128 | -791.775  | -3547.733 | -33.049    | 0.013    | 0.015    |
| 603_Mean_OPUS-5129 | -787.568  | -3547.375 | -33.035    | 0.012    | 0.014    |
| 603_Mean_OPUS-5130 | -786.327  | -3541.551 | -33.054    | 0.012    | 0.014    |
| 603_Mean_OPUS-5131 | -787.77   | -3535.988 | -33.03     | 0.012    | 0.014    |
| 603_Mean_OPUS-5132 | -785.543  | -3534.229 | -33        | 0.012    | 0.014    |
| 603_Mean_OPUS-5133 | -779.413  | -3532.076 | -33.074    | 0.013    | 0.015    |
| 603_Mean_OPUS-5134 | -772.263  | -3528.826 | -33.033    | 0.012    | 0.014    |
| 603_Mean_OPUS-5135 | -763.068  | -3527.799 | -33.069    | 0.012    | 0.014    |
| 603_Mean_OPUS-5136 | -752.951  | -3535.587 | -33.097    | 0.012    | 0.014    |
| 603_Mean_OPUS-5137 | -734.735  | -3530.684 | -33.137    | 0.013    | 0.015    |
| 603_Mean_OPUS-5138 | -715.503  | -3523.07  | -33.088    | 0.012    | 0.014    |
| 603_Mean_OPUS-5139 | -699.348  | -3509.587 | -33.066    | 0.012    | 0.014    |
| 603_Mean_OPUS-5140 | -697.006  | -3496.828 | -33.018    | 0.012    | 0.014    |
| 603_Mean_OPUS-5141 | -693.108  | -3492.287 | -33.076    | 0.013    | 0.015    |
| 603_Mean_OPUS-5142 | -683.219  | -3486.761 | -33.131    | 0.012    | 0.014    |
| 603_Mean_OPUS-5143 | -676.213  | -3486.77  | -33.283    | 0.012    | 0.014    |
| 603_Mean_OPUS-5144 | -671.045  | -3490.762 | -33.266    | 0.012    | 0.015    |

| Name               | dN (USft) | dE (USft) | dHt (USft) | Horz RMS | Vert RMS |
|--------------------|-----------|-----------|------------|----------|----------|
| 603_Mean_OPUS-5145 | -666.97   | -3489.181 | -33.272    | 0.012    | 0.014    |
| 603_Mean_OPUS-5146 | -658.941  | -3485.506 | -33.668    | 0.012    | 0.014    |
| 603_Mean_OPUS-5147 | -649.812  | -3483.815 | -33.81     | 0.013    | 0.015    |
| 603_Mean_OPUS-5148 | -638.075  | -3492.344 | -33.822    | 0.012    | 0.014    |
| 603_Mean_OPUS-5149 | -622.415  | -3497.149 | -33.815    | 0.013    | 0.015    |
| 603_Mean_OPUS-5150 | -610.348  | -3490.814 | -33.822    | 0.012    | 0.015    |
| 603_Mean_OPUS-5151 | -602.534  | -3474.776 | -33.771    | 0.013    | 0.015    |
| 603_Mean_OPUS-5152 | -593.093  | -3471.612 | -33.832    | 0.012    | 0.015    |
| 603_Mean_OPUS-5153 | -591.393  | -3467.056 | -33.873    | 0.012    | 0.014    |
| 603_Mean_OPUS-5154 | -570.064  | -3471.118 | -33.996    | 0.012    | 0.015    |
| 603_Mean_OPUS-5155 | -576.138  | -3476.597 | -34.001    | 0.012    | 0.014    |
| 603_Mean_OPUS-5156 | -580.907  | -3473.834 | -33.962    | 0.012    | 0.014    |
| 603_Mean_OPUS-5157 | -578.96   | -3467.721 | -33.988    | 0.012    | 0.014    |
| 603_Mean_OPUS-5158 | -572.755  | -3466.313 | -34.02     | 0.012    | 0.014    |
| 603_Mean_OPUS-5159 | -541.862  | -3470.672 | -34.61     | 0.011    | 0.014    |
| 603_Mean_OPUS-5160 | -540.416  | -3473.298 | -34.532    | 0.011    | 0.014    |
| 603_Mean_OPUS-5161 | -527.058  | -3467.105 | -35.244    | 0.011    | 0.014    |
| 603_Mean_OPUS-5162 | -515.909  | -3459.041 | -35.4      | 0.011    | 0.014    |
| 603_Mean_OPUS-5163 | -507.494  | -3451.465 | -35.547    | 0.012    | 0.015    |
| 603_Mean_OPUS-5164 | -500.96   | -3455.601 | -35.574    | 0.012    | 0.014    |
| 603_Mean_OPUS-5165 | -496.568  | -3453.221 | -35.615    | 0.011    | 0.014    |
| 603_Mean_OPUS-5166 | -494.836  | -3447.873 | -35.664    | 0.011    | 0.014    |
| 603_Mean_OPUS-5167 | -486.092  | -3442.67  | -35.777    | 0.011    | 0.014    |
| 603_Mean_OPUS-5168 | -471.822  | -3438.634 | -35.92     | 0.012    | 0.014    |
| 603_Mean_OPUS-5169 | -455.168  | -3435.699 | -36.038    | 0.012    | 0.014    |
| 603_Mean_OPUS-5170 | -440.391  | -3430.205 | -36.136    | 0.011    | 0.014    |

| Name               | dN (USft) | dE (USft) | dHt (USft) | Horz RMS | Vert RMS |
|--------------------|-----------|-----------|------------|----------|----------|
| 603_Mean_OPUS-5171 | -422.601  | -3426.317 | -36.449    | 0.011    | 0.014    |
| 603_Mean_OPUS-5172 | -415.157  | -3428.295 | -36.589    | 0.011    | 0.014    |
| 603_Mean_OPUS-5173 | -408.389  | -3435.581 | -36.66     | 0.011    | 0.013    |
| 603_Mean_OPUS-5174 | -397.247  | -3440.28  | -36.731    | 0.011    | 0.014    |
| 603_Mean_OPUS-5175 | -383.062  | -3438.459 | -36.756    | 0.011    | 0.014    |
| 603_Mean_OPUS-5176 | -368.652  | -3437.723 | -36.871    | 0.011    | 0.014    |
| 603_Mean_OPUS-5177 | -359.101  | -3435.68  | -36.871    | 0.011    | 0.013    |
| 603_Mean_OPUS-5178 | -352.722  | -3425.116 | -36.934    | 0.011    | 0.013    |
| 603_Mean_OPUS-5179 | -353.729  | -3415.606 | -36.984    | 0.011    | 0.013    |
| 603_Mean_OPUS-5180 | -351.901  | -3411.644 | -36.973    | 0.011    | 0.014    |
| 603_Mean_OPUS-5181 | -342.324  | -3407.827 | -37.086    | 0.011    | 0.013    |
| 603_Mean_OPUS-5182 | -332.642  | -3406.631 | -37.142    | 0.011    | 0.014    |
| 603_Mean_OPUS-5183 | -321.416  | -3407.434 | -37.249    | 0.011    | 0.013    |
| 603_Mean_OPUS-5184 | -312.29   | -3408.045 | -37.331    | 0.011    | 0.013    |
| 603_Mean_OPUS-5185 | -299.807  | -3407.026 | -37.326    | 0.011    | 0.013    |
| 603_Mean_OPUS-5186 | -292.541  | -3408.949 | -37.334    | 0.011    | 0.013    |
| 603_Mean_OPUS-5187 | -283.989  | -3406.689 | -37.375    | 0.011    | 0.014    |
| 603_Mean_OPUS-5188 | -277.513  | -3396.896 | -37.397    | 0.011    | 0.013    |
| 603_Mean_OPUS-5189 | -273.193  | -3390.276 | -37.438    | 0.011    | 0.013    |
| 603_Mean_OPUS-5190 | -267.543  | -3390.163 | -37.458    | 0.011    | 0.014    |
| 603_Mean_OPUS-5191 | -258.204  | -3395.315 | -37.431    | 0.011    | 0.013    |
| 603_Mean_OPUS-5192 | -242.132  | -3392.601 | -37.468    | 0.011    | 0.013    |
| 603_Mean_OPUS-5193 | -230.162  | -3393.512 | -37.717    | 0.011    | 0.013    |
| 603_Mean_OPUS-5194 | -219.737  | -3382.721 | -37.978    | 0.011    | 0.013    |
| 603_Mean_OPUS-5195 | -208.177  | -3386.801 | -37.959    | 0.011    | 0.014    |
| 603_Mean_OPUS-5196 | -199.211  | -3394.276 | -38.099    | 0.011    | 0.014    |

| Name               | dN (USft) | dE (USft) | dHt (USft) | Horz RMS | Vert RMS |
|--------------------|-----------|-----------|------------|----------|----------|
| 603_Mean_OPUS-5200 | -154.486  | -3391.835 | -38.739    | 0.011    | 0.014    |
| 603_Mean_OPUS-5201 | -147.566  | -3397.81  | -39.158    | 0.011    | 0.013    |
| 603_Mean_OPUS-5202 | -147.443  | -3400.386 | -39.23     | 0.011    | 0.013    |
| 603_Mean_OPUS-5203 | -145.248  | -3405.768 | -39.128    | 0.011    | 0.013    |
| 603_Mean_OPUS-5204 | -139.293  | -3403.147 | -39.258    | 0.011    | 0.013    |
| 603_Mean_OPUS-5205 | -136.156  | -3398.004 | -39.158    | 0.011    | 0.013    |
| 603_Mean_OPUS-5206 | -131.886  | -3396     | -39.171    | 0.01     | 0.013    |
| 603_Mean_OPUS-5207 | -128.426  | -3400.179 | -39.203    | 0.01     | 0.013    |
| 603_Mean_OPUS-5208 | -124.775  | -3405.059 | -39.235    | 0.011    | 0.013    |
| 603_Mean_OPUS-5209 | -129.204  | -3417.298 | -39.191    | 0.01     | 0.013    |
| 603_Mean_OPUS-5210 | -129.915  | -3436.061 | -39.19     | 0.011    | 0.014    |
| 603_Mean_OPUS-5211 | -126.13   | -3454.833 | -39.266    | 0.01     | 0.013    |
| 603_Mean_OPUS-5212 | -129.436  | -3477.167 | -39.302    | 0.011    | 0.013    |
| 603_Mean_OPUS-5213 | -124.746  | -3478.003 | -39.363    | 0.011    | 0.013    |
| 603_Mean_OPUS-5214 | -123.263  | -3455.612 | -39.32     | 0.01     | 0.013    |
| 603_Mean_OPUS-5215 | -121.545  | -3437.907 | -39.267    | 0.01     | 0.013    |
| 603_Mean_OPUS-5216 | -117.155  | -3419.169 | -39.192    | 0.01     | 0.012    |
| 603_Mean_OPUS-5217 | -113.139  | -3401.519 | -39.276    | 0.01     | 0.012    |
| 603_Mean_OPUS-5218 | -116.661  | -3391.81  | -39.181    | 0.011    | 0.013    |
| 603_Mean_OPUS-5219 | -117.414  | -3381.691 | -39.181    | 0.011    | 0.013    |
| 603_Mean_OPUS-5220 | -114.586  | -3368.255 | -39.2      | 0.01     | 0.012    |
| 603_Mean_OPUS-5221 | -113.192  | -3360.555 | -39.225    | 0.01     | 0.012    |
| 603_Mean_OPUS-5222 | -108.652  | -3339.991 | -39.207    | 0.011    | 0.013    |
| 603_Mean_OPUS-5223 | -108.133  | -3332.361 | -39.217    | 0.016    | 0.019    |
| 603_Mean_OPUS-5224 | -93.92    | -3322.583 | -39.213    | 0.011    | 0.013    |
| 603_Mean_OPUS-5225 | -85.385   | -3309.439 | -39.2      | 0.011    | 0.013    |

| Name                         | dN (USft) | dE (USft) | dHt (USft) | Horz RMS | Vert RMS |
|------------------------------|-----------|-----------|------------|----------|----------|
| 603_Mean_OPUS-5226           | -84.881   | -3298.043 | -39.203    | 0.01     | 0.012    |
| 603_Mean_OPUS-5227           | -88.4     | -3283.739 | -39.082    | 0.01     | 0.012    |
| 603_Mean_OPUS-5228           | 3350.133  | -4989.823 | -47.442    | 0.011    | 0.014    |
| 603_Mean_OPUS-5229           | -140.136  | -2330.62  | -24.661    | 0.013    | 0.019    |
| 603_Mean_OPUS-5230           | -140.118  | -2330.642 | -24.673    | 0.012    | 0.015    |
| 603_Mean_OPUS-5231           | -140.091  | -2330.627 | -25.209    | 0.014    | 0.022    |
| 603_Mean_OPUS-5232           | 506.914   | -838.4    | 2.074      | 0.011    | 0.015    |
| 603_Mean_OPUS-5232_5233_stk  | 630.599   | -815.911  | 1.849      | 0.012    | 0.015    |
| 603_Mean_OPUS-5232_5233_stk1 | 630.591   | -815.941  | 1.811      | 0.011    | 0.014    |
| 603_Mean_OPUS-5233           | 604.423   | -820.613  | 2.32       | 0.011    | 0.015    |
| 603_Mean_OPUS-5234           | 615.036   | -818.699  | 2.386      | 0.011    | 0.014    |
| 603_Mean_OPUS-5235           | 625.476   | -816.706  | 1.912      | 0.012    | 0.015    |
| 603_Mean_OPUS-5236           | 634.523   | -815.115  | 1.83       | 0.011    | 0.014    |
| 603_Mean_OPUS-5237           | 644.097   | -813.271  | 1.143      | 0.011    | 0.014    |
| 603_Mean_OPUS-5238           | 654.637   | -811.633  | 0.355      | 0.011    | 0.014    |
| 603_Mean_OPUS-5239           | 664.759   | -809.672  | 0.146      | 0.011    | 0.014    |
| 603_Mean_OPUS-5240           | 685.87    | -805.79   | -0.94      | 0.011    | 0.014    |
| 603_Mean_OPUS-5241           | 708.22    | -801.644  | -2.484     | 0.011    | 0.014    |
| 603_Mean_OPUS-5242           | 729.892   | -797.719  | -4.673     | 0.011    | 0.014    |
| 603_Mean_OPUS-5243           | 751.571   | -793.769  | -7.297     | 0.011    | 0.014    |
| 603 Mean OPUS-5244           | 770.781   | -790.187  | -10.408    | 0.01     | 0.013    |
| 603_Mean_OPUS-5245           | 791.077   | -786.605  | -13.873    | 0.011    | 0.014    |
| 603_Mean_OPUS-5246           | 813.044   | -782.532  | -16.252    | 0.01     | 0.012    |
| 603_Mean_OPUS-5247           | 829.963   | -779.51   | -18.694    | 0.01     | 0.013    |
| 603 Mean OPUS-5248           | 852.783   | -775.149  | -20.803    | 0.011    | 0.013    |
| 603 Mean OPUS-5249           | 876.618   | -770.98   | -22.089    | 0.01     | 0.013    |

| Name               | dN (USft) | dE (USft) | dHt (USft) | Horz RMS | Vert RMS |
|--------------------|-----------|-----------|------------|----------|----------|
| 603_Mean_OPUS-5250 | 899.881   | -766.641  | -22.778    | 0.011    | 0.014    |
| 603_Mean_OPUS-5251 | 925.072   | -762.072  | -23.958    | 0.011    | 0.014    |
| 603_Mean_OPUS-5252 | 601.315   | -821.235  | 1.989      | 0.011    | 0.014    |
| 603_Mean_OPUS-5253 | 598.823   | -821.663  | 1.518      | 0.01     | 0.013    |
| 603_Mean_OPUS-5254 | 595.964   | -822.138  | 1.631      | 0.01     | 0.013    |
| 603_Mean_OPUS-5255 | 593.708   | -822.62   | 1.838      | 0.011    | 0.014    |
| 603_Mean_OPUS-5256 | 590.281   | -823.222  | 2.198      | 0.01     | 0.013    |
| 603_Mean_OPUS-5257 | 586.89    | -823.736  | 2.323      | 0.01     | 0.013    |
| 603_Mean_OPUS-5258 | 584.475   | -824.284  | 2.341      | 0.011    | 0.014    |
| 603_Mean_OPUS-5259 | 581.257   | -824.855  | 2.113      | 0.011    | 0.014    |
| 603_Mean_OPUS-5260 | 577.808   | -825.433  | 2.273      | 0.01     | 0.013    |
| 603_Mean_OPUS-5261 | 574.198   | -826.112  | 2.648      | 0.01     | 0.013    |
| 603_Mean_OPUS-5262 | 569.458   | -827.021  | 2.972      | 0.01     | 0.013    |
| 603_Mean_OPUS-5263 | 565.521   | -827.744  | 2.967      | 0.011    | 0.014    |
| 603_Mean_OPUS-5264 | 561.238   | -828.492  | 2.932      | 0.01     | 0.013    |
| 603_Mean_OPUS-5265 | 556.253   | -829.325  | 2.835      | 0.011    | 0.014    |
| 603_Mean_OPUS-5266 | 552.553   | -830.176  | 2.847      | 0.01     | 0.013    |
| 603_Mean_OPUS-5267 | 549.336   | -830.645  | 2.63       | 0.011    | 0.013    |
| 603_Mean_OPUS-5268 | 545.978   | -831.319  | 2.555      | 0.011    | 0.014    |
| 603_Mean_OPUS-5269 | 542.655   | -831.831  | 2.213      | 0.011    | 0.013    |
| 603 Mean OPUS-5270 | 539.891   | -832.282  | 1.676      | 0.011    | 0.014    |
| 603_Mean_OPUS-5271 | 536.727   | -832.942  | 1.654      | 0.011    | 0.013    |
| 603_Mean_OPUS-5272 | 533.832   | -833.472  | 1.687      | 0.011    | 0.014    |
| 603_Mean_OPUS-5273 | 530.667   | -834.044  | 1.684      | 0.011    | 0.014    |
| 603 Mean OPUS-5274 | 527.881   | -834.627  | 1.643      | 0.011    | 0.013    |
| 603 Mean OPUS-5275 | 524.829   | -835.074  | 1.654      | 0.011    | 0.013    |

| Name               | dN (USft) | dE (USft) | dHt (USft) | Horz RMS | Vert RMS |
|--------------------|-----------|-----------|------------|----------|----------|
| 603_Mean_OPUS-5276 | 521.061   | -835.772  | 1.582      | 0.011    | 0.013    |
| 603_Mean_OPUS-5277 | 518.21    | -836.368  | 1.502      | 0.011    | 0.013    |
| 603_Mean_OPUS-5278 | 518.127   | -836.464  | 1.487      | 0.01     | 0.012    |
| 603_Mean_OPUS-5279 | 514.338   | -836.991  | 1.545      | 0.011    | 0.013    |
| 603_Mean_OPUS-5280 | 510.705   | -837.78   | 1.921      | 0.01     | 0.012    |
| 603_Mean_OPUS-5281 | 503.733   | -839.062  | 2.008      | 0.01     | 0.012    |
| 603_Mean_OPUS-5282 | 496.179   | -840.36   | 1.854      | 0.01     | 0.012    |
| 603_Mean_OPUS-5283 | 491.344   | -841.387  | 1.65       | 0.01     | 0.012    |
| 603_Mean_OPUS-5284 | 486.28    | -842.209  | 1.57       | 0.01     | 0.012    |
| 603_Mean_OPUS-5285 | 481.286   | -843.12   | 1.343      | 0.011    | 0.013    |
| 603_Mean_OPUS-5286 | 476.368   | -843.969  | 1.345      | 0.011    | 0.013    |
| 603_Mean_OPUS-5287 | 466.517   | -845.526  | 1.224      | 0.01     | 0.012    |
| 603_Mean_OPUS-5288 | 457.012   | -847.581  | 1.091      | 0.01     | 0.012    |
| 603_Mean_OPUS-5289 | 447.18    | -849.422  | 0.765      | 0.01     | 0.012    |
| 603_Mean_OPUS-5290 | 437.043   | -851.066  | 0.377      | 0.01     | 0.012    |
| 603_Mean_OPUS-5291 | 427.206   | -852.971  | 0.126      | 0.01     | 0.012    |
| 603_Mean_OPUS-5292 | 417.61    | -854.683  | -0.474     | 0.01     | 0.012    |
| 603_Mean_OPUS-5293 | 407.073   | -856.46   | -0.775     | 0.011    | 0.013    |
| 603_Mean_OPUS-5294 | 397.24    | -858.546  | -1.365     | 0.01     | 0.012    |
| 603_Mean_OPUS-5295 | 388.029   | -860.125  | -1.967     | 0.011    | 0.013    |
| 603_Mean_OPUS-5296 | 377.459   | -862.228  | -2.512     | 0.01     | 0.012    |
| 603_Mean_OPUS-5297 | 366.819   | -863.948  | -2.933     | 0.01     | 0.012    |
| 603_Mean_OPUS-5298 | 358.14    | -865.593  | -3.031     | 0.011    | 0.013    |
| 603_Mean_OPUS-5299 | 347.881   | -867.476  | -3.257     | 0.01     | 0.012    |
| 603_Mean_OPUS-5300 | 338.572   | -869.075  | -3.535     | 0.01     | 0.013    |
| 603_Mean_OPUS-5301 | 328.559   | -870.886  | -3.965     | 0.012    | 0.014    |

| Name               | dN (USft) | dE (USft) | dHt (USft) | Horz RMS | Vert RMS |
|--------------------|-----------|-----------|------------|----------|----------|
| 603_Mean_OPUS-5302 | 318.972   | -872.599  | -4.232     | 0.018    | 0.022    |
| 603_Mean_OPUS-5303 | 308.531   | -874.505  | -4.763     | 0.012    | 0.014    |
| 603_Mean_OPUS-5304 | 299.138   | -876.278  | -5.507     | 0.012    | 0.014    |
| 603_Mean_OPUS-5305 | 290.156   | -878.014  | -6.093     | 0.014    | 0.016    |
| 603_Mean_OPUS-5306 | 286.724   | -878.37   | -6.916     | 0.014    | 0.016    |
| 603_Mean_OPUS-5307 | 282.31    | -879.235  | -6.53      | 0.013    | 0.016    |
| 603_Mean_OPUS-5308 | 269.633   | -881.804  | -6.671     | 0.016    | 0.019    |
| 603_Mean_OPUS-5309 | 255.537   | -884.151  | -7.541     | 0.01     | 0.012    |
| 603_Mean_OPUS-5310 | 250.737   | -884.968  | -8.778     | 0.031    | 0.036    |
| 603_Mean_OPUS-5311 | 237.524   | -887.531  | -9.737     | 0.017    | 0.021    |
| 603_Mean_OPUS-5312 | 231.955   | -888.55   | -10.347    | 0.015    | 0.018    |
| 603_Mean_OPUS-5313 | 215.913   | -891.446  | -13.164    | 0.015    | 0.018    |
| 603_Mean_OPUS-5314 | 543.099   | -774.945  | 2.292      | 0.017    | 0.02     |
| 603_Mean_OPUS-5315 | 504.358   | -912.197  | 0.967      | 0.02     | 0.023    |
| 603_Mean_OPUS-5316 | 439.097   | -1143.861 | -17.05     | 0.017    | 0.02     |
| 603_Mean_OPUS-5317 | 446.208   | -1117.791 | -15.748    | 0.016    | 0.018    |
| 603_Mean_OPUS-5318 | 451.824   | -1097.952 | -13.93     | 0.019    | 0.021    |
| 603_Mean_OPUS-5319 | 456.696   | -1081.249 | -12.024    | 0.013    | 0.015    |
| 603_Mean_OPUS-5320 | 460.269   | -1068.298 | -8.749     | 0.025    | 0.029    |
| 603_Mean_OPUS-5321 | 464.984   | -1051.653 | -5.734     | 0.011    | 0.013    |
| 603_Mean_OPUS-5322 | 470.133   | -1033.431 | -4.054     | 0.014    | 0.016    |
| 603_Mean_OPUS-5323 | 476.663   | -1010.226 | -2.732     | 0.01     | 0.012    |
| 603_Mean_OPUS-5324 | 482.888   | -988.18   | -1.944     | 0.011    | 0.013    |
| 603_Mean_OPUS-5325 | 489.632   | -963.802  | -0.561     | 0.011    | 0.014    |
| 603_Mean_OPUS-5326 | 495.801   | -942.017  | 0.168      | 0.011    | 0.014    |
| 603_Mean_OPUS-5327 | 501.546   | -921.991  | 0.776      | 0.011    | 0.014    |

| Name               | dN (USft) | dE (USft) | dHt (USft) | Horz RMS | Vert RMS |
|--------------------|-----------|-----------|------------|----------|----------|
| 603_Mean_OPUS-5328 | 506.951   | -903.218  | 1.222      | 0.011    | 0.014    |
| 603_Mean_OPUS-5329 | 510.193   | -891.369  | 1.518      | 0.011    | 0.014    |
| 603_Mean_OPUS-5330 | 511.234   | -887.334  | 1.596      | 0.011    | 0.014    |
| 603_Mean_OPUS-5331 | 512.212   | -883.98   | 1.494      | 0.011    | 0.014    |
| 603_Mean_OPUS-5332 | 513.373   | -880.365  | 1.329      | 0.011    | 0.014    |
| 603_Mean_OPUS-5333 | 514.286   | -877.006  | 1.196      | 0.011    | 0.014    |
| 603_Mean_OPUS-5334 | 515.734   | -872.328  | 1.348      | 0.011    | 0.014    |
| 603_Mean_OPUS-5335 | 516.828   | -868.2    | 1.627      | 0.011    | 0.014    |
| 603_Mean_OPUS-5336 | 517.918   | -864.386  | 1.821      | 0.011    | 0.014    |
| 603_Mean_OPUS-5337 | 519.113   | -859.662  | 1.9        | 0.011    | 0.014    |
| 603_Mean_OPUS-5338 | 520.326   | -855.685  | 1.992      | 0.011    | 0.014    |
| 603_Mean_OPUS-5339 | 521.489   | -850.71   | 2.118      | 0.012    | 0.015    |
| 603_Mean_OPUS-5340 | 522.862   | -846.673  | 1.98       | 0.012    | 0.015    |
| 603_Mean_OPUS-5341 | 523.946   | -842.452  | 1.915      | 0.012    | 0.015    |
| 603_Mean_OPUS-5342 | 525.018   | -838.81   | 1.718      | 0.012    | 0.015    |
| 603_Mean_OPUS-5343 | 526.164   | -834.81   | 1.609      | 0.012    | 0.015    |
| 603_Mean_OPUS-5344 | 527.348   | -830.977  | 1.512      | 0.012    | 0.015    |
| 603_Mean_OPUS-5345 | 528.441   | -827.092  | 1.198      | 0.012    | 0.015    |
| 603_Mean_OPUS-5346 | 529.351   | -823.585  | 1.019      | 0.012    | 0.015    |
| 603_Mean_OPUS-5347 | 530.312   | -820.431  | 0.842      | 0.012    | 0.015    |
| 603_Mean_OPUS-5348 | 530.785   | -818.386  | 0.918      | 0.012    | 0.015    |
| 603 Mean OPUS-5349 | 531.861   | -814.938  | 1.33       | 0.012    | 0.015    |
| 603 Mean OPUS-5350 | 532.894   | -811.538  | 1.714      | 0.012    | 0.015    |
| 603 Mean OPUS-5351 | 534.822   | -804.32   | 1.976      | 0.013    | 0.015    |
| 603 Mean OPUS-5352 | 538.281   | -792.012  | 2.329      | 0.013    | 0.015    |
| 603_Mean_OPUS-5353 | 542.224   | -777.718  | 2.247      | 0.013    | 0.015    |

| Name               | dN (USft)              | dE (USft)              | dHt (USft)        | Horz RMS | Vert RMS |
|--------------------|------------------------|------------------------|-------------------|----------|----------|
| 603_Mean_OPUS-5354 | 546.198                | -764.051               | 2.134             | 0.013    | 0.016    |
| 603_Mean_OPUS-5355 | 552.259                | -743.303               | 1.688             | 0.013    | 0.016    |
| 603_Mean_OPUS-5356 | 558.014                | -721.759               | 0.963             | 0.013    | 0.015    |
| 603_Mean_OPUS-5357 | 564.233                | -700.004               | 0.024             | 0.013    | 0.015    |
| 603_Mean_OPUS-5358 | 570.755                | -677.573               | -1.477            | 0.013    | 0.015    |
| 603_Mean_OPUS-5359 | 576.733                | -655.342               | -2.313            | 0.013    | 0.015    |
| 603_Mean_OPUS-5360 | 582.882                | -633.867               | -3.518            | 0.013    | 0.015    |
| 603_Mean_OPUS-5361 | 589.89                 | -608.93                | -4.827            | 0.013    | 0.016    |
| 603_Mean_OPUS-5362 | 596.388                | -585.831               | -6.414            | 0.012    | 0.015    |
| 603_Mean_OPUS-5363 | 602.503                | -563.992               | -8.096            | 0.012    | 0.015    |
| 603_Mean_OPUS-5364 | 608.605                | -542.844               | -10.108           | 0.012    | 0.015    |
| 603_Mean_OPUS-5365 | 614.481                | -521.847               | -11.841           | 0.012    | 0.015    |
| 603_Mean_OPUS-5366 | 620.72                 | -500.357               | -13.026           | 0.012    | 0.015    |
| 603_Mean_OPUS-5367 | 626.885                | -478.026               | -14.166           | 0.012    | 0.015    |
| 603_Mean_OPUS-5368 | 632.694                | -457.327               | -15.529           | 0.012    | 0.015    |
| 603_Mean_OPUS-5369 | 639.717                | -431.904               | -15.818           | 0.013    | 0.016    |
| 603_Mean_OPUS-5370 | 647.109                | -406.864               | -17.316           | 0.013    | 0.016    |
| 603_Mean_OPUS-5371 | 654.143                | -380.8                 | -22.46            | 0.013    | 0.017    |
| 603_Mean_OPUS-5372 | 662.063                | -353.325               | -24.391           | 0.014    | 0.017    |
| 603_Mean_OPUS-5373 | 669.939                | -326.094               | -24.942           | 0.011    | 0.012    |
| 603 Mean OPUS-5374 | -1625.326              | -3703.424              | -15.03            | 0.015    | 0.019    |
| 603 Mean OPUS-5375 | -1623.252              | -3701.802              | -15.089           | 0.011    | 0.013    |
| 603 Mean OPUS-5376 | -1621.225              | -3697.62               | -15.111           | 0.011    | 0.014    |
| 603 Mean OPUS-5377 | -1618.409              | -3694.915              | -15.111           | 0.013    | 0.02     |
| 603 Mean OPUS-5378 |                        |                        |                   | 0.013    | 0.017    |
| 603 Mean OPUS-5379 | -1612.648<br>-1607.466 | -3694.572<br>-3691.477 | -15.16<br>-15.081 | 0.014    | 0.018    |

| Name                | dN (USft) | dE (USft) | dHt (USft) | Horz RMS | Vert RMS |
|---------------------|-----------|-----------|------------|----------|----------|
| 603_Mean_OPUS-5380  | -1608.29  | -3686.173 | -15.136    | 0.012    | 0.015    |
| 603_Mean_OPUS-5381  | -1614.763 | -3685.498 | -15.135    | 0.021    | 0.027    |
| 603_Mean_OPUS-5382  | -1622.173 | -3683.406 | -15.052    | 0.013    | 0.016    |
| 603_Mean_OPUS-5383  | -1626.028 | -3684.226 | -15.055    | 0.012    | 0.015    |
| 603_Mean_OPUS-5384  | -1628.782 | -3684.29  | -15.065    | 0.013    | 0.016    |
| 603_Mean_OPUS-5385  | -1630.428 | -3692.149 | -15.087    | 0.012    | 0.016    |
| 603_Mean_OPUS-5386  | -1629.398 | -3700.688 | -15.078    | 0.011    | 0.014    |
| 603_Mean_OPUS-5387  | -1668.821 | -2836.202 | -3.62      | 0.011    | 0.014    |
| 603_Mean_OPUS-5388  | -1504.675 | -2524.669 | -13.137    | 0.019    | 0.022    |
| 603_Mean_OPUS-5389  | -1735.662 | -2427.654 | -5.219     | 0.018    | 0.021    |
| 603_Mean_OPUS-5390  | -1612.01  | -2226.704 | -12.463    | 0.032    | 0.037    |
| 603_Mean_OPUS-5391  | 702.114   | -1018.341 | -4.598     | 0.011    | 0.014    |
| 603_Mean_OPUS-10001 | 3350.135  | -4989.832 | -48.6      | 0.014    | 0.018    |
| 603_Mean_OPUS-10002 | -1668.861 | -2836.209 | -4.316     | 0.012    | 0.015    |
| 603_Mean_OPUS-10003 | -140.134  | -2330.633 | -25.053    | 0.011    | 0.013    |
| 603_Mean_OPUS-10004 | 7124.543  | 10.184    | -71.793    | 0.011    | 0.013    |
| 603_Mean_OPUS-10005 | -1661.034 | -3276.737 | -12.915    | 0.013    | 0.015    |
| 603_Mean_OPUS-10006 | -1657.122 | -3269.846 | -12.931    | 0.012    | 0.015    |
| 603_Mean_OPUS-10007 | -1645.964 | -3263.625 | -12.926    | 0.012    | 0.015    |
| 603_Mean_OPUS-10008 | -1634.485 | -3253.804 | -12.934    | 0.012    | 0.015    |
| 603_Mean_OPUS-10009 | -1624.055 | -3247.82  | -12.887    | 0.012    | 0.015    |
| 603 Mean OPUS-10010 | -1622.199 | -3252.381 | -12.964    | 0.013    | 0.016    |
| 603 Mean OPUS-10011 | -1623.731 | -3263.992 | -12.894    | 0.012    | 0.015    |
| 603 Mean OPUS-10012 | -1622.833 | -3269.279 | -12.925    | 0.012    | 0.015    |
| 603 Mean OPUS-10013 | -1617.634 | -3278.867 | -12.914    | 0.012    | 0.015    |
| 603 Mean OPUS-10014 | -1617.386 | -3285.995 | -12.923    | 0.012    | 0.015    |

| Name                | dN (USft) | dE (USft) | dHt (USft) | Horz RMS | Vert RMS |
|---------------------|-----------|-----------|------------|----------|----------|
| 603_Mean_OPUS-10015 | -1619.42  | -3292.673 | -12.951    | 0.013    | 0.016    |
| 603_Mean_OPUS-10016 | -1615.483 | -3295.377 | -12.951    | 0.014    | 0.017    |
| 603_Mean_OPUS-10017 | -1615.683 | -3297.224 | -12.915    | 0.013    | 0.016    |
| 603_Mean_OPUS-10018 | -1622.362 | -3299.737 | -12.922    | 0.013    | 0.016    |
| 603_Mean_OPUS-10019 | -1627.769 | -3309.44  | -12.94     | 0.012    | 0.015    |
| 603_Mean_OPUS-10020 | -1635.502 | -3313.371 | -12.979    | 0.012    | 0.015    |
| 603_Mean_OPUS-10021 | -1643.592 | -3311.489 | -12.994    | 0.013    | 0.016    |
| 603_Mean_OPUS-10022 | -1645.98  | -3308.165 | -12.93     | 0.012    | 0.015    |
| 603_Mean_OPUS-10023 | -1649.839 | -3308.128 | -12.937    | 0.012    | 0.015    |
| 603_Mean_OPUS-10024 | -1652.912 | -3295.855 | -12.916    | 0.012    | 0.015    |
| 603_Mean_OPUS-10025 | -1658.78  | -3281.295 | -12.953    | 0.012    | 0.015    |
| 603_Mean_OPUS-10026 | -1660.838 | -3279.023 | -12.909    | 0.012    | 0.015    |
| 603_Mean_OPUS-10027 | -1595.402 | -3437.118 | -15.631    | 0.013    | 0.016    |
| 603_Mean_OPUS-10028 | -1588.859 | -3431.576 | -15.703    | 0.012    | 0.015    |
| 603_Mean_OPUS-10029 | -1584.079 | -3424.028 | -15.625    | 0.016    | 0.02     |
| 603_Mean_OPUS-10030 | -1579.093 | -3417.445 | -15.682    | 0.013    | 0.016    |
| 603_Mean_OPUS-10031 | -1573.492 | -3409.31  | -15.689    | 0.012    | 0.015    |
| 603_Mean_OPUS-10032 | -1570.5   | -3406.814 | -15.65     | 0.013    | 0.016    |
| 603_Mean_OPUS-10033 | -1567.963 | -3408.87  | -15.696    | 0.013    | 0.016    |
| 603_Mean_OPUS-10034 | -1576.582 | -3423.122 | -15.671    | 0.012    | 0.015    |
| 603_Mean_OPUS-10035 | -1577.786 | -3437.177 | -15.698    | 0.013    | 0.016    |
| 603_Mean_OPUS-10036 | -1573.999 | -3452.214 | -15.655    | 0.013    | 0.017    |
| 603_Mean_OPUS-10037 | -1572.664 | -3457.225 | -15.629    | 0.013    | 0.017    |
| 603_Mean_OPUS-10038 | -1558.441 | -3457.64  | -15.613    | 0.013    | 0.017    |
| 603_Mean_OPUS-10039 | -1550.193 | -3459.947 | -15.65     | 0.013    | 0.017    |
| 603_Mean_OPUS-10040 | -1539.644 | -3469.363 | -15.656    | 0.013    | 0.017    |

| Name                | dN (USft) | dE (USft) | dHt (USft) | Horz RMS | Vert RMS |
|---------------------|-----------|-----------|------------|----------|----------|
| 603_Mean_OPUS-10041 | -1532.924 | -3478.339 | -15.684    | 0.013    | 0.017    |
| 603_Mean_OPUS-10042 | -1539.862 | -3491.02  | -15.659    | 0.013    | 0.016    |
| 603_Mean_OPUS-10043 | -1547.136 | -3499.174 | -15.651    | 0.013    | 0.016    |
| 603_Mean_OPUS-10044 | -1556.157 | -3508.969 | -15.619    | 0.013    | 0.017    |
| 603_Mean_OPUS-10045 | -1568.957 | -3505.493 | -15.654    | 0.013    | 0.016    |
| 603_Mean_OPUS-10046 | -1578.186 | -3495.24  | -15.622    | 0.012    | 0.016    |
| 603_Mean_OPUS-10047 | -1593.795 | -3494.811 | -15.617    | 0.012    | 0.016    |
| 603_Mean_OPUS-10048 | -1594.443 | -3492.133 | -15.565    | 0.013    | 0.017    |
| 603_Mean_OPUS-10049 | -1585.288 | -3488.322 | -15.674    | 0.013    | 0.017    |
| 603_Mean_OPUS-10050 | -1587.066 | -3475.778 | -15.723    | 0.013    | 0.017    |
| 603_Mean_OPUS-10051 | -1596.854 | -3473.996 | -15.67     | 0.013    | 0.016    |
| 603_Mean_OPUS-10052 | -1598.277 | -3469.357 | -15.638    | 0.012    | 0.016    |
| 603_Mean_OPUS-10053 | -1604.162 | -3470.854 | -15.468    | 0.012    | 0.016    |
| 603_Mean_OPUS-10054 | -1605.963 | -3456.212 | -15.511    | 0.012    | 0.016    |
| 603_Mean_OPUS-10055 | -1606.169 | -3443.918 | -15.339    | 0.012    | 0.016    |
| 603_Mean_OPUS-10056 | -1606.532 | -3443.623 | -15.239    | 0.011    | 0.015    |
| 603_Mean_OPUS-10057 | -1601.155 | -3442.741 | -15.616    | 0.012    | 0.015    |
| 603_Mean_OPUS-10058 | -1596.063 | -3438.252 | -15.647    | 0.011    | 0.014    |
| 603_Mean_OPUS-10059 | -1508.037 | -3817.532 | -15.444    | 0.012    | 0.016    |
| 603_Mean_OPUS-10060 | -1505.226 | -3820.266 | -15.425    | 0.012    | 0.016    |
| 603_Mean_OPUS-10061 | -1508.241 | -3826.832 | -15.41     | 0.013    | 0.017    |
| 603_Mean_OPUS-10062 | -1516.276 | -3827.623 | -15.41     | 0.012    | 0.016    |
| 603_Mean_OPUS-10063 | -1518     | -3819.073 | -15.494    | 0.013    | 0.017    |
| 603_Mean_OPUS-10064 | -1513.218 | -3816.486 | -15.439    | 0.012    | 0.016    |
| 603_Mean_OPUS-10065 | -1252.711 | -3626.835 | -19.31     | 0.013    | 0.017    |
| 603_Mean_OPUS-10066 | -1246.804 | -3615.698 | -19.313    | 0.012    | 0.016    |

| Name                | dN (USft) | dE (USft) | dHt (USft) | Horz RMS | Vert RMS |
|---------------------|-----------|-----------|------------|----------|----------|
| 603_Mean_OPUS-10067 | -1239.338 | -3608.136 | -19.354    | 0.012    | 0.016    |
| 603_Mean_OPUS-10068 | -1235.89  | -3600.412 | -19.444    | 0.013    | 0.017    |
| 603_Mean_OPUS-10069 | -1227.622 | -3593.644 | -19.479    | 0.012    | 0.016    |
| 603_Mean_OPUS-10070 | -1221.191 | -3593.014 | -19.423    | 0.013    | 0.017    |
| 603_Mean_OPUS-10071 | -1220.343 | -3596.484 | -19.527    | 0.013    | 0.017    |
| 603_Mean_OPUS-10072 | -1227.675 | -3601.708 | -19.456    | 0.012    | 0.016    |
| 603_Mean_OPUS-10073 | -1234.205 | -3612.971 | -19.36     | 0.012    | 0.016    |
| 603_Mean_OPUS-10074 | -1240.568 | -3622.754 | -19.401    | 0.013    | 0.017    |
| 603_Mean_OPUS-10075 | -1248.054 | -3629.952 | -19.307    | 0.012    | 0.016    |
| 603_Mean_OPUS-10076 | -1095     | -3529.345 | -22.227    | 0.012    | 0.016    |
| 603_Mean_OPUS-10077 | -1095.891 | -3529.895 | -22.17     | 0.012    | 0.016    |
| 603_Mean_OPUS-10078 | -1088.692 | -3538.539 | -24.491    | 0.013    | 0.017    |
| 603_Mean_OPUS-10079 | -1089.295 | -3540.074 | -24.422    | 0.012    | 0.016    |
| 603_Mean_OPUS-10080 | -1080.708 | -3539.169 | -24.579    | 0.013    | 0.017    |
| 603_Mean_OPUS-10081 | -1080.181 | -3537.301 | -24.53     | 0.012    | 0.016    |
| 603_Mean_OPUS-10082 | -1072.855 | -3544.526 | -24.607    | 0.012    | 0.016    |
| 603_Mean_OPUS-10083 | -1071.479 | -3542.492 | -24.627    | 0.013    | 0.017    |
| 603_Mean_OPUS-10084 | -1067.468 | -3542.694 | -24.709    | 0.012    | 0.016    |
| 603_Mean_OPUS-10085 | -1063.97  | -3543.001 | -24.692    | 0.012    | 0.016    |
| 603_Mean_OPUS-10086 | -1066.657 | -3536.153 | -24.817    | 0.012    | 0.016    |
| 603_Mean_OPUS-10087 | -1069.779 | -3532.503 | -24.751    | 0.012    | 0.016    |
| 603_Mean_OPUS-10088 | -1059.346 | -3536.043 | -25.054    | 0.012    | 0.016    |
| 603_Mean_OPUS-10089 | -1056.669 | -3538.969 | -25.175    | 0.013    | 0.017    |
| 603_Mean_OPUS-10090 | -1051.296 | -3526.173 | -25.808    | 0.012    | 0.016    |
| 603_Mean_OPUS-10091 | -1052.888 | -3524.668 | -25.853    | 0.011    | 0.013    |
| 603_Mean_OPUS-10092 | -1035.869 | -3527.972 | -26.639    | 0.012    | 0.014    |

| Name                | dN (USft) | dE (USft) | dHt (USft) | Horz RMS | Vert RMS |
|---------------------|-----------|-----------|------------|----------|----------|
| 603_Mean_OPUS-10093 | -1035.568 | -3525.125 | -26.481    | 0.012    | 0.014    |
| 603_Mean_OPUS-10094 | -1030.142 | -3521.25  | -26.511    | 0.011    | 0.013    |
| 603_Mean_OPUS-10095 | -1026.356 | -3520.903 | -26.569    | 0.011    | 0.013    |
| 603_Mean_OPUS-10096 | -1017.468 | -3528.127 | -26.648    | 0.012    | 0.014    |
| 603_Mean_OPUS-10097 | -1028.893 | -3524.659 | -26.6      | 0.011    | 0.013    |
| 603_Mean_OPUS-10098 | -1022.026 | -3529.633 | -26.621    | 0.012    | 0.014    |
| 603_Mean_OPUS-10099 | -1005.955 | -3528.461 | -26.8      | 0.012    | 0.014    |
| 603_Mean_OPUS-10100 | -1008.41  | -3523.767 | -26.735    | 0.012    | 0.014    |
| 603_Mean_OPUS-10101 | -990.075  | -3529.906 | -27.791    | 0.013    | 0.016    |
| 603_Mean_OPUS-10102 | -990.395  | -3534.195 | -27.845    | 0.011    | 0.013    |
| 603_Mean_OPUS-10103 | -976.3    | -3540.86  | -28.295    | 0.012    | 0.014    |
| 603_Mean_OPUS-10104 | -975.814  | -3537.654 | -28.307    | 0.011    | 0.013    |
| 603_Mean_OPUS-10105 | -1087.623 | -3609.921 | -24.052    | 0.02     | 0.022    |
| 603_Mean_OPUS-10106 | -1077.539 | -3609.954 | -24.214    | 0.01     | 0.011    |
| 603_Mean_OPUS-10107 | -1070.205 | -3609.147 | -24.483    | 0.011    | 0.012    |
| 603_Mean_OPUS-10108 | -1060.773 | -3603.469 | -24.811    | 0.011    | 0.012    |
| 603_Mean_OPUS-10109 | -1057.279 | -3597.628 | -24.856    | 0.011    | 0.013    |
| 603_Mean_OPUS-10110 | -1038.831 | -3593.899 | -25.486    | 0.011    | 0.013    |
| 603_Mean_OPUS-10111 | -1030.179 | -3596.425 | -26.174    | 0.011    | 0.013    |
| 603_Mean_OPUS-10112 | -1018.563 | -3590.292 | -26.575    | 0.011    | 0.013    |
| 603_Mean_OPUS-10113 | -1015.136 | -3587.233 | -26.804    | 0.011    | 0.013    |
| 603_Mean_OPUS-10114 | -1014.826 | -3583.779 | -27.11     | 0.011    | 0.013    |
| 603_Mean_OPUS-10115 | -1009.48  | -3581.967 | -27.359    | 0.011    | 0.013    |
| 603_Mean_OPUS-10116 | -1003.515 | -3580.782 | -27.431    | 0.011    | 0.013    |
| 603_Mean_OPUS-10117 | -993.137  | -3583.269 | -28.121    | 0.011    | 0.013    |
| 603_Mean_OPUS-10118 | -988.271  | -3586.061 | -28.839    | 0.011    | 0.013    |

| Name                | dN (USft) | dE (USft) | dHt (USft) | Horz RMS | Vert RMS |
|---------------------|-----------|-----------|------------|----------|----------|
| 603_Mean_OPUS-10119 | -983.432  | -3590.811 | -29.3      | 0.011    | 0.013    |
| 603_Mean_OPUS-10120 | -981.068  | -3596.853 | -29.571    | 0.011    | 0.013    |
| 603_Mean_OPUS-10121 | -974.128  | -3600.373 | -29.593    | 0.012    | 0.013    |
| 603_Mean_OPUS-10122 | -970.309  | -3601.41  | -29.637    | 0.011    | 0.013    |
| 603_Mean_OPUS-10123 | -962.706  | -3600.103 | -29.656    | 0.012    | 0.013    |
| 603_Mean_OPUS-10124 | -955.509  | -3596.433 | -29.729    | 0.011    | 0.013    |
| 603_Mean_OPUS-10125 | -947.708  | -3596.385 | -30.035    | 0.011    | 0.013    |
| 603_Mean_OPUS-10126 | -941.016  | -3587.067 | -30.174    | 0.011    | 0.013    |
| 603_Mean_OPUS-10127 | -938.831  | -3584.462 | -30.209    | 0.011    | 0.013    |
| 603_Mean_OPUS-10128 | -930.993  | -3579.21  | -30.233    | 0.011    | 0.013    |
| 603_Mean_OPUS-10129 | -929.597  | -3574.984 | -30.237    | 0.011    | 0.013    |
| 603_Mean_OPUS-10130 | -930.325  | -3570.13  | -30.298    | 0.011    | 0.013    |
| 603_Mean_OPUS-10131 | -923.594  | -3565.331 | -30.648    | 0.013    | 0.015    |
| 603_Mean_OPUS-10132 | -916.936  | -3563.684 | -30.984    | 0.011    | 0.013    |
| 603_Mean_OPUS-10133 | -909.799  | -3559.813 | -31.501    | 0.012    | 0.014    |
| 603_Mean_OPUS-10134 | -898.332  | -3553.641 | -31.627    | 0.011    | 0.013    |
| 603_Mean_OPUS-10135 | -140.109  | -2330.629 | -25.071    | 0.011    | 0.013    |
| 603_Mean_OPUS-10136 | 7124.533  | 10.181    | -72.282    | 0.011    | 0.014    |
| 603_Mean_OPUS-10137 | -895.147  | -3547.046 | -31.603    | 0.012    | 0.015    |
| 603_Mean_OPUS-10138 | -884.571  | -3542.03  | -31.9      | 0.012    | 0.015    |
| 603_Mean_OPUS-10139 | -869.979  | -3538.791 | -32.055    | 0.013    | 0.014    |
| 603_Mean_OPUS-10140 | -850.755  | -3543.331 | -32.205    | 0.012    | 0.014    |
| 603_Mean_OPUS-10141 | -843.725  | -3550.729 | -32.261    | 0.013    | 0.014    |
| 603_Mean_OPUS-10142 | -833.915  | -3543.482 | -32.313    | 0.013    | 0.015    |
| 603_Mean_OPUS-10143 | -830.411  | -3547.369 | -32.312    | 0.012    | 0.014    |
| 603_Mean_OPUS-10144 | -823.938  | -3547.626 | -32.474    | 0.013    | 0.015    |

| Name                | dN (USft) | dE (USft) | dHt (USft) | Horz RMS | Vert RMS |
|---------------------|-----------|-----------|------------|----------|----------|
| 603_Mean_OPUS-10145 | -823.171  | -3540.863 | -32.429    | 0.013    | 0.015    |
| 603_Mean_OPUS-10146 | -817.944  | -3539.042 | -32.3      | 0.012    | 0.014    |
| 603_Mean_OPUS-10147 | -817.967  | -3544.704 | -32.334    | 0.012    | 0.014    |
| 603_Mean_OPUS-10148 | -811.564  | -3550.614 | -32.434    | 0.012    | 0.014    |
| 603_Mean_OPUS-10149 | -803.119  | -3544.182 | -32.421    | 0.012    | 0.014    |
| 603_Mean_OPUS-10150 | -813.37   | -3534.353 | -32.349    | 0.012    | 0.014    |
| 603_Mean_OPUS-10151 | -805.199  | -3527.878 | -32.253    | 0.012    | 0.014    |
| 603_Mean_OPUS-10152 | -798.038  | -3528.972 | -32.292    | 0.013    | 0.015    |
| 603_Mean_OPUS-10153 | -791.988  | -3525.383 | -32.441    | 0.012    | 0.014    |
| 603_Mean_OPUS-10154 | -790.959  | -3512.408 | -32.426    | 0.012    | 0.014    |
| 603_Mean_OPUS-10155 | -780.083  | -3499.337 | -32.307    | 0.012    | 0.014    |
| 603_Mean_OPUS-10156 | -769.039  | -3509.571 | -32.344    | 0.012    | 0.014    |
| 603_Mean_OPUS-10157 | -756.445  | -3504.242 | -32.373    | 0.012    | 0.014    |
| 603_Mean_OPUS-10158 | -739.774  | -3504.791 | -32.366    | 0.012    | 0.014    |
| 603_Mean_OPUS-10159 | -727.02   | -3506.913 | -32.392    | 0.012    | 0.014    |
| 603_Mean_OPUS-10160 | -713.731  | -3501.842 | -32.304    | 0.012    | 0.014    |
| 603_Mean_OPUS-10161 | -701.998  | -3491.857 | -32.34     | 0.012    | 0.014    |
| 603_Mean_OPUS-10162 | -694.931  | -3490.126 | -32.357    | 0.013    | 0.015    |
| 603_Mean_OPUS-10163 | -684.434  | -3484.821 | -32.43     | 0.012    | 0.014    |
| 603_Mean_OPUS-10164 | -676.703  | -3484.499 | -32.548    | 0.013    | 0.015    |
| 603_Mean_OPUS-10165 | -675.62   | -3480.973 | -32.583    | 0.012    | 0.014    |
| 603_Mean_OPUS-10166 | -671.155  | -3479.436 | -32.546    | 0.012    | 0.014    |
| 603_Mean_OPUS-10167 | -666.755  | -3484.143 | -32.554    | 0.013    | 0.015    |
| 603_Mean_OPUS-10168 | -659.949  | -3483.183 | -32.947    | 0.012    | 0.014    |
| 603_Mean_OPUS-10169 | -650.794  | -3480.257 | -33.12     | 0.013    | 0.015    |
| 603_Mean_OPUS-10170 | -648.398  | -3475.79  | -33.166    | 0.012    | 0.014    |

| Name                | dN (USft) | dE (USft) | dHt (USft) | Horz RMS | Vert RMS |
|---------------------|-----------|-----------|------------|----------|----------|
| 603_Mean_OPUS-10171 | -639.066  | -3467.926 | -33.143    | 0.013    | 0.015    |
| 603_Mean_OPUS-10172 | -631.183  | -3460.284 | -33.164    | 0.012    | 0.015    |
| 603_Mean_OPUS-10173 | -611.137  | -3458.855 | -33.199    | 0.012    | 0.015    |
| 603_Mean_OPUS-10174 | -594.964  | -3459.959 | -33.099    | 0.012    | 0.014    |
| 603_Mean_OPUS-10175 | -592.873  | -3461.207 | -33.164    | 0.012    | 0.014    |
| 603_Mean_OPUS-10176 | -537.159  | -3467.605 | -34.297    | 0.012    | 0.014    |
| 603_Mean_OPUS-10177 | -528.224  | -3464.761 | -34.559    | 0.012    | 0.014    |
| 603_Mean_OPUS-10178 | -518.587  | -3455.287 | -34.779    | 0.012    | 0.014    |
| 603_Mean_OPUS-10179 | -509.164  | -3448.286 | -34.883    | 0.011    | 0.014    |
| 603_Mean_OPUS-10180 | -501.69   | -3449.095 | -34.898    | 0.011    | 0.014    |
| 603_Mean_OPUS-10181 | -497.667  | -3443.196 | -34.908    | 0.012    | 0.014    |
| 603_Mean_OPUS-10182 | -487.194  | -3439.815 | -35.186    | 0.011    | 0.014    |
| 603_Mean_OPUS-10183 | -473.78   | -3433.916 | -35.251    | 0.011    | 0.014    |
| 603_Mean_OPUS-10184 | -457.437  | -3428.459 | -35.351    | 0.012    | 0.014    |
| 603_Mean_OPUS-10185 | -441.336  | -3424.377 | -35.428    | 0.012    | 0.014    |
| 603_Mean_OPUS-10186 | -435.608  | -3422.849 | -35.642    | 0.011    | 0.014    |
| 603_Mean_OPUS-10187 | -424.571  | -3423.432 | -35.747    | 0.011    | 0.013    |
| 603_Mean_OPUS-10188 | -415.597  | -3423.754 | -35.899    | 0.011    | 0.013    |
| 603_Mean_OPUS-10189 | -405.802  | -3424.021 | -35.906    | 0.011    | 0.014    |
| 603_Mean_OPUS-10190 | -398.441  | -3427.736 | -36.032    | 0.011    | 0.013    |
| 603_Mean_OPUS-10191 | -384.313  | -3422.183 | -36.055    | 0.011    | 0.013    |
| 603_Mean_OPUS-10192 | -381.286  | -3427.267 | -36.085    | 0.011    | 0.013    |
| 603_Mean_OPUS-10193 | -367.372  | -3424.444 | -36.245    | 0.011    | 0.013    |
| 603_Mean_OPUS-10194 | -367.896  | -3418.33  | -36.313    | 0.011    | 0.014    |
| 603_Mean_OPUS-10195 | -366.079  | -3410.565 | -36.266    | 0.011    | 0.013    |
| 603_Mean_OPUS-10196 | -355.95   | -3405.306 | -36.309    | 0.011    | 0.014    |

| Name                | dN (USft) | dE (USft) | dHt (USft) | Horz RMS | Vert RMS |
|---------------------|-----------|-----------|------------|----------|----------|
| 603_Mean_OPUS-10197 | -348.869  | -3402.148 | -36.372    | 0.011    | 0.013    |
| 603_Mean_OPUS-10198 | -342.706  | -3396.752 | -36.438    | 0.014    | 0.025    |
| 603_Mean_OPUS-10199 | -329.579  | -3397.161 | -36.474    | 0.011    | 0.013    |
| 603_Mean_OPUS-10200 | -318.324  | -3392.233 | -36.579    | 0.011    | 0.013    |
| 603_Mean_OPUS-10201 | -307.986  | -3387.34  | -36.634    | 0.011    | 0.013    |
| 603_Mean_OPUS-10202 | -295.016  | -3387.562 | -36.695    | 0.011    | 0.014    |
| 603_Mean_OPUS-10203 | -284.67   | -3381.708 | -36.69     | 0.011    | 0.014    |
| 603_Mean_OPUS-10204 | -274.094  | -3374.547 | -36.767    | 0.011    | 0.013    |
| 603_Mean_OPUS-10205 | -267.491  | -3373.302 | -36.843    | 0.011    | 0.013    |
| 603_Mean_OPUS-10206 | -257.647  | -3376.006 | -36.839    | 0.011    | 0.014    |
| 603_Mean_OPUS-10207 | -253.769  | -3375.549 | -36.792    | 0.011    | 0.013    |
| 603_Mean_OPUS-10208 | -244.437  | -3372.192 | -36.822    | 0.011    | 0.013    |
| 603_Mean_OPUS-10209 | -230.963  | -3370.713 | -37.061    | 0.011    | 0.013    |
| 603_Mean_OPUS-10210 | -223.522  | -3364.109 | -37.062    | 0.011    | 0.013    |
| 603_Mean_OPUS-10211 | -212.977  | -3375.281 | -37.353    | 0.011    | 0.013    |
| 603_Mean_OPUS-10212 | -204.049  | -3377.921 | -37.328    | 0.011    | 0.013    |
| 603_Mean_OPUS-10213 | -190.1    | -3381.803 | -37.497    | 0.011    | 0.014    |
| 603_Mean_OPUS-10214 | -181.998  | -3373.646 | -37.789    | 0.011    | 0.013    |
| 603_Mean_OPUS-10215 | -167.783  | -3384.127 | -37.912    | 0.011    | 0.013    |
| 603_Mean_OPUS-10216 | -152.864  | -3389.049 | -38.136    | 0.011    | 0.013    |
| 603_Mean_OPUS-10217 | -151.306  | -3393.588 | -38.091    | 0.011    | 0.013    |
| 603_Mean_OPUS-10218 | -146.999  | -3396.224 | -38.478    | 0.011    | 0.014    |
| 603_Mean_OPUS-10219 | -145.677  | -3391.642 | -38.438    | 0.011    | 0.014    |
| 603_Mean_OPUS-10220 | -135.254  | -3391.481 | -38.491    | 0.011    | 0.014    |
| 603_Mean_OPUS-10221 | -131.042  | -3395.189 | -38.445    | 0.011    | 0.013    |
| 603_Mean_OPUS-10222 | -126.576  | -3397.694 | -38.52     | 0.01     | 0.013    |

| Name                | dN (USft) | dE (USft) | dHt (USft) | Horz RMS | Vert RMS |
|---------------------|-----------|-----------|------------|----------|----------|
| 603_Mean_OPUS-10223 | -124.234  | -3397.716 | -38.708    | 0.01     | 0.013    |
| 603_Mean_OPUS-10224 | -121.784  | -3393.965 | -38.578    | 0.011    | 0.013    |
| 603_Mean_OPUS-10225 | -124.191  | -3382.631 | -38.513    | 0.01     | 0.012    |
| 603_Mean_OPUS-10226 | -124.31   | -3367.063 | -38.529    | 0.011    | 0.013    |
| 603_Mean_OPUS-10227 | -122.226  | -3359.399 | -38.455    | 0.011    | 0.013    |
| 603_Mean_OPUS-10228 | -114.742  | -3337.903 | -38.451    | 0.011    | 0.013    |
| 603_Mean_OPUS-10229 | -117.079  | -3329.723 | -38.419    | 0.01     | 0.012    |
| 603_Mean_OPUS-10230 | -116.177  | -3322.625 | -38.441    | 0.011    | 0.013    |
| 603_Mean_OPUS-10231 | -104.402  | -3309.496 | -38.422    | 0.011    | 0.013    |
| 603_Mean_OPUS-10232 | -95.242   | -3296.255 | -38.373    | 0.01     | 0.012    |
| 603_Mean_OPUS-10233 | -92.866   | -3285.062 | -38.334    | 0.011    | 0.012    |
| 603_Mean_OPUS-10234 | -140.1    | -2330.618 | -24.672    | 0.012    | 0.017    |
| 603_Mean_OPUS-10235 | -140.12   | -2330.598 | -24.664    | 0.012    | 0.015    |
| 603_Mean_OPUS-10236 | -140.088  | -2330.637 | -25.238    | 0.015    | 0.022    |
| 603_Mean_OPUS-10237 | 521.219   | -816.563  | 1.865      | 0.012    | 0.016    |
| 603_Mean_OPUS-10238 | 521.931   | -816.741  | 1.806      | 0.012    | 0.016    |
| 603_Mean_OPUS-10239 | 517.087   | -826.604  | 1.562      | 0.011    | 0.015    |
| 603_Mean_OPUS-10240 | 512.171   | -833.583  | 1.849      | 0.011    | 0.015    |
| 603_Mean_OPUS-10241 | 510.321   | -840.13   | 1.954      | 0.012    | 0.015    |
| 603_Mean_OPUS-10242 | 507.269   | -838.435  | 1.929      | 0.011    | 0.014    |
| 603_Mean_OPUS-10243 | 504.087   | -847.271  | 1.783      | 0.011    | 0.014    |
| 603_Mean_OPUS-10244 | 506.836   | -856.497  | 1.852      | 0.011    | 0.014    |
| 603_Mean_OPUS-10245 | 506.171   | -870.81   | 1.816      | 0.012    | 0.014    |
| 603_Mean_OPUS-10246 | 505.993   | -876.321  | 1.716      | 0.012    | 0.014    |
| 603_Mean_OPUS-10247 | 504.75    | -877.137  | 1.697      | 0.011    | 0.014    |
| 603_Mean_OPUS-10248 | 505.131   | -881.545  | 1.777      | 0.011    | 0.014    |

| Name                | dN (USft) | dE (USft) | dHt (USft) | Horz RMS | Vert RMS |
|---------------------|-----------|-----------|------------|----------|----------|
| 603_Mean_OPUS-10249 | 506.706   | -887.489  | 1.623      | 0.011    | 0.014    |
| 603_Mean_OPUS-10250 | 512.673   | -888.169  | 1.626      | 0.011    | 0.014    |
| 603_Mean_OPUS-10251 | 524.098   | -887.453  | 1.79       | 0.011    | 0.014    |
| 603_Mean_OPUS-10252 | 526.568   | -886.465  | 1.797      | 0.011    | 0.014    |
| 603_Mean_OPUS-10253 | 526.421   | -886.971  | 1.714      | 0.011    | 0.014    |
| 603_Mean_OPUS-10254 | 528.928   | -880.983  | 2.176      | 0.011    | 0.014    |
| 603_Mean_OPUS-10255 | 533.106   | -871.489  | 2.643      | 0.011    | 0.014    |
| 603_Mean_OPUS-10256 | 535.974   | -859.07   | 2.677      | 0.012    | 0.015    |
| 603_Mean_OPUS-10257 | 537.746   | -849.096  | 2.676      | 0.011    | 0.014    |
| 603_Mean_OPUS-10258 | 543.492   | -841.275  | 2.862      | 0.011    | 0.014    |
| 603_Mean_OPUS-10259 | 546       | -833.829  | 2.555      | 0.011    | 0.014    |
| 603_Mean_OPUS-10260 | 545.384   | -830.818  | 2.483      | 0.011    | 0.014    |
| 603_Mean_OPUS-10261 | 545.294   | -830.867  | 2.456      | 0.011    | 0.014    |
| 603_Mean_OPUS-10262 | 548.233   | -822.827  | 2.401      | 0.011    | 0.014    |
| 603_Mean_OPUS-10263 | 545.853   | -818.002  | 2.371      | 0.011    | 0.014    |
| 603_Mean_OPUS-10264 | 543.757   | -810.908  | 2.241      | 0.012    | 0.015    |
| 603_Mean_OPUS-10265 | 543.444   | -811.495  | 2.09       | 0.011    | 0.014    |
| 603_Mean_OPUS-10266 | 538.245   | -804.121  | 2.161      | 0.011    | 0.014    |
| 603_Mean_OPUS-10267 | 531.397   | -807.652  | 1.934      | 0.012    | 0.015    |
| 603_Mean_OPUS-10268 | 523.309   | -811.461  | 2.072      | 0.012    | 0.015    |
| 603 Mean OPUS-10269 | 520.991   | -806.849  | 1.946      | 0.012    | 0.015    |
| 603_Mean_OPUS-10270 | 515.3     | -800.721  | 1.948      | 0.012    | 0.015    |
| 603_Mean_OPUS-10271 | 507.193   | -809.232  | 1.893      | 0.012    | 0.015    |
| 603_Mean_OPUS-10272 | 512.8     | -816.388  | 2.077      | 0.011    | 0.014    |
| 603 Mean OPUS-10273 | 508.009   | -823.292  | 2.126      | 0.011    | 0.014    |
| 603 Mean OPUS-10274 | 498.221   | -819.528  | 1.877      | 0.011    | 0.014    |

| Name                | dN (USft) | dE (USft) | dHt (USft) | Horz RMS | Vert RMS |
|---------------------|-----------|-----------|------------|----------|----------|
| 603_Mean_OPUS-10275 | 494.344   | -828.219  | 1.772      | 0.011    | 0.014    |
| 603_Mean_OPUS-10276 | 502.552   | -834.286  | 1.997      | 0.011    | 0.014    |
| 603_Mean_OPUS-10277 | 498.172   | -843.11   | 1.95       | 0.011    | 0.014    |
| 603_Mean_OPUS-10278 | 488.418   | -839.401  | 1.593      | 0.011    | 0.014    |
| 603_Mean_OPUS-10279 | 484.727   | -848.838  | 1.546      | 0.011    | 0.014    |
| 603_Mean_OPUS-10280 | 495.598   | -851.607  | 1.798      | 0.011    | 0.014    |
| 603_Mean_OPUS-10281 | 502.888   | -855.305  | 1.918      | 0.011    | 0.014    |
| 603_Mean_OPUS-10282 | 502.222   | -863.393  | 1.713      | 0.011    | 0.014    |
| 603_Mean_OPUS-10283 | 492.588   | -863.039  | 1.842      | 0.011    | 0.014    |
| 603_Mean_OPUS-10284 | 484.115   | -858.996  | 1.691      | 0.011    | 0.014    |
| 603_Mean_OPUS-10285 | 478.575   | -867.671  | 1.776      | 0.011    | 0.014    |
| 603_Mean_OPUS-10286 | 491.716   | -872.509  | 1.978      | 0.011    | 0.014    |
| 603_Mean_OPUS-10287 | 500.768   | -874.721  | 1.906      | 0.011    | 0.014    |
| 603_Mean_OPUS-10288 | 501.937   | -881.366  | 1.659      | 0.011    | 0.014    |
| 603_Mean_OPUS-10289 | 491.78    | -881.689  | 1.718      | 0.011    | 0.014    |
| 603_Mean_OPUS-10290 | 482.685   | -883.491  | 1.67       | 0.011    | 0.014    |
| 603_Mean_OPUS-10291 | 484.574   | -895.135  | 1.41       | 0.011    | 0.014    |
| 603_Mean_OPUS-10292 | 493.743   | -898.086  | 1.526      | 0.01     | 0.013    |
| 603_Mean_OPUS-10293 | 498.473   | -889.093  | 1.815      | 0.01     | 0.013    |
| 603_Mean_OPUS-10294 | 510.375   | -891.685  | 1.559      | 0.01     | 0.013    |
| 603_Mean_OPUS-10295 | 505.375   | -900.332  | 1.615      | 0.01     | 0.013    |
| 603_Mean_OPUS-10296 | 509.893   | -905.802  | 1.096      | 0.01     | 0.013    |
| 603_Mean_OPUS-10297 | 518.16    | -911.164  | 0.963      | 0.01     | 0.013    |
| 603_Mean_OPUS-10298 | 498.441   | -910.063  | 1.165      | 0.01     | 0.012    |
| 603 Mean OPUS-10299 | 528.24    | -916.308  | 0.935      | 0.01     | 0.012    |
| 603_Mean_OPUS-10300 | 530.636   | -905.332  | 1.444      | 0.01     | 0.012    |

| Name                | dN (USft) | dE (USft) | dHt (USft) | Horz RMS | Vert RMS |
|---------------------|-----------|-----------|------------|----------|----------|
| 603_Mean_OPUS-10301 | 521.674   | -898.737  | 1.366      | 0.01     | 0.013    |
| 603_Mean_OPUS-10302 | 513.858   | -896.421  | 1.464      | 0.01     | 0.013    |
| 603_Mean_OPUS-10303 | 527.39    | -891.044  | 1.726      | 0.01     | 0.013    |
| 603_Mean_OPUS-10304 | 535.182   | -899.195  | 1.827      | 0.01     | 0.013    |
| 603_Mean_OPUS-10305 | 541.505   | -889.349  | 2.249      | 0.01     | 0.013    |
| 603_Mean_OPUS-10306 | 531.609   | -884.191  | 2.118      | 0.011    | 0.014    |
| 603_Mean_OPUS-10307 | 534.78    | -873.688  | 2.598      | 0.01     | 0.013    |
| 603_Mean_OPUS-10308 | 544.936   | -877.748  | 2.507      | 0.01     | 0.013    |
| 603_Mean_OPUS-10309 | 549.692   | -869.355  | 2.962      | 0.011    | 0.014    |
| 603_Mean_OPUS-10310 | 540.72    | -862.059  | 2.761      | 0.01     | 0.013    |
| 603_Mean_OPUS-10311 | 541.004   | -851.365  | 2.72       | 0.01     | 0.013    |
| 603_Mean_OPUS-10312 | 550.098   | -855.178  | 2.858      | 0.011    | 0.014    |
| 603_Mean_OPUS-10313 | 552.808   | -863.1    | 2.951      | 0.01     | 0.013    |
| 603_Mean_OPUS-10314 | 554.989   | -846.613  | 2.969      | 0.011    | 0.014    |
| 603_Mean_OPUS-10315 | 548.497   | -845.027  | 2.886      | 0.011    | 0.014    |
| 603_Mean_OPUS-10316 | 545.143   | -842.38   | 3.034      | 0.011    | 0.014    |
| 603_Mean_OPUS-10317 | 549.518   | -833.552  | 2.761      | 0.01     | 0.013    |
| 603_Mean_OPUS-10318 | 559.975   | -834.278  | 2.93       | 0.01     | 0.013    |
| 603_Mean_OPUS-10319 | 552.489   | -823.458  | 2.669      | 0.01     | 0.013    |
| 603_Mean_OPUS-10320 | 560.41    | -819.29   | 2.638      | 0.011    | 0.014    |
| 603_Mean_OPUS-10321 | 554.564   | -807.434  | 2.444      | 0.01     | 0.013    |
| 603_Mean_OPUS-10322 | 547.067   | -812.247  | 2.341      | 0.01     | 0.013    |
| 603_Mean_OPUS-10323 | 544.131   | -804.8    | 2.367      | 0.01     | 0.013    |
| 603_Mean_OPUS-10324 | 545.639   | -794.906  | 2.426      | 0.01     | 0.013    |
| 603_Mean_OPUS-10325 | 522.848   | -794.211  | 2.065      | 0.01     | 0.013    |
| 603_Mean_OPUS-10326 | 529.276   | -804.575  | 1.92       | 0.01     | 0.013    |

| Name                | dN (USft) | dE (USft) | dHt (USft) | Horz RMS | Vert RMS |
|---------------------|-----------|-----------|------------|----------|----------|
| 603_Mean_OPUS-10327 | 538.856   | -799.928  | 2.199      | 0.01     | 0.013    |
| 603_Mean_OPUS-10328 | 534.682   | -785.762  | 2.198      | 0.01     | 0.013    |
| 603_Mean_OPUS-10329 | 531.499   | -817.366  | 1.008      | 0.01     | 0.013    |
| 603_Mean_OPUS-10330 | 527.474   | -818.036  | 1.023      | 0.01     | 0.013    |
| 603_Mean_OPUS-10331 | 523.812   | -820.971  | 1.128      | 0.011    | 0.014    |
| 603_Mean_OPUS-10332 | 517.75    | -829.295  | 1.288      | 0.011    | 0.014    |
| 603_Mean_OPUS-10333 | 514.543   | -836.983  | 1.489      | 0.01     | 0.013    |
| 603_Mean_OPUS-10334 | 511.494   | -841.715  | 1.473      | 0.01     | 0.013    |
| 603_Mean_OPUS-10335 | 509.735   | -847.256  | 1.495      | 0.01     | 0.013    |
| 603_Mean_OPUS-10336 | 511.736   | -856.017  | 1.856      | 0.011    | 0.014    |
| 603_Mean_OPUS-10337 | 510.049   | -864.286  | 1.736      | 0.011    | 0.014    |
| 603_Mean_OPUS-10338 | 508.446   | -873.634  | 1.413      | 0.011    | 0.014    |
| 603_Mean_OPUS-10339 | 511.505   | -880.209  | 1.32       | 0.019    | 0.023    |
| 603_Mean_OPUS-10340 | 517.956   | -883.364  | 1.211      | 0.01     | 0.013    |
| 603_Mean_OPUS-10341 | 520.897   | -881.103  | 1.009      | 0.01     | 0.013    |
| 603_Mean_OPUS-10342 | 519.788   | -877.841  | 1.143      | 0.011    | 0.014    |
| 603_Mean_OPUS-10343 | 522.016   | -870.971  | 1.426      | 0.011    | 0.013    |
| 603_Mean_OPUS-10344 | 525.251   | -865.166  | 1.885      | 0.011    | 0.013    |
| 603_Mean_OPUS-10345 | 527.844   | -855.501  | 2.041      | 0.011    | 0.013    |
| 603_Mean_OPUS-10346 | 529.731   | -846.355  | 1.984      | 0.011    | 0.013    |
| 603_Mean_OPUS-10347 | 529.83    | -840.047  | 1.728      | 0.011    | 0.013    |
| 603_Mean_OPUS-10348 | 535.167   | -834.902  | 1.63       | 0.011    | 0.013    |
| 603_Mean_OPUS-10349 | 539.945   | -830.031  | 1.469      | 0.011    | 0.013    |
| 603_Mean_OPUS-10350 | 538.314   | -823.802  | 1.294      | 0.011    | 0.014    |
| 603_Mean_OPUS-10351 | 533.336   | -819.936  | 1.108      | 0.011    | 0.013    |
| 603_Mean_OPUS-10352 | 535.973   | -814.343  | 1.647      | 0.011    | 0.014    |

| Name                | dN (USft) | dE (USft) | dHt (USft) | Horz RMS | Vert RMS |
|---------------------|-----------|-----------|------------|----------|----------|
| 603_Mean_OPUS-10353 | 542.988   | -819.232  | 1.921      | 0.011    | 0.014    |
| 603_Mean_OPUS-10354 | 532.547   | -831.436  | 1.568      | 0.011    | 0.013    |
| 603_Mean_OPUS-10355 | 528.276   | -839.113  | 1.79       | 0.01     | 0.012    |
| 603_Mean_OPUS-10356 | 524.439   | -848.312  | 2.025      | 0.01     | 0.012    |
| 603_Mean_OPUS-10357 | 522.698   | -857.765  | 2.061      | 0.01     | 0.012    |
| 603_Mean_OPUS-10358 | 521.331   | -866.711  | 1.793      | 0.01     | 0.012    |
| 603_Mean_OPUS-10359 | 518.425   | -871.596  | 1.52       | 0.01     | 0.012    |
| 603_Mean_OPUS-10360 | 514.195   | -867.835  | 1.568      | 0.01     | 0.012    |
| 603_Mean_OPUS-10361 | 514.276   | -859.759  | 1.827      | 0.011    | 0.013    |
| 603_Mean_OPUS-10362 | 517.223   | -850.132  | 2.012      | 0.01     | 0.012    |
| 603_Mean_OPUS-10363 | 519.648   | -844.383  | 1.984      | 0.011    | 0.013    |
| 603_Mean_OPUS-10364 | 522.397   | -838.298  | 1.656      | 0.01     | 0.012    |
| 603_Mean_OPUS-10365 | 526.923   | -831.94   | 1.53       | 0.011    | 0.013    |
| 603_Mean_OPUS-10366 | 528.915   | -814.595  | 1.529      | 0.01     | 0.012    |
| 603_Mean_OPUS-10367 | 532.915   | -824.048  | 1.407      | 0.01     | 0.012    |
| 603_Mean_OPUS-10368 | 541.984   | -828.155  | 1.643      | 0.01     | 0.012    |
| 603_Mean_OPUS-10369 | 537.965   | -834.703  | 1.821      | 0.01     | 0.012    |
| 603_Mean_OPUS-10370 | 539.955   | -839.988  | 2.487      | 0.01     | 0.012    |
| 603_Mean_OPUS-10371 | 531.334   | -834.481  | 1.698      | 0.01     | 0.012    |
| 603_Mean_OPUS-10372 | 520.283   | -830.096  | 1.323      | 0.01     | 0.012    |
| 603_Mean_OPUS-10373 | 513.807   | -841.86   | 1.508      | 0.01     | 0.012    |
| 603_Mean_OPUS-10374 | 517.935   | -844.393  | 1.823      | 0.01     | 0.012    |
| 603_Mean_OPUS-10375 | 522.27    | -846.634  | 2.009      | 0.01     | 0.012    |
| 603_Mean_OPUS-10376 | 525.445   | -837.967  | 1.689      | 0.01     | 0.012    |
| 603_Mean_OPUS-10377 | 528.788   | -833.113  | 1.56       | 0.01     | 0.012    |
| 603_Mean_OPUS-10378 | 531.235   | -850.118  | 2.09       | 0.01     | 0.012    |

| Name                | dN (USft) | dE (USft) | dHt (USft) | Horz RMS | Vert RMS |
|---------------------|-----------|-----------|------------|----------|----------|
| 603_Mean_OPUS-10379 | 528.827   | -861.306  | 2.13       | 0.011    | 0.013    |
| 603_Mean_OPUS-10380 | 518.229   | -857.729  | 1.936      | 0.011    | 0.013    |
| 603_Mean_OPUS-10381 | 518.341   | -865.707  | 1.795      | 0.01     | 0.012    |
| 603_Mean_OPUS-10382 | 524.771   | -879.183  | 1.703      | 0.01     | 0.012    |
| 603_Mean_OPUS-10383 | 527.797   | -870.481  | 2.007      | 0.01     | 0.012    |
| 603_Mean_OPUS-10384 | 511.591   | -884.452  | 1.551      | 0.01     | 0.012    |
| 603_Mean_OPUS-10385 | 516.415   | -877.887  | 1.164      | 0.01     | 0.012    |
| 603_Mean_OPUS-10386 | 512.065   | -875.042  | 1.257      | 0.011    | 0.013    |
| 603_Mean_OPUS-10387 | 515.519   | -873.493  | 1.246      | 0.012    | 0.014    |
| 603_Mean_OPUS-10388 | 512.415   | -871.878  | 1.343      | 0.01     | 0.012    |
| 603_Mean_OPUS-10389 | 584.204   | -840.057  | 2.708      | 0.01     | 0.012    |
| 603_Mean_OPUS-10390 | 584.673   | -840.252  | 2.835      | 0.011    | 0.013    |
| 603_Mean_OPUS-10391 | 590.273   | -841.54   | 2.958      | 0.01     | 0.012    |
| 603_Mean_OPUS-10392 | 597.557   | -840.711  | 2.693      | 0.011    | 0.013    |
| 603_Mean_OPUS-10393 | 601.673   | -836.008  | 2.45       | 0.011    | 0.013    |
| 603_Mean_OPUS-10394 | 602.769   | -831.329  | 2.442      | 0.011    | 0.013    |
| 603_Mean_OPUS-10395 | 602.713   | -831.779  | 2.508      | 0.01     | 0.012    |
| 603_Mean_OPUS-10396 | 605.243   | -826.567  | 2.656      | 0.01     | 0.012    |
| 603_Mean_OPUS-10397 | 605.08    | -819.975  | 2.385      | 0.01     | 0.012    |
| 603_Mean_OPUS-10398 | 604.313   | -820.537  | 2.212      | 0.01     | 0.012    |
| 603_Mean_OPUS-10399 | 599.44    | -815.615  | 2.566      | 0.01     | 0.013    |
| 603_Mean_OPUS-10400 | 593.281   | -811.382  | 2.692      | 0.01     | 0.013    |
| 603_Mean_OPUS-10401 | 585.499   | -810.674  | 2.681      | 0.01     | 0.012    |
| 603_Mean_OPUS-10402 | 578.409   | -810.012  | 2.546      | 0.01     | 0.012    |
| 603_Mean_OPUS-10403 | 571.87    | -810.705  | 2.478      | 0.01     | 0.012    |
| 603_Mean_OPUS-10404 | 568.812   | -812.828  | 2.352      | 0.01     | 0.013    |

| Name                | dN (USft) | dE (USft) | dHt (USft) | Horz RMS | Vert RMS |
|---------------------|-----------|-----------|------------|----------|----------|
| 603_Mean_OPUS-10405 | 568.537   | -813.218  | 2.225      | 0.01     | 0.012    |
| 603_Mean_OPUS-10406 | 568.017   | -819.055  | 2.526      | 0.01     | 0.012    |
| 603_Mean_OPUS-10407 | 570.926   | -824.06   | 2.784      | 0.01     | 0.012    |
| 603_Mean_OPUS-10408 | 574.477   | -829.317  | 2.805      | 0.01     | 0.013    |
| 603_Mean_OPUS-10409 | 578.199   | -834.405  | 2.781      | 0.01     | 0.013    |
| 603_Mean_OPUS-10410 | 581.898   | -838.605  | 2.737      | 0.01     | 0.013    |
| 603_Mean_OPUS-10411 | 577.595   | -840.93   | 2.809      | 0.01     | 0.012    |
| 603_Mean_OPUS-10412 | 569.766   | -843.724  | 3          | 0.01     | 0.012    |
| 603_Mean_OPUS-10413 | 560.62    | -844.471  | 3.025      | 0.01     | 0.012    |
| 603_Mean_OPUS-10414 | 568.432   | -834.809  | 3.069      | 0.01     | 0.012    |
| 603_Mean_OPUS-10415 | 573.317   | -831.6    | 2.734      | 0.01     | 0.012    |
| 603_Mean_OPUS-10416 | 566.67    | -824.267  | 2.863      | 0.011    | 0.012    |
| 603_Mean_OPUS-10417 | 558.451   | -825.634  | 2.79       | 0.01     | 0.012    |
| 603_Mean_OPUS-10418 | 552.093   | -813.177  | 2.423      | 0.01     | 0.012    |
| 603_Mean_OPUS-10419 | 562.824   | -805.866  | 2.521      | 0.01     | 0.012    |
| 603_Mean_OPUS-10420 | 555.672   | -794.015  | 2.416      | 0.01     | 0.012    |
| 603_Mean_OPUS-10421 | 565.241   | -790.802  | 2.599      | 0.01     | 0.012    |
| 603_Mean_OPUS-10422 | 568.131   | -798.138  | 2.597      | 0.01     | 0.012    |
| 603_Mean_OPUS-10423 | 571.278   | -806.328  | 2.556      | 0.01     | 0.012    |
| 603_Mean_OPUS-10424 | 584.447   | -804.193  | 2.776      | 0.01     | 0.012    |
| 603_Mean_OPUS-10425 | 580.616   | -796.452  | 2.496      | 0.01     | 0.012    |
| 603_Mean_OPUS-10426 | 571.559   | -799.77   | 2.539      | 0.01     | 0.012    |
| 603_Mean_OPUS-10427 | 581.551   | -787.832  | 2.543      | 0.01     | 0.012    |
| 603_Mean_OPUS-10428 | 594.543   | -787.75   | 2.574      | 0.01     | 0.012    |
| 603_Mean_OPUS-10429 | 590.353   | -797.529  | 2.629      | 0.01     | 0.012    |
| 603_Mean_OPUS-10430 | 587.901   | -804.632  | 2.714      | 0.01     | 0.012    |

| Name                | dN (USft) | dE (USft) | dHt (USft) | Horz RMS | Vert RMS |
|---------------------|-----------|-----------|------------|----------|----------|
| 603_Mean_OPUS-10431 | 600.182   | -809.167  | 2.879      | 0.01     | 0.012    |
| 603_Mean_OPUS-10432 | 604.527   | -800.993  | 2.653      | 0.01     | 0.012    |
| 603_Mean_OPUS-10433 | 605.386   | -790.138  | 2.543      | 0.01     | 0.012    |
| 603_Mean_OPUS-10434 | 617.095   | -792.934  | 2.129      | 0.01     | 0.012    |
| 603_Mean_OPUS-10435 | 610.444   | -804.574  | 2.568      | 0.01     | 0.012    |
| 603_Mean_OPUS-10436 | 605.495   | -812.23   | 2.581      | 0.01     | 0.012    |
| 603_Mean_OPUS-10437 | 609.902   | -821.029  | 2.357      | 0.01     | 0.012    |
| 603_Mean_OPUS-10438 | 616.854   | -812.836  | 2.311      | 0.01     | 0.012    |
| 603_Mean_OPUS-10439 | 624.893   | -803.486  | 1.914      | 0.01     | 0.012    |
| 603_Mean_OPUS-10440 | 632.756   | -809.369  | 1.524      | 0.011    | 0.013    |
| 603_Mean_OPUS-10441 | 636.677   | -822.38   | 1.332      | 0.01     | 0.012    |
| 603_Mean_OPUS-10442 | 623.487   | -818.797  | 1.815      | 0.01     | 0.012    |
| 603_Mean_OPUS-10443 | 610.917   | -826.777  | 2.368      | 0.01     | 0.012    |
| 603_Mean_OPUS-10444 | 607.317   | -835.839  | 2.445      | 0.01     | 0.012    |
| 603_Mean_OPUS-10445 | 616.164   | -839.826  | 2.306      | 0.01     | 0.012    |
| 603_Mean_OPUS-10446 | 626.512   | -846.674  | 2.191      | 0.011    | 0.013    |
| 603_Mean_OPUS-10447 | 636.362   | -836.015  | 1.388      | 0.011    | 0.013    |
| 603_Mean_OPUS-10448 | 622.772   | -828.064  | 1.869      | 0.01     | 0.012    |
| 603_Mean_OPUS-10449 | 600.686   | -841.157  | 2.737      | 0.01     | 0.012    |
| 603_Mean_OPUS-10450 | 605.197   | -848.322  | 2.803      | 0.01     | 0.012    |
| 603_Mean_OPUS-10451 | 611.898   | -858.546  | 2.468      | 0.011    | 0.013    |
| 603_Mean_OPUS-10452 | 621.997   | -852.666  | 2.23       | 0.01     | 0.012    |
| 603_Mean_OPUS-10453 | 606.223   | -866.63   | 2.446      | 0.011    | 0.013    |
| 603_Mean_OPUS-10454 | 598.174   | -858.505  | 2.743      | 0.011    | 0.013    |
| 603_Mean_OPUS-10455 | 593.439   | -848.352  | 2.911      | 0.011    | 0.013    |
| 603_Mean_OPUS-10456 | 581.094   | -846.613  | 2.881      | 0.011    | 0.013    |

| Name                | dN (USft) | dE (USft) | dHt (USft) | Horz RMS | Vert RMS |
|---------------------|-----------|-----------|------------|----------|----------|
| 603_Mean_OPUS-10457 | 586.085   | -856.038  | 2.797      | 0.011    | 0.013    |
| 603_Mean_OPUS-10458 | 591.68    | -866.639  | 2.63       | 0.01     | 0.012    |
| 603_Mean_OPUS-10459 | 578.243   | -868.662  | 2.615      | 0.01     | 0.012    |
| 603_Mean_OPUS-10460 | 577.56    | -855.917  | 2.861      | 0.01     | 0.012    |
| 603_Mean_OPUS-10461 | 565.355   | -848.15   | 2.885      | 0.01     | 0.012    |
| 603_Mean_OPUS-10462 | 559.759   | -855.228  | 2.776      | 0.011    | 0.012    |
| 603_Mean_OPUS-10463 | 569.71    | -864.31   | 2.747      | 0.01     | 0.012    |
| 603_Mean_OPUS-10464 | 559.262   | -867.845  | 2.715      | 0.01     | 0.012    |
| 603_Mean_OPUS-10465 | 599.025   | -822.495  | 1.41       | 0.011    | 0.014    |
| 603_Mean_OPUS-10466 | 599.271   | -826.244  | 1.829      | 0.011    | 0.014    |
| 603_Mean_OPUS-10467 | 597.392   | -831.398  | 1.996      | 0.011    | 0.014    |
| 603_Mean_OPUS-10468 | 589.893   | -834.456  | 2.018      | 0.011    | 0.014    |
| 603_Mean_OPUS-10469 | 585.471   | -832.281  | 2.319      | 0.011    | 0.014    |
| 603_Mean_OPUS-10470 | 580.119   | -824.923  | 1.958      | 0.011    | 0.014    |
| 603_Mean_OPUS-10471 | 575.242   | -818.388  | 1.705      | 0.011    | 0.014    |
| 603_Mean_OPUS-10472 | 574.572   | -816.543  | 1.752      | 0.011    | 0.014    |
| 603_Mean_OPUS-10473 | 576.98    | -816.982  | 1.798      | 0.011    | 0.014    |
| 603_Mean_OPUS-10474 | 582.2     | -815.294  | 1.995      | 0.011    | 0.014    |
| 603_Mean_OPUS-10475 | 588.696   | -815.179  | 1.862      | 0.011    | 0.014    |
| 603_Mean_OPUS-10476 | 595.05    | -817.954  | 1.834      | 0.011    | 0.014    |
| 603_Mean_OPUS-10477 | 597.75    | -823.928  | 1.34       | 0.011    | 0.014    |
| 603_Mean_OPUS-10478 | 593.754   | -822.316  | 1.869      | 0.012    | 0.015    |
| 603_Mean_OPUS-10479 | 589.649   | -821.636  | 2.206      | 0.012    | 0.015    |
| 603_Mean_OPUS-10480 | 585.224   | -818.097  | 2.029      | 0.012    | 0.015    |
| 603_Mean_OPUS-10481 | 581.694   | -820.029  | 1.78       | 0.012    | 0.015    |
| 603_Mean_OPUS-10482 | 583.771   | -823.425  | 2.097      | 0.012    | 0.015    |

| Name                | dN (USft) | dE (USft) | dHt (USft) | Horz RMS | Vert RMS |
|---------------------|-----------|-----------|------------|----------|----------|
| 603_Mean_OPUS-10483 | 588.583   | -827.48   | 2.282      | 0.012    | 0.015    |
| 603_Mean_OPUS-10484 | 594.782   | -827.425  | 1.803      | 0.012    | 0.015    |
| 603_Mean_OPUS-10485 | 598.511   | -834.03   | 2.301      | 0.012    | 0.015    |
| 603_Mean_OPUS-10486 | 591.973   | -836.167  | 2.161      | 0.012    | 0.015    |
| 603_Mean_OPUS-10487 | 586.196   | -836.578  | 2.575      | 0.012    | 0.015    |
| 603_Mean_OPUS-10488 | 581.217   | -830.501  | 2.337      | 0.012    | 0.015    |
| 603_Mean_OPUS-10489 | 577.198   | -824.448  | 2.238      | 0.012    | 0.015    |
| 603_Mean_OPUS-10490 | 571.908   | -818.813  | 2.019      | 0.012    | 0.015    |
| 603_Mean_OPUS-10491 | 574.779   | -813.423  | 2.153      | 0.012    | 0.015    |
| 603_Mean_OPUS-10492 | 580.84    | -813.368  | 2.27       | 0.013    | 0.015    |
| 603_Mean_OPUS-10493 | 589.562   | -813.041  | 2.284      | 0.013    | 0.015    |
| 603_Mean_OPUS-10494 | 596.143   | -815.683  | 2.226      | 0.013    | 0.015    |
| 603_Mean_OPUS-10495 | 601.804   | -821.322  | 2.081      | 0.013    | 0.016    |
| 603_Mean_OPUS-10496 | 601.847   | -825.757  | 2.172      | 0.013    | 0.016    |
| 603_Mean_OPUS-10497 | 595.803   | -760.743  | 1.555      | 0.014    | 0.017    |
| 603_Mean_OPUS-10498 | 594.687   | -776.932  | 2.414      | 0.013    | 0.015    |
| 603_Mean_OPUS-10499 | 595.828   | -793.247  | 2.59       | 0.013    | 0.015    |
| 603_Mean_OPUS-10500 | 595.514   | -807.237  | 2.903      | 0.013    | 0.016    |
| 603_Mean_OPUS-10501 | 595.544   | -812.854  | 2.631      | 0.013    | 0.015    |
| 603_Mean_OPUS-10502 | 594.828   | -817.787  | 1.749      | 0.013    | 0.015    |
| 603_Mean_OPUS-10503 | 594.964   | -821.611  | 1.478      | 0.013    | 0.015    |
| 603_Mean_OPUS-10504 | 594.556   | -825.093  | 1.805      | 0.013    | 0.015    |
| 603_Mean_OPUS-10505 | 594.431   | -829.512  | 2.103      | 0.013    | 0.015    |
| 603_Mean_OPUS-10506 | 594.859   | -834.854  | 2.197      | 0.013    | 0.016    |
| 603_Mean_OPUS-10507 | 594.979   | -840.43   | 2.736      | 0.012    | 0.015    |
| 603_Mean_OPUS-10508 | 594.877   | -844.487  | 2.929      | 0.012    | 0.015    |

| Name                | dN (USft) | dE (USft) | dHt (USft) | Horz RMS | Vert RMS |
|---------------------|-----------|-----------|------------|----------|----------|
| 603_Mean_OPUS-10509 | 594.107   | -854.452  | 2.899      | 0.012    | 0.015    |
| 603_Mean_OPUS-10510 | 596.767   | -869.542  | 2.693      | 0.013    | 0.016    |
| 603_Mean_OPUS-10511 | 596.406   | -885.686  | 2.486      | 0.013    | 0.016    |
| 603_Mean_OPUS-10512 | 597.394   | -901.833  | 2.017      | 0.012    | 0.015    |
| 603_Mean_OPUS-10513 | 597.78    | -914.971  | 1.974      | 0.012    | 0.015    |
| 603_Mean_OPUS-10514 | 597.573   | -933.199  | 0.968      | 0.013    | 0.016    |
| 603_Mean_OPUS-10515 | 599.052   | -949.571  | 0.666      | 0.012    | 0.015    |
| 603_Mean_OPUS-10516 | 596.831   | -971.487  | -0.214     | 0.013    | 0.016    |
| 603_Mean_OPUS-10517 | 596.271   | -991.187  | -1.27      | 0.014    | 0.017    |
| 603_Mean_OPUS-10518 | 596.833   | -1007.064 | -1.574     | 0.013    | 0.016    |
| 603_Mean_OPUS-10519 | 702.087   | -1018.341 | -4.616     | 0.012    | 0.013    |
| 603_Mean_OPUS-10520 | -1668.844 | -2836.204 | -3.592     | 0.012    | 0.014    |
| 2600_Mean_OPUS-5392 | 1528.773  | 505.565   | -21.328    | 0.012    | 0.014    |
| 2600_Mean_OPUS-5393 | 1528.758  | 505.592   | -21.315    | 0.011    | 0.011    |
| 2600_Mean_OPUS-5394 | 1528.791  | 505.563   | -21.319    | 0.011    | 0.014    |
| 2600_Mean_OPUS-5395 | 62.824    | -647.804  | -10.599    | 0.01     | 0.012    |
| 2600_Mean_OPUS-5396 | 110.486   | -678.596  | -12.879    | 0.011    | 0.013    |
| 2600_Mean_OPUS-5397 | 146.225   | -647.895  | -12.338    | 0.011    | 0.012    |
| 2600_Mean_OPUS-5398 | 110.477   | -602.716  | -12.504    | 0.011    | 0.014    |
| 2600_Mean_OPUS-5399 | 50.405    | -843.58   | -11.28     | 0.011    | 0.014    |
| 2600_Mean_OPUS-5400 | 63.603    | -856.866  | -11.496    | 0.012    | 0.015    |
| 2600_Mean_OPUS-5401 | 50.395    | -865.309  | -10.804    | 0.011    | 0.014    |
| 2600_Mean_OPUS-5402 | 37.13     | -856.848  | -10.84     | 0.011    | 0.014    |
| 2600_Mean_OPUS-5403 | 261.377   | -837.612  | -14.292    | 0.011    | 0.014    |
| 2600_Mean_OPUS-5404 | 289.262   | -808.102  | -14.907    | 0.011    | 0.013    |
| 2600_Mean_OPUS-5405 | 310.398   | -837.573  | -14.768    | 0.01     | 0.012    |

#### lounsbury & associates, inc.

| Name                | dN (USft) | dE (USft) | dHt (USft) | Horz RMS | Vert RMS |
|---------------------|-----------|-----------|------------|----------|----------|
| 2600_Mean_OPUS-5406 | 289.348   | -861.73   | -14.861    | 0.011    | 0.014    |
| 2600_Mean_OPUS-5407 | 321.47    | -620.981  | -15.178    | 0.011    | 0.014    |
| 2600_Mean_OPUS-5408 | 341.21    | -601.309  | -15.462    | 0.011    | 0.015    |
| 2600_Mean_OPUS-5409 | 371.587   | -621.08   | -15.06     | 0.013    | 0.016    |
| 2600_Mean_OPUS-5410 | 341.205   | -641.183  | -14.933    | 0.013    | 0.016    |
| 2600_Mean_OPUS-5411 | 294.207   | -541.311  | -14.093    | 0.012    | 0.015    |
| 2600_Mean_OPUS-5412 | 259.08    | -519.546  | -13.619    | 0.012    | 0.015    |
| 2600_Mean_OPUS-5413 | 231.758   | -541.363  | -13.742    | 0.013    | 0.016    |
| 2600_Mean_OPUS-5414 | 259.092   | -564.264  | -15.649    | 0.013    | 0.016    |
| 2600_Mean_OPUS-5415 | 867.558   | -716.287  | -28.191    | 0.013    | 0.017    |
| 2600_Mean_OPUS-5416 | 879.163   | -717.187  | -29.106    | 0.014    | 0.019    |
| 2600_Mean_OPUS-5417 | 884.851   | -728.942  | -28.685    | 0.014    | 0.02     |
| 2600_Mean_OPUS-5418 | 883.02    | -669.322  | -28.814    | 0.014    | 0.019    |
| 2600_Mean_OPUS-5419 | 891.986   | -658.719  | -28.513    | 0.015    | 0.021    |
| 2600_Mean_OPUS-5420 | 1528.759  | 505.594   | -21.331    | 0.01     | 0.012    |
| 2600_Mean_OPUS-5421 | 5019.01   | -2153.626 | -43.821    | 0.01     | 0.012    |

#### **6. Level Reduction Reports**

No differential levelling was performed for this project. The GPS elevations returned by the mean OPUS solution on each primary project control point proved to be very accurate through the project control checkshots and exceeded the required vertical tolerances for the project.

#### 7. Traverse Adjustment Reports

While conventional traversing was not performed on this project, the following spreadsheets have been included that demonstrate how mean OPUS values were calculated for each project control point.

All latutude and longitude values in the tables below are NAD83(2011)(EPOCH: 2010.0000). All ellipsoid heights are given in Meters.

For report brevity, the complete OPUS solutions have not been included, but can be found in the 'OPUS Solution Reports' section of the deliverable directory.

|             | OPUS SOLUTIONS – POINT 1                              |    |          |              |     |    |          |               |          |  |  |  |  |
|-------------|-------------------------------------------------------|----|----------|--------------|-----|----|----------|---------------|----------|--|--|--|--|
| LAT         | LAT 63 19 32.49462 W LON 168 58 15.23734 EL HGT 13.61 |    |          |              |     |    |          |               |          |  |  |  |  |
| LAT         | 63                                                    | 19 | 32.49415 | W LON        | 168 | 58 | 15.23622 | EL HGT        | 13.63    |  |  |  |  |
| LAT         | 63                                                    | 19 | 32.49462 | W LON        | 168 | 58 | 15.23705 | EL HGT        | 13.613   |  |  |  |  |
| MEAN<br>LAT | 63                                                    | 19 | 32.49446 | MEAN<br>LONG | 168 | 58 | 15.23687 | MEAN<br>EL HT | 13.61767 |  |  |  |  |

|             | OPUS SOLUTIONS – POINT 2                               |    |          |       |     |    |          |        |        |  |  |  |  |  |
|-------------|--------------------------------------------------------|----|----------|-------|-----|----|----------|--------|--------|--|--|--|--|--|
| LAT         | LAT 63 18 57.71524 W LON 168 57 18.25405 EL HGT 20.899 |    |          |       |     |    |          |        |        |  |  |  |  |  |
| LAT         | 63                                                     | 18 | 57.71524 | W LON | 168 | 57 | 18.25402 | EL HGT | 20.624 |  |  |  |  |  |
| LAT         | 63                                                     | 18 | 57.71516 | W LON | 168 | 57 | 18.2543  | EL HGT | 20.776 |  |  |  |  |  |
| LAT         | 63                                                     | 18 | 57.71534 | W LON | 168 | 57 | 18.25387 | EL HGT | 20.449 |  |  |  |  |  |
| MEAN<br>LAT | 63   19   57.715245   168   57   18.25406              |    |          |       |     |    |          |        |        |  |  |  |  |  |

|             | OPUS SOLUTIONS – POINT 59                            |    |         |       |     |    |          |        |       |  |  |  |  |  |
|-------------|------------------------------------------------------|----|---------|-------|-----|----|----------|--------|-------|--|--|--|--|--|
| LAT         | LAT 63 20 8.84555 W LON 168 56 24.38538 EL HGT 6.55  |    |         |       |     |    |          |        |       |  |  |  |  |  |
| LAT         | 63                                                   | 20 | 8.84548 | W LON | 168 | 56 | 24.3852  | EL HGT | 6.546 |  |  |  |  |  |
| LAT         | 63                                                   | 20 | 8.84548 | W LON | 168 | 56 | 24.3852  | EL HGT | 6.546 |  |  |  |  |  |
| LAT         | 63                                                   | 20 | 8.84562 | W LON | 168 | 56 | 24.38542 | EL HGT | 6.543 |  |  |  |  |  |
| LAT         | 63                                                   | 20 | 8.84562 | W LON | 168 | 56 | 24.38542 | EL HGT | 6.543 |  |  |  |  |  |
| MEAN<br>LAT | MEAN 63 20 8.84555 MEAN 168 56 24.385324 MEAN 6.5456 |    |         |       |     |    |          |        |       |  |  |  |  |  |

|             | OPUS SOLUTIONS – POINT 2600                         |    |          |              |     |    |            |               |        |  |  |  |  |  |
|-------------|-----------------------------------------------------|----|----------|--------------|-----|----|------------|---------------|--------|--|--|--|--|--|
| LAT         | LAT 63 18 42.74795 W LON 168 57 29.8651 EL HGT 27.1 |    |          |              |     |    |            |               |        |  |  |  |  |  |
| LAT         | 63                                                  | 18 | 42.74759 | W LON        | 168 | 57 | 29.8643    | EL HGT        | 27.244 |  |  |  |  |  |
| LAT         | 63                                                  | 18 | 42.74791 | W LON        | 168 | 57 | 29.86445   | EL HGT        | 27.252 |  |  |  |  |  |
| LAT         | 63                                                  | 18 | 42.74795 | W LON        | 168 | 57 | 29.8651    | EL HGT        | 27.272 |  |  |  |  |  |
| MEAN<br>LAT | 63                                                  | 18 | 42.74785 | MEAN<br>LONG | 168 | 57 | 29.8647375 | MEAN<br>EL HT | 27.217 |  |  |  |  |  |

|             | OPUS SOLUTIONS – POINT 603                              |    |          |       |     |    |          |        |        |  |  |  |  |
|-------------|---------------------------------------------------------|----|----------|-------|-----|----|----------|--------|--------|--|--|--|--|
| LAT         | LAT 63 18 58.71784 W LON 168 56 27.18618 EL HGT 29.002  |    |          |       |     |    |          |        |        |  |  |  |  |
| LAT         | 63                                                      | 18 | 58.71744 | W LON | 168 | 56 | 27.18586 | EL HGT | 29.006 |  |  |  |  |
| LAT         | 63                                                      | 18 | 58.7182  | W LON | 168 | 56 | 27.18629 | EL HGT | 29.004 |  |  |  |  |
| LAT         | 63                                                      | 18 | 58.71827 | W LON | 168 | 56 | 27.1865  | EL HGT | 29.01  |  |  |  |  |
| LAT         | 63                                                      | 18 | 58.71773 | W LON | 168 | 56 | 27.18661 | EL HGT | 29.006 |  |  |  |  |
| MEAN<br>LAT | MEAN 63 18 58.717896 MEAN 168 56 27.186288 MEAN 29.0056 |    |          |       |     |    |          |        |        |  |  |  |  |

#### 8. Survey Quality

The survey quality achieved exceeds all quality requirements outlined in Table 4-3 of the USACE Alaska District – Environmental Program Manual For Electronic Deliverables, April 2017. The RMS Values in the OPUS Solutions, RTK Survey Checkshots, and RTK RMS Values were all used to evaluate the survey quality. These values can all be found/confirmed in this report document and associated deliverable package.

#### Exhibit F3-1 Control Statement

# N.E. Cape Remedial Action Control Statement

This memo describes the relationship between the 2018 Lounsbury survey coordinate system and the 2013 Eco-Land survey coordinate system. During the field survey, discrepancies were found between provided control, NGS control and stakeout coordinates. The following is a summary of the steps taken to reconcile old data with new data.

#### **Coordinate System Summary**

#### **COORDINATE SYSTEM**

THIS PROJECT IS LOCATED ENTIRELY WITHIN ALASKA STATE PLANE ZONE 9 (AKSPZ9) U.S. SURVEY FOOT GRID COORDINATE SYSTEM.

#### **BASIS OF COORDINATES**

THE BASIS OF COORDINATES IS CONTROL POINT #1, A FOUND 5/8" REBAR LOCATED AT THE SOUTHEAST CORNER OF THE GRAVEL APRON SERVICING THE NORTHEAST CAPE RUNWAY. SAID POINT WAS SET BY ECO-LAND SURVEYS IN 2013 AND HAS AKSPZ9 COORDINATES OF 3409053.3560' NORTH, 1809572.5610' EAST.

#### **BASIS OF BEARINGS**

THIS PROJECT PRESERVES ALASKA STATE PLANE ZONE 9 GRID BEARINGS.

#### **CONVERSION PARAMETERS**

TO CONVERT AKSPZ9 U.S. SURVEY FOOT GRID COORDINATES TO "ECO-LAND" LOCAL COORDINATES:

- 1. ADD +0.245 EAST AND SUBTRACT -0.704 NORTH FROM THE GRID COORDINATES.
- ROTATE THE RESULTING COORDINATES ABOUT CONTROL POINT #1 (3409053.3560 N, 1809572.5610 E) N 00°55′05.6805″ E
- 3. SCALE THE RESULTING COORDINATES ABOUT CONTROL POINT #1 (3409053.3560 N, 1809572.5610 E) USING 1.000051579.

TO CONVERT "ECO-LAND" LOCAL COORDINATES TO AKSPZ9 U.S. SURVEY FOOT GRID COORDINATES:

- 1. SCALE THE "ECO-LAND" LOCAL COORDINATES ABOUT CONTROL POINT #1 (3409052.6520 N, 1809572.8060 E) USING 0.999948424.
- ROTATE THE RESULTING COORDINATES ABOUT CONTROL POINT #1 (3409052.6520 N, 1809572.8060 E) N 00°55′05.6805" W
- 3. SUBTRACT -0.245 EAST AND ADD +0.704 NORTH TO THE RESULTING COORDINATES.

#### **VERTICAL CONTROL STATEMENT**

THE VERTICAL DATUM FOR THIS SURVEY IS NAVD88(GEOID 12B) IN U.S. SURVEY FEET, AS ESTABLISHED BY GPS ELEVATION TRANSFER. THE AVERAGE OF MULTIPLE NGS OPUS SOLUTIONS, OBSERVED OVER DIFFERENT DAYS, WAS HELD FIXED FOR EACH PROJECT CONTROL POINT.

1/3/2019 Sheet 1 of 1

#### Exhibit F3-2 Descriptor Key

# Northeast Cape Remedial Action – Site 28 Sediment Mapping Survey Services Topographic Survey Descriptor Key

| Field Code | Full Description           |
|------------|----------------------------|
| ВМ         | Benchmark                  |
| Calc       | Calculated or Staked Point |
| CBC        | Brass Cap Monument         |
| СНК        | Checkshot                  |
| СР         | Control Point              |
| CRBC       | Rebar with Cap             |
| EPP        | Power Pole                 |
| GB         | Grade Break                |
| GS         | Ground Shot                |
| GTOE       | Toe of Slope               |
| GTOP       | Top of Slope               |
| HEW        | Edge of Water              |
| ML         | Misc. Linear Feature       |
| MP         | Misc Point                 |
| RCL        | Centerline of Road         |
| RSH        | Shoulder of Road           |
| VEG        | Edge of Vegetation         |

8/30/2018 Sheet 1 of 1

#### Exhibit F3-3 Survey Data Table

| Field Survey<br>Point ID | Feature Location ID | Latitude (WGS84)                     | Longitude (WGS84)                      | Latitude (NAD 83 (2011))             | Longitude (NAD 83<br>(2011))           | Northing (UTM<br>Zone 2N)    | Easting (UTM<br>Zone 2N) | Northing - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Easting - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Elevation (NAVD88,<br>GEOID12B, U.S. Survey<br>Feet) | Elevation (NAVD88,<br>GEOID12B, Meters) | Text Descriptor                  | Measurement Date/Time            |
|--------------------------|---------------------|--------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|------------------------------|--------------------------|-----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|-----------------------------------------|----------------------------------|----------------------------------|
| 1                        | CP 1 RTK BASE       | 63°19'32.47895"N                     | 168°58'15.32269"W                      | 63°19'32.49446"N                     | 168°58'15.23687"W                      | 7023485.9420                 | 601619.7430              | 3409053.356                                               | 1809572.561                                              | 28.409                                               | 8.659                                   | CP 1 RTK BASE                    | 8/1/2018 10:19                   |
| 2                        | 2                   | 63°18'57.69975"N                     | 168°57'18.33986"W                      | 63°18'57.71525"N                     | 168°57'18.25406"W                      | 7022435.1010                 | 602446.5850              | 3405563.115                                               | 1812231.739                                              | 51.535                                               | 15.708                                  | CRBC                             | 8/1/2018 16:35                   |
| 59                       | 8039 A              | 63°20'08.83006"N                     | 168°56'24.47121"W                      | 63°20'08.84555"N                     | 168°56'24.38532"W                      | 7024659.7760                 | 603125.3060              | 3412827.77                                                | 1814572.558                                              | 5.248                                                | 1.599                                   | CBC                              | 8/1/2018 10:19                   |
| 603                      | ВМ В                | 63°18'58.70241"N                     | 168°56'27.27211"W                      | 63°18'58.71790"N                     | 168°56'27.18629"W                      | 7022488.8670                 | 603156.0700              | 3405703.216                                               | 1814562.383                                              | 78.814                                               | 24.023                                  | BM B NGSCBC                      | 8/1/2018 8:42                    |
| 1002                     | GPS-2               | 63°19'05.77800"N                     | 168°56'49.31203"W                      | 63°19'05.79349"N                     | 168°56'49.22621"W                      | 7022697.9410                 | 602842.4310              | 3406405.262                                               | 1813544.002                                              | 71.976                                               | 21.938                                  | CRBC                             | 8/4/2018 9:33                    |
| 2600                     | 2600                | 63°18'42.73235"N                     | 168°57'29.95052"W                      | 63°18'42.74785"N                     | 168°57'29.86474"W                      | 7021966.8780                 | 602299.8010              | 3404034.336                                               | 1811726.161                                              | 72.924                                               | 22.227                                  | CRB                              | 8/1/2018 15:07                   |
| 2558                     | 2558                | 63°18'45.36876"N                     | 168°57'41.70504"W                      | 63°18'45.38426"N                     | 168°57'41.61925"W                      | 7022043.2400                 | 602133.6480              | 3404293.3920                                              | 1811184.9030                                             | 58.683                                               | 17.886                                  | 2018NEC28-SS01                   | 8/3/2018 12:40                   |
| 2559                     | 2559                | 63°18'58.00178"N                     | 168°57'41.76207"W                      | 63°18'58.01728"N                     | 168°57'41.67627"W                      | 7022434.0660                 | 602120.4250              | 3405576.4120                                              | 1811161.5190                                             | 37.804                                               | 11.523                                  | 2018NEC28-SS02                   | 8/3/2018 12:41                   |
| 2560                     | 2560                | 63°18'57.83948"N                     | 168°57'41.79408"W                      | 63°18'57.85498"N                     | 168°57'41.70828"W                      | 7022429.0300                 | 602120.1390              | 3405559.9040                                              | 1811160.3240                                             | 37.818                                               | 11.527                                  | 2018NEC28-SS03                   | 8/3/2018 12:43                   |
| 2561                     | 2561                | 63°18'57.40699"N                     | 168°57'41.55871"W                      | 63°18'57.42249"N                     | 168°57'41.47291"W                      | 7022415.7540                 | 602123.8400              | 3405516.1530                                              | 1811171.7850                                             | 38.752                                               | 11.812                                  | 2018NEC28-SS04                   | 8/3/2018 12:44                   |
| 2562                     | 2562                | 63°18'56.93005"N                     | 168°57'41.59496"W                      | 63°18'56.94555"N                     | 168°57'41.50916"W                      | 7022400.9820                 | 602123.8040              | 3405467.6860                                              | 1811170.9140                                             | 39.443                                               | 12.022                                  | 2018NEC28-SS05                   | 8/3/2018 12:45                   |
| 2563                     | 2563                | 63°18'56.56474"N                     | 168°57'41.48112"W                      | 63°18'56.58024"N                     | 168°57'41.39533"W                      | 7022389.7300                 | 602125.7480              | 3405430.6680                                              | 1811176.7140                                             | 39.597                                               | 12.069                                  | 2018NEC28-SS06                   | 8/3/2018 12:47                   |
| 2564                     | 2564                | 63°18'56.33084"N                     | 168°57'41.89117"W                      | 63°18'56.34634"N                     | 168°57'41.80538"W                      | 7022382.3120                 | 602120.2730              | 3405406.6090                                              | 1811158.3710                                             | 39.707                                               | 12.103                                  | 2018NEC28-SS07                   | 8/3/2018 12:48                   |
| 2565                     | 2565                | 63°18'56.32647"N                     | 168°57'41.66119"W                      | 63°18'56.34197"N                     | 168°57'41.57539"W                      | 7022382.2790                 | 602123.4770              | 3405406.3350                                              | 1811168.8820                                             | 39.666                                               | 12.090                                  | 2018NEC28-SS08                   | 8/3/2018 12:50                   |
| 2566                     | 2566                | 63°18'56.13910"N                     | 168°57'41.77685"W                      | 63°18'56.15460"N                     | 168°57'41.69105"W                      | 7022376.4300                 | 602122.0520              | 3405387.2190                                              | 1811163.9080                                             | 39.740                                               | 12.113                                  | 2018NEC28-SS09                   | 8/3/2018 12:51                   |
| 2567                     | 2567                | 63°18'55.83461"N                     | 168°57'41.91883"W                      | 63°18'55.85011"N                     | 168°57'41.83303"W                      | 7022366.9470                 | 602120.3760              | 3405356.1890                                              | 1811157.9240                                             | 39.968                                               | 12.182                                  | 2018NEC28-SS10                   | 8/3/2018 12:52                   |
| 2568                     | 2568                | 63°18'55.57061"N                     | 168°57'42.56023"W                      | 63°18'55.58611"N                     | 168°57'42.47444"W                      | 7022358.4950                 | 602111.7120              | 3405328.9020                                              | 1811129.0640                                             | 40.210                                               | 12.256                                  | 2018NEC28-SS11                   | 8/3/2018 12:54                   |
| 2569                     | 2569                | 63°18'55.40361"N                     | 168°57'42.54043"W                      | 63°18'55.41911"N                     | 168°57'42.45463"W                      | 7022353.3370                 | 602112.1520              | 3405311.9550                                              | 1811130.2430                                             | 40.293                                               | 12.281                                  | 2018NEC28-SS12                   | 8/3/2018 12:55                   |
| 2570                     | 2570                | 63°18'53.60124"N                     | 168°57'43.48041"W                      | 63°18'53.61674"N                     | 168°57'43.39462"W                      | 7022297.1580                 | 602100.8470              | 3405128.2040                                              | 1811090.2750                                             | 43.051                                               | 13.122                                  | 2018NEC28-SS13                   | 8/3/2018 12:57                   |
| 2571                     | 2571                | 63°18'53.37489"N                     | 168°57'43.24702"W                      | 63°18'53.39039"N                     | 168°57'43.16122"W                      | 7022290.2580                 | 602104.3170              | 3405105.3870                                              | 1811101.3070                                             | 43.217                                               | 13.172                                  | 2018NEC28-SS14                   | 8/3/2018 12:58                   |
| 2572<br>2573             | 2572<br>2573        | 63°18'50.11207"N<br>63°18'49.74352"N | 168°57'45.97513"W<br>168°57'46.45252"W | 63°18'50.12757"N<br>63°18'49.75902"N | 168°57'45.88934"W<br>168°57'46.36672"W | 7022188.1040<br>7022176.4900 | 602069.5690              | 3404771.9850<br>3404734.2010                              | 1810982.0660                                             | 46.239<br>46.827                                     | 14.094                                  | 2018NEC28-SS15<br>2018NEC28-SS16 | 8/3/2018 12:59                   |
| 2573                     | 2574                | 63°18'49.14343"N                     | 168°57'46.38444"W                      | 63°18'49.15893"N                     | 168°57'46.29865"W                      | 7022170.4900                 | 602063.2890              | 3404673.3040                                              | 1810960.8670<br>1810964.9620                             | 50.273                                               | 15.323                                  | 2018NEC28-SS17                   | 8/3/2018 13:01<br>8/3/2018 13:02 |
| 2575                     | 2575                | 63°18'48.74094"N                     | 168°57'46.69880"W                      | 63°18'48.75644"N                     | 168°57'46.61301"W                      | 7022137.9340                 | 602060.8480              | 3404632.1930                                              | 1810951.2650                                             | 52.085                                               | 15.875                                  | 2018NEC28-SS18                   | 8/3/2018 13:04                   |
| 2576                     | 2576                | 63°18'48.26228"N                     | 168°57'47.09359"W                      | 63°18'48.27777"N                     | 168°57'47.00780"W                      | 7022140.3020                 | 602055.8260              | 3404583.2860                                              | 1810934.0190                                             | 53.955                                               | 16.445                                  | 2018NEC28-SS19                   | 8/3/2018 13:05                   |
| 2577                     | 2577                | 63°18'45.79453"N                     | 168°57'48.66116"W                      | 63°18'45.81003"N                     | 168°57'48.57537"W                      | 7022053.3360                 | 602036.4400              | 3404331.4940                                              | 1810866.4710                                             | 0.000                                                | 0.000                                   | 2018NEC28-SS20                   | 8/3/2018 13:06                   |
| 2578                     | 2578                | 63°18'43.37121"N                     | 168°57'48.78994"W                      | 63°18'43.38671"N                     | 168°57'48.70415"W                      | 7021978.3050                 | 602037.0300              | 3404085.2760                                              | 1810864.5670                                             | 0.000                                                | 0.000                                   | 2018NEC28-SS21                   | 8/3/2018 13:08                   |
| 2579                     | 2579                | 63°18'43.30102"N                     | 168°57'48.68876"W                      | 63°18'43.31652"N                     | 168°57'48.60297"W                      | 7021976.1780                 | 602038.5070              | 3404078.2220                                              | 1810869.3040                                             | 61.506                                               | 18.747                                  | 2018NEC28-SS22                   | 8/3/2018 13:09                   |
| 2580                     | 2580                | 63°18'43.27332"N                     | 168°57'48.50612"W                      | 63°18'43.28882"N                     | 168°57'48.42033"W                      | 7021975.4020                 | 602041.0760              | 3404075.5440                                              | 1810877.6920                                             | 61.548                                               | 18.760                                  | 2018NEC28-SS23                   | 8/3/2018 13:11                   |
| 2581                     | 2581                | 63°18'56.73315"N                     | 168°57'41.52678"W                      | 63°18'56.74865"N                     | 168°57'41.44098"W                      | 7022394.9210                 | 602124.9470              | 3405447.7390                                              | 1811174.3520                                             | 39.590                                               | 12.067                                  | 2018NEC28-SS24                   | 8/3/2018 13:12                   |
| 2582                     | 2582                | 63°18'53.31642"N                     | 168°57'43.39645"W                      | 63°18'53.33192"N                     | 168°57'43.31066"W                      | 7022288.3830                 | 602102.2960              | 3405099.3380                                              | 1811094.5780                                             | 43.224                                               | 13.175                                  | 2018NEC28-SS25                   | 8/3/2018 13:13                   |
| 2583                     | 2583                | 63°18'53.00234"N                     | 168°57'43.60531"W                      | 63°18'53.01784"N                     | 168°57'43.51952"W                      | 7022278.5740                 | 602099.6980              | 3405067.2850                                              | 1811085.5550                                             | 43.196                                               | 13.166                                  | 2018NEC28-SS26                   | 8/3/2018 13:15                   |
| 2584                     | 2584                | 63°18'53.15319"N                     | 168°57'43.79994"W                      | 63°18'53.16869"N                     | 168°57'43.71414"W                      | 7022283.1550                 | 602096.8420              | 3405082.4620                                              | 1811076.4180                                             | 43.213                                               | 13.171                                  | 2018NEC28-SS27                   | 8/3/2018 13:16                   |
| 2585                     | 2585                | 63°18'52.19933"N                     | 168°57'44.53007"W                      | 63°18'52.21483"N                     | 168°57'44.44428"W                      | 7022253.3200                 | 602087.6220              | 3404985.0440                                              | 1811044.6380                                             | 43.953                                               | 13.397                                  | 2018NEC28-SS28                   | 8/3/2018 13:18                   |
| 2586                     | 2586                | 63°18'51.93826"N                     | 168°57'44.40747"W                      | 63°18'51.95376"N                     | 168°57'44.32167"W                      | 7022245.2970                 | 602089.5850              | 3404958.6190                                              | 1811050.6670                                             | 43.957                                               | 13.398                                  | 2018NEC28-SS29                   | 8/3/2018 13:19                   |
| 2587                     | 2587                | 63°18'51.47323"N                     | 168°57'45.38310"W                      | 63°18'51.48873"N                     | 168°57'45.29731"W                      | 7022230.4780                 | 602076.4670              | 3404910.6680                                              | 1811006.8700                                             | 43.983                                               | 13.406                                  | 2018NEC28-SS30                   | 8/3/2018 13:20                   |
| 2588                     | 2588                | 63°18'51.19354"N                     | 168°57'45.40300"W                      | 63°18'51.20904"N                     | 168°57'45.31720"W                      | 7022221.8160                 | 602076.4660              | 3404882.2470                                              | 1811006.4210                                             | 43.895                                               | 13.379                                  | 2018NEC28-SS31                   | 8/3/2018 13:22                   |
| 2589                     | 2589                | 63°18'50.84200"N                     | 168°57'45.15946"W                      | 63°18'50.85750"N                     | 168°57'45.07367"W                      | 7022211.0480                 | 602080.2000              | 3404846.7230                                              | 1811018.1220                                             | 44.141                                               | 13.454                                  | 2018NEC28-SS32                   | 8/3/2018 13:23                   |
| 2590                     | 2590                | 63°18'50.53227"N                     | 168°57'45.14459"W                      | 63°18'50.54777"N                     | 168°57'45.05880"W                      | 7022201.4720                 | 602080.7110              | 3404815.2760                                              | 1811019.3100                                             | 0.000                                                | 0.000                                   | 2018NEC28-SS33                   | 8/3/2018 13:25                   |
| 2591                     | 2591                | 63°18'49.46651"N                     | 168°57'46.71894"W                      | 63°18'49.48201"N                     | 168°57'46.63315"W                      | 7022167.8020                 | 602059.8540              | 3404705.8700                                              | 1810949.1530                                             | 48.108                                               | 14.663                                  | 2018NEC28-SS34                   | 8/3/2018 13:26                   |
| 2592                     | 2592                | 63°18'49.28645"N                     | 168°57'46.11318"W                      | 63°18'49.30195"N                     | 168°57'46.02739"W                      | 7022162.4990                 | 602068.4600              | 3404688.0300                                              | 1810977.1170                                             | 0.000                                                | 0.000                                   | 2018NEC28-SS35                   | 8/3/2018 13:27                   |
| 2593                     | 2593                | 63°18'48.93748"N                     | 168°57'46.37466"W                      | 63°18'48.95298"N                     | 168°57'46.28887"W                      | 7022151.5870                 | 602065.1650              | 3404652.3940                                              | 1810965.7470                                             | 51.379                                               | 15.660                                  | 2018NEC28-SS36                   | 8/3/2018 13:29                   |
| 2594                     | 2594                | 63°18'48.44538"N                     | 168°57'46.92171"W                      | 63°18'48.46088"N                     | 168°57'46.83592"W                      | 7022136.1200                 | 602058.0370              | 3404602.0100                                              | 1810941.5690                                             | 53.039                                               | 16.166                                  | 2018NEC28-SS37                   | 8/3/2018 13:30                   |
| 2595                     | 2595                | 63°18'48.25673"N                     | 168°57'46.84484"W                      | 63°18'48.27223"N                     | 168°57'46.75905"W                      | 7022130.3170                 | 602059.2920              | 3404582.9070                                              | 1810945.3900                                             | 54.759                                               | 16.691                                  | 2018NEC28-SS38                   | 8/3/2018 13:32                   |

| Field Survey<br>Point ID | Feature Location ID | Latitude (WGS84)                     | Longitude (WGS84)                      | Latitude (NAD 83 (2011))             | Longitude (NAD 83<br>(2011))           | Northing (UTM<br>Zone 2N)    | Easting (UTM<br>Zone 2N)   | Northing - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Easting - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Elevation (NAVD88,<br>GEOID12B, U.S. Survey<br>Feet) | Elevation (NAVD88,<br>GEOID12B, Meters) | Text Descriptor            | Measurement Date/Time           |
|--------------------------|---------------------|--------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|------------------------------|----------------------------|-----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|-----------------------------------------|----------------------------|---------------------------------|
| 2596                     | 2596                | 63°18'48.10275"N                     | 168°57'46.99710"W                      | 63°18'48.11825"N                     | 168°57'46.91131"W                      | 7022125.4860                 | 602057.3250                | 3404567.1550                                              | 1810938.6880                                             | 55.144                                               | 16.808                                  | 2018NEC28-SS39             | 8/3/2018 13:33                  |
| 2597                     | 2597                | 63°18'46.31033"N                     | 168°57'43.50799"W                      | 63°18'46.32583"N                     | 168°57'43.42220"W                      | 7022071.5730                 | 602107.6350                | 3404387.6880                                              | 1811101.0020                                             | 57.705                                               | 17.588                                  | 2018NEC28-SS40             | 8/3/2018 13:34                  |
| 2598                     | 2598                | 63°18'46.18960"N                     | 168°57'43.41918"W                      | 63°18'46.20510"N                     | 168°57'43.33339"W                      | 7022067.8770                 | 602108.9900                | 3404375.4920                                              | 1811105.2570                                             | 57.736                                               | 17.598                                  | 2018NEC28-SS41             | 8/3/2018 13:36                  |
| 2599                     | 2599                | 63°18'45.73777"N                     | 168°57'47.98254"W                      | 63°18'45.75327"N                     | 168°57'47.89675"W                      | 7022051.8800                 | 602045.9390                | 3404326.2300                                              | 1810897.5610                                             | 58.066                                               | 17.698                                  | 2018NEC28-SS42             | 8/3/2018 13:37                  |
| 2601                     | 2601                | 63°18'43.91482"N                     | 168°57'43.95988"W                      | 63°18'43.93032"N                     | 168°57'43.87410"W                      | 7021997.2590                 | 602103.7040                | 3404144.0560                                              | 1811084.2990                                             | 60.815                                               | 18.536                                  | 2018NEC28-SS44             | 8/3/2018 13:39                  |
| 2602                     | 2602                | 63°18'43.89071"N                     | 168°57'44.19305"W                      | 63°18'43.90621"N                     | 168°57'44.10727"W                      | 7021996.4100                 | 602100.4830                | 3404141.4350                                              | 1811073.6880                                             | 0.000                                                | 0.000                                   | 2018NEC28-SS45             | 8/3/2018 13:40                  |
| 2603                     | 2603                | 63°18'43.81229"N                     | 168°57'44.07087"W                      | 63°18'43.82778"N                     | 168°57'43.98508"W                      | 7021994.0380                 | 602102.2600                | 3404133.5600                                              | 1811079.3980                                             | 60.820                                               | 18.538                                  | 2018NEC28-SS46             | 8/3/2018 13:41                  |
| 2604                     | 2604                | 63°18'43.95943"N                     | 168°57'49.29893"W                      | 63°18'43.97493"N                     | 168°57'49.21314"W                      | 7021996.2780                 | 602029.3700                | 3404144.6420                                              | 1810840.3520                                             | 0.000                                                | 0.000                                   | 2018NEC28-SS47             | 8/3/2018 13:43                  |
| 2605                     | 2605                | 63°18'44.46432"N                     | 168°57'51.46056"W                      | 63°18'44.47982"N                     | 168°57'51.37477"W                      | 7022010.9440                 | 601998.7960                | 3404194.3260                                              | 1810740.7860                                             | 61.016                                               | 18.598                                  | 2018NEC28-SS48             | 8/3/2018 13:44                  |
| 2606                     | 2606                | 63°18'43.26886"N                     | 168°57'48.97296"W                      | 63°18'43.28436"N                     | 168°57'48.88718"W                      | 7021975.0570                 | 602034.5840                | 3404074.7460                                              | 1810856.3750                                             | 0.000                                                | 0.000                                   | 2018NEC28-SS49             | 8/3/2018 13:46                  |
| 2607                     | 2607                | 63°18'43.28481"N                     | 168°57'48.50842"W                      | 63°18'43.30031"N                     | 168°57'48.42263"W                      | 7021975.7560                 | 602041.0320                | 3404076.7090                                              | 1810877.5680                                             | 61.552                                               | 18.761                                  | 2018NEC28-SS50             | 8/3/2018 13:47                  |
| 2608                     | 2608<br>2610        | 63°18'52.97857"N                     | 168°57'43.83129"W<br>168°57'48.27629"W | 63°18'52.99407"N                     | 168°57'43.74550"W                      | 7022277.7380                 | 602096.5780                | 3405064.7030                                              | 1811075.2730                                             | 43.213                                               | 13.171<br>17.704                        | 2018NEC28-SS51             | 8/3/2018 13:48                  |
| 5001                     | STOKE               | 63°18'45.64487"N<br>63°19'30.81381"N | 168°55'28.69088"W                      | 63°18'45.66037"N<br>63°19'30.82929"N | 168°57'48.19050"W<br>168°55'28.60503"W | 7022048.8760<br>7023508.6300 | 602041.9430<br>603938.9000 | 3404316.5780<br>3409009.096                               | 1810884.2960<br>1817183.125                              | 58.085<br>24.847                                     | 7.573                                   | 2018NEC28-SS43<br>CHK 0 HV | 8/3/2018 13:50<br>8/1/2018 9:38 |
| 5002                     | 5002                | 63°20'08.82997"N                     | 168°56'24.47091"W                      | 63°20'08.84546"N                     | 168°56'24.38504"W                      | 7023506.0300                 | 603125.3100                | 3412827.761                                               | 1814572.572                                              | 5.236                                                | 1.596                                   | CHK 59 HV                  | 8/1/2018 11:30                  |
| 5003                     | 5003                | 63°20'06.89410"N                     | 168°56'26.90524"W                      | 63°20'06.90959"N                     | 168°56'26.81935"W                      | 7024598.7930                 | 603093.3900                | 3412629.31                                                | 1814464.718                                              | 4.512                                                | 1.375                                   | CHK 59 HV BM 8039B         | 8/1/2018 11:43                  |
| 5004                     | 5004                | 63°20'04.42856"N                     | 168°56'31.18733"W                      | 63°20'04.44406"N                     | 168°56'31.10147"W                      | 7024520.6000                 | 603036.3040                | 3412375.673                                               | 1814273.413                                              | 4.018                                                | 1.225                                   | CHK 0 HV BM 8039C          | 8/1/2018 11:48                  |
| 5005                     | 5005                | 63°18'39.01668"N                     | 168°58'07.96138"W                      | 63°18'39.03218"N                     | 168°58'07.87561"W                      | 7021835.1160                 | 601774.5380                | 3403628.893                                               | 1809995.972                                              | 75.385                                               | 22.977                                  | CHK 0 HV NEAR 34009        | 8/1/2018 12:54                  |
| 5006                     | 5006                | 63°18'42.73262"N                     | 168°57'29.95021"W                      | 63°18'42.74812"N                     | 168°57'29.86442"W                      | 7021966.8860                 | 602299.8050                | 3404034.363                                               | 1811726.175                                              | 72.966                                               | 22.24                                   | CHK 2600 HV                | 8/1/2018 15:02                  |
| 5007                     | 5007                | 63°18'38.87278"N                     | 168°57'39.96044"W                      | 63°18'38.88828"N                     | 168°57'39.87465"W                      | 7021843.0340                 | 602164.3150                | 3403634.924                                               | 1811275.28                                               | 93.913                                               | 28.625                                  | CHK 0 HV                   | 8/1/2018 15:16                  |
| 5008                     | 5008                | 63°18'14.54356"N                     | 168°57'25.41886"W                      | 63°18'14.55905"N                     | 168°57'25.33309"W                      | 7021096.7590                 | 602390.6520                | 3401174.734                                               | 1811979.723                                              | 240.069                                              | 73.173                                  | CHK 0 HV                   | 8/1/2018 15:33                  |
| 5009                     | 5009                | 63°19'32.47889"N                     | 168°58'15.32280"W                      | 63°19'32.49439"N                     | 168°58'15.23698"W                      | 7023485.9400                 | 601619.7410                | 3409053.349                                               | 1809572.556                                              | 28.488                                               | 8.683                                   | CHK 0 HV                   | 8/2/2018 11:04                  |
| 5010                     | 5010                | 63°18'45.68881"N                     | 168°57'48.68632"W                      | 63°18'45.70431"N                     | 168°57'48.60053"W                      | 7022050.0540                 | 602036.1940                | 3404320.738                                               | 1810865.495                                              | 58.08                                                | 17.703                                  | HEW1                       | 8/2/2018 11:24                  |
| 5011                     | 5011                | 63°18'45.56551"N                     | 168°57'48.25826"W                      | 63°18'45.58101"N                     | 168°57'48.17248"W                      | 7022046.4290                 | 602042.2710                | 3404308.531                                               | 1810885.25                                               | 58.092                                               | 17.707                                  | HEW1                       | 8/2/2018 11:24                  |
| 5012                     | 5012                | 63°18'45.41625"N                     | 168°57'48.04362"W                      | 63°18'45.43175"N                     | 168°57'47.95784"W                      | 7022041.9060                 | 602045.4050                | 3404293.53                                                | 1810895.299                                              | 58.11                                                | 17.712                                  | HEW1                       | 8/2/2018 11:25                  |
| 5013                     | 5013                | 63°18'45.43875"N                     | 168°57'47.83209"W                      | 63°18'45.45424"N                     | 168°57'47.74630"W                      | 7022042.6950                 | 602048.3260                | 3404295.971                                               | 1810904.924                                              | 58.065                                               | 17.698                                  | HEW1                       | 8/2/2018 11:25                  |
| 5014                     | 5014                | 63°18'45.55935"N                     | 168°57'47.74347"W                      | 63°18'45.57485"N                     | 168°57'47.65767"W                      | 7022046.4660                 | 602049.4410                | 3404308.286                                               | 1810908.774                                              | 58.028                                               | 17.687                                  | HEW1                       | 8/2/2018 11:25                  |
| 5015                     | 5015                | 63°18'45.71720"N                     | 168°57'47.64733"W                      | 63°18'45.73269"N                     | 168°57'47.56154"W                      | 7022051.3920                 | 602050.6230                | 3404324.388                                               | 1810912.906                                              | 58.068                                               | 17.699                                  | HEW1                       | 8/2/2018 11:26                  |
| 5016                     | 5016                | 63°18'45.85936"N                     | 168°57'47.73746"W                      | 63°18'45.87486"N                     | 168°57'47.65166"W                      | 7022055.7500                 | 602049.2290                | 3404338.76                                                | 1810908.556                                              | 58.088                                               | 17.705                                  | HEW1                       | 8/2/2018 11:26                  |
| 5017                     | 5017                | 63°18'45.85837"N                     | 168°57'48.08032"W                      | 63°18'45.87386"N                     | 168°57'47.99453"W                      | 7022055.5680                 | 602044.4600                | 3404338.406                                               | 1810892.897                                              | 58.048                                               | 17.693                                  | HEW1                       | 8/2/2018 11:26                  |
| 5018                     | 5018                | 63°18'45.96275"N                     | 168°57'48.28021"W                      | 63°18'45.97824"N                     | 168°57'48.19442"W                      | 7022058.7090                 | 602041.5760                | 3404348.86                                                | 1810883.595                                              | 58.11                                                | 17.712                                  | HEW1                       | 8/2/2018 11:26                  |
| 5019                     | 5019                | 63°18'45.92992"N                     | 168°57'48.43460"W                      | 63°18'45.94542"N                     | 168°57'48.34881"W                      | 7022057.6250                 | 602039.4600                | 3404345.412                                               | 1810876.597                                              | 58.058                                               | 17.696                                  | HEW1                       | 8/2/2018 11:27                  |
| 5020                     | 5020                | 63°18'45.73583"N                     | 168°57'48.64943"W                      | 63°18'45.75133"N                     | 168°57'48.56364"W                      | 7022051.5250                 | 602036.6610                | 3404325.541                                               | 1810867.103                                              | 58.102                                               | 17.71                                   | HEW1 C                     | 8/2/2018 11:27                  |
| 5021                     | 5021                | 63°18'45.79295"N                     | 168°57'46.30289"W                      | 63°18'45.80845"N                     | 168°57'46.21711"W                      | 7022054.3300                 | 602069.2550                | 3404333.075                                               | 1810974.191                                              | 58.993                                               | 17.981                                  | HEW2                       | 8/2/2018 11:44                  |
| 5022                     | 5022                | 63°18'45.77005"N                     | 168°57'46.10243"W                      | 63°18'45.78555"N                     | 168°57'46.01664"W                      | 7022053.7100                 | 602072.0670                | 3404330.897                                               | 1810983.385                                              | 58.951                                               | 17.968                                  | HEW2                       | 8/2/2018 11:45                  |
| 5023                     | 5023                | 63°18'45.84938"N                     | 168°57'45.83588"W                      | 63°18'45.86488"N                     | 168°57'45.75008"W                      | 7022056.2820                 | 602075.6980                | 3404339.151                                               | 1810995.43                                               | 58.99                                                | 17.98                                   | HEW2                       | 8/2/2018 11:45                  |
| 5024                     | 5024                | 63°18'46.03247"N                     | 168°57'45.91969"W                      | 63°18'46.04797"N                     | 168°57'45.83390"W                      | 7022061.9100                 | 602074.3520                | 3404357.685                                               | 1810991.301                                              | 58.974                                               | 17.975                                  | HEW2                       | 8/2/2018 11:46                  |
| 5025                     | 5025                | 63°18'46.10354"N                     | 168°57'45.55309"W                      | 63°18'46.11904"N                     | 168°57'45.46730"W                      | 7022064.2710                 | 602079.3830                | 3404365.174                                               | 1811007.929                                              | 59.018                                               | 17.989                                  | HEW2                       | 8/2/2018 11:46                  |
| 5026                     | 5026                | 63°18'46.25229"N                     | 168°57'45.35572"W                      | 63°18'46.26778"N                     | 168°57'45.26994"W                      | 7022068.9600                 | 602081.9830                | 3404380.427                                               | 1811016.7                                                | 58.975                                               | 17.976                                  | HEW2                       | 8/2/2018 11:46                  |
| 5027                     | 5027                | 63°18'46.33088"N                     | 168°57'45.53677"W                      | 63°18'46.34638"N                     | 168°57'45.45097"W                      | 7022071.3120                 | 602079.3860                | 3404388.276                                               | 1811008.301                                              | 58.952                                               | 17.968                                  | HEW2                       | 8/2/2018 11:47                  |
| 5028                     | 5028                | 63°18'46.24113"N                     | 168°57'45.94936"W                      | 63°18'46.25662"N                     | 168°57'45.86357"W                      | 7022068.3520                 | 602073.7340                | 3404378.855                                               | 1810989.603                                              | 59.021                                               | 17.99                                   | HEW2                       | 8/2/2018 11:47                  |
| 5029                     | 5029                | 63°18'46.09493"N                     | 168°57'46.07431"W                      | 63°18'46.11042"N                     | 168°57'45.98851"W                      | 7022063.7740                 | 602072.1390                | 3404363.914                                               | 1810984.136                                              | 59.088                                               | 18.01                                   | HEW2                       | 8/2/2018 11:47                  |
| 5030                     | 5030                | 63°18'45.92776"N                     | 168°57'46.22906"W                      | 63°18'45.94326"N                     | 168°57'46.14328"W                      | 7022058.5330                 | 602070.1500                | 3404346.821                                               | 1810977.342                                              | 58.919                                               | 17.959                                  | HEW2 C                     | 8/2/2018 11:48                  |
| 5031                     | 5031                | 63°18'45.45531"N                     | 168°57'42.30845"W                      | 63°18'45.47082"N                     | 168°57'42.22265"W                      | 7022045.6510                 | 602125.1670                | 3404301.736                                               | 1811157.199                                              | 58.643                                               | 17.874                                  | HEW3                       | 8/2/2018 12:02                  |

| Field Survey<br>Point ID | Feature Location ID | Latitude (WGS84)                     | Longitude (WGS84)                      | Latitude (NAD 83 (2011))              | Longitude (NAD 83<br>(2011))           | Northing (UTM<br>Zone 2N)    | Easting (UTM<br>Zone 2N)   | Northing - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Easting - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Elevation (NAVD88,<br>GEOID12B, U.S. Survey<br>Feet) | Elevation (NAVD88,<br>GEOID12B, Meters) | Text Descriptor | Measurement Date/Time            |
|--------------------------|---------------------|--------------------------------------|----------------------------------------|---------------------------------------|----------------------------------------|------------------------------|----------------------------|-----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|-----------------------------------------|-----------------|----------------------------------|
| 5032                     | 5032                | 63°18'45.60212"N                     | 168°57'42.15254"W                      | 63°18'45.61762"N                      | 168°57'42.06675"W                      | 7022050.2620                 | 602127.1920                | 3404316.762                                               | 1811164.079                                              | 58.67                                                | 17.883                                  | HEW3            | 8/2/2018 12:02                   |
| 5033                     | 5033                | 63°18'45.63307"N                     | 168°57'41.87918"W                      | 63°18'45.64857"N                      | 168°57'41.79339"W                      | 7022051.3400                 | 602130.9650                | 3404320.107                                               | 1811176.514                                              | 58.643                                               | 17.874                                  | HEW3            | 8/2/2018 12:03                   |
| 5034                     | 5034                | 63°18'45.45789"N                     | 168°57'41.65312"W                      | 63°18'45.47338"N                      | 168°57'41.56733"W                      | 7022046.0200                 | 602134.2830                | 3404302.482                                               | 1811187.128                                              | 58.648                                               | 17.876                                  | HEW3            | 8/2/2018 12:03                   |
| 5035                     | 5035                | 63°18'45.31438"N                     | 168°57'41.47029"W                      | 63°18'45.32987"N                      | 168°57'41.38449"W                      | 7022041.6610                 | 602136.9680                | 3404288.042                                               | 1811195.715                                              | 58.754                                               | 17.908                                  | HEW3            | 8/2/2018 12:03                   |
| 5036                     | 5036                | 63°18'45.17996"N                     | 168°57'41.60235"W                      | 63°18'45.19546"N                      | 168°57'41.51655"W                      | 7022037.4440                 | 602135.2630                | 3404274.292                                               | 1811189.904                                              | 58.752                                               | 17.907                                  | HEW3            | 8/2/2018 12:04                   |
| 5037                     | 5037                | 63°18'45.29517"N                     | 168°57'41.98770"W                      | 63°18'45.31066"N                      | 168°57'41.90190"W                      | 7022040.8380                 | 602129.7880                | 3404285.708                                               | 1811172.113                                              | 58.666                                               | 17.881                                  | HEW3 C          | 8/2/2018 12:04                   |
| 5038                     | 5038                | 63°18'46.07608"N                     | 168°57'43.54810"W                      | 63°18'46.09157"N                      | 168°57'43.46232"W                      | 7022064.3080                 | 602107.3070                | 3404363.867                                               | 1811099.555                                              | 57.722                                               | 17.594                                  | HEW4            | 8/2/2018 12:05                   |
| 5039                     | 5039                | 63°18'46.10161"N                     | 168°57'43.16931"W                      | 63°18'46.11711"N                      | 168°57'43.08352"W                      | 7022065.2660                 | 602112.5530                | 3404366.74                                                | 1811116.815                                              | 57.753                                               | 17.603                                  | HEW4            | 8/2/2018 12:06                   |
| 5040                     | 5040                | 63°18'46.24535"N                     | 168°57'43.10106"W                      | 63°18'46.26085"N                      | 168°57'43.01527"W                      | 7022069.7430                 | 602113.3610                | 3404381.389                                               | 1811119.696                                              | 57.758                                               | 17.605                                  | HEW4            | 8/2/2018 12:06                   |
| 5041                     | 5041<br>5042        | 63°18'46.36663"N                     | 168°57'43.36495"W<br>168°57'43.58377"W | 63°18'46.38213"N                      | 168°57'43.27916"W                      | 7022073.3790<br>7022072.6260 | 602109.5700<br>602106.5460 | 3404393.512<br>3404391.196                                | 1811107.443                                              | 57.773<br>57.628                                     | 17.609<br>17.565                        | HEW4            | 8/2/2018 12:06<br>8/2/2018 12:07 |
| 5042                     | 5042                | 63°18'46.34542"N<br>63°18'46.21907"N | 168°57'43.55692"W                      | 63°18'46.36092"N<br>63°18'46.23457"N  | 168°57'43.49797"W<br>168°57'43.47114"W | 7022072.6260                 | 602107.0440                | 3404391.196                                               | 1811097.483<br>1811098.917                               | 57.727                                               | 17.595                                  | HEW4 C          | 8/2/2018 12:07                   |
| 5044                     | 5044                | 63°18'48.10128"N                     | 168°57'46.99773"W                      | 63°18'48.11678"N                      | 168°57'46.91194"W                      | 7022006.7260                 | 602057.3180                | 3404567.005                                               | 1810938.662                                              | 55.192                                               | 16.823                                  | MP SPRING       | 8/2/2018 12:12                   |
| 5045                     | 5045                | 63°18'48.07914"N                     | 168°57'46.96249"W                      | 63°18'48.09464"N                      | 168°57'46.87669"W                      | 7022123.4400                 | 602057.8300                | 3404564.783                                               | 1810940.308                                              | 55.211                                               | 16.828                                  | HEW5HEW6        | 8/2/2018 12:14                   |
| 5046                     | 5046                | 63°18'48.09337"N                     | 168°57'47.06109"W                      | 63°18'48.10886"N                      | 168°57'46.97530"W                      | 7022125.1670                 | 602056.4440                | 3404566.155                                               | 1810935.781                                              | 55.19                                                | 16.822                                  | HEW6            | 8/2/2018 12:14                   |
| 5047                     | 5047                | 63°18'48.18623"N                     | 168°57'46.97783"W                      | 63°18'48.20173"N                      | 168°57'46.89205"W                      | 7022128.0770                 | 602057.5110                | 3404575.648                                               | 1810939.431                                              | 54.957                                               | 16.751                                  | HEW6            | 8/2/2018 12:14                   |
| 5048                     | 5048                | 63°18'48.16642"N                     | 168°57'46.97728"W                      | 63°18'48.18192"N                      | 168°57'46.89149"W                      | 7022127.4640                 | 602057.5380                | 3404573.636                                               | 1810939.489                                              | 54.935                                               | 16.744                                  | HEW5            | 8/2/2018 12:14                   |
| 5049                     | 5049                | 63°18'48.18045"N                     | 168°57'46.89347"W                      | 63°18'48.19595"N                      | 168°57'46.80768"W                      | 7022127.9350                 | 602058.6900                | 3404575.123                                               | 1810943.294                                              | 54.879                                               | 16.727                                  | HEW5            | 8/2/2018 12:15                   |
| 5050                     | 5050                | 63°18'48.19413"N                     | 168°57'46.90977"W                      | 63°18'48.20963"N                      | 168°57'46.82397"W                      | 7022128.3520                 | 602058.4500                | 3404576.501                                               | 1810942.527                                              | 54.809                                               | 16.706                                  | HEW6            | 8/2/2018 12:15                   |
| 5051                     | 5051                | 63°18'48.23592"N                     | 168°57'46.86476"W                      | 63°18'48.25142"N                      | 168°57'46.77897"W                      | 7022129.6640                 | 602059.0350                | 3404580.778                                               | 1810944.514                                              | 54.78                                                | 16.697                                  | HEW6            | 8/2/2018 12:15                   |
| 5052                     | 5052                | 63°18'48.22654"N                     | 168°57'46.77560"W                      | 63°18'48.24204"N                      | 168°57'46.68981"W                      | 7022129.4140                 | 602060.2850                | 3404579.891                                               | 1810948.602                                              | 54.71                                                | 16.676                                  | HEW5            | 8/2/2018 12:15                   |
| 5053                     | 5053                | 63°18'48.27904"N                     | 168°57'46.79622"W                      | 63°18'48.29454"N                      | 168°57'46.71043"W                      | 7022131.0290                 | 602059.9470                | 3404585.208                                               | 1810947.574                                              | 54.75                                                | 16.688                                  | HEW5            | 8/2/2018 12:15                   |
| 5054                     | 5054                | 63°18'48.24859"N                     | 168°57'46.88272"W                      | 63°18'48.26409"N                      | 168°57'46.79694"W                      | 7022130.0480                 | 602058.7730                | 3404582.052                                               | 1810943.673                                              | 54.752                                               | 16.689                                  | HEW6            | 8/2/2018 12:16                   |
| 5055                     | 5055                | 63°18'48.27912"N                     | 168°57'46.94838"W                      | 63°18'48.29462"N                      | 168°57'46.86258"W                      | 7022130.9640                 | 602057.8300                | 3404585.104                                               | 1810940.624                                              | 54.365                                               | 16.571                                  | HEW6            | 8/2/2018 12:16                   |
| 5056                     | 5056                | 63°18'48.30248"N                     | 168°57'47.00317"W                      | 63°18'48.31798"N                      | 168°57'46.91738"W                      | 7022131.6620                 | 602057.0440                | 3404587.436                                               | 1810938.083                                              | 53.847                                               | 16.413                                  | HEW6            | 8/2/2018 12:16                   |
| 5057                     | 5057                | 63°18'48.29300"N                     | 168°57'47.04975"W                      | 63°18'48.30850"N                      | 168°57'46.96396"W                      | 7022131.3480                 | 602056.4050                | 3404586.439                                               | 1810935.971                                              | 53.824                                               | 16.406                                  | HEW6            | 8/2/2018 12:16                   |
| 5058                     | 5058                | 63°18'48.24967"N                     | 168°57'47.09941"W                      | 63°18'48.26516"N                      | 168°57'47.01362"W                      | 7022129.9860                 | 602055.7570                | 3404582.001                                               | 1810933.774                                              | 53.989                                               | 16.456                                  | HEW6            | 8/2/2018 12:17                   |
| 5059                     | 5059                | 63°18'48.25312"N                     | 168°57'47.21343"W                      | 63°18'48.26862"N                      | 168°57'47.12765"W                      | 7022130.0420                 | 602054.1670                | 3404582.268                                               | 1810928.56                                               | 54.007                                               | 16.461                                  | HEW6            | 8/2/2018 12:17                   |
| 5060                     | 5060                | 63°18'48.28109"N                     | 168°57'47.20477"W                      | 63°18'48.29659"N                      | 168°57'47.11897"W                      | 7022130.9120                 | 602054.2600                | 3404585.115                                               | 1810928.91                                               | 53.923                                               | 16.436                                  | HEW6            | 8/2/2018 12:17                   |
| 5061                     | 5061                | 63°18'48.28083"N                     | 168°57'47.13437"W                      | 63°18'48.29633"N                      | 168°57'47.04858"W                      | 7022130.9350                 | 602055.2400                | 3404585.14                                                | 1810932.126                                              | 53.983                                               | 16.454                                  | HEW6            | 8/2/2018 12:17                   |
| 5062<br>5063             | 5062<br>5063        | 63°18'48.29929"N<br>63°18'48.31592"N | 168°57'47.07039"W<br>168°57'47.05046"W | 63°18'48.31479"N<br>63°18'48.33142"N  | 168°57'46.98460"W<br>168°57'46.96467"W | 7022131.5340<br>7022132.0570 | 602056.1120                | 3404587.063<br>3404588.766                                | 1810935.018                                              | 53.779<br>53.766                                     | 16.392<br>16.388                        | HEW6            | 8/2/2018 12:17<br>8/2/2018 12:17 |
| 5063                     | 5064                | 63°18'48.31592"N                     | 168°57'47.05046"W                      | 63°18'48.33'142 N<br>63°18'48.36452"N | 168°57'46.96467"W                      | 7022132.0570                 | 602056.3730<br>602056.3500 | 3404588.766                                               | 1810935.901<br>1810935.878                               | 53.766                                               | 16.388                                  | HEW6            | 8/2/2018 12:17                   |
| 5065                     | 5065                | 63°18'48.39420"N                     | 168°57'47.03987"W                      | 63°18'48.40969"N                      | 168°57'46.95409"W                      | 7022133.0820                 | 602056.4430                | 3404592.129                                               | 1810936.256                                              | 53.396                                               | 16.275                                  | HEW6            | 8/2/2018 12:18                   |
| 5066                     | 5066                | 63°18'48.43022"N                     | 168°57'47.00195"W                      | 63°18'48.44572"N                      | 168°57'46.91616"W                      | 7022134.4040                 | 602056.9360                | 3404600.411                                               | 1810937.929                                              | 53.035                                               | 16.165                                  | HEW6            | 8/2/2018 12:18                   |
| 5067                     | 5067                | 63°18'48.49522"N                     | 168°57'46.85158"W                      | 63°18'48.51072"N                      | 168°57'46.76579"W                      | 7022137.6930                 | 602058.9640                | 3404607.124                                               | 1810944.69                                               | 52.932                                               | 16.134                                  | HEW6            | 8/2/2018 12:18                   |
| 5068                     | 5068                | 63°18'48.31384"N                     | 168°57'46.84283"W                      | 63°18'48.32934"N                      | 168°57'46.75705"W                      | 7022132.0850                 | 602059.2640                | 3404588.708                                               | 1810945.388                                              | 54.635                                               | 16.653                                  | HEW5            | 8/2/2018 12:19                   |
| 5069                     | 5069                | 63°18'48.39246"N                     | 168°57'46.87089"W                      | 63°18'48.40796"N                      | 168°57'46.78509"W                      | 7022134.5050                 | 602058.7960                | 3404596.673                                               | 1810943.977                                              | 53.025                                               | 16.162                                  | HEW5            | 8/2/2018 12:19                   |
| 5070                     | 5070                | 63°18'48.46819"N                     | 168°57'46.79986"W                      | 63°18'48.48369"N                      | 168°57'46.71408"W                      | 7022136.8790                 | 602059.7100                | 3404604.417                                               | 1810947.097                                              | 53.046                                               | 16.168                                  | HEW5            | 8/2/2018 12:19                   |
| 5071                     | 5071                | 63°18'48.30494"N                     | 168°57'46.85714"W                      | 63°18'48.32045"N                      | 168°57'46.77136"W                      | 7022131.8030                 | 602059.0740                | 3404587.794                                               | 1810944.749                                              | 54.691                                               | 16.67                                   | HEW7            | 8/2/2018 12:20                   |
| 5072                     | 5072                | 63°18'48.29707"N                     | 168°57'46.92332"W                      | 63°18'48.31257"N                      | 168°57'46.83753"W                      | 7022131.5300                 | 602058.1600                | 3404586.946                                               | 1810941.739                                              | 54.198                                               | 16.52                                   | HEW7            | 8/2/2018 12:20                   |
| 5073                     | 5073                | 63°18'48.31597"N                     | 168°57'46.99016"W                      | 63°18'48.33147"N                      | 168°57'46.90438"W                      | 7022132.0860                 | 602057.2120                | 3404588.816                                               | 1810938.655                                              | 53.732                                               | 16.378                                  | HEW7            | 8/2/2018 12:20                   |
| 5074                     | 5074                | 63°18'48.34664"N                     | 168°57'47.01966"W                      | 63°18'48.36214"N                      | 168°57'46.93387"W                      | 7022133.0210                 | 602056.7710                | 3404591.909                                               | 1810937.257                                              | 53.735                                               | 16.378                                  | HEW7            | 8/2/2018 12:21                   |
| 5075                     | 5075                | 63°18'48.39037"N                     | 168°57'47.02107"W                      | 63°18'48.40586"N                      | 168°57'46.93527"W                      | 7022134.3740                 | 602056.7090                | 3404596.349                                               | 1810937.121                                              | 53.315                                               | 16.25                                   | HEW7            | 8/2/2018 12:21                   |

| Field Survey<br>Point ID | Feature Location ID | Latitude (WGS84)                     | Longitude (WGS84)                      | Latitude (NAD 83 (2011))             | Longitude (NAD 83<br>(2011))           | Northing (UTM<br>Zone 2N)    | Easting (UTM<br>Zone 2N)   | Northing - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Easting - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Elevation (NAVD88,<br>GEOID12B, U.S. Survey<br>Feet) | Elevation (NAVD88,<br>GEOID12B, Meters) | Text Descriptor | Measurement Date/Time            |
|--------------------------|---------------------|--------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|------------------------------|----------------------------|-----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|-----------------------------------------|-----------------|----------------------------------|
| 5076                     | 5076                | 63°18'48.38997"N                     | 168°57'46.91238"W                      | 63°18'48.40547"N                     | 168°57'46.82660"W                      | 7022134.4090                 | 602058.2210                | 3404596.389                                               | 1810942.086                                              | 53.066                                               | 16.175                                  | HEW7 C          | 8/2/2018 12:21                   |
| 5077                     | 5077                | 63°18'48.58547"N                     | 168°57'46.70750"W                      | 63°18'48.60097"N                     | 168°57'46.62170"W                      | 7022140.5490                 | 602060.8800                | 3404616.396                                               | 1810951.123                                              | 52.457                                               | 15.989                                  | HEW6            | 8/2/2018 12:23                   |
| 5078                     | 5078                | 63°18'48.67880"N                     | 168°57'46.72785"W                      | 63°18'48.69430"N                     | 168°57'46.64207"W                      | 7022143.4270                 | 602060.5050                | 3404625.86                                                | 1810950.04                                               | 52.33                                                | 15.95                                   | HEW6            | 8/2/2018 12:23                   |
| 5079                     | 5079                | 63°18'48.75754"N                     | 168°57'46.70950"W                      | 63°18'48.77304"N                     | 168°57'46.62371"W                      | 7022145.8720                 | 602060.6830                | 3404633.871                                               | 1810950.749                                              | 52.057                                               | 15.867                                  | HEW6            | 8/2/2018 12:23                   |
| 5080                     | 5080                | 63°18'48.83553"N                     | 168°57'46.69579"W                      | 63°18'48.85103"N                     | 168°57'46.61000"W                      | 7022148.2900                 | 602060.7970                | 3404641.802                                               | 1810951.247                                              | 51.702                                               | 15.759                                  | HEW6            | 8/2/2018 12:24                   |
| 5081                     | 5081                | 63°18'48.85654"N                     | 168°57'46.65037"W                      | 63°18'48.87203"N                     | 168°57'46.56459"W                      | 7022148.9600                 | 602061.4080                | 3404643.969                                               | 1810953.287                                              | 51.689                                               | 15.755                                  | HEW6            | 8/2/2018 12:24                   |
| 5082                     | 5082                | 63°18'48.86711"N                     | 168°57'46.54895"W                      | 63°18'48.88261"N                     | 168°57'46.46315"W                      | 7022149.3330                 | 602062.8090                | 3404645.118                                               | 1810957.902                                              | 51.637                                               | 15.739                                  | HEW6            | 8/2/2018 12:24                   |
| 5083                     | 5083                | 63°18'48.89009"N                     | 168°57'46.46175"W                      | 63°18'48.90559"N                     | 168°57'46.37596"W                      | 7022150.0820                 | 602064.0000                | 3404647.516                                               | 1810961.847                                              | 51.617                                               | 15.733                                  | HEW6            | 8/2/2018 12:24                   |
| 5084                     | 5084                | 63°18'49.05431"N                     | 168°57'46.35691"W                      | 63°18'49.06981"N                     | 168°57'46.27112"W                      | 7022155.2090                 | 602065.2970                | 3404664.273                                               | 1810966.366                                              | 50.978                                               | 15.538                                  | HEW6            | 8/2/2018 12:25                   |
| 5085                     | 5085                | 63°18'49.14264"N                     | 168°57'46.40987"W                      | 63°18'49.15815"N                     | 168°57'46.32409"W                      | 7022157.9190                 | 602064.4730                | 3404673.205                                               | 1810963.802                                              | 50.276                                               | 15.324                                  | HEW6            | 8/2/2018 12:25                   |
| 5086                     | 5086                | 63°18'49.26426"N                     | 168°57'46.24722"W                      | 63°18'49.27976"N                     | 168°57'46.16143"W                      | 7022161.7530                 | 602066.6170                | 3404685.677                                               | 1810971.031                                              | 49.902                                               | 15.21                                   | HEW6            | 8/2/2018 12:25                   |
| 5087                     | 5087                | 63°18'49.29916"N                     | 168°57'46.18035"W                      | 63°18'49.31466"N                     | 168°57'46.09457"W                      | 7022162.8630                 | 602067.5130                | 3404689.271                                               | 1810974.028                                              | 49.688                                               | 15.145                                  | HEW6            | 8/2/2018 12:25                   |
| 5088                     | 5088                | 63°18'49.31998"N                     | 168°57'46.13488"W                      | 63°18'49.33548"N                     | 168°57'46.04908"W                      | 7022163.5270                 | 602068.1250                | 3404691.419                                               | 1810976.071                                              | 49.444                                               | 15.071                                  | HEW6            | 8/2/2018 12:26                   |
| 5089                     | 5089                | 63°18'49.34615"N                     | 168°57'46.09129"W                      | 63°18'49.36164"N                     | 168°57'46.00550"W                      | 7022164.3560                 | 602068.7060                | 3404694.109                                               | 1810978.019                                              | 49.208                                               | 14.999                                  | HEW6            | 8/2/2018 12:26                   |
| 5090<br>5091             | 5090                | 63°18'49.39186"N                     | 168°57'46.17122"W<br>168°57'46.18500"W | 63°18'49.40736"N<br>63°18'49.49944"N | 168°57'46.08544"W                      | 7022165.7350                 | 602067.5490                | 3404698.693                                               | 1810974.293                                              | 49.022<br>48.428                                     | 14.942                                  | HEW6            | 8/2/2018 12:26                   |
| 5091                     | 5091<br>5092        | 63°18'49.48394"N<br>63°18'49.47307"N | 168°57'46.67658"W                      | 63°18'49.48856"N                     | 168°57'46.09922"W<br>168°57'46.59080"W | 7022168.5770<br>7022168.0230 | 602067.2660<br>602060.4370 | 3404708.035<br>3404706.567                                | 1810973.512<br>1810951.077                               | 48.173                                               | 14.761                                  | HEW6            | 8/2/2018 12:27<br>8/2/2018 12:29 |
| 5093                     | 5092                | 63°18'49.45762"N                     | 168°57'46.70402"W                      | 63°18'49.47312"N                     | 168°57'46.61823"W                      | 7022167.5340                 | 602060.0710                | 3404704.978                                               | 1810949.849                                              | 48.173                                               | 14.67                                   | HEW8            | 8/2/2018 12:29                   |
| 5094                     | 5094                | 63°18'49.46325"N                     | 168°57'46.73666"W                      | 63°18'49.47875"N                     | 168°57'46.65088"W                      | 7022167.6930                 | 602059.6110                | 3404705.526                                               | 1810948.349                                              | 48.102                                               | 14.662                                  | HEW8            | 8/2/2018 12:29                   |
| 5095                     | 5095                | 63°18'49.48206"N                     | 168°57'46.72364"W                      | 63°18'49.49756"N                     | 168°57'46.63784"W                      | 7022168.2810                 | 602059.7740                | 3404707.446                                               | 1810948.913                                              | 48.081                                               | 14.655                                  | HEW8 C          | 8/2/2018 12:29                   |
| 5096                     | 5096                | 63°18'49.53884"N                     | 168°57'46.22012"W                      | 63°18'49.55435"N                     | 168°57'46.13432"W                      | 7022170.2610                 | 602066.7240                | 3404713.585                                               | 1810971.818                                              | 47.576                                               | 14.501                                  | HEW6            | 8/2/2018 12:29                   |
| 5097                     | 5097                | 63°18'49.58636"N                     | 168°57'46.28895"W                      | 63°18'49.60186"N                     | 168°57'46.20316"W                      | 7022171.7000                 | 602065.7190                | 3404718.36                                                | 1810968.596                                              | 47.178                                               | 14.38                                   | HEW6            | 8/2/2018 12:30                   |
| 5098                     | 5098                | 63°18'49.60051"N                     | 168°57'46.39658"W                      | 63°18'49.61601"N                     | 168°57'46.31079"W                      | 7022172.0900                 | 602064.2080                | 3404719.718                                               | 1810963.657                                              | 47.036                                               | 14.336                                  | HEW6            | 8/2/2018 12:30                   |
| 5099                     | 5099                | 63°18'49.66381"N                     | 168°57'46.57081"W                      | 63°18'49.67931"N                     | 168°57'46.48501"W                      | 7022173.9720                 | 602061.7220                | 3404726.018                                               | 1810955.595                                              | 46.967                                               | 14.316                                  | HEW6            | 8/2/2018 12:30                   |
| 5100                     | 5100                | 63°18'49.73959"N                     | 168°57'46.50021"W                      | 63°18'49.75509"N                     | 168°57'46.41441"W                      | 7022176.3480                 | 602062.6290                | 3404733.767                                               | 1810958.695                                              | 46.894                                               | 14.293                                  | HEW6            | 8/2/2018 12:30                   |
| 5101                     | 5101                | 63°18'49.81362"N                     | 168°57'46.46466"W                      | 63°18'49.82912"N                     | 168°57'46.37887"W                      | 7022178.6540                 | 602063.0510                | 3404741.312                                               | 1810960.197                                              | 46.901                                               | 14.296                                  | HEW6            | 8/2/2018 12:30                   |
| 5102                     | 5102                | 63°18'49.88662"N                     | 168°57'46.39824"W                      | 63°18'49.90212"N                     | 168°57'46.31244"W                      | 7022180.9410                 | 602063.9040                | 3404748.775                                               | 1810963.111                                              | 46.672                                               | 14.226                                  | HEW6            | 8/2/2018 12:31                   |
| 5103                     | 5103                | 63°18'49.95976"N                     | 168°57'46.38287"W                      | 63°18'49.97526"N                     | 168°57'46.29707"W                      | 7022183.2110                 | 602064.0460                | 3404756.215                                               | 1810963.693                                              | 46.439                                               | 14.155                                  | HEW6            | 8/2/2018 12:31                   |
| 5104                     | 5104                | 63°18'50.04191"N                     | 168°57'46.22968"W                      | 63°18'50.05741"N                     | 168°57'46.14388"W                      | 7022185.8200                 | 602066.0960                | 3404764.671                                               | 1810970.555                                              | 46.319                                               | 14.118                                  | HEW6            | 8/2/2018 12:31                   |
| 5105                     | 5105                | 63°18'50.04292"N                     | 168°57'46.16146"W                      | 63°18'50.05842"N                     | 168°57'46.07567"W                      | 7022185.8820                 | 602067.0440                | 3404764.824                                               | 1810973.669                                              | 46.28                                                | 14.106                                  | HEW6            | 8/2/2018 12:32                   |
| 5106                     | 5106                | 63°18'50.05617"N                     | 168°57'46.11280"W                      | 63°18'50.07167"N                     | 168°57'46.02701"W                      | 7022186.3140                 | 602067.7080                | 3404766.206                                               | 1810975.87                                               | 46.286                                               | 14.108                                  | HEW6            | 8/2/2018 12:32                   |
| 5107                     | 5107                | 63°18'50.13406"N                     | 168°57'45.97684"W                      | 63°18'50.14955"N                     | 168°57'45.89105"W                      | 7022188.7830                 | 602069.5230                | 3404774.217                                               | 1810981.952                                              | 46.258                                               | 14.099                                  | HEW6            | 8/2/2018 12:32                   |
| 5108                     | 5108                | 63°18'50.14504"N                     | 168°57'45.84499"W                      | 63°18'50.16054"N                     | 168°57'45.75920"W                      | 7022189.1820                 | 602071.3470                | 3404775.43                                                | 1810987.956                                              | 46.256                                               | 14.099                                  | HEW6            | 8/2/2018 12:32                   |
| 5109                     | 5109                | 63°18'50.13334"N                     | 168°57'45.76403"W                      | 63°18'50.14883"N                     | 168°57'45.67824"W                      | 7022188.8550                 | 602072.4850                | 3404774.301                                               | 1810991.673                                              | 46.126                                               | 14.059                                  | HEW6            | 8/2/2018 12:32                   |
| 5110                     | 5110                | 63°18'50.19183"N                     | 168°57'45.67372"W                      | 63°18'50.20733"N                     | 168°57'45.58793"W                      | 7022190.7050                 | 602073.6840                | 3404780.309                                               | 1810995.702                                              | 45.787                                               | 13.956                                  | HEW6            | 8/2/2018 12:33                   |
| 5111                     | 5111                | 63°18'50.25804"N                     | 168°57'45.64309"W                      | 63°18'50.27354"N                     | 168°57'45.55730"W                      | 7022192.7670                 | 602074.0450                | 3404787.056                                               | 1810996.992                                              | 45.599                                               | 13.898                                  | HEW6            | 8/2/2018 12:33                   |
| 5112                     | 5112                | 63°18'50.32722"N                     | 168°57'45.54186"W                      | 63°18'50.34272"N                     | 168°57'45.45607"W                      | 7022194.9520                 | 602075.3860                | 3404794.157                                               | 1811001.502                                              | 44.979                                               | 13.71                                   | HEW6            | 8/2/2018 12:33                   |
| 5113                     | 5113                | 63°18'50.45120"N                     | 168°57'45.41087"W                      | 63°18'50.46670"N                     | 168°57'45.32509"W                      | 7022198.8460                 | 602077.0860                | 3404806.846                                               | 1811007.281                                              | 44.789                                               | 13.652                                  | HEW6            | 8/2/2018 12:34                   |
| 5114                     | 5114                | 63°18'42.73227"N                     | 168°57'29.94991"W                      | 63°18'42.74776"N                     | 168°57'29.86412"W                      | 7021966.8750                 | 602299.8100                | 3404034.328                                               | 1811726.189                                              | 73.037                                               | 22.262                                  | CHK 2600 HV     | 8/2/2018 12:40                   |
| 5115                     | 5115                | 63°20'08.82969"N                     | 168°56'24.47122"W                      | 63°20'08.84519"N                     | 168°56'24.38535"W                      | 7024659.7650                 | 603125.3050                | 3412827.733                                               | 1814572.558                                              | 5.285                                                | 1.611                                   | CHK 59 HV       | 8/2/2018 14:35                   |
| 5116                     | 5116                | 63°18'50.48051"N                     | 168°57'45.27559"W                      | 63°18'50.49601"N                     | 168°57'45.18978"W                      | 7022199.8120                 | 602078.9400                | 3404809.922                                               | 1811013.412                                              | 44.737                                               | 13.636                                  | HEW6            | 8/2/2018 15:14                   |
| 5117                     | 5117                | 63°18'50.57946"N                     | 168°57'45.18671"W                      | 63°18'50.59496"N                     | 168°57'45.10092"W                      | 7022202.9130                 | 602080.0790                | 3404820.038                                               | 1811017.309                                              | 44.48                                                | 13.557                                  | HEW6            | 8/2/2018 15:16                   |
| 5118                     | 5118                | 63°18'50.72525"N                     | 168°57'45.11357"W                      | 63°18'50.74074"N                     | 168°57'45.02778"W                      | 7022207.4560                 | 602080.9530                | 3404834.899                                               | 1811020.41                                               | 44.254                                               | 13.489                                  | HEW6            | 8/2/2018 15:17                   |
| 5119                     | 5119                | 63°18'50.88535"N                     | 168°57'45.29156"W                      | 63°18'50.90085"N                     | 168°57'45.20577"W                      | 7022212.3310                 | 602078.3190                | 3404851.028                                               | 1811012.017                                              | 44.028                                               | 13.42                                   | HEW6            | 8/2/2018 15:17                   |

| Field Survey<br>Point ID | Feature Location ID | Latitude (WGS84)                     | Longitude (WGS84)                      | Latitude (NAD 83 (2011))             | Longitude (NAD 83<br>(2011))           | Northing (UTM<br>Zone 2N)    | Easting (UTM<br>Zone 2N)   | Northing - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Easting - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Elevation (NAVD88,<br>GEOID12B, U.S. Survey<br>Feet) | Elevation (NAVD88,<br>GEOID12B, Meters) | Text Descriptor | Measurement Date/Time            |
|--------------------------|---------------------|--------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|------------------------------|----------------------------|-----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|-----------------------------------------|-----------------|----------------------------------|
| 5120                     | 5120                | 63°18'50.95993"N                     | 168°57'45.50357"W                      | 63°18'50.97543"N                     | 168°57'45.41777"W                      | 7022214.5440                 | 602075.2960                | 3404858.446                                               | 1811002.211                                              | 43.918                                               | 13.386                                  | HEW6            | 8/2/2018 15:18                   |
| 5121                     | 5121                | 63°18'51.13799"N                     | 168°57'45.46906"W                      | 63°18'51.15349"N                     | 168°57'45.38327"W                      | 7022220.0680                 | 602075.6010                | 3404876.556                                               | 1811003.495                                              | 43.899                                               | 13.381                                  | HEW6            | 8/2/2018 15:18                   |
| 5122                     | 5122                | 63°18'51.28536"N                     | 168°57'45.51146"W                      | 63°18'51.30086"N                     | 168°57'45.42566"W                      | 7022224.6090                 | 602074.8660                | 3404891.492                                               | 1811001.316                                              | 43.919                                               | 13.387                                  | HEW6            | 8/2/2018 15:19                   |
| 5123                     | 5123                | 63°18'51.41236"N                     | 168°57'45.64741"W                      | 63°18'51.42785"N                     | 168°57'45.56162"W                      | 7022228.4780                 | 602072.8500                | 3404904.29                                                | 1810994.898                                              | 44.027                                               | 13.419                                  | HEW6            | 8/2/2018 15:19                   |
| 5124                     | 5124                | 63°18'51.47995"N                     | 168°57'45.67381"W                      | 63°18'51.49545"N                     | 168°57'45.58801"W                      | 7022230.5580                 | 602072.4160                | 3404911.135                                               | 1810993.581                                              | 43.913                                               | 13.385                                  | HEW6            | 8/2/2018 15:19                   |
| 5125                     | 5125                | 63°18'51.55306"N                     | 168°57'45.56738"W                      | 63°18'51.56855"N                     | 168°57'45.48158"W                      | 7022232.8670                 | 602073.8250                | 3404918.639                                               | 1810998.322                                              | 44.04                                                | 13.423                                  | HEW6            | 8/2/2018 15:21                   |
| 5126                     | 5126                | 63°18'51.57111"N                     | 168°57'45.37290"W                      | 63°18'51.58661"N                     | 168°57'45.28711"W                      | 7022233.5110                 | 602076.5130                | 3404920.616                                               | 1811007.175                                              | 44.046                                               | 13.425                                  | HEW6            | 8/2/2018 15:21                   |
| 5127                     | 5127                | 63°18'51.47026"N                     | 168°57'45.29900"W                      | 63°18'51.48575"N                     | 168°57'45.21320"W                      | 7022230.4240                 | 602077.6410                | 3404910.428                                               | 1811010.716                                              | 44.002                                               | 13.412                                  | HEW6            | 8/2/2018 15:22                   |
| 5128                     | 5128                | 63°18'51.47959"N                     | 168°57'45.21251"W                      | 63°18'51.49509"N                     | 168°57'45.12673"W                      | 7022230.7510                 | 602078.8350                | 3404911.44                                                | 1811014.651                                              | 43.992                                               | 13.409                                  | HEW6            | 8/2/2018 15:22                   |
| 5129                     | 5129                | 63°18'51.52096"N                     | 168°57'45.20319"W                      | 63°18'51.53645"N                     | 168°57'45.11741"W                      | 7022232.0340                 | 602078.9240                | 3404915.648                                               | 1811015.009                                              | 44.006                                               | 13.413                                  | HEW6            | 8/2/2018 15:22                   |
| 5130                     | 5130                | 63°18'51.53223"N                     | 168°57'45.07529"W                      | 63°18'51.54774"N                     | 168°57'44.98949"W                      | 7022232.4400                 | 602080.6920                | 3404916.888                                               | 1811020.832                                              | 43.987                                               | 13.407                                  | HEW6            | 8/2/2018 15:22                   |
| 5131                     | 5131                | 63°18'51.51715"N                     | 168°57'44.95404"W                      | 63°18'51.53266"N                     | 168°57'44.86824"W                      | 7022232.0270                 | 602082.3940                | 3404915.446                                               | 1811026.395                                              | 44.011                                               | 13.415                                  | HEW6            | 8/2/2018 15:22                   |
| 5132                     | 5132                | 63°18'51.53880"N                     | 168°57'44.91472"W                      | 63°18'51.55430"N                     | 168°57'44.82894"W                      | 7022232.7140                 | 602082.9200                | 3404917.673                                               | 1811028.155                                              | 44.041                                               | 13.424                                  | HEW6            | 8/2/2018 15:23                   |
| 5133                     | 5133                | 63°18'51.59879"N                     | 168°57'44.86543"W<br>168°57'44.79178"W | 63°18'51.61429"N                     | 168°57'44.77964"W                      | 7022234.5920                 | 602083.5460                | 3404923.803                                               | 1811030.308                                              | 43.967                                               | 13.401                                  | HEW6            | 8/2/2018 15:23                   |
| 5134<br>5135             | 5134<br>5135        | 63°18'51.66866"N                     | 168°57'44.79178"W                      | 63°18'51.68416"N                     | 168°57'44.70597"W                      | 7022236.7860                 | 602084.5030                | 3404930.953                                               | 1811033.557                                              | 44.008                                               | 13.414                                  | HEW6            | 8/2/2018 15:23                   |
| 5136                     | 5136                | 63°18'51.75900"N<br>63°18'51.85983"N | 168°57'44.93291"W                      | 63°18'51.77450"N<br>63°18'51.87533"N | 168°57'44.68025"W<br>168°57'44.84712"W | 7022239.5930<br>7022242.6380 | 602084.7720<br>602082.3510 | 3404940.148<br>3404950.265                                | 1811034.584<br>1811026.797                               | 43.972<br>43.945                                     | 13.394                                  | HEW6            | 8/2/2018 15:23<br>8/2/2018 15:24 |
| 5137                     | 5137                | 63°18'52.03835"N                     | 168°57'44.81913"W                      | 63°18'52.05386"N                     | 168°57'44.73335"W                      | 7022242.0300                 | 602083.7580                | 3404968.481                                               | 1811031.7                                                | 43.906                                               | 13.382                                  | HEW6            | 8/2/2018 15:24                   |
| 5138                     | 5138                | 63°18'52.22644"N                     | 168°57'44.64568"W                      | 63°18'52.24194"N                     | 168°57'44.55989"W                      | 7022240.2120                 | 602085.9870                | 3404987.712                                               | 1811039.313                                              | 43.955                                               | 13.398                                  | HEW6            | 8/2/2018 15:25                   |
| 5139                     | 5139                | 63°18'52.38332"N                     | 168°57'44.34484"W                      | 63°18'52.39882"N                     | 168°57'44.25904"W                      | 7022259.0950                 | 602090.0180                | 3405003.868                                               | 1811052.796                                              | 43.977                                               | 13.404                                  | HEW6            | 8/2/2018 15:25                   |
| 5140                     | 5140                | 63°18'52.40434"N                     | 168°57'44.06471"W                      | 63°18'52.41984"N                     | 168°57'43.97892"W                      | 7022259.8690                 | 602093.8950                | 3405006.21                                                | 1811065.556                                              | 44.025                                               | 13.419                                  | HEW6            | 8/2/2018 15:25                   |
| 5141                     | 5141                | 63°18'52.44199"N                     | 168°57'43.96395"W                      | 63°18'52.45749"N                     | 168°57'43.87815"W                      | 7022261.0780                 | 602095.2600                | 3405010.108                                               | 1811070.096                                              | 43.967                                               | 13.401                                  | HEW6            | 8/2/2018 15:26                   |
| 5142                     | 5142                | 63°18'52.53845"N                     | 168°57'43.83949"W                      | 63°18'52.55395"N                     | 168°57'43.75370"W                      | 7022264.1180                 | 602096.8970                | 3405019.997                                               | 1811075.622                                              | 43.912                                               | 13.384                                  | HEW6            | 8/2/2018 15:27                   |
| 5143                     | 5143                | 63°18'52.60742"N                     | 168°57'43.83720"W                      | 63°18'52.62291"N                     | 168°57'43.75141"W                      | 7022266.2520                 | 602096.8610                | 3405027.003                                               | 1811075.613                                              | 43.76                                                | 13.338                                  | HEW6            | 8/2/2018 15:27                   |
| 5144                     | 5144                | 63°18'52.65892"N                     | 168°57'43.92273"W                      | 63°18'52.67442"N                     | 168°57'43.83695"W                      | 7022267.8080                 | 602095.6200                | 3405032.171                                               | 1811071.622                                              | 43.778                                               | 13.344                                  | HEW6            | 8/2/2018 15:28                   |
| 5145                     | 5145                | 63°18'52.69878"N                     | 168°57'43.88668"W                      | 63°18'52.71428"N                     | 168°57'43.80090"W                      | 7022269.0570                 | 602096.0820                | 3405036.246                                               | 1811073.203                                              | 43.772                                               | 13.342                                  | HEW6            | 8/2/2018 15:28                   |
| 5146                     | 5146                | 63°18'52.77723"N                     | 168°57'43.80342"W                      | 63°18'52.79273"N                     | 168°57'43.71762"W                      | 7022271.5210                 | 602097.1640                | 3405044.275                                               | 1811076.877                                              | 43.376                                               | 13.221                                  | HEW6            | 8/2/2018 15:28                   |
| 5147                     | 5147                | 63°18'52.86681"N                     | 168°57'43.76315"W                      | 63°18'52.88231"N                     | 168°57'43.67736"W                      | 7022274.3110                 | 602097.6360                | 3405053.403                                               | 1811078.569                                              | 43.235                                               | 13.178                                  | HEW6            | 8/2/2018 15:29                   |
| 5148                     | 5148                | 63°18'52.98371"N                     | 168°57'43.94568"W                      | 63°18'52.99921"N                     | 168°57'43.85989"W                      | 7022277.8470                 | 602094.9810                | 3405065.141                                               | 1811070.04                                               | 43.223                                               | 13.174                                  | HEW6            | 8/2/2018 15:29                   |
| 5149                     | 5149                | 63°18'53.13862"N                     | 168°57'44.04533"W                      | 63°18'53.15412"N                     | 168°57'43.95953"W                      | 7022282.5960                 | 602093.4420                | 3405080.801                                               | 1811065.234                                              | 43.23                                                | 13.176                                  | HEW6            | 8/2/2018 15:30                   |
| 5150                     | 5150                | 63°18'53.25639"N                     | 168°57'43.90237"W                      | 63°18'53.27189"N                     | 168°57'43.81658"W                      | 7022286.3020                 | 602095.3160                | 3405092.867                                               | 1811071.57                                               | 43.223                                               | 13.174                                  | HEW6            | 8/2/2018 15:30                   |
| 5151                     | 5151                | 63°18'53.33076"N                     | 168°57'43.54854"W                      | 63°18'53.34626"N                     | 168°57'43.46276"W                      | 7022288.7600                 | 602100.1650                | 3405100.682                                               | 1811087.608                                              | 43.275                                               | 13.19                                   | HEW6            | 8/2/2018 15:31                   |
| 5152                     | 5152                | 63°18'53.42318"N                     | 168°57'43.47596"W                      | 63°18'53.43868"N                     | 168°57'43.39016"W                      | 7022291.6510                 | 602101.0840                | 3405110.123                                               | 1811090.771                                              | 43.213                                               | 13.171                                  | HEW6            | 8/2/2018 15:31                   |
| 5153                     | 5153                | 63°18'53.43918"N                     | 168°57'43.37564"W                      | 63°18'53.45469"N                     | 168°57'43.28984"W                      | 7022292.1910                 | 602102.4640                | 3405111.822                                               | 1811095.327                                              | 43.172                                               | 13.159                                  | HEW6            | 8/2/2018 15:32                   |
| 5154                     | 5154                | 63°18'53.64979"N                     | 168°57'43.45697"W                      | 63°18'53.66529"N                     | 168°57'43.37118"W                      | 7022298.6710                 | 602101.1260                | 3405133.152                                               | 1811091.266                                              | 43.05                                                | 13.122                                  | HEW9            | 8/2/2018 15:34                   |
| 5155                     | 5155                | 63°18'53.59086"N                     | 168°57'43.57907"W                      | 63°18'53.60637"N                     | 168°57'43.49327"W                      | 7022296.7940                 | 602099.4850                | 3405127.077                                               | 1811085.786                                              | 43.045                                               | 13.12                                   | HEW9            | 8/2/2018 15:34                   |
| 5156                     | 5156                | 63°18'53.54348"N                     | 168°57'43.52028"W                      | 63°18'53.55898"N                     | 168°57'43.43449"W                      | 7022295.3540                 | 602100.3490                | 3405122.308                                               | 1811088.549                                              | 43.084                                               | 13.132                                  | HEW9            | 8/2/2018 15:35                   |
| 5157                     | 5157                | 63°18'53.56168"N                     | 168°57'43.38576"W                      | 63°18'53.57718"N                     | 168°57'43.29998"W                      | 7022295.9760                 | 602102.2030                | 3405124.256                                               | 1811094.663                                              | 43.058                                               | 13.124                                  | HEW9            | 8/2/2018 15:35                   |
| 5158                     | 5158                | 63°18'53.62253"N                     | 168°57'43.35277"W                      | 63°18'53.63803"N                     | 168°57'43.26697"W                      | 7022297.8740                 | 602102.6020                | 3405130.461                                               | 1811096.07                                               | 43.026                                               | 13.114                                  | HEW9 C          | 8/2/2018 15:35                   |
| 5159                     | 5159                | 63°18'53.92732"N                     | 168°57'43.43724"W                      | 63°18'53.94282"N                     | 168°57'43.35144"W                      | 7022307.2660                 | 602101.1270                | 3405161.354                                               | 1811091.711                                              | 42.437                                               | 12.935                                  | HEW11HEW10      | 8/2/2018 15:37                   |
| 5160                     | 5160                | 63°18'53.94197"N                     | 168°57'43.49420"W                      | 63°18'53.95747"N                     | 168°57'43.40840"W                      | 7022307.6940                 | 602100.3200                | 3405162.8                                                 | 1811089.085                                              | 42.515                                               | 12.959                                  | HEW11           | 8/2/2018 15:38                   |
| 5161                     | 5161                | 63°18'54.07248"N                     | 168°57'43.35391"W                      | 63°18'54.08797"N                     | 168°57'43.26811"W                      | 7022311.7940                 | 602102.1440                | 3405176.158                                               | 1811095.278                                              | 41.803                                               | 12.742                                  | HEW11           | 8/2/2018 15:38                   |
| 5162                     | 5162                | 63°18'54.18092"N                     | 168°57'43.17345"W                      | 63°18'54.19643"N                     | 168°57'43.08765"W                      | 7022315.2290                 | 602104.5480                | 3405187.306                                               | 1811103.342                                              | 41.647                                               | 12.694                                  | HEW11           | 8/2/2018 15:38                   |
| 5163                     | 5163                | 63°18'54.26256"N                     | 168°57'43.00461"W                      | 63°18'54.27806"N                     | 168°57'42.91882"W                      | 7022317.8290                 | 602106.8160                | 3405195.722                                               | 1811110.919                                              | 41.5                                                 | 12.649                                  | HEW11           | 8/2/2018 15:39                   |

| Field Survey<br>Point ID | Feature Location ID | Latitude (WGS84)                     | Longitude (WGS84)                      | Latitude (NAD 83 (2011))             | Longitude (NAD 83<br>(2011))           | Northing (UTM<br>Zone 2N)    | Easting (UTM<br>Zone 2N)   | Northing - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Easting - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Elevation (NAVD88,<br>GEOID12B, U.S. Survey<br>Feet) | Elevation (NAVD88,<br>GEOID12B, Meters) | Text Descriptor | Measurement Date/Time            |
|--------------------------|---------------------|--------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|------------------------------|----------------------------|-----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|-----------------------------------------|-----------------|----------------------------------|
| 5164                     | 5164                | 63°18'54.32754"N                     | 168°57'43.09285"W                      | 63°18'54.34303"N                     | 168°57'43.00705"W                      | 7022319.8000                 | 602105.5250                | 3405202.256                                               | 1811106.782                                              | 41.474                                               | 12.641                                  | HEW11           | 8/2/2018 15:39                   |
| 5165                     | 5165                | 63°18'54.37039"N                     | 168°57'43.03920"W                      | 63°18'54.38588"N                     | 168°57'42.95340"W                      | 7022321.1500                 | 602106.2290                | 3405206.648                                               | 1811109.162                                              | 41.433                                               | 12.629                                  | HEW11           | 8/2/2018 15:39                   |
| 5166                     | 5166                | 63°18'54.38658"N                     | 168°57'42.92152"W                      | 63°18'54.40208"N                     | 168°57'42.83572"W                      | 7022321.7030                 | 602107.8510                | 3405208.38                                                | 1811114.51                                               | 41.383                                               | 12.614                                  | HEW11           | 8/2/2018 15:39                   |
| 5167                     | 5167                | 63°18'54.47182"N                     | 168°57'42.80453"W                      | 63°18'54.48732"N                     | 168°57'42.71874"W                      | 7022324.3920                 | 602109.3940                | 3405217.123                                               | 1811119.713                                              | 41.271                                               | 12.579                                  | HEW11           | 8/2/2018 15:39                   |
| 5168                     | 5168                | 63°18'54.61165"N                     | 168°57'42.71113"W                      | 63°18'54.62715"N                     | 168°57'42.62533"W                      | 7022328.7590                 | 602110.5560                | 3405231.394                                               | 1811123.749                                              | 41.129                                               | 12.536                                  | HEW11           | 8/2/2018 15:40                   |
| 5169                     | 5169                | 63°18'54.77511"N                     | 168°57'42.64098"W                      | 63°18'54.79061"N                     | 168°57'42.55518"W                      | 7022333.8480                 | 602111.3720                | 3405248.048                                               | 1811126.684                                              | 41.011                                               | 12.5                                    | HEW11           | 8/2/2018 15:40                   |
| 5170                     | 5170                | 63°18'54.91968"N                     | 168°57'42.51549"W                      | 63°18'54.93519"N                     | 168°57'42.42968"W                      | 7022338.3760                 | 602112.9750                | 3405262.824                                               | 1811132.178                                              | 40.913                                               | 12.47                                   | HEW11           | 8/2/2018 15:40                   |
| 5171                     | 5171                | 63°18'55.09419"N                     | 168°57'42.42406"W                      | 63°18'55.10969"N                     | 168°57'42.33827"W                      | 7022343.8160                 | 602114.0760                | 3405280.615                                               | 1811136.067                                              | 40.601                                               | 12.375                                  | HEW11           | 8/2/2018 15:41                   |
| 5172                     | 5172                | 63°18'55.16777"N                     | 168°57'42.46474"W                      | 63°18'55.18327"N                     | 168°57'42.37894"W                      | 7022346.0740                 | 602113.4370                | 3405288.058                                               | 1811134.088                                              | 40.461                                               | 12.333                                  | HEW11           | 8/2/2018 15:42                   |
| 5173                     | 5173                | 63°18'55.23556"N                     | 168°57'42.62180"W                      | 63°18'55.25106"N                     | 168°57'42.53601"W                      | 7022348.1020                 | 602111.1850                | 3405294.827                                               | 1811126.803                                              | 40.39                                                | 12.311                                  | HEW11           | 8/2/2018 15:42                   |
| 5174                     | 5174                | 63°18'55.34598"N                     | 168°57'42.72073"W                      | 63°18'55.36148"N                     | 168°57'42.63493"W                      | 7022351.4750                 | 602109.7000                | 3405305.969                                               | 1811122.103                                              | 40.319                                               | 12.289                                  | HEW11           | 8/2/2018 15:43                   |
| 5175<br>5176             | 5175<br>5176        | 63°18'55.48532"N<br>63°18'55.62705"N | 168°57'42.67584"W                      | 63°18'55.50082"N                     | 168°57'42.59004"W                      | 7022355.8060                 | 602110.1880                | 3405320.154                                               | 1811123.924                                              | 40.294<br>40.18                                      | 12.282<br>12.247                        | HEW11           | 8/2/2018 15:43                   |
| 5176                     | 5176                | 63°18'55.62705"N                     | 168°57'42.65463"W<br>168°57'42.60650"W | 63°18'55.64255"N<br>63°18'55.73624"N | 168°57'42.56883"W<br>168°57'42.52071"W | 7022360.2000<br>7022363.1200 | 602110.3440                | 3405334.564<br>3405344.115                                | 1811124.66<br>1811126.704                                | 40.18                                                | 12.247                                  | HEW11           | 8/2/2018 15:44<br>8/2/2018 15:44 |
| 5178                     | 5178                | 63°18'55.78184"N                     | 168°57'42.37300"W                      | 63°18'55.79734"N                     | 168°57'42.28721"W                      | 7022365.1200                 | 602114.1090                | 3405350.494                                               | 1811137.268                                              | 40.117                                               | 12.228                                  | HEW11           | 8/2/2018 15:44                   |
| 5179                     | 5179                | 63°18'55.77042"N                     | 168°57'42.16521"W                      | 63°18'55.78591"N                     | 168°57'42.07940"W                      | 7022364.8520                 | 602117.0120                | 3405349.487                                               | 1811146.777                                              | 40.066                                               | 12.212                                  | HEW11           | 8/2/2018 15:45                   |
| 5180                     | 5180                | 63°18'55.78778"N                     | 168°57'42.07781"W                      | 63°18'55.80328"N                     | 168°57'41.99202"W                      | 7022365.4280                 | 602118.2100                | 3405351.315                                               | 1811150.74                                               | 40.078                                               | 12.216                                  | HEW11           | 8/2/2018 15:45                   |
| 5181                     | 5181                | 63°18'55.88144"N                     | 168°57'41.99089"W                      | 63°18'55.89694"N                     | 168°57'41.90509"W                      | 7022368.3640                 | 602119.3280                | 3405360.892                                               | 1811154.556                                              | 39.966                                               | 12.182                                  | HEW11           | 8/2/2018 15:45                   |
| 5182                     | 5182                | 63°18'55.97655"N                     | 168°57'41.96125"W                      | 63°18'55.99205"N                     | 168°57'41.87546"W                      | 7022371.3200                 | 602119.6460                | 3405370.574                                               | 1811155.753                                              | 39.909                                               | 12.164                                  | HEW11           | 8/2/2018 15:46                   |
| 5183                     | 5183                | 63°18'56.08718"N                     | 168°57'41.97487"W                      | 63°18'56.10268"N                     | 168°57'41.88908"W                      | 7022374.7370                 | 602119.3480                | 3405381.8                                                 | 1811154.949                                              | 39.803                                               | 12.132                                  | HEW11           | 8/2/2018 15:46                   |
| 5184                     | 5184                | 63°18'56.17711"N                     | 168°57'41.98501"W                      | 63°18'56.19261"N                     | 168°57'41.89921"W                      | 7022377.5140                 | 602119.1190                | 3405390.926                                               | 1811154.338                                              | 39.721                                               | 12.107                                  | HEW11           | 8/2/2018 15:46                   |
| 5185                     | 5185                | 63°18'56.29982"N                     | 168°57'41.95828"W                      | 63°18'56.31532"N                     | 168°57'41.87249"W                      | 7022381.3230                 | 602119.3700                | 3405403.409                                               | 1811155.357                                              | 39.726                                               | 12.109                                  | HEW11           | 8/2/2018 15:46                   |
| 5186                     | 5186                | 63°18'56.37165"N                     | 168°57'41.99778"W                      | 63°18'56.38715"N                     | 168°57'41.91199"W                      | 7022383.5280                 | 602118.7490                | 3405410.675                                               | 1811153.435                                              | 39.719                                               | 12.106                                  | HEW11           | 8/2/2018 15:46                   |
| 5187                     | 5187                | 63°18'56.45547"N                     | 168°57'41.94530"W                      | 63°18'56.47097"N                     | 168°57'41.85950"W                      | 7022386.1440                 | 602119.3970                | 3405419.227                                               | 1811155.694                                              | 39.677                                               | 12.094                                  | HEW11           | 8/2/2018 15:47                   |
| 5188                     | 5188                | 63°18'56.51765"N                     | 168°57'41.72864"W                      | 63°18'56.53315"N                     | 168°57'41.64284"W                      | 7022388.1640                 | 602122.3500                | 3405425.702                                               | 1811165.487                                              | 39.655                                               | 12.087                                  | HEW11           | 8/2/2018 15:48                   |
| 5189                     | 5189                | 63°18'56.55912"N                     | 168°57'41.58220"W                      | 63°18'56.57462"N                     | 168°57'41.49639"W                      | 7022389.5120                 | 602124.3470                | 3405430.022                                               | 1811172.107                                              | 39.615                                               | 12.075                                  | HEW11           | 8/2/2018 15:48                   |
| 5190                     | 5190                | 63°18'56.61472"N                     | 168°57'41.57772"W                      | 63°18'56.63022"N                     | 168°57'41.49192"W                      | 7022391.2340                 | 602124.3550                | 3405435.673                                               | 1811172.22                                               | 39.595                                               | 12.069                                  | HEW11           | 8/2/2018 15:48                   |
| 5191                     | 5191                | 63°18'56.70746"N                     | 168°57'41.68719"W                      | 63°18'56.72297"N                     | 168°57'41.60139"W                      | 7022394.0550                 | 602122.7400                | 3405445.011                                               | 1811167.068                                              | 39.622                                               | 12.077                                  | HEW11           | 8/2/2018 15:49                   |
| 5192                     | 5192                | 63°18'56.86524"N                     | 168°57'41.62208"W                      | 63°18'56.88074"N                     | 168°57'41.53627"W                      | 7022398.9650                 | 602123.4910                | 3405461.084                                               | 1811169.782                                              | 39.586                                               | 12.066                                  | HEW11           | 8/2/2018 15:51                   |
| 5193                     | 5193                | 63°18'56.98321"N                     | 168°57'41.63776"W                      | 63°18'56.99872"N                     | 168°57'41.55197"W                      | 7022402.6080                 | 602123.1570                | 3405473.054                                               | 1811168.872                                              | 39.337                                               | 11.99                                   | HEW11           | 8/2/2018 15:52                   |
| 5194<br>5195             | 5194<br>5195        | 63°18'57.08411"N<br>63°18'57.19855"N | 168°57'41.39785"W<br>168°57'41.48308"W | 63°18'57.09961"N<br>63°18'57.21405"N | 168°57'41.31206"W<br>168°57'41.39728"W | 7022405.8360<br>7022409.3390 | 602126.3950<br>602125.0970 | 3405483.479<br>3405495.039                                | 1811179.663<br>1811175.582                               | 39.076<br>39.095                                     | 11.911<br>11.916                        | HEW11           | 8/2/2018 15:52<br>8/2/2018 15:53 |
| 5196                     | 5196                | 63°18'57.28800"N                     | 168°57'41.64353"W                      | 63°18'57.30350"N                     | 168°57'41.55773"W                      | 7022412.0350                 | 602122.7770                | 3405504.005                                               | 1811168.107                                              | 38.956                                               | 11.874                                  | HEW11           | 8/2/2018 15:53                   |
| 5200                     | 5200                | 63°18'57.72786"N                     | 168°57'41.57424"W                      | 63°18'57.74336"N                     | 168°57'41.48844"W                      | 7022425.6750                 | 602123.3080                | 3405548.73                                                | 1811170.548                                              | 38.317                                               | 11.679                                  | HEW11           | 8/2/2018 15:55                   |
| 5201                     | 5201                | 63°18'57.79693"N                     | 168°57'41.70258"W                      | 63°18'57.81242"N                     | 168°57'41.61678"W                      | 7022427.7540                 | 602121.4540                | 3405555.65                                                | 1811164.573                                              | 37.897                                               | 11.551                                  | HEW11           | 8/2/2018 15:55                   |
| 5202                     | 5202                | 63°18'57.79854"N                     | 168°57'41.75890"W                      | 63°18'57.81404"N                     | 168°57'41.67311"W                      | 7022427.7800                 | 602120.6690                | 3405555.772                                               | 1811161.998                                              | 37.825                                               | 11.529                                  | HEW11           | 8/2/2018 15:55                   |
| 5203                     | 5203                | 63°18'57.82101"N                     | 168°57'41.87596"W                      | 63°18'57.83651"N                     | 168°57'41.79016"W                      | 7022428.4230                 | 602119.0180                | 3405557.968                                               | 1811156.615                                              | 37.927                                               | 11.56                                   | HEW11           | 8/2/2018 15:55                   |
| 5204                     | 5204                | 63°18'57.87921"N                     | 168°57'41.81647"W                      | 63°18'57.89471"N                     | 168°57'41.73067"W                      | 7022430.2500                 | 602119.7890                | 3405563.923                                               | 1811159.236                                              | 37.798                                               | 11.521                                  | HEW11           | 8/2/2018 15:56                   |
| 5205                     | 5205                | 63°18'57.90927"N                     | 168°57'41.70278"W                      | 63°18'57.92477"N                     | 168°57'41.61698"W                      | 7022431.2300                 | 602121.3410                | 3405567.06                                                | 1811164.379                                              | 37.897                                               | 11.551                                  | HEW11           | 8/2/2018 15:56                   |
| 5206                     | 5206                | 63°18'57.95097"N                     | 168°57'41.65740"W                      | 63°18'57.96647"N                     | 168°57'41.57160"W                      | 7022432.5410                 | 602121.9310                | 3405571.329                                               | 1811166.383                                              | 37.885                                               | 11.547                                  | HEW11           | 8/2/2018 15:56                   |
| 5207                     | 5207                | 63°18'57.98571"N                     | 168°57'41.74763"W                      | 63°18'58.00120"N                     | 168°57'41.66184"W                      | 7022433.5750                 | 602120.6420                | 3405574.79                                                | 1811162.205                                              | 37.853                                               | 11.538                                  | HEW11           | 8/2/2018 15:57                   |
| 5208                     | 5208                | 63°18'58.02242"N                     | 168°57'41.85318"W                      | 63°18'58.03792"N                     | 168°57'41.76738"W                      | 7022434.6650                 | 602119.1370                | 3405578.441                                               | 1811157.324                                              | 37.821                                               | 11.528                                  | HEW11           | 8/2/2018 15:58                   |
| 5209                     | 5209                | 63°18'57.98078"N                     | 168°57'42.12264"W                      | 63°18'57.99627"N                     | 168°57'42.03685"W                      | 7022433.2570                 | 602115.4290                | 3405574.012                                               | 1811145.086                                              | 37.865                                               | 11.541                                  | HEW11           | 8/2/2018 15:58                   |
| 5210                     | 5210                | 63°18'57.97677"N                     | 168°57'42.53363"W                      | 63°18'57.99227"N                     | 168°57'42.44783"W                      | 7022432.9510                 | 602109.7150                | 3405573.301                                               | 1811126.322                                              | 37.866                                               | 11.542                                  | HEW11           | 8/2/2018 15:58                   |

| Field Survey<br>Point ID | Feature Location ID | Latitude (WGS84)                     | Longitude (WGS84)                      | Latitude (NAD 83 (2011))             | Longitude (NAD 83<br>(2011))           | Northing (UTM<br>Zone 2N)    | Easting (UTM<br>Zone 2N)   | Northing - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Easting - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Elevation (NAVD88,<br>GEOID12B, U.S. Survey<br>Feet) | Elevation (NAVD88,<br>GEOID12B, Meters) | Text Descriptor            | Measurement Date/Time           |
|--------------------------|---------------------|--------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|------------------------------|----------------------------|-----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|-----------------------------------------|----------------------------|---------------------------------|
| 5211                     | 5211                | 63°18'58.01702"N                     | 168°57'42.94321"W                      | 63°18'58.03252"N                     | 168°57'42.85741"W                      | 7022434.0150                 | 602103.9770                | 3405577.086                                               | 1811107.55                                               | 37.79                                                | 11.519                                  | HEW11                      | 8/2/2018 15:59                  |
| 5212                     | 5212                | 63°18'57.98803"N                     | 168°57'43.43325"W                      | 63°18'58.00353"N                     | 168°57'43.34746"W                      | 7022432.9010                 | 602097.1880                | 3405573.78                                                | 1811085.217                                              | 37.754                                               | 11.508                                  | HEW11                      | 8/2/2018 15:59                  |
| 5213                     | 5213                | 63°18'58.03433"N                     | 168°57'43.44991"W                      | 63°18'58.04983"N                     | 168°57'43.36410"W                      | 7022434.3270                 | 602096.9110                | 3405578.47                                                | 1811084.38                                               | 37.693                                               | 11.489                                  | HEW12                      | 8/2/2018 16:00                  |
| 5214                     | 5214                | 63°18'58.04535"N                     | 168°57'42.95922"W                      | 63°18'58.06086"N                     | 168°57'42.87343"W                      | 7022434.8850                 | 602103.7270                | 3405579.952                                               | 1811106.772                                              | 37.737                                               | 11.502                                  | HEW12                      | 8/2/2018 16:00                  |
| 5215                     | 5215                | 63°18'58.05945"N                     | 168°57'42.57107"W                      | 63°18'58.07495"N                     | 168°57'42.48527"W                      | 7022435.4930                 | 602109.1130                | 3405581.671                                               | 1811124.476                                              | 37.789                                               | 11.518                                  | HEW12                      | 8/2/2018 16:01                  |
| 5216                     | 5216                | 63°18'58.09968"N                     | 168°57'42.15934"W                      | 63°18'58.11517"N                     | 168°57'42.07354"W                      | 7022436.9190                 | 602114.8020                | 3405586.061                                               | 1811143.214                                              | 37.864                                               | 11.541                                  | HEW12                      | 8/2/2018 16:01                  |
| 5217                     | 5217                | 63°18'58.13640"N                     | 168°57'41.77156"W                      | 63°18'58.15189"N                     | 168°57'41.68576"W                      | 7022438.2270                 | 602120.1610                | 3405590.077                                               | 1811160.864                                              | 37.78                                                | 11.515                                  | HEW12                      | 8/2/2018 16:01                  |
| 5218                     | 5218                | 63°18'58.10018"N                     | 168°57'41.56028"W                      | 63°18'58.11568"N                     | 168°57'41.47448"W                      | 7022437.2000                 | 602123.1360                | 3405586.555                                               | 1811170.573                                              | 37.876                                               | 11.545                                  | HEW12                      | 8/2/2018 16:02                  |
| 5219                     | 5219                | 63°18'58.09115"N                     | 168°57'41.33905"W                      | 63°18'58.10665"N                     | 168°57'41.25325"W                      | 7022437.0190                 | 602126.2220                | 3405585.802                                               | 1811180.692                                              | 37.875                                               | 11.544                                  | HEW12                      | 8/2/2018 16:02                  |
| 5220                     | 5220                | 63°18'58.11684"N                     | 168°57'41.04391"W                      | 63°18'58.13234"N                     | 168°57'40.95812"W                      | 7022437.9440                 | 602130.3030                | 3405588.629                                               | 1811194.129                                              | 37.856                                               | 11.539                                  | HEW12                      | 8/2/2018 16:02                  |
| 5221                     | 5221                | 63°18'58.12933"N                     | 168°57'40.87488"W                      | 63°18'58.14484"N                     | 168°57'40.78908"W                      | 7022438.4050                 | 602132.6430                | 3405590.023                                               | 1811201.828                                              | 37.831                                               | 11.531                                  | HEW12                      | 8/2/2018 16:03                  |
| 5222                     | 5222                | 63°18'58.17075"N                     | 168°57'40.42311"W                      | 63°18'58.18625"N                     | 168°57'40.33732"W                      | 7022439.8870                 | 602138.8870                | 3405594.564                                               | 1811222.393                                              | 37.849                                               | 11.536                                  | HEW12                      | 8/2/2018 16:03                  |
| 5223                     | 5223                | 63°18'58.17464"N                     | 168°57'40.25593"W                      | 63°18'58.19014"N                     | 168°57'40.17012"W                      | 7022440.0810                 | 602141.2090                | 3405595.083                                               | 1811230.022                                              | 37.839                                               | 11.533                                  | HEW12                      | 8/2/2018 16:04                  |
| 5224                     | 5224                | 63°18'58.31299"N                     | 168°57'40.03684"W                      | 63°18'58.32849"N                     | 168°57'39.95104"W                      | 7022444.4580                 | 602144.1210                | 3405609.296                                               | 1811239.8                                                | 37.844                                               | 11.535                                  | HEW12                      | 8/2/2018 16:04                  |
| 5225                     | 5225                | 63°18'58.39490"N                     | 168°57'39.74610"W                      | 63°18'58.41040"N                     | 168°57'39.66030"W                      | 7022447.1210                 | 602148.0850                | 3405617.83                                                | 1811252.944                                              | 37.856                                               | 11.539                                  | HEW12                      | 8/2/2018 16:04                  |
| 5226                     | 5226                | 63°18'58.39805"N                     | 168°57'39.49646"W                      | 63°18'58.41355"N                     | 168°57'39.41066"W                      | 7022447.3290                 | 602151.5550                | 3405618.335                                               | 1811264.34                                               | 37.853                                               | 11.538                                  | HEW12                      | 8/2/2018 16:05                  |
| 5227                     | 5227                | 63°18'58.36113"N                     | 168°57'39.18459"W                      | 63°18'58.37663"N                     | 168°57'39.09879"W                      | 7022446.3250                 | 602155.9310                | 3405614.816                                               | 1811278.644                                              | 37.974                                               | 11.575                                  | HEW12                      | 8/2/2018 16:05                  |
| 5228                     | 5228                | 63°19'32.47889"N                     | 168°58'15.32271"W                      | 63°19'32.49439"N                     | 168°58'15.23690"W                      | 7023485.9390                 | 601619.7420                | 3409053.349                                               | 1809572.56                                               | 28.483                                               | 8.682                                   | CHK 1 HV                   | 8/2/2018 16:30                  |
| 5229                     | 5229                | 63°18'57.69940"N                     | 168°57'18.33934"W                      | 63°18'57.71489"N                     | 168°57'18.25353"W                      | 7022435.0910                 | 602446.5930                | 3405563.08                                                | 1812231.763                                              | 51.439                                               | 15.679                                  | CHK 2 HV                   | 8/2/2018 17:34                  |
| 5230<br>5231             | 5230<br>5231        | 63°18'57.69957"N<br>63°18'57.69985"N | 168°57'18.33980"W<br>168°57'18.33948"W | 63°18'57.71507"N<br>63°18'57.71534"N | 168°57'18.25400"W<br>168°57'18.25367"W | 7022435.0960<br>7022435.1040 | 602446.5860<br>602446.5910 | 3405563.097<br>3405563.125                                | 1812231.742<br>1812231.756                               | 51.426<br>51.432                                     | 15.675<br>15.677                        | CHK 2 HV                   | 8/2/2018 18:07<br>8/3/2018 9:00 |
| 5232                     | 5232                | 63°19'03.82813"N                     | 168°56'45.44221"W                      | 63°19'03.84363"N                     | 168°56'45.35639"W                      | 7022639.3400                 | 602898.1990                | 3406210.13                                                | 1813723.983                                              | 78.722                                               | 23.995                                  | GS                         | 8/3/2018 9:08                   |
| 5233                     | 5233                | 63°19'04.78507"N                     | 168°56'45.01774"W                      | 63°19'04.80056"N                     | 168°56'44.93193"W                      | 7022669.1350                 | 602903.1550                | 3406307.639                                               | 1813741.77                                               | 78.97                                                | 24.07                                   | GS                         | 8/3/2018 9:09                   |
| 5234                     | 5234                | 63°19'04.88922"N                     | 168°56'44.97200"W                      | 63°19'04.90471"N                     | 168°56'44.88619"W                      | 7022672.3780                 | 602903.6880                | 3406318.251                                               | 1813743.685                                              | 79.036                                               | 24.09                                   | GS                         | 8/3/2018 9:15                   |
| 5235                     | 5235                | 63°19'04.99167"N                     | 168°56'44.92464"W                      | 63°19'05.00716"N                     | 168°56'44.83881"W                      | 7022675.5690                 | 602904.2450                | 3406328.692                                               | 1813745.677                                              | 78.562                                               | 23.946                                  | GS                         | 8/3/2018 9:20                   |
| 5236                     | 5236                | 63°19'05.08047"N                     | 168°56'44.88655"W                      | 63°19'05.09596"N                     | 168°56'44.80073"W                      | 7022678.3330                 | 602904.6870                | 3406337.739                                               | 1813747.268                                              | 78.48                                                | 23.921                                  | GS                         | 8/3/2018 9:21                   |
| 5237                     | 5237                | 63°19'05.17441"N                     | 168°56'44.84272"W                      | 63°19'05.18990"N                     | 168°56'44.75690"W                      | 7022681.2590                 | 602905.2040                | 3406347.313                                               | 1813749.113                                              | 77.794                                               | 23.712                                  | GS                         | 8/3/2018 9:21                   |
| 5238                     | 5238                | 63°19'05.27789"N                     | 168°56'44.80309"W                      | 63°19'05.29338"N                     | 168°56'44.71726"W                      | 7022684.4780                 | 602905.6530                | 3406357.853                                               | 1813750.75                                               | 77.005                                               | 23.471                                  | GS                         | 8/3/2018 9:22                   |
| 5239                     | 5239                | 63°19'05.37720"N                     | 168°56'44.75651"W                      | 63°19'05.39269"N                     | 168°56'44.67069"W                      | 7022687.5720                 | 602906.2020                | 3406367.974                                               | 1813752.711                                              | 76.797                                               | 23.408                                  | GS                         | 8/3/2018 9:22                   |
| 5240                     | 5240                | 63°19'05.58438"N                     | 168°56'44.66393"W                      | 63°19'05.59987"N                     | 168°56'44.57811"W                      | 7022694.0230                 | 602907.2840                | 3406389.086                                               | 1813756.593                                              | 75.711                                               | 23.077                                  | GS                         | 8/3/2018 9:22                   |
| 5241                     | 5241                | 63°19'05.80371"N                     | 168°56'44.56513"W                      | 63°19'05.81920"N                     | 168°56'44.47930"W                      | 7022700.8520                 | 602908.4410                | 3406411.436                                               | 1813760.739                                              | 74.168                                               | 22.606                                  | GS                         | 8/3/2018 9:23                   |
| 5242                     | 5242                | 63°19'06.01640"N                     | 168°56'44.47140"W                      | 63°19'06.03189"N                     | 168°56'44.38558"W                      | 7022707.4750                 | 602909.5340                | 3406433.108                                               | 1813764.664                                              | 71.979                                               | 21.939                                  | GS                         | 8/3/2018 9:23                   |
| 5243                     | 5243                | 63°19'06.22916"N                     | 168°56'44.37712"W                      | 63°19'06.24465"N                     | 168°56'44.29130"W                      | 7022714.0990                 | 602910.6350                | 3406454.787                                               | 1813768.614                                              | 69.356                                               | 21.14                                   | GS                         | 8/3/2018 9:24                   |
| 5244                     | 5244                | 63°19'06.41767"N                     | 168°56'44.29179"W                      | 63°19'06.43315"N                     | 168°56'44.20597"W                      | 7022719.9690                 | 602911.6350                | 3406473.997                                               | 1813772.196                                              | 66.245                                               | 20.191                                  | GS                         | 8/3/2018 9:24                   |
| 5245                     | 5245                | 63°19'06.61687"N                     | 168°56'44.20607"W                      | 63°19'06.63236"N                     | 168°56'44.12025"W                      | 7022726.1710                 | 602912.6300                | 3406494.293                                               | 1813775.778                                              | 62.78                                                | 19.135                                  | GS                         | 8/3/2018 9:25                   |
| 5246                     | 5246                | 63°19'06.83244"N                     | 168°56'44.10900"W                      | 63°19'06.84793"N                     | 168°56'44.02318"W                      | 7022732.8830                 | 602913.7670                | 3406516.26                                                | 1813779.851                                              | 60.402                                               | 18.41                                   | GS                         | 8/3/2018 9:25                   |
| 5247                     | 5247                | 63°19'06.99848"N                     | 168°56'44.03675"W                      | 63°19'07.01397"N                     | 168°56'43.95093"W                      | 7022738.0530                 | 602914.6070                | 3406533.178                                               | 1813782.873                                              | 57.96                                                | 17.666                                  | END FILL BEGIN ORIGINAL GF | 8/3/2018 9:26                   |
| 5248                     | 5248                | 63°19'07.22241"N                     | 168°56'43.93307"W                      | 63°19'07.23790"N                     | 168°56'43.84724"W                      | 7022745.0270                 | 602915.8280                | 3406555.999                                               | 1813787.234                                              | 55.852                                               | 17.024                                  | GS                         | 8/3/2018 9:27                   |
| 5249                     | 5249                | 63°19'07.45635"N                     | 168°56'43.83322"W                      | 63°19'07.47184"N                     | 168°56'43.74739"W                      | 7022752.3090                 | 602916.9850                | 3406579.834                                               | 1813791.403                                              | 54.566                                               | 16.632                                  | GS                         | 8/3/2018 9:27                   |
| 5250                     | 5250                | 63°19'07.68463"N                     | 168°56'43.72983"W                      | 63°19'07.70012"N                     | 168°56'43.64401"W                      | 7022759.4180                 | 602918.1960                | 3406603.097                                               | 1813795.743                                              | 53.877                                               | 16.422                                  | GS                         | 8/3/2018 9:28                   |
| 5251                     | 5251                | 63°19'07.93186"N                     | 168°56'43.62076"W                      | 63°19'07.94735"N                     | 168°56'43.53493"W                      | 7022767.1160                 | 602919.4690                | 3406628.288                                               | 1813800.311                                              | 52.698                                               | 16.062                                  | GS                         | 8/3/2018 9:28                   |
| 5252                     | 5252                | 63°19'04.75458"N                     | 168°56'45.03246"W                      | 63°19'04.77007"N                     | 168°56'44.94665"W                      | 7022668.1850                 | 602902.9800                | 3406304.531                                               | 1813741.149                                              | 78.639                                               | 23.969                                  | GS                         | 8/3/2018 9:35                   |
| 5253                     | 5253                | 63°19'04.73012"N                     | 168°56'45.04272"W                      | 63°19'04.74561"N                     | 168°56'44.95691"W                      | 7022667.4240                 | 602902.8620                | 3406302.039                                               | 1813740.721                                              | 78.167                                               | 23.825                                  | GS                         | 8/3/2018 9:35                   |
| 5254                     | 5254                | 63°19'04.70205"N                     | 168°56'45.05417"W                      | 63°19'04.71754"N                     | 168°56'44.96834"W                      | 7022666.5510                 | 602902.7310                | 3406299.18                                                | 1813740.245                                              | 78.281                                               | 23.86                                   | GS                         | 8/3/2018 9:35                   |

| Field Survey<br>Point ID | Feature Location ID | Latitude (WGS84)                     | Longitude (WGS84)                      | Latitude (NAD 83 (2011))             | Longitude (NAD 83<br>(2011))           | Northing (UTM<br>Zone 2N)    | Easting (UTM<br>Zone 2N)   | Northing - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Easting - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Elevation (NAVD88,<br>GEOID12B, U.S. Survey<br>Feet) | Elevation (NAVD88,<br>GEOID12B, Meters) | Text Descriptor | Measurement Date/Time          |
|--------------------------|---------------------|--------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|------------------------------|----------------------------|-----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|-----------------------------------------|-----------------|--------------------------------|
| 5255                     | 5255                | 63°19'04.67992"N                     | 168°56'45.06551"W                      | 63°19'04.69541"N                     | 168°56'44.97970"W                      | 7022665.8610                 | 602902.5950                | 3406296.924                                               | 1813739.764                                              | 78.488                                               | 23.923                                  | GS              | 8/3/2018 9:35                  |
| 5256                     | 5256                | 63°19'04.64629"N                     | 168°56'45.07993"W                      | 63°19'04.66178"N                     | 168°56'44.99411"W                      | 7022664.8140                 | 602902.4270                | 3406293.497                                               | 1813739.162                                              | 78.848                                               | 24.033                                  | GS              | 8/3/2018 9:36                  |
| 5257                     | 5257                | 63°19'04.61299"N                     | 168°56'45.09242"W                      | 63°19'04.62848"N                     | 168°56'45.00659"W                      | 7022663.7780                 | 602902.2870                | 3406290.106                                               | 1813738.647                                              | 78.972                                               | 24.071                                  | GS              | 8/3/2018 9:36                  |
| 5258                     | 5258                | 63°19'04.58931"N                     | 168°56'45.10529"W                      | 63°19'04.60480"N                     | 168°56'45.01947"W                      | 7022663.0400                 | 602902.1310                | 3406287.691                                               | 1813738.099                                              | 78.99                                                | 24.076                                  | GS              | 8/3/2018 9:36                  |
| 5259                     | 5259                | 63°19'04.55773"N                     | 168°56'45.11894"W                      | 63°19'04.57322"N                     | 168°56'45.03312"W                      | 7022662.0560                 | 602901.9730                | 3406284.473                                               | 1813737.528                                              | 78.763                                               | 24.007                                  | GS              | 8/3/2018 9:37                  |
| 5260                     | 5260                | 63°19'04.52387"N                     | 168°56'45.13284"W                      | 63°19'04.53936"N                     | 168°56'45.04701"W                      | 7022661.0030                 | 602901.8130                | 3406281.024                                               | 1813736.95                                               | 78.922                                               | 24.056                                  | GS              | 8/3/2018 9:37                  |
| 5261                     | 5261                | 63°19'04.48845"N                     | 168°56'45.14900"W                      | 63°19'04.50394"N                     | 168°56'45.06317"W                      | 7022659.9000                 | 602901.6230                | 3406277.414                                               | 1813736.271                                              | 79.297                                               | 24.17                                   | GS              | 8/3/2018 9:37                  |
| 5262                     | 5262                | 63°19'04.44193"N                     | 168°56'45.17058"W                      | 63°19'04.45742"N                     | 168°56'45.08477"W                      | 7022658.4510                 | 602901.3690                | 3406272.674                                               | 1813735.363                                              | 79.621                                               | 24.268                                  | GS              | 8/3/2018 9:37                  |
| 5263                     | 5263                | 63°19'04.40330"N                     | 168°56'45.18785"W                      | 63°19'04.41879"N                     | 168°56'45.10203"W                      | 7022657.2480                 | 602901.1670                | 3406268.737                                               | 1813734.639                                              | 79.616                                               | 24.267                                  | GS              | 8/3/2018 9:38                  |
| 5264                     | 5264                | 63°19'04.36126"N                     | 168°56'45.20577"W                      | 63°19'04.37675"N                     | 168°56'45.11994"W                      | 7022655.9390                 | 602900.9600                | 3406264.454                                               | 1813733.891                                              | 79.581                                               | 24.256                                  | GS              | 8/3/2018 9:38                  |
| 5265                     | 5265                | 63°19'04.31233"N                     | 168°56'45.22580"W                      | 63°19'04.32781"N                     | 168°56'45.13998"W                      | 7022654.4160                 | 602900.7290                | 3406259.469                                               | 1813733.058                                              | 79.483                                               | 24.227                                  | GS              | 8/3/2018 9:38                  |
| 5266                     | 5266                | 63°19'04.27604"N                     | 168°56'45.24576"W                      | 63°19'04.29153"N                     | 168°56'45.15994"W                      | 7022653.2850                 | 602900.4880                | 3406255.769                                               | 1813732.207                                              | 79.496                                               | 24.23                                   | GS              | 8/3/2018 9:39                  |
| 5267                     | 5267                | 63°19'04.24445"N                     | 168°56'45.25718"W                      | 63°19'04.25994"N                     | 168°56'45.17136"W                      | 7022652.3030                 | 602900.3600                | 3406252.552                                               | 1813731.738                                              | 79.279                                               | 24.164                                  | GS              | 8/3/2018 9:39                  |
| 5268                     | 5268                | 63°19'04.21151"N                     | 168°56'45.27314"W                      | 63°19'04.22700"N                     | 168°56'45.18732"W                      | 7022651.2760                 | 602900.1710                | 3406249.194                                               | 1813731.064                                              | 79.204                                               | 24.141                                  | GS              | 8/3/2018 9:40                  |
| 5269                     | 5269                | 63°19'04.17888"N                     | 168°56'45.28555"W                      | 63°19'04.19437"N                     | 168°56'45.19972"W                      | 7022650.2610                 | 602900.0300                | 3406245.871                                               | 1813730.552                                              | 78.862                                               | 24.037                                  | GS              | 8/3/2018 9:40                  |
| 5270                     | 5270                | 63°19'04.15175"N                     | 168°56'45.29642"W                      | 63°19'04.16724"N                     | 168°56'45.21060"W                      | 7022649.4170<br>7022648.4500 | 602899.9060                | 3406243.107                                               | 1813730.101                                              | 78.324                                               | 23.873                                  | GS              | 8/3/2018 9:42                  |
| 5271<br>5272             | 5271<br>5272        | 63°19'04.12071"N<br>63°19'04.09230"N | 168°56'45.31198"W<br>168°56'45.32465"W | 63°19'04.13620"N<br>63°19'04.10779"N | 168°56'45.22617"W<br>168°56'45.23882"W | 7022647.5650                 | 602899.7200                | 3406239.943<br>3406237.048                                | 1813729.442                                              | 78.302<br>78.335                                     | 23.866                                  | GS<br>GS        | 8/3/2018 9:43<br>8/3/2018 9:43 |
| 5272                     | 5272                | 63°19'04.06124"N                     | 168°56'45.33831"W                      | 63°19'04.07673"N                     | 168°56'45.25249"W                      | 7022646.5980                 | 602899.5720<br>602899.4130 | 3406237.048                                               | 1813728.911<br>1813728.339                               | 78.332                                               | 23.876                                  | GS              | 8/3/2018 9:44                  |
| 5273                     | 5273                | 63°19'04.03391"N                     | 168°56'45.35205"W                      | 63°19'04.04940"N                     | 168°56'45.26624"W                      | 7022645.7460                 | 602899.2490                | 3406233.883                                               | 1813728.339                                              | 78.291                                               | 23.863                                  | GS              | 8/3/2018 9:44                  |
| 5275                     | 5275                | 63°19'04.00394"N                     | 168°56'45.36296"W                      | 63°19'04.01943"N                     | 168°56'45.27714"W                      | 7022644.8140                 | 602899.1270                | 3406228.045                                               | 1813727.309                                              | 78.302                                               | 23.866                                  | GS              | 8/3/2018 9:44                  |
| 5276                     | 5276                | 63°19'03.96696"N                     | 168°56'45.37959"W                      | 63°19'03.98245"N                     | 168°56'45.29378"W                      | 7022643.6630                 | 602898.9320                | 3406224.277                                               | 1813726.611                                              | 78.23                                                | 23.844                                  | GS              | 8/3/2018 9:44                  |
| 5277                     | 5277                | 63°19'03.93900"N                     | 168°56'45.39367"W                      | 63°19'03.95448"N                     | 168°56'45.30784"W                      | 7022642.7910                 | 602898.7640                | 3406221.426                                               | 1813726.015                                              | 78.149                                               | 23.82                                   | GS              | 8/3/2018 9:45                  |
| 5278                     | 5278                | 63°19'03.93819"N                     | 168°56'45.39580"W                      | 63°19'03.95369"N                     | 168°56'45.30997"W                      | 7022642.7660                 | 602898.7350                | 3406221.343                                               | 1813725.919                                              | 78.135                                               | 23.816                                  | GS              | 8/3/2018 9:45                  |
| 5279                     | 5279                | 63°19'03.90097"N                     | 168°56'45.40868"W                      | 63°19'03.91647"N                     | 168°56'45.32286"W                      | 7022641.6080                 | 602898.5930                | 3406217.553                                               | 1813725.393                                              | 78.193                                               | 23.833                                  | GS              | 8/3/2018 9:45                  |
| 5280                     | 5280                | 63°19'03.86535"N                     | 168°56'45.42728"W                      | 63°19'03.88084"N                     | 168°56'45.34145"W                      | 7022640.4980                 | 602898.3700                | 3406213.921                                               | 1813724.603                                              | 78.568                                               | 23.948                                  | GS              | 8/3/2018 9:46                  |
| 5281                     | 5281                | 63°19'03.79692"N                     | 168°56'45.45785"W                      | 63°19'03.81241"N                     | 168°56'45.37202"W                      | 7022638.3670                 | 602898.0120                | 3406206.948                                               | 1813723.321                                              | 78.656                                               | 23.974                                  | GS              | 8/3/2018 9:46                  |
| 5282                     | 5282                | 63°19'03.72278"N                     | 168°56'45.48896"W                      | 63°19'03.73827"N                     | 168°56'45.40315"W                      | 7022636.0590                 | 602897.6530                | 3406199.395                                               | 1813722.024                                              | 78.501                                               | 23.927                                  | GS              | 8/3/2018 9:46                  |
| 5283                     | 5283                | 63°19'03.67536"N                     | 168°56'45.51318"W                      | 63°19'03.69085"N                     | 168°56'45.42737"W                      | 7022634.5810                 | 602897.3630                | 3406194.56                                                | 1813720.997                                              | 78.298                                               | 23.865                                  | GS              | 8/3/2018 9:47                  |
| 5284                     | 5284                | 63°19'03.62564"N                     | 168°56'45.53302"W                      | 63°19'03.64113"N                     | 168°56'45.44720"W                      | 7022633.0340                 | 602897.1360                | 3406189.496                                               | 1813720.174                                              | 78.218                                               | 23.841                                  | GS              | 8/3/2018 9:48                  |
| 5285                     | 5285                | 63°19'03.57663"N                     | 168°56'45.55476"W                      | 63°19'03.59212"N                     | 168°56'45.46893"W                      | 7022631.5080                 | 602896.8820                | 3406184.502                                               | 1813719.263                                              | 77.99                                                | 23.771                                  | GS              | 8/3/2018 9:49                  |
| 5286                     | 5286                | 63°19'03.52836"N                     | 168°56'45.57509"W                      | 63°19'03.54385"N                     | 168°56'45.48929"W                      | 7022630.0060                 | 602896.6470                | 3406179.584                                               | 1813718.415                                              | 77.992                                               | 23.772                                  | GS              | 8/3/2018 9:49                  |
| 5287                     | 5287                | 63°19'03.43164"N                     | 168°56'45.61272"W                      | 63°19'03.44713"N                     | 168°56'45.52691"W                      | 7022626.9970                 | 602896.2200                | 3406169.733                                               | 1813716.858                                              | 77.871                                               | 23.735                                  | GS              | 8/3/2018 9:49                  |
| 5288                     | 5288                | 63°19'03.33842"N                     | 168°56'45.66113"W                      | 63°19'03.35391"N                     | 168°56'45.57532"W                      | 7022624.0910                 | 602895.6390                | 3406160.228                                               | 1813714.803                                              | 77.738                                               | 23.695                                  | GS              | 8/3/2018 9:50                  |
| 5289                     | 5289                | 63°19'03.24193"N                     | 168°56'45.70499"W                      | 63°19'03.25743"N                     | 168°56'45.61918"W                      | 7022621.0860                 | 602895.1240                | 3406150.396                                               | 1813712.961                                              | 77.412                                               | 23.595                                  | GS              | 8/3/2018 9:50                  |
| 5290                     | 5290                | 63°19'03.14242"N                     | 168°56'45.74461"W                      | 63°19'03.15791"N                     | 168°56'45.65880"W                      | 7022617.9900                 | 602894.6720                | 3406140.259                                               | 1813711.318                                              | 77.023                                               | 23.477                                  | GS              | 8/3/2018 9:50                  |
| 5291                     | 5291                | 63°19'03.04590"N                     | 168°56'45.78987"W                      | 63°19'03.06139"N                     | 168°56'45.70405"W                      | 7022614.9830                 | 602894.1380                | 3406130.422                                               | 1813709.412                                              | 76.772                                               | 23.4                                    | GS              | 8/3/2018 9:51                  |
| 5292                     | 5292                | 63°19'02.95172"N                     | 168°56'45.83078"W                      | 63°19'02.96721"N                     | 168°56'45.74497"W                      | 7022612.0510                 | 602893.6620                | 3406120.826                                               | 1813707.701                                              | 76.172                                               | 23.217                                  | GS              | 8/3/2018 9:52                  |
| 5293                     | 5293                | 63°19'02.84829"N                     | 168°56'45.87347"W                      | 63°19'02.86378"N                     | 168°56'45.78766"W                      | 7022608.8320                 | 602893.1700                | 3406110.289                                               | 1813705.924                                              | 75.871                                               | 23.126                                  | GS              | 8/3/2018 9:52                  |
| 5294                     | 5294                | 63°19'02.75183"N                     | 168°56'45.92269"W                      | 63°19'02.76733"N                     | 168°56'45.83687"W                      | 7022605.8260                 | 602892.5810                | 3406100.456                                               | 1813703.837                                              | 75.28                                                | 22.946                                  | GS              | 8/3/2018 9:52                  |
| 5295                     | 5295                | 63°19'02.66142"N                     | 168°56'45.96055"W                      | 63°19'02.67691"N                     | 168°56'45.87474"W                      | 7022603.0120                 | 602892.1440                | 3406091.245                                               | 1813702.259                                              | 74.679                                               | 22.762                                  | GS              | 8/3/2018 9:53                  |
| 5296                     | 5296                | 63°19'02.55772"N                     | 168°56'46.01041"W                      | 63°19'02.57320"N                     | 168°56'45.92459"W                      | 7022599.7810                 | 602891.5540                | 3406080.675                                               | 1813700.155                                              | 74.133                                               | 22.596                                  | GS              | 8/3/2018 9:53                  |
| 5297                     | 5297                | 63°19'02.45326"N                     | 168°56'46.05189"W                      | 63°19'02.46875"N                     | 168°56'45.96607"W                      | 7022596.5310                 | 602891.0800                | 3406070.035                                               | 1813698.435                                              | 73.711                                               | 22.467                                  | GS              | 8/3/2018 9:53                  |
| 5298                     | 5298                | 63°19'02.36810"N                     | 168°56'46.09103"W                      | 63°19'02.38359"N                     | 168°56'46.00521"W                      | 7022593.8790                 | 602890.6200                | 3406061.356                                               | 1813696.79                                               | 73.613                                               | 22.437                                  | GS              | 8/3/2018 9:54                  |

| Field Survey<br>Point ID | Feature Location ID | Latitude (WGS84)                     | Longitude (WGS84)                      | Latitude (NAD 83 (2011))             | Longitude (NAD 83<br>(2011))           | Northing (UTM<br>Zone 2N)    | Easting (UTM<br>Zone 2N)   | Northing - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Easting - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Elevation (NAVD88,<br>GEOID12B, U.S. Survey<br>Feet) | Elevation (NAVD88,<br>GEOID12B, Meters) | Text Descriptor        | Measurement Date/Time            |
|--------------------------|---------------------|--------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|------------------------------|----------------------------|-----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|-----------------------------------------|------------------------|----------------------------------|
| 5299                     | 5299                | 63°19'02.26742"N                     | 168°56'46.13594"W                      | 63°19'02.28291"N                     | 168°56'46.05011"W                      | 7022590.7440                 | 602890.0950                | 3406051.097                                               | 1813694.907                                              | 73.387                                               | 22.368                                  | GS                     | 8/3/2018 9:54                    |
| 5300                     | 5300                | 63°19'02.17605"N                     | 168°56'46.17427"W                      | 63°19'02.19153"N                     | 168°56'46.08846"W                      | 7022587.9000                 | 602889.6520                | 3406041.788                                               | 1813693.309                                              | 73.11                                                | 22.284                                  | GS                     | 8/3/2018 9:55                    |
| 5301                     | 5301                | 63°19'02.07778"N                     | 168°56'46.21754"W                      | 63°19'02.09327"N                     | 168°56'46.13172"W                      | 7022584.8400                 | 602889.1480                | 3406031.775                                               | 1813691.497                                              | 72.679                                               | 22.153                                  | GS                     | 8/3/2018 9:56                    |
| 5302                     | 5302                | 63°19'01.98369"N                     | 168°56'46.25848"W                      | 63°19'01.99918"N                     | 168°56'46.17267"W                      | 7022581.9110                 | 602888.6710                | 3406022.188                                               | 1813689.784                                              | 72.412                                               | 22.071                                  | GS                     | 8/3/2018 9:56                    |
| 5303                     | 5303                | 63°19'01.88122"N                     | 168°56'46.30396"W                      | 63°19'01.89671"N                     | 168°56'46.21815"W                      | 7022578.7210                 | 602888.1400                | 3406011.747                                               | 1813687.878                                              | 71.881                                               | 21.909                                  | GS                     | 8/3/2018 9:57                    |
| 5304                     | 5304                | 63°19'01.78905"N                     | 168°56'46.34613"W                      | 63°19'01.80454"N                     | 168°56'46.26033"W                      | 7022575.8500                 | 602887.6450                | 3406002.354                                               | 1813686.106                                              | 71.137                                               | 21.683                                  | GS                     | 8/3/2018 9:57                    |
| 5305                     | 5305                | 63°19'01.70092"N                     | 168°56'46.38739"W                      | 63°19'01.71641"N                     | 168°56'46.30156"W                      | 7022573.1050                 | 602887.1590                | 3405993.372                                               | 1813684.369                                              | 70.55                                                | 21.504                                  | GTOP                   | 8/3/2018 9:57                    |
| 5306                     | 5306                | 63°19'01.66719"N                     | 168°56'46.39642"W                      | 63°19'01.68269"N                     | 168°56'46.31060"W                      | 7022572.0580                 | 602887.0660                | 3405989.94                                                | 1813684.013                                              | 69.728                                               | 21.253                                  | GTOE                   | 8/3/2018 9:58                    |
| 5307                     | 5307                | 63°19'01.62388"N                     | 168°56'46.41692"W                      | 63°19'01.63938"N                     | 168°56'46.33111"W                      | 7022570.7090                 | 602886.8240                | 3405985.526                                               | 1813683.149                                              | 70.113                                               | 21.371                                  | RSH                    | 8/3/2018 9:59                    |
| 5308                     | 5308<br>5309        | 63°19'01.49952"N<br>63°19'01.36114"N | 168°56'46.47774"W<br>168°56'46.53419"W | 63°19'01.51501"N<br>63°19'01.37663"N | 168°56'46.39192"W<br>168°56'46.44837"W | 7022566.8340<br>7022562.5270 | 602886.1010<br>602885.4530 | 3405972.849<br>3405958.753                                | 1813680.579<br>1813678.232                               | 69.972<br>69.101                                     | 21.327                                  | RCL<br>RSH2            | 8/3/2018 9:59<br>8/3/2018 10:00  |
| 5310                     | 5310                | 63°19'01.31403"N                     | 168°56'46.55380"W                      | 63°19'01.32952"N                     | 168°56'46.46798"W                      | 7022562.5270                 | 602885.2270                | 3405953.953                                               | 1813677.415                                              | 67.865                                               | 20.685                                  | GTOE2                  | 8/3/2018 10:00                   |
| 5311                     | 5310                | 63°19'01.18438"N                     | 168°56'46.61466"W                      | 63°19'01.19987"N                     | 168°56'46.52883"W                      | 7022557.0230                 | 602884.5090                | 3405940.74                                                | 1813674.852                                              | 66.906                                               | 20.393                                  | GS                     | 8/3/2018 10:01                   |
| 5312                     | 5312                | 63°19'01.12972"N                     | 168°56'46.63897"W                      | 63°19'01.14521"N                     | 168°56'46.55315"W                      | 7022555.3210                 | 602884.2250                | 3405935.17                                                | 1813673.833                                              | 66.295                                               | 20.207                                  | GS                     | 8/3/2018 10:01                   |
| 5313                     | 5313                | 63°19'00.97229"N                     | 168°56'46.70813"W                      | 63°19'00.98778"N                     | 168°56'46.62231"W                      | 7022550.4190                 | 602883.4190                | 3405919.129                                               | 1813670.937                                              | 63.478                                               | 19.348                                  | GS                     | 8/3/2018 10:01                   |
| 5314                     | 5314                | 63°19'04.17405"N                     | 168°56'44.04009"W                      | 63°19'04.18953"N                     | 168°56'43.95427"W                      | 7022650.6670                 | 602917.3620                | 3406246.315                                               | 1813787.438                                              | 78.94                                                | 24.061                                  | GS                     | 8/3/2018 10:07                   |
| 5315                     | 5315                | 63°19'03.81491"N                     | 168°56'47.05862"W                      | 63°19'03.83040"N                     | 168°56'46.97280"W                      | 7022638.2100                 | 602875.7250                | 3406207.574                                               | 1813650.186                                              | 77.615                                               | 23.657                                  | GS                     | 8/3/2018 10:08                   |
| 5316                     | 5316                | 63°19'03.20997"N                     | 168°56'52.15343"W                      | 63°19'03.22546"N                     | 168°56'52.06760"W                      | 7022617.2240                 | 602805.4470                | 3406142.313                                               | 1813418.522                                              | 59.598                                               | 18.166                                  | GS                     | 8/3/2018 10:10                   |
| 5317                     | 5317                | 63°19'03.27576"N                     | 168°56'51.58016"W                      | 63°19'03.29125"N                     | 168°56'51.49435"W                      | 7022619.5150                 | 602813.3570                | 3406149.424                                               | 1813444.593                                              | 60.9                                                 | 18.562                                  | GS                     | 8/3/2018 10:11                   |
| 5318                     | 5318                | 63°19'03.32782"N                     | 168°56'51.14385"W                      | 63°19'03.34332"N                     | 168°56'51.05804"W                      | 7022621.3200                 | 602819.3750                | 3406155.039                                               | 1813464.432                                              | 62.718                                               | 19.116                                  | GS                     | 8/3/2018 10:11                   |
| 5319                     | 5319                | 63°19'03.37309"N                     | 168°56'50.77647"W                      | 63°19'03.38858"N                     | 168°56'50.69065"W                      | 7022622.8840                 | 602824.4410                | 3406159.912                                               | 1813481.134                                              | 64.624                                               | 19.697                                  | VEG2 BEGIB FILL END OG | 8/3/2018 10:12                   |
| 5320                     | 5320                | 63°19'03.40617"N                     | 168°56'50.49168"W                      | 63°19'03.42166"N                     | 168°56'50.40587"W                      | 7022624.0340                 | 602828.3700                | 3406163.485                                               | 1813494.085                                              | 67.899                                               | 20.696                                  | GS                     | 8/3/2018 10:12                   |
| 5321                     | 5321                | 63°19'03.44988"N                     | 168°56'50.12559"W                      | 63°19'03.46537"N                     | 168°56'50.03978"W                      | 7022625.5500                 | 602833.4200                | 3406168.199                                               | 1813510.731                                              | 70.914                                               | 21.615                                  | GS                     | 8/3/2018 10:13                   |
| 5322                     | 5322                | 63°19'03.49763"N                     | 168°56'49.72486"W                      | 63°19'03.51312"N                     | 168°56'49.63904"W                      | 7022627.2060                 | 602838.9470                | 3406173.349                                               | 1813528.952                                              | 72.594                                               | 22.127                                  | GS                     | 8/3/2018 10:13                   |
| 5323                     | 5323                | 63°19'03.55815"N                     | 168°56'49.21454"W                      | 63°19'03.57364"N                     | 168°56'49.12871"W                      | 7022629.3050                 | 602845.9870                | 3406179.879                                               | 1813552.157                                              | 73.917                                               | 22.53                                   | GS                     | 8/3/2018 10:13                   |
| 5324                     | 5324                | 63°19'03.61586"N                     | 168°56'48.72969"W                      | 63°19'03.63135"N                     | 168°56'48.64387"W                      | 7022631.3070                 | 602852.6750                | 3406186.104                                               | 1813574.203                                              | 74.704                                               | 22.77                                   | GS                     | 8/3/2018 10:14                   |
| 5325                     | 5325                | 63°19'03.67831"N                     | 168°56'48.19361"W                      | 63°19'03.69380"N                     | 168°56'48.10779"W                      | 7022633.4780                 | 602860.0710                | 3406192.848                                               | 1813598.581                                              | 76.087                                               | 23.192                                  | GS                     | 8/3/2018 10:14                   |
| 5326                     | 5326                | 63°19'03.73551"N                     | 168°56'47.71449"W                      | 63°19'03.75100"N                     | 168°56'47.62867"W                      | 7022635.4610                 | 602866.6790                | 3406199.017                                               | 1813620.366                                              | 76.816                                               | 23.414                                  | GS                     | 8/3/2018 10:14                   |
| 5327<br>5328             | 5327<br>5328        | 63°19'03.78882"N<br>63°19'03.83898"N | 168°56'47.27404"W<br>168°56'46.86113"W | 63°19'03.80431"N<br>63°19'03.85447"N | 168°56'47.18822"W<br>168°56'46.77532"W | 7022637.3070<br>7022639.0430 | 602872.7540<br>602878.4480 | 3406204.762<br>3406210.167                                | 1813640.392<br>1813659.165                               | 77.425<br>77.87                                      | 23.599                                  | GS<br>GS               | 8/3/2018 10:15<br>8/3/2018 10:15 |
| 5329                     | 5329                | 63°19'03.86898"N                     | 168°56'46.60058"W                      | 63°19'03.88447"N                     | 168°56'46.51476"W                      | 7022640.0870                 | 602882.0430                | 3406213.409                                               | 1813671.014                                              | 78.166                                               | 23.825                                  | GS                     | 8/3/2018 10:16                   |
| 5330                     | 5330                | 63°19'03.87857"N                     | 168°56'46.51187"W                      | 63°19'03.89406"N                     | 168°56'46.42605"W                      | 7022640.4230                 | 602883.2680                | 3406214.45                                                | 1813675.049                                              | 78.245                                               | 23.849                                  | GS                     | 8/3/2018 10:16                   |
| 5331                     | 5331                | 63°19'03.88766"N                     | 168°56'46.43810"W                      | 63°19'03.90315"N                     | 168°56'46.35228"W                      | 7022640.7370                 | 602884.2850                | 3406215.428                                               | 1813678.403                                              | 78.142                                               | 23.818                                  | GS                     | 8/3/2018 10:16                   |
| 5332                     | 5332                | 63°19'03.89849"N                     | 168°56'46.35855"W                      | 63°19'03.91399"N                     | 168°56'46.27272"W                      | 7022641.1080                 | 602885.3810                | 3406216.588                                               | 1813682.018                                              | 77.977                                               | 23.768                                  | GS                     | 8/3/2018 10:16                   |
| 5333                     | 5333                | 63°19'03.90695"N                     | 168°56'46.28469"W                      | 63°19'03.92244"N                     | 168°56'46.19886"W                      | 7022641.4020                 | 602886.4000                | 3406217.502                                               | 1813685.377                                              | 77.844                                               | 23.727                                  | GS                     | 8/3/2018 10:17                   |
| 5334                     | 5334                | 63°19'03.92044"N                     | 168°56'46.18174"W                      | 63°19'03.93593"N                     | 168°56'46.09593"W                      | 7022641.8660                 | 602887.8190                | 3406218.95                                                | 1813690.056                                              | 77.996                                               | 23.773                                  | GS                     | 8/3/2018 10:17                   |
| 5335                     | 5335                | 63°19'03.93054"N                     | 168°56'46.09100"W                      | 63°19'03.94604"N                     | 168°56'46.00517"W                      | 7022642.2190                 | 602889.0720                | 3406220.044                                               | 1813694.183                                              | 78.275                                               | 23.858                                  | GS                     | 8/3/2018 10:17                   |
| 5336                     | 5336                | 63°19'03.94065"N                     | 168°56'46.00711"W                      | 63°19'03.95615"N                     | 168°56'45.92129"W                      | 7022642.5690                 | 602890.2280                | 3406221.134                                               | 1813697.997                                              | 78.469                                               | 23.917                                  | GS                     | 8/3/2018 10:17                   |
| 5337                     | 5337                | 63°19'03.95165"N                     | 168°56'45.90327"W                      | 63°19'03.96714"N                     | 168°56'45.81745"W                      | 7022642.9560                 | 602891.6620                | 3406222.329                                               | 1813702.721                                              | 78.549                                               | 23.942                                  | GS                     | 8/3/2018 10:18                   |
| 5338                     | 5338                | 63°19'03.96294"N                     | 168°56'45.81575"W                      | 63°19'03.97844"N                     | 168°56'45.72994"W                      | 7022643.3440                 | 602892.8680                | 3406223.541                                               | 1813706.699                                              | 78.64                                                | 23.97                                   | GS                     | 8/3/2018 10:18                   |
| 5339                     | 5339                | 63°19'03.97359"N                     | 168°56'45.70645"W                      | 63°19'03.98908"N                     | 168°56'45.62063"W                      | 7022643.7220                 | 602894.3780                | 3406224.705                                               | 1813711.673                                              | 78.766                                               | 24.008                                  | GS                     | 8/3/2018 10:18                   |
| 5340                     | 5340                | 63°19'03.98645"N                     | 168°56'45.61756"W                      | 63°19'04.00194"N                     | 168°56'45.53175"W                      | 7022644.1600                 | 602895.6020                | 3406226.078                                               | 1813715.711                                              | 78.629                                               | 23.966                                  | GS                     | 8/3/2018 10:19                   |
| 5341                     | 5341                | 63°19'03.99644"N                     | 168°56'45.52479"W                      | 63°19'04.01193"N                     | 168°56'45.43896"W                      | 7022644.5100                 | 602896.8830                | 3406227.162                                               | 1813719.931                                              | 78.563                                               | 23.946                                  | GS                     | 8/3/2018 10:19                   |
| 5342                     | 5342                | 63°19'04.00640"N                     | 168°56'45.44465"W                      | 63°19'04.02189"N                     | 168°56'45.35884"W                      | 7022644.8540                 | 602897.9880                | 3406228.234                                               | 1813723.574                                              | 78.366                                               | 23.886                                  | GS                     | 8/3/2018 10:19                   |

| Field Survey<br>Point ID | Feature Location ID | Latitude (WGS84)                     | Longitude (WGS84)                      | Latitude (NAD 83 (2011))             | Longitude (NAD 83<br>(2011))           | Northing (UTM<br>Zone 2N)    | Easting (UTM<br>Zone 2N)   | Northing - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Easting - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Elevation (NAVD88,<br>GEOID12B, U.S. Survey<br>Feet) | Elevation (NAVD88,<br>GEOID12B, Meters) | Text Descriptor | Measurement Date/Time            |
|--------------------------|---------------------|--------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|------------------------------|----------------------------|-----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|-----------------------------------------|-----------------|----------------------------------|
| 5343                     | 5343                | 63°19'04.01703"N                     | 168°56'45.35668"W                      | 63°19'04.03252"N                     | 168°56'45.27086"W                      | 7022645.2220                 | 602899.2010                | 3406229.379                                               | 1813727.574                                              | 78.257                                               | 23.853                                  | GS              | 8/3/2018 10:19                   |
| 5344                     | 5344                | 63°19'04.02807"N                     | 168°56'45.27234"W                      | 63°19'04.04356"N                     | 168°56'45.18653"W                      | 7022645.6010                 | 602900.3640                | 3406230.564                                               | 1813731.407                                              | 78.16                                                | 23.823                                  | GS              | 8/3/2018 10:20                   |
| 5345                     | 5345                | 63°19'04.03820"N                     | 168°56'45.18692"W                      | 63°19'04.05369"N                     | 168°56'45.10110"W                      | 7022645.9530                 | 602901.5420                | 3406231.657                                               | 1813735.291                                              | 77.847                                               | 23.728                                  | GS              | 8/3/2018 10:20                   |
| 5346                     | 5346                | 63°19'04.04659"N                     | 168°56'45.10982"W                      | 63°19'04.06208"N                     | 168°56'45.02400"W                      | 7022646.2470                 | 602902.6060                | 3406232.567                                               | 1813738.798                                              | 77.667                                               | 23.673                                  | GS              | 8/3/2018 10:20                   |
| 5347                     | 5347                | 63°19'04.05554"N                     | 168°56'45.04043"W                      | 63°19'04.07103"N                     | 168°56'44.95461"W                      | 7022646.5550                 | 602903.5630                | 3406233.528                                               | 1813741.952                                              | 77.49                                                | 23.619                                  | GS              | 8/3/2018 10:20                   |
| 5348                     | 5348                | 63°19'04.05987"N                     | 168°56'44.99550"W                      | 63°19'04.07535"N                     | 168°56'44.90967"W                      | 7022646.7080                 | 602904.1840                | 3406234.001                                               | 1813743.997                                              | 77.566                                               | 23.642                                  | GS              | 8/3/2018 10:21                   |
| 5349                     | 5349<br>5350        | 63°19'04.06989"N<br>63°19'04.07952"N | 168°56'44.91961"W<br>168°56'44.84483"W | 63°19'04.08538"N<br>63°19'04.09501"N | 168°56'44.83379"W<br>168°56'44.75900"W | 7022647.0520<br>7022647.3840 | 602905.2290<br>602906.2600 | 3406235.076<br>3406236.11                                 | 1813747.446<br>1813750.845                               | 77.979<br>78.363                                     | 23.768                                  | GS<br>GS        | 8/3/2018 10:21<br>8/3/2018 10:21 |
| 5351                     | 5351                | 63°19'04.09733"N                     | 168°56'44.68612"W                      | 63°19'04.11281"N                     | 168°56'44.60030"W                      | 7022648.0050                 | 602908.4500                | 3406238.038                                               | 1813758.063                                              | 78.624                                               | 23.965                                  | GS              | 8/3/2018 10:21                   |
| 5352                     | 5352                | 63°19'04.12938"N                     | 168°56'44.41542"W                      | 63°19'04.14487"N                     | 168°56'44.32961"W                      | 7022649.1180                 | 602912.1840                | 3406241.497                                               | 1813770.372                                              | 78.977                                               | 24.072                                  | GS              | 8/3/2018 10:22                   |
| 5353                     | 5353                | 63°19'04.16588"N                     | 168°56'44.10109"W                      | 63°19'04.18137"N                     | 168°56'44.01528"W                      | 7022650.3870                 | 602916.5210                | 3406245.44                                                | 1813784.666                                              | 78.895                                               | 24.047                                  | GS              | 8/3/2018 10:22                   |
| 5354                     | 5354                | 63°19'04.20279"N                     | 168°56'43.80050"W                      | 63°19'04.21828"N                     | 168°56'43.71468"W                      | 7022651.6630                 | 602920.6660                | 3406249.414                                               | 1813798.332                                              | 78.782                                               | 24.013                                  | GS              | 8/3/2018 10:22                   |
| 5355                     | 5355                | 63°19'04.25909"N                     | 168°56'43.34412"W                      | 63°19'04.27457"N                     | 168°56'43.25830"W                      | 7022653.6080                 | 602926.9590                | 3406255.475                                               | 1813819.08                                               | 78.336                                               | 23.877                                  | GS              | 8/3/2018 10:24                   |
| 5356                     | 5356                | 63°19'04.31225"N                     | 168°56'42.87042"W                      | 63°19'04.32774"N                     | 168°56'42.78460"W                      | 7022655.4640                 | 602933.4970                | 3406261.23                                                | 1813840.624                                              | 77.611                                               | 23.656                                  | GS              | 8/3/2018 10:24                   |
| 5357                     | 5357                | 63°19'04.36994"N                     | 168°56'42.39194"W                      | 63°19'04.38543"N                     | 168°56'42.30612"W                      | 7022657.4630                 | 602940.0960                | 3406267.449                                               | 1813862.379                                              | 76.672                                               | 23.37                                   | GS              | 8/3/2018 10:24                   |
| 5358                     | 5358                | 63°19'04.43051"N                     | 168°56'41.89855"W                      | 63°19'04.44599"N                     | 168°56'41.81273"W                      | 7022659.5560                 | 602946.8990                | 3406273.971                                               | 1813884.81                                               | 75.171                                               | 22.912                                  | GS              | 8/3/2018 10:25                   |
| 5359                     | 5359                | 63°19'04.48574"N                     | 168°56'41.40974"W                      | 63°19'04.50123"N                     | 168°56'41.32391"W                      | 7022661.4830                 | 602953.6450                | 3406279.948                                               | 1813907.041                                              | 74.335                                               | 22.657                                  | GS              | 8/3/2018 10:26                   |
| 5360                     | 5360                | 63°19'04.54280"N                     | 168°56'40.93741"W                      | 63°19'04.55829"N                     | 168°56'40.85159"W                      | 7022663.4590                 | 602960.1590                | 3406286.098                                               | 1813928.516                                              | 73.13                                                | 22.29                                   | GS              | 8/3/2018 10:26                   |
| 5361                     | 5361                | 63°19'04.60773"N                     | 168°56'40.38898"W                      | 63°19'04.62322"N                     | 168°56'40.30316"W                      | 7022665.7130                 | 602967.7240                | 3406293.105                                               | 1813953.453                                              | 71.821                                               | 21.891                                  | GS              | 8/3/2018 10:26                   |
| 5362                     | 5362                | 63°19'04.66795"N                     | 168°56'39.88098"W                      | 63°19'04.68344"N                     | 168°56'39.79516"W                      | 7022667.8030                 | 602974.7310                | 3406299.603                                               | 1813976.552                                              | 70.234                                               | 21.407                                  | GS              | 8/3/2018 10:27                   |
| 5363                     | 5363                | 63°19'04.72461"N                     | 168°56'39.40069"W                      | 63°19'04.74010"N                     | 168°56'39.31487"W                      | 7022669.7700                 | 602981.3570                | 3406305.719                                               | 1813998.391                                              | 68.552                                               | 20.895                                  | GS              | 8/3/2018 10:27                   |
| 5364                     | 5364                | 63°19'04.78124"N                     | 168°56'38.93554"W                      | 63°19'04.79673"N                     | 168°56'38.84972"W                      | 7022671.7300                 | 602987.7720                | 3406311.82                                                | 1814019.539                                              | 66.54                                                | 20.281                                  | GS              | 8/3/2018 10:27                   |
| 5365                     | 5365                | 63°19'04.83567"N                     | 168°56'38.47375"W                      | 63°19'04.85117"N                     | 168°56'38.38793"W                      | 7022673.6200                 | 602994.1420                | 3406317.696                                               | 1814040.537                                              | 64.807                                               | 19.753                                  | GS              | 8/3/2018 10:28                   |
| 5366                     | 5366                | 63°19'04.89361"N                     | 168°56'38.00108"W                      | 63°19'04.90910"N                     | 168°56'37.91526"W                      | 7022675.6230                 | 603000.6600                | 3406323.936                                               | 1814062.026                                              | 63.622                                               | 19.392                                  | GS              | 8/3/2018 10:28                   |
| 5367                     | 5367<br>5368        | 63°19'04.95067"N<br>63°19'05.00450"N | 168°56'37.51000"W<br>168°56'37.05478"W | 63°19'04.96616"N<br>63°19'05.01999"N | 168°56'37.42418"W<br>168°56'36.96896"W | 7022677.6080<br>7022679.4760 | 603007.4350<br>603013.7140 | 3406330.101<br>3406335.91                                 | 1814084.357<br>1814105.056                               | 62.483<br>61.119                                     | 19.045<br>18.629                        | GS<br>RSH3      | 8/3/2018 10:28<br>8/3/2018 10:29 |
| 5369                     | 5369                | 63°19'05.06949"N                     | 168°56'36.49571"W                      | 63°19'05.08499"N                     | 168°56'36.40989"W                      | 7022681.7370                 | 603021.4270                | 3406342.932                                               | 1814130.479                                              | 60.83                                                | 18.541                                  | RCL1            | 8/3/2018 10:30                   |
| 5370                     | 5370                | 63°19'05.13820"N                     | 168°56'35.94488"W                      | 63°19'05.15369"N                     | 168°56'35.85905"W                      | 7022684.1080                 | 603029.0220                | 3406350.325                                               | 1814155.519                                              | 59.332                                               | 18.085                                  | RSH1            | 8/3/2018 10:30                   |
| 5371                     | 5371                | 63°19'05.20321"N                     | 168°56'35.37177"W                      | 63°19'05.21870"N                     | 168°56'35.28594"W                      | 7022686.3750                 | 603036.9300                | 3406357.359                                               | 1814181.583                                              | 54.188                                               | 16.516                                  | GTOE1           | 8/3/2018 10:30                   |
| 5372                     | 5372                | 63°19'05.27671"N                     | 168°56'34.76745"W                      | 63°19'05.29221"N                     | 168°56'34.68163"W                      | 7022688.9190                 | 603045.2640                | 3406365.279                                               | 1814209.058                                              | 52.257                                               | 15.928                                  | GS              | 8/3/2018 10:31                   |
| 5373                     | 5373                | 63°19'05.34981"N                     | 168°56'34.16848"W                      | 63°19'05.36531"N                     | 168°56'34.08266"W                      | 7022691.4480                 | 603053.5240                | 3406373.154                                               | 1814236.289                                              | 51.706                                               | 15.76                                   | GS              | 8/3/2018 10:31                   |
| 5374                     | 5374                | 63°18'43.29940"N                     | 168°57'48.91529"W                      | 63°18'43.31490"N                     | 168°57'48.82951"W                      | 7021976.0270                 | 602035.3570                | 3404077.89                                                | 1810858.959                                              | 61.58                                                | 18.77                                   | HEW13           | 8/3/2018 11:13                   |
| 5375                     | 5375                | 63°18'43.31956"N                     | 168°57'48.87906"W                      | 63°18'43.33505"N                     | 168°57'48.79326"W                      | 7021976.6670                 | 602035.8410                | 3404079.964                                               | 1810860.581                                              | 61.521                                               | 18.752                                  | HEW13           | 8/3/2018 11:14                   |
| 5376                     | 5376                | 63°18'43.33884"N                     | 168°57'48.78681"W                      | 63°18'43.35434"N                     | 168°57'48.70102"W                      | 7021977.3050                 | 602037.1060                | 3404081.991                                               | 1810864.763                                              | 61.499                                               | 18.745                                  | HEW13           | 8/3/2018 11:14                   |
| 5377                     | 5377                | 63°18'43.36613"N                     | 168°57'48.72659"W                      | 63°18'43.38163"N                     | 168°57'48.64081"W                      | 7021978.1750                 | 602037.9170                | 3404084.807                                               | 1810867.469                                              | 61.482                                               | 18.74                                   | HEW13           | 8/3/2018 11:14                   |
| 5378                     | 5378                | 63°18'43.42278"N                     | 168°57'48.71707"W                      | 63°18'43.43828"N                     | 168°57'48.63128"W                      | 7021979.9320                 | 602037.9940                | 3404090.568                                               | 1810867.811                                              | 61.45                                                | 18.73                                   | HEW13           | 8/3/2018 11:15                   |
| 5379                     | 5379                | 63°18'43.47330"N                     | 168°57'48.64749"W                      | 63°18'43.48880"N                     | 168°57'48.56171"W                      | 7021981.5260                 | 602038.9120                | 3404095.75                                                | 1810870.906                                              | 61.529                                               | 18.754                                  | HEW13           | 8/3/2018 11:15                   |
| 5380                     | 5380                | 63°18'43.46435"N                     | 168°57'48.53167"W                      | 63°18'43.47984"N                     | 168°57'48.44590"W                      | 7021981.3000                 | 602040.5320                | 3404094.926                                               | 1810876.211                                              | 61.475                                               | 18.738                                  | HEW13           | 8/3/2018 11:15                   |
| 5381                     | 5381                | 63°18'43.40052"N                     | 168°57'48.51921"W                      | 63°18'43.41602"N                     | 168°57'48.43343"W                      | 7021979.3310                 | 602040.7690                | 3404088.453                                               | 1810876.885                                              | 61.475                                               | 18.738                                  | HEW13           | 8/3/2018 11:16                   |
| 5382                     | 5382                | 63°18'43.32725"N                     | 168°57'48.47603"W                      | 63°18'43.34275"N                     | 168°57'48.39025"W                      | 7021977.0830                 | 602041.4410                | 3404081.043                                               | 1810878.978                                              | 61.558                                               | 18.763                                  | HEW13           | 8/3/2018 11:16                   |
| 5383                     | 5383                | 63°18'43.28943"N                     | 168°57'48.49534"W                      | 63°18'43.30493"N                     | 168°57'48.40956"W                      | 7021975.9050                 | 602041.2100                | 3404077.188                                               | 1810878.158                                              | 61.555                                               | 18.762                                  | HEW13           | 8/3/2018 11:16                   |
| 5384                     | 5384                | 63°18'43.26233"N                     | 168°57'48.49771"W                      | 63°18'43.27784"N                     | 168°57'48.41194"W                      | 7021975.0650                 | 602041.2030                | 3404074.434                                               | 1810878.094                                              | 61.545                                               | 18.759                                  | HEW13           | 8/3/2018 11:16                   |
| 5385                     | 5385<br>5386        | 63°18'43.24738"N                     | 168°57'48.67032"W                      | 63°18'43.26288"N                     | 168°57'48.58454"W                      | 7021974.5260                 | 602038.8160                | 3404072.788                                               | 1810870.234                                              | 61.523                                               | 18.752                                  | HEW13 C         | 8/3/2018 11:16<br>8/3/2018 11:17 |
| 5386                     | 5386                | 63°18'43.25888"N                     | 168°57'48.85685"W                      | 63°18'43.27437"N                     | 168°57'48.77106"W                      | 7021974.7990                 | 602036.2100                | 3404073.818                                               | 1810861.695                                              | 61.531                                               | 18.755                                  | HEW13 C         | 8/3/2018 11:17                   |

| Field Survey<br>Point ID | Feature Location ID | Latitude (WGS84)                     | Longitude (WGS84)                      | Latitude (NAD 83 (2011))             | Longitude (NAD 83 (2011))              | Northing (UTM<br>Zone 2N)    | Easting (UTM<br>Zone 2N)   | Northing - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Easting - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Elevation (NAVD88,<br>GEOID12B, U.S. Survey<br>Feet) | Elevation (NAVD88,<br>GEOID12B, Meters) | Text Descriptor          | Measurement Date/Time          |
|--------------------------|---------------------|--------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|------------------------------|----------------------------|-----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|-----------------------------------------|--------------------------|--------------------------------|
| 5387                     | 5387                | 63°18'42.73292"N                     | 168°57'29.95007"W                      | 63°18'42.74842"N                     | 168°57'29.86427"W                      | 7021966.8960                 | 602299.8070                | 3404034.394                                               | 1811726.181                                              | 73.027                                               | 22.259                                  | CHK 2600 HV              | 8/3/2018 12:40                 |
| 5388                     | 5388                | 63°18'44.29882"N                     | 168°57'23.07316"W                      | 63°18'44.31431"N                     | 168°57'22.98738"W                      | 7022018.3920                 | 602393.9510                | 3404198.541                                               | 1812037.715                                              | 63.513                                               | 19.359                                  | MP SW03                  | 8/3/2018 15:27                 |
| 5389                     | 5389                | 63°18'42.00958"N                     | 168°57'21.03215"W                      | 63°18'42.02507"N                     | 168°57'20.94635"W                      | 7021948.4710                 | 602424.6100                | 3403967.554                                               | 1812134.729                                              | 71.424                                               | 21.77                                   | MP SW01                  | 8/3/2018 15:30                 |
| 5390                     | 5390                | 63°18'43.19450"N                     | 168°57'16.58994"W                      | 63°18'43.20999"N                     | 168°57'16.50414"W                      | 7021987.1030                 | 602485.2510                | 3404091.206                                               | 1812335.679                                              | 64.182                                               | 19.563                                  | MP SW02                  | 8/3/2018 15:33                 |
| 5391                     | 5391                | 63°19'05.77866"N                     | 168°56'49.31111"W                      | 63°19'05.79415"N                     | 168°56'49.22530"W                      | 7022697.9620                 | 602842.4430                | 3406405.33                                                | 1813544.043                                              | 72.095                                               | 21.975                                  | CHK HV GPS 2             | 8/3/2018 15:42                 |
| 5392                     | 5392                | 63°18'57.69969"N                     | 168°57'18.34014"W                      | 63°18'57.71519"N                     | 168°57'18.25434"W                      | 7022435.0990                 | 602446.5810                | 3405563.109                                               | 1812231.726                                              | 52.016                                               | 15.855                                  | CHK 0 HV                 | 8/3/2018 17:19                 |
| 5393                     | 5393                | 63°18'57.69955"N                     | 168°57'18.33958"W                      | 63°18'57.71504"N                     | 168°57'18.25377"W                      | 7022435.0950                 | 602446.5900                | 3405563.095                                               | 1812231.752                                              | 52.029                                               | 15.859                                  | CHK 2 HV                 | 8/3/2018 18:27                 |
| 5394                     | 5394                | 63°18'57.69988"N                     | 168°57'18.34020"W                      | 63°18'57.71537"N                     | 168°57'18.25439"W                      | 7022435.1050                 | 602446.5810                | 3405563.128                                               | 1812231.723                                              | 51.293                                               | 15.634                                  | CHK 0 HV                 | 8/4/2018 7:54                  |
| 5395                     | 5395                | 63°18'43.45415"N                     | 168°57'44.10655"W                      | 63°18'43.46965"N                     | 168°57'44.02076"W                      | 7021982.9420                 | 602102.1160                | 3404097.16                                                | 1811078.357                                              | 61.981                                               | 18.892                                  | MP                       | 8/4/2018 8:02                  |
| 5396                     | 5396                | 63°18'43.92821"N                     | 168°57'44.76361"W                      | 63°18'43.94371"N                     | 168°57'44.67782"W                      | 7021997.3180                 | 602092.5070                | 3404144.822                                               | 1811047.565                                              | 59.703                                               | 18.197                                  | MP                       | 8/4/2018 8:04                  |
| 5397                     | 5397                | 63°18'44.27513"N                     | 168°57'44.07902"W                      | 63°18'44.29062"N                     | 168°57'43.99322"W                      | 7022008.3540                 | 602101.6920                | 3404180.562                                               | 1811078.265                                              | 60.244                                               | 18.362                                  | MP                       | 8/4/2018 8:07                  |
| 5398                     | 5398                | 63°18'43.91604"N                     | 168°57'43.10283"W                      | 63°18'43.93154"N                     | 168°57'43.01705"W                      | 7021997.6760                 | 602115.6280                | 3404144.813                                               | 1811123.445                                              | 60.077                                               | 18.311                                  | MP                       | 8/4/2018 8:08                  |
| 5399                     | 5399                | 63°18'43.36308"N                     | 168°57'48.39586"W                      | 63°18'43.37858"N                     | 168°57'48.31007"W                      | 7021978.2270                 | 602042.5220                | 3404084.741                                               | 1810882.581                                              | 61.301                                               | 18.684                                  | MP                       | 8/4/2018 8:14                  |
| 5400                     | 5400                | 63°18'43.49510"N                     | 168°57'48.68198"W                      | 63°18'43.51061"N                     | 168°57'48.59619"W                      | 7021982.1850                 | 602038.4110                | 3404097.939                                               | 1810869.295                                              | 61.084                                               | 18.619                                  | MP                       | 8/4/2018 8:15                  |
| 5401                     | 5401                | 63°18'43.36644"N                     | 168°57'48.87144"W                      | 63°18'43.38194"N                     | 168°57'48.78565"W                      | 7021978.1210                 | 602035.9010                | 3404084.731                                               | 1810860.852                                              | 61.777                                               | 18.83                                   | MP                       | 8/4/2018 8:15                  |
| 5402                     | 5402                | 63°18'43.23452"N                     | 168°57'48.69097"W                      | 63°18'43.25001"N                     | 168°57'48.60518"W                      | 7021974.1190                 | 602038.5420                | 3404071.466                                               | 1810869.312                                              | 61.74                                                | 18.818                                  | MP<br>MP                 | 8/4/2018 8:16                  |
| 5403<br>5404             | 5403<br>5404        | 63°18'45.43881"N<br>63°18'45.70860"N | 168°57'48.19059"W<br>168°57'47.53485"W | 63°18'45.45431"N<br>63°18'45.72410"N | 168°57'48.10481"W<br>168°57'47.44905"W | 7022042.5390<br>7022051.1760 | 602043.3380                | 3404295.713<br>3404323.598                                | 1810888.549<br>1810918.058                               | 58.293<br>57.679                                     | 17.768<br>17.581                        | MP<br>MP                 | 8/4/2018 8:19<br>8/4/2018 8:20 |
| 5405                     | 5405                | 63°18'45.92134"N                     | 168°57'48.17241"W                      | 63°18'45.93684"N                     | 168°57'48.08661"W                      | 7022057.1760                 | 602032.1970                | 3404344.734                                               | 1810888.587                                              | 57.819                                               | 17.623                                  | MP                       | 8/4/2018 8:22                  |
| 5406                     | 5406                | 63°18'45.71798"N                     | 168°57'48.70857"W                      | 63°18'45.73348"N                     | 168°57'48.62279"W                      | 7022057.4700                 | 602035.8560                | 3404323.684                                               | 1810864.431                                              | 57.725                                               | 17.595                                  | MP                       | 8/4/2018 8:23                  |
| 5407                     | 5407                | 63°18'45.99584"N                     | 168°57'43.42784"W                      | 63°18'46.01134"N                     | 168°57'43.34205"W                      | 7022061.8790                 | 602109.0600                | 3404355.806                                               | 1811105.18                                               | 57.409                                               | 17.498                                  | MP                       | 8/4/2018 8:27                  |
| 5408                     | 5408                | 63°18'46.18701"N                     | 168°57'42.99028"W                      | 63°18'46.20251"N                     | 168°57'42.90449"W                      | 7022067.9870                 | 602114.9600                | 3404375.546                                               | 1811124.852                                              | 57.125                                               | 17.412                                  | MP                       | 8/4/2018 8:28                  |
| 5409                     | 5409                | 63°18'46.48918"N                     | 168°57'43.41225"W                      | 63°18'46.50468"N                     | 168°57'43.32646"W                      | 7022077.1490                 | 602108.7910                | 3404405.924                                               | 1811105.081                                              | 57.528                                               | 17.534                                  | MP                       | 8/4/2018 8:31                  |
| 5410                     | 5410                | 63°18'46.19333"N                     | 168°57'43.86304"W                      | 63°18'46.20882"N                     | 168°57'43.77724"W                      | 7022067.7960                 | 602102.8100                | 3404375.542                                               | 1811084.977                                              | 57.654                                               | 17.573                                  | MP                       | 8/4/2018 8:32                  |
| 5411                     | 5411                | 63°18'45.71478"N                     | 168°57'41.69374"W                      | 63°18'45.73028"N                     | 168°57'41.60795"W                      | 7022053.9500                 | 602133.4650                | 3404328.543                                               | 1811184.85                                               | 58.493                                               | 17.829                                  | MP                       | 8/4/2018 8:37                  |
| 5412                     | 5412                | 63°18'45.36554"N                     | 168°57'41.22981"W                      | 63°18'45.38104"N                     | 168°57'41.14402"W                      | 7022043.3510                 | 602140.2640                | 3404293.416                                               | 1811206.615                                              | 58.966                                               | 17.973                                  | MP                       | 8/4/2018 8:39                  |
| 5413                     | 5413                | 63°18'45.10008"N                     | 168°57'41.71701"W                      | 63°18'45.11558"N                     | 168°57'41.63123"W                      | 7022034.9220                 | 602133.7460                | 3404266.094                                               | 1811184.798                                              | 58.842                                               | 17.935                                  | MP                       | 8/4/2018 8:40                  |
| 5414                     | 5414                | 63°18'45.37279"N                     | 168°57'42.20856"W                      | 63°18'45.38828"N                     | 168°57'42.12278"W                      | 7022043.1420                 | 602126.6380                | 3404293.428                                               | 1811161.897                                              | 56.936                                               | 17.354                                  | MP                       | 8/4/2018 8:42                  |
| 5415                     | 5415                | 63°18'51.38639"N                     | 168°57'45.32046"W                      | 63°18'51.40189"N                     | 168°57'45.23466"W                      | 7022227.8190                 | 602077.4250                | 3404901.894                                               | 1811009.874                                              | 44.41                                                | 13.536                                  | EPP BASE ONLY            | 8/4/2018 8:53                  |
| 5416                     | 5416                | 63°18'51.50076"N                     | 168°57'45.33605"W                      | 63°18'51.51626"N                     | 168°57'45.25026"W                      | 7022231.3510                 | 602077.0950                | 3404913.499                                               | 1811008.974                                              | 43.494                                               | 13.257                                  | ML1 SUBMERGED PP         | 8/4/2018 8:57                  |
| 5417                     | 5417                | 63°18'51.55863"N                     | 168°57'45.59133"W                      | 63°18'51.57413"N                     | 168°57'45.50554"W                      | 7022233.0280                 | 602073.4860                | 3404919.188                                               | 1810997.219                                              | 43.915                                               | 13.385                                  | ML1 SUBMERGED PP         | 8/4/2018 8:58                  |
| 5418                     | 5418                | 63°18'51.53111"N                     | 168°57'44.28701"W                      | 63°18'51.54661"N                     | 168°57'44.20120"W                      | 7022232.7540                 | 602091.6610                | 3404917.356                                               | 1811056.838                                              | 43.787                                               | 13.346                                  | L2 PARTIALLY SUBMERGED F | 8/4/2018 9:00                  |
| 5419                     | 5419                | 63°18'51.61767"N                     | 168°57'44.05173"W                      | 63°18'51.63317"N                     | 168°57'43.96594"W                      | 7022235.5360                 | 602094.8490                | 3404926.322                                               | 1811067.442                                              | 44.088                                               | 13.438                                  | IL2 PARTIALY SUBMERGED P | 8/4/2018 9:00                  |
| 5420                     | 5420                | 63°18'57.69955"N                     | 168°57'18.33951"W                      | 63°18'57.71505"N                     | 168°57'18.25371"W                      | 7022435.0950                 | 602446.5900                | 3405563.095                                               | 1812231.755                                              | 51.28                                                | 15.63                                   | CHK 2 HV                 | 8/4/2018 9:15                  |
| 5421                     | 5421                | 63°19'32.47886"N                     | 168°58'15.32326"W                      | 63°19'32.49437"N                     | 168°58'15.23744"W                      | 7023485.9390                 | 601619.7350                | 3409053.346                                               | 1809572.535                                              | 28.383                                               | 8.651                                   | CHK 1 HV                 | 8/4/2018 9:20                  |
| 8733                     | 8733                | 63°18'02.49176"N                     | 168°57'19.09969"W                      | 63°18'02.50725"N                     | 168°57'19.01393"W                      | 7020726.6950                 | 602490.4970                | 3399955.406                                               | 1812288.389                                              | 359.968                                              | 109.718                                 | MAG NAIL                 |                                |
| 8734                     | 8734                | 63°18'16.63308"N                     | 168°57'28.66663"W                      | 63°18'16.64857"N                     | 168°57'28.58086"W                      | 7021159.9660                 | 602343.3890                | 3401384.541                                               | 1811827.883                                              | 219.728                                              | 66.973                                  | MAG NAIL                 | 0/0/00 1 2 2 7 2               |
| 10001                    | 10001               | 63°19'32.47891"N                     | 168°58'15.32291"W                      | 63°19'32.49442"N                     | 168°58'15.23709"W                      | 7023485.9400                 | 601619.7390                | 3409053.351                                               | 1809572.551                                              | 28.449                                               | 8.671                                   | CHK 1 HV                 | 8/2/2018 8:52                  |
| 10002                    | 10002               | 63°18'42.73254"N<br>63°18'57.69942"N | 168°57'29.95021"W<br>168°57'18.33963"W | 63°18'42.74803"N<br>63°18'57.71491"N | 168°57'29.86443"W<br>168°57'18.25381"W | 7021966.8840<br>7022435.0910 | 602299.8050<br>602446.5890 | 3404034.355<br>3405563.082                                | 1811726.175                                              | 73.042                                               | 22.263<br>15.677                        | CHK 2600 HV<br>CHK 0 HV  | 8/2/2018 9:09                  |
| 10003                    | 10003<br>10004      | 63°20'08.82995"N                     | 168°56'24.47102"W                      | 63°18'57.71491"N<br>63°20'08.84544"N | 168°56'24.38513"W                      | 7022435.0910                 | 602446.5890                | 3405563.082<br>3412827.759                                | 1812231.75<br>1814572.567                                | 51.433<br>5.296                                      | 1.614                                   | CHK 0 HV                 | 8/2/2018 9:27<br>8/2/2018 9:51 |
| 10004                    | 10004               | 63°18'42.87993"N                     | 168°57'39.58913"W                      | 63°18'42.89543"N                     | 168°57'39.50335"W                      | 7024659.7750                 | 602165.5390                | 3404042.181                                               | 1811285.647                                              | 63.523                                               | 19.362                                  | HEW100                   | 8/2/2018 10:40                 |
| 10005                    | 10006               | 63°18'42.91734"N                     | 168°57'39.43692"W                      | 63°18'42.93284"N                     | 168°57'39.35114"W                      | 7021967.1730                 | 602167.6200                | 3404046.094                                               | 1811292.538                                              | 63.507                                               | 19.357                                  | HEW100                   | 8/2/2018 10:40                 |
| 10007                    | 10007               | 63°18'43.02619"N                     | 168°57'39.29680"W                      | 63°18'43.04168"N                     | 168°57'39.21102"W                      | 7021971.8290                 | 602169.4620                | 3404057.252                                               | 1811298.759                                              | 63.512                                               | 19.359                                  | HEW100                   | 8/2/2018 10:40                 |
| 10007                    | 10007               | 63°18'43.02619"N                     | 168°57'39.29680"W                      | 63°18'43.04168"N                     | 168°57'39.21102"W                      | 7021971.8290                 | 602169.4620                | 3404057.252                                               | 1811298.759                                              | 63.512                                               | 19.359                                  | HEW100                   | 8/2/2018 10:4                  |

| Field Survey<br>Point ID | Feature Location ID | Latitude (WGS84)                     | Longitude (WGS84)                      | Latitude (NAD 83 (2011))             | Longitude (NAD 83<br>(2011))           | Northing (UTM<br>Zone 2N)    | Easting (UTM<br>Zone 2N)   | Northing - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Easting - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Elevation (NAVD88,<br>GEOID12B, U.S. Survey<br>Feet) | Elevation (NAVD88,<br>GEOID12B, Meters) | Text Descriptor  | Measurement Date/Time            |
|--------------------------|---------------------|--------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|------------------------------|----------------------------|-----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|-----------------------------------------|------------------|----------------------------------|
| 10008                    | 10008               | 63°18'43.13760"N                     | 168°57'39.07780"W                      | 63°18'43.15310"N                     | 168°57'38.99201"W                      | 7021975.3730                 | 602172.4000                | 3404068.73                                                | 1811308.579                                              | 63.505                                               | 19.356                                  | HEW100           | 8/2/2018 10:41                   |
| 10009                    | 10009               | 63°18'43.23931"N                     | 168°57'38.94311"W                      | 63°18'43.25481"N                     | 168°57'38.85733"W                      | 7021978.5800                 | 602174.1740                | 3404079.16                                                | 1811314.564                                              | 63.551                                               | 19.37                                   | HEW100           | 8/2/2018 10:41                   |
| 10010                    | 10010               | 63°18'43.25831"N                     | 168°57'39.04228"W                      | 63°18'43.27381"N                     | 168°57'38.95650"W                      | 7021979.1240                 | 602172.7750                | 3404081.016                                               | 1811310.003                                              | 63.475                                               | 19.347                                  | HEW100           | 8/2/2018 10:42                   |
| 10011                    | 10011               | 63°18'43.24509"N                     | 168°57'39.29697"W                      | 63°18'43.26059"N                     | 168°57'39.21118"W                      | 7021978.6020                 | 602169.2440                | 3404079.485                                               | 1811298.391                                              | 63.545                                               | 19.368                                  | HEW100           | 8/2/2018 10:42                   |
| 10012                    | 10012               | 63°18'43.25478"N                     | 168°57'39.41235"W                      | 63°18'43.27027"N                     | 168°57'39.32657"W                      | 7021978.8500                 | 602167.6290                | 3404080.383                                               | 1811293.105                                              | 63.514                                               | 19.359                                  | HEW100           | 8/2/2018 10:42                   |
| 10013                    | 10013               | 63°18'43.30748"N                     | 168°57'39.62035"W                      | 63°18'43.32297"N                     | 168°57'39.53457"W                      | 7021980.3890                 | 602164.6830                | 3404085.582                                               | 1811283.517                                              | 63.525                                               | 19.363                                  | HEW100           | 8/2/2018 10:42                   |
| 10014                    | 10014               | 63°18'43.31106"N                     | 168°57'39.77627"W                      | 63°18'43.32656"N                     | 168°57'39.69050"W                      | 7021980.4310                 | 602162.5100                | 3404085.83                                                | 1811276.389                                              | 63.516                                               | 19.36                                   | HEW100           | 8/2/2018 10:43                   |
| 10015                    | 10015               | 63°18'43.29209"N                     | 168°57'39.92316"W                      | 63°18'43.30759"N                     | 168°57'39.83738"W                      | 7021979.7790                 | 602160.4850                | 3404083.795                                               | 1811269.711                                              | 63.488                                               | 19.351                                  | HEW100           | 8/2/2018 10:44                   |
| 10016                    | 10016               | 63°18'43.33129"N                     | 168°57'39.98096"W                      | 63°18'43.34678"N                     | 168°57'39.89517"W<br>168°57'39.93567"W | 7021980.9660                 | 602159.6420                | 3404087.733                                               | 1811267.006                                              | 63.488                                               | 19.351                                  | HEW100           | 8/2/2018 10:44                   |
| 10017                    | 10017               | 63°18'43.32961"N                     | 168°57'40.02146"W                      | 63°18'43.34511"N                     |                                        | 7021980.8960<br>7021978.8490 | 602159.0800<br>602158.3470 | 3404087.533<br>3404080.854                                | 1811265.159<br>1811262.647                               | 63.524                                               | 19.362<br>19.36                         | HEW100           | 8/2/2018 10:44<br>8/2/2018 10:45 |
| 10018                    | 10018<br>10019      | 63°18'43.26427"N<br>63°18'43.21258"N | 168°57'40.07881"W<br>168°57'40.29311"W | 63°18'43.27976"N<br>63°18'43.22808"N | 168°57'39.99303"W<br>168°57'40.20732"W | 7021976.6490                 | 602155.4160                | 3404075.446                                               | 1811252.943                                              | 63.516<br>63.499                                     | 19.354                                  | HEW100<br>HEW100 | 8/2/2018 10:46                   |
| 10019                    | 10019               | 63°18'43.13710"N                     | 168°57'40.38189"W                      | 63°18'43.15260"N                     | 168°57'40.29610"W                      | 7021977.1330                 | 602154.2550                | 3404067.714                                               | 1811249.012                                              | 63.459                                               | 19.342                                  | HEW100           | 8/2/2018 10:47                   |
| 10020                    | 10020               | 63°18'43.05717"N                     | 168°57'40.34357"W                      | 63°18'43.07266"N                     | 168°57'40.25778"W                      | 7021974.7000                 | 602154.8670                | 3404059.624                                               | 1811250.894                                              | 63.445                                               | 19.338                                  | HEW100           | 8/2/2018 10:47                   |
| 10022                    | 10022               | 63°18'43.03313"N                     | 168°57'40.27164"W                      | 63°18'43.04863"N                     | 168°57'40.18586"W                      | 7021971.6130                 | 602155.8910                | 3404057.236                                               | 1811254.219                                              | 63.508                                               | 19.357                                  | HEW100           | 8/2/2018 10:47                   |
| 10023                    | 10023               | 63°18'42.99513"N                     | 168°57'40.27220"W                      | 63°18'43.01063"N                     | 168°57'40.18642"W                      | 7021970.4370                 | 602155.9200                | 3404053.376                                               | 1811254.256                                              | 63.501                                               | 19.355                                  | HEW100           | 8/2/2018 10:47                   |
| 10024                    | 10024               | 63°18'42.96293"N                     | 168°57'40.00470"W                      | 63°18'42.97843"N                     | 168°57'39.91891"W                      | 7021969.5590                 | 602159.6740                | 3404050.304                                               | 1811266.528                                              | 63.522                                               | 19.361                                  | HEW100           | 8/2/2018 10:48                   |
| 10025                    | 10025               | 63°18'42.90285"N                     | 168°57'39.68809"W                      | 63°18'42.91834"N                     | 168°57'39.60231"W                      | 7021967.8400                 | 602164.1390                | 3404044.436                                               | 1811281.089                                              | 63.485                                               | 19.35                                   | HEW100           | 8/2/2018 10:48                   |
| 10026                    | 10026               | 63°18'42.88223"N                     | 168°57'39.63911"W                      | 63°18'42.89773"N                     | 168°57'39.55333"W                      | 7021967.2240                 | 602164.8410                | 3404042.378                                               | 1811283.36                                               | 63.529                                               | 19.364                                  | HEW100 C         | 8/2/2018 10:48                   |
| 10027                    | 10027               | 63°18'43.55155"N                     | 168°57'43.07608"W                      | 63°18'43.56705"N                     | 168°57'42.99030"W                      | 7021986.4110                 | 602116.3580                | 3404107.814                                               | 1811125.266                                              | 60.809                                               | 18.535                                  | HEW101           | 8/2/2018 10:52                   |
| 10028                    | 10028               | 63°18'43.61507"N                     | 168°57'42.95247"W                      | 63°18'43.63057"N                     | 168°57'42.86669"W                      | 7021988.4310                 | 602118.0160                | 3404114.357                                               | 1811130.808                                              | 60.738                                               | 18.513                                  | HEW101           | 8/2/2018 10:52                   |
| 10029                    | 10029               | 63°18'43.66092"N                     | 168°57'42.78559"W                      | 63°18'43.67642"N                     | 168°57'42.69981"W                      | 7021989.9230                 | 602120.2930                | 3404119.137                                               | 1811138.355                                              | 60.816                                               | 18.537                                  | HEW101           | 8/2/2018 10:53                   |
| 10030                    | 10030               | 63°18'43.70895"N                     | 168°57'42.63972"W                      | 63°18'43.72444"N                     | 168°57'42.55394"W                      | 7021991.4740                 | 602122.2750                | 3404124.123                                               | 1811144.939                                              | 60.759                                               | 18.519                                  | HEW101           | 8/2/2018 10:53                   |
| 10031                    | 10031               | 63°18'43.76279"N                     | 168°57'42.45971"W                      | 63°18'43.77828"N                     | 168°57'42.37392"W                      | 7021993.2190                 | 602124.7270                | 3404129.724                                               | 1811153.073                                              | 60.751                                               | 18.517                                  | HEW101           | 8/2/2018 10:53                   |
| 10032                    | 10032               | 63°18'43.79184"N                     | 168°57'42.40402"W                      | 63°18'43.80734"N                     | 168°57'42.31823"W                      | 7021994.1430                 | 602125.4730                | 3404132.716                                               | 1811155.569                                              | 60.791                                               | 18.529                                  | HEW101           | 8/2/2018 10:53                   |
| 10033                    | 10033               | 63°18'43.81714"N                     | 168°57'42.44812"W                      | 63°18'43.83263"N                     | 168°57'42.36233"W                      | 7021994.9060                 | 602124.8350                | 3404135.253                                               | 1811153.513                                              | 60.745                                               | 18.515                                  | HEW101           | 8/2/2018 10:54                   |
| 10034                    | 10034               | 63°18'43.73457"N                     | 168°57'42.76311"W                      | 63°18'43.75006"N                     | 168°57'42.67731"W                      | 7021992.2120                 | 602120.5330                | 3404126.634                                               | 1811139.261                                              | 60.769                                               | 18.522                                  | HEW101           | 8/2/2018 10:55                   |
| 10035                    | 10035               | 63°18'43.72496"N                     | 168°57'43.07113"W                      | 63°18'43.74045"N                     | 168°57'42.98536"W                      | 7021991.7780                 | 602116.2570                | 3404125.43                                                | 1811125.207                                              | 60.743                                               | 18.514                                  | HEW101           | 8/2/2018 10:55                   |
| 10036                    | 10036               | 63°18'43.76463"N                     | 168°57'43.39893"W                      | 63°18'43.78013"N                     | 168°57'43.31314"W                      | 7021992.8610                 | 602111.6570                | 3404129.217                                               | 1811110.169                                              | 60.785                                               | 18.527                                  | HEW101           | 8/2/2018 11:05                   |
| 10037                    | 10037               | 63°18'43.77857"N                     | 168°57'43.50813"W                      | 63°18'43.79407"N                     | 168°57'43.42234"W                      | 7021993.2440<br>7021997.5750 | 602110.1240                | 3404130.552                                               | 1811105.158                                              | 60.812                                               | 18.535                                  | HEW101           | 8/2/2018 11:06                   |
| 10038                    | 10038<br>10039      | 63°18'43.91864"N<br>63°18'44.00020"N | 168°57'43.51217"W<br>168°57'43.55974"W | 63°18'43.93414"N<br>63°18'44.01570"N | 168°57'43.42638"W<br>168°57'43.47395"W | 7021997.5750                 | 602109.9300<br>602109.1870 | 3404144.775<br>3404153.023                                | 1811104.743<br>1811102.436                               | 60.828<br>60.791                                     | 18.541<br>18.529                        | HEW101<br>HEW101 | 8/2/2018 11:06<br>8/2/2018 11:07 |
| 10039                    | 10040               | 63°18'44.10554"N                     | 168°57'43.76209"W                      | 63°18'44.12103"N                     | 168°57'43.67630"W                      | 7022003.2470                 | 602106.2680                | 3404163.572                                               | 1811093.02                                               | 60.786                                               | 18.528                                  | HEW101           | 8/2/2018 11:08                   |
| 10040                    | 10040               | 63°18'44.17311"N                     | 168°57'43.95615"W                      | 63°18'44.18861"N                     | 168°57'43.87037"W                      | 7022005.2470                 | 602103.5010                | 3404170.292                                               | 1811084.045                                              | 60.758                                               | 18.519                                  | HEW101           | 8/2/2018 11:09                   |
| 10041                    | 10041               | 63°18'44.10684"N                     | 168°57'44.23618"W                      | 63°18'44.12234"N                     | 168°57'44.15039"W                      | 7022003.2320                 | 602099.6700                | 3404163.354                                               | 1811071.363                                              | 60.783                                               | 18.527                                  | HEW101           | 8/2/2018 11:09                   |
| 10043                    | 10043               | 63°18'44.03654"N                     | 168°57'44.41722"W                      | 63°18'44.05203"N                     | 168°57'44.33142"W                      | 7022000.8230                 | 602097.2200                | 3404156.08                                                | 1811063.209                                              | 60.791                                               | 18.529                                  | HEW101           | 8/2/2018 11:10                   |
| 10044                    | 10044               | 63°18'43.94930"N                     | 168°57'44.63480"W                      | 63°18'43.96479"N                     | 168°57'44.54901"W                      | 7021998.0270                 | 602094.2790                | 3404147.059                                               | 1811053.414                                              | 60.822                                               | 18.539                                  | HEW101           | 8/2/2018 11:11                   |
| 10045                    | 10045               | 63°18'43.82275"N                     | 168°57'44.56323"W                      | 63°18'43.83825"N                     | 168°57'44.47745"W                      | 7021994.1440                 | 602095.3990                | 3404134.259                                               | 1811056.891                                              | 60.787                                               | 18.528                                  | HEW101           | 8/2/2018 11:11                   |
| 10046                    | 10046               | 63°18'43.73027"N                     | 168°57'44.34211"W                      | 63°18'43.74577"N                     | 168°57'44.25633"W                      | 7021991.3800                 | 602098.5670                | 3404125.03                                                | 1811067.143                                              | 60.818                                               | 18.537                                  | HEW101           | 8/2/2018 11:12                   |
| 10047                    | 10047               | 63°18'43.57656"N                     | 168°57'44.33825"W                      | 63°18'43.59206"N                     | 168°57'44.25246"W                      | 7021986.6260                 | 602098.7720                | 3404109.421                                               | 1811067.572                                              | 60.824                                               | 18.539                                  | HEW101           | 8/2/2018 11:12                   |
| 10048                    | 10048               | 63°18'43.56975"N                     | 168°57'44.27985"W                      | 63°18'43.58525"N                     | 168°57'44.19407"W                      | 7021986.4420                 | 602099.5910                | 3404108.773                                               | 1811070.251                                              | 60.875                                               | 18.555                                  | HEW101           | 8/2/2018 11:13                   |
| 10049                    | 10049               | 63°18'43.65926"N                     | 168°57'44.19322"W                      | 63°18'43.67476"N                     | 168°57'44.10742"W                      | 7021989.2490                 | 602100.7080                | 3404117.928                                               | 1811074.061                                              | 60.767                                               | 18.522                                  | HEW101           | 8/2/2018 11:14                   |
| 10050                    | 10050               | 63°18'43.63976"N                     | 168°57'43.91930"W                      | 63°18'43.65526"N                     | 168°57'43.83351"W                      | 7021988.7670                 | 602104.5390                | 3404116.15                                                | 1811086.605                                              | 60.718                                               | 18.507                                  | HEW101           | 8/2/2018 11:15                   |
| 10051                    | 10051               | 63°18'43.54313"N                     | 168°57'43.88376"W                      | 63°18'43.55863"N                     | 168°57'43.79797"W                      | 7021985.7930                 | 602105.1280                | 3404106.362                                               | 1811088.387                                              | 60.77                                                | 18.523                                  | HEW101           | 8/2/2018 11:15                   |

| Field Survey<br>Point ID | Feature Location ID | Latitude (WGS84)                     | Longitude (WGS84)                      | Latitude (NAD 83 (2011))             | Longitude (NAD 83<br>(2011))           | Northing (UTM<br>Zone 2N)    | Easting (UTM<br>Zone 2N)   | Northing - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Easting - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Elevation (NAVD88,<br>GEOID12B, U.S. Survey<br>Feet) | Elevation (NAVD88,<br>GEOID12B, Meters) | Text Descriptor  | Measurement Date/Time            |
|--------------------------|---------------------|--------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|------------------------------|----------------------------|-----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|-----------------------------------------|------------------|----------------------------------|
| 10052                    | 10052               | 63°18'43.52839"N                     | 168°57'43.78273"W                      | 63°18'43.54388"N                     | 168°57'43.69695"W                      | 7021985.3810                 | 602106.5490                | 3404104.939                                               | 1811093.026                                              | 60.802                                               | 18.532                                  | HEW101           | 8/2/2018 11:15                   |
| 10053                    | 10053               | 63°18'43.47070"N                     | 168°57'43.81758"W                      | 63°18'43.48620"N                     | 168°57'43.73179"W                      | 7021983.5810                 | 602106.1210                | 3404099.054                                               | 1811091.529                                              | 60.972                                               | 18.584                                  | HEW101           | 8/2/2018 11:16                   |
| 10054                    | 10054               | 63°18'43.45063"N                     | 168°57'43.49773"W                      | 63°18'43.46613"N                     | 168°57'43.41195"W                      | 7021983.1020                 | 602110.5910                | 3404097.253                                               | 1811106.172                                              | 60.929                                               | 18.571                                  | HEW101           | 8/2/2018 11:16                   |
| 10055                    | 10055               | 63°18'43.44664"N                     | 168°57'43.22873"W                      | 63°18'43.46214"N                     | 168°57'43.14295"W                      | 7021983.0980                 | 602114.3380                | 3404097.046                                               | 1811118.466                                              | 61.101                                               | 18.624                                  | HEW101           | 8/2/2018 11:16                   |
| 10056                    | 10056               | 63°18'43.44303"N                     | 168°57'43.22240"W                      | 63°18'43.45852"N                     | 168°57'43.13662"W                      | 7021982.9880                 | 602114.4290                | 3404096.684                                               | 1811118.761                                              | 61.2                                                 | 18.654                                  | MP infall        | 8/2/2018 11:20                   |
| 10057                    | 10057               | 63°18'43.49582"N                     | 168°57'43.20121"W                      | 63°18'43.51131"N                     | 168°57'43.11542"W                      | 7021984.6310                 | 602114.6720                | 3404102.061                                               | 1811119.642                                              | 60.824                                               | 18.539                                  | HEW101           | 8/2/2018 11:27                   |
| 10058                    | 10058               | 63°18'43.54522"N                     | 168°57'43.10116"W                      | 63°18'43.56072"N                     | 168°57'43.01536"W                      | 7021986.2040                 | 602116.0160                | 3404107.153                                               | 1811124.131                                              | 60.793                                               | 18.53                                   | HEW101 C         | 8/2/2018 11:27                   |
| 10059                    | 10059<br>10060      | 63°18'44.47207"N<br>63°18'44.50018"N | 168°57'51.37127"W<br>168°57'51.43013"W | 63°18'44.48757"N<br>63°18'44.51567"N | 168°57'51.28549"W<br>168°57'51.34434"W | 7022011.2230<br>7022012.0660 | 602000.0310                | 3404195.179<br>3404197.99                                 | 1810744.852<br>1810742.117                               | 61<br>61.019                                         | 18.593<br>18.599                        | HEW102<br>HEW102 | 8/2/2018 11:39<br>8/2/2018 11:39 |
| 10060                    | 10060               | 63°18'44.47154"N                     | 168°57'51.57489"W                      | 63°18'44.48704"N                     | 168°57'51.48911"W                      | 7022012.0660                 | 601999.1640                | 3404197.99                                                | 1810742.117                                              | 61.019                                               | 18.603                                  | HEW102           | 8/2/2018 11:39                   |
| 10062                    | 10062               | 63°18'44.39257"N                     | 168°57'51.59504"W                      | 63°18'44.40807"N                     | 168°57'51.50926"W                      | 7022008.6640                 | 601996.9950                | 3404186.939                                               | 1810734.761                                              | 61.033                                               | 18.603                                  | HEW102           | 8/2/2018 11:39                   |
| 10063                    | 10063               | 63°18'44.37425"N                     | 168°57'51.40854"W                      | 63°18'44.38974"N                     | 168°57'51.32274"W                      | 7022008.1800                 | 601999.6080                | 3404185.216                                               | 1810743.31                                               | 60.949                                               | 18.577                                  | HEW102           | 8/2/2018 11:40                   |
| 10064                    | 10064               | 63°18'44.42090"N                     | 168°57'51.35023"W                      | 63°18'44.43640"N                     | 168°57'51.26443"W                      | 7022009.6490                 | 602000.3740                | 3404189.997                                               | 1810745.897                                              | 61.004                                               | 18.594                                  | HEW102 C         | 8/2/2018 11:40                   |
| 10065                    | 10065               | 63°18'46.95501"N                     | 168°57'47.10710"W                      | 63°18'46.97051"N                     | 168°57'47.02132"W                      | 7022089.9270                 | 602056.9230                | 3404450.505                                               | 1810935.549                                              | 57.14                                                | 17.416                                  | HEW103           | 8/2/2018 11:45                   |
| 10066                    | 10066               | 63°18'47.01138"N                     | 168°57'46.86125"W                      | 63°18'47.02688"N                     | 168°57'46.77546"W                      | 7022091.7800                 | 602060.2880                | 3404456.411                                               | 1810946.686                                              | 57.136                                               | 17.415                                  | HEW103           | 8/2/2018 11:46                   |
| 10067                    | 10067               | 63°18'47.08367"N                     | 168°57'46.69309"W                      | 63°18'47.09917"N                     | 168°57'46.60731"W                      | 7022094.0910                 | 602062.5570                | 3404463.878                                               | 1810954.248                                              | 57.096                                               | 17.403                                  | HEW103           | 8/2/2018 11:46                   |
| 10068                    | 10068               | 63°18'47.11638"N                     | 168°57'46.52283"W                      | 63°18'47.13188"N                     | 168°57'46.43704"W                      | 7022095.1780                 | 602064.8940                | 3404467.326                                               | 1810961.971                                              | 57.006                                               | 17.375                                  | HEW103           | 8/2/2018 11:47                   |
| 10069                    | 10069               | 63°18'47.19668"N                     | 168°57'46.37175"W                      | 63°18'47.21218"N                     | 168°57'46.28597"W                      | 7022097.7300                 | 602066.9170                | 3404475.593                                               | 1810968.74                                               | 56.971                                               | 17.365                                  | HEW103           | 8/2/2018 11:47                   |
| 10070                    | 10070               | 63°18'47.25989"N                     | 168°57'46.35570"W                      | 63°18'47.27539"N                     | 168°57'46.26990"W                      | 7022099.6920                 | 602067.0780                | 3404482.025                                               | 1810969.369                                              | 57.027                                               | 17.382                                  | HEW103           | 8/2/2018 11:48                   |
| 10071                    | 10071               | 63°18'47.26879"N                     | 168°57'46.43135"W                      | 63°18'47.28429"N                     | 168°57'46.34555"W                      | 7022099.9340                 | 602066.0170                | 3404482.873                                               | 1810965.899                                              | 56.923                                               | 17.35                                   | HEW103           | 8/2/2018 11:49                   |
| 10072                    | 10072               | 63°18'47.19744"N                     | 168°57'46.54827"W                      | 63°18'47.21295"N                     | 168°57'46.46248"W                      | 7022097.6750                 | 602064.4600                | 3404475.54                                                | 1810960.676                                              | 56.994                                               | 17.372                                  | HEW103           | 8/2/2018 11:49                   |
| 10073                    | 10073               | 63°18'47.13497"N                     | 168°57'46.79710"W                      | 63°18'47.15046"N                     | 168°57'46.71132"W                      | 7022095.6320                 | 602061.0590                | 3404469.011                                               | 1810949.413                                              | 57.09                                                | 17.401                                  | HEW103           | 8/2/2018 11:50                   |
| 10074                    | 10074               | 63°18'47.07389"N                     | 168°57'47.01350"W                      | 63°18'47.08939"N                     | 168°57'46.92772"W                      | 7022093.6470                 | 602058.1080                | 3404462.648                                               | 1810939.629                                              | 57.049                                               | 17.388                                  | HEW103           | 8/2/2018 11:50                   |
| 10075                    | 10075               | 63°18'47.00135"N                     | 168°57'47.17367"W                      | 63°18'47.01685"N                     | 168°57'47.08789"W                      | 7022091.3320                 | 602055.9510                | 3404455.162                                               | 1810932.432                                              | 57.142                                               | 17.417                                  | HEW103 C         | 8/2/2018 11:50                   |
| 10076                    | 10076               | 63°18'48.49190"N                     | 168°57'44.91742"W                      | 63°18'48.50740"N                     | 168°57'44.83164"W                      | 7022138.4450                 | 602085.8780                | 3404608.216                                               | 1811033.039                                              | 54.226                                               | 16.528                                  | HEW104           | 8/2/2018 12:06                   |
| 10077                    | 10077               | 63°18'48.48322"N                     | 168°57'44.92980"W                      | 63°18'48.49872"N                     | 168°57'44.84400"W                      | 7022138.1710                 | 602085.7150                | 3404607.325                                               | 1811032.488                                              | 54.283                                               | 16.546                                  | HEW105           | 8/2/2018 12:06                   |
| 10078<br>10079           | 10078<br>10079      | 63°18'48.55545"N<br>63°18'48.54977"N | 168°57'45.11645"W<br>168°57'45.15024"W | 63°18'48.57095"N<br>63°18'48.56527"N | 168°57'45.03066"W<br>168°57'45.06446"W | 7022140.3240<br>7022140.1330 | 602083.0470<br>602082.5820 | 3404614.523<br>3404613.921                                | 1811023.844<br>1811022.31                                | 51.962<br>52.031                                     | 15.838<br>15.859                        | HEW104<br>HEW105 | 8/2/2018 12:07<br>8/2/2018 12:07 |
| 10079                    | 10079               | 63°18'48.63414"N                     | 168°57'45.12741"W                      | 63°18'48.64964"N                     | 168°57'45.04162"W                      | 7022140.1530                 | 602082.8170                | 3404622.507                                               | 1811023.214                                              | 51.875                                               | 15.811                                  | HEW105           | 8/2/2018 12:07                   |
| 10081                    | 10081               | 63°18'48.63903"N                     | 168°57'45.08632"W                      | 63°18'48.65453"N                     | 168°57'45.00053"W                      | 7022142.9230                 | 602083.3840                | 3404623.034                                               | 1811025.083                                              | 51.924                                               | 15.826                                  | HEW104           | 8/2/2018 12:07                   |
| 10082                    | 10082               | 63°18'48.71231"N                     | 168°57'45.24188"W                      | 63°18'48.72781"N                     | 168°57'45.15610"W                      | 7022145.1210                 | 602081.1470                | 3404630.361                                               | 1811017.857                                              | 51.847                                               | 15.803                                  | HEW105           | 8/2/2018 12:08                   |
| 10083                    | 10083               | 63°18'48.72552"N                     | 168°57'45.19688"W                      | 63°18'48.74102"N                     | 168°57'45.11108"W                      | 7022145.5500                 | 602081.7610                | 3404631.736                                               | 1811019.891                                              | 51.826                                               | 15.797                                  | HEW104           | 8/2/2018 12:08                   |
| 10084                    | 10084               | 63°18'48.76504"N                     | 168°57'45.19988"W                      | 63°18'48.78054"N                     | 168°57'45.11409"W                      | 7022146.7710                 | 602081.6800                | 3404635.748                                               | 1811019.689                                              | 51.745                                               | 15.772                                  | HEW104           | 8/2/2018 12:08                   |
| 10085                    | 10085               | 63°18'48.79952"N                     | 168°57'45.20536"W                      | 63°18'48.81502"N                     | 168°57'45.11956"W                      | 7022147.8350                 | 602081.5700                | 3404639.246                                               | 1811019.382                                              | 51.762                                               | 15.777                                  | HEW105           | 8/2/2018 12:09                   |
| 10086                    | 10086               | 63°18'48.77197"N                     | 168°57'45.05640"W                      | 63°18'48.78747"N                     | 168°57'44.97061"W                      | 7022147.0490                 | 602083.6690                | 3404636.558                                               | 1811026.231                                              | 51.637                                               | 15.739                                  | HEW105           | 8/2/2018 12:09                   |
| 10087                    | 10087               | 63°18'48.74067"N                     | 168°57'44.97764"W                      | 63°18'48.75616"N                     | 168°57'44.89185"W                      | 7022146.1150                 | 602084.7960                | 3404633.437                                               | 1811029.88                                               | 51.702                                               | 15.759                                  | HEW104           | 8/2/2018 12:09                   |
| 10088                    | 10088               | 63°18'48.84393"N                     | 168°57'45.05142"W                      | 63°18'48.85942"N                     | 168°57'44.96564"W                      | 7022149.2770                 | 602083.6680                | 3404643.87                                                | 1811026.34                                               | 51.4                                                 | 15.667                                  | HEW104           | 8/2/2018 12:10                   |
| 10089                    | 10089               | 63°18'48.87075"N                     | 168°57'45.11452"W                      | 63°18'48.88625"N                     | 168°57'45.02873"W                      | 7022150.0790                 | 602082.7640                | 3404646.547                                               | 1811023.414                                              | 51.279                                               | 15.63                                   | HEW105           | 8/2/2018 12:10                   |
| 10090                    | 10090               | 63°18'48.92160"N                     | 168°57'44.83254"W                      | 63°18'48.93710"N                     | 168°57'44.74674"W                      | 7022151.7770                 | 602086.6370                | 3404651.92                                                | 1811036.21                                               | 50.647                                               | 15.437                                  | HEW105           | 8/2/2018 12:10                   |
| 10091                    | 10091               | 63°18'48.90569"N                     | 168°57'44.80016"W                      | 63°18'48.92118"N                     | 168°57'44.71436"W                      | 7022151.2990                 | 602087.1030                | 3404650.328                                               | 1811037.715                                              | 50.601                                               | 15.423                                  | HEW104           | 8/2/2018 12:11                   |
| 10092                    | 10092               | 63°18'49.07374"N                     | 168°57'44.86643"W                      | 63°18'49.08923"N                     | 168°57'44.78065"W                      | 7022156.4690                 | 602086.0160                | 3404667.347                                               | 1811034.412                                              | 49.815                                               | 15.184                                  | HEW105           | 8/2/2018 12:11                   |
| 10093                    | 10093               | 63°18'49.07625"N                     | 168°57'44.80401"W                      | 63°18'49.09174"N                     | 168°57'44.71822"W                      | 7022156.5740                 | 602086.8820                | 3404667.648                                               | 1811037.259                                              | 49.973                                               | 15.232                                  | HEW104           | 8/2/2018 12:12                   |
| 10094                    | 10094               | 63°18'49.12904"N                     | 168°57'44.71727"W                      | 63°18'49.14454"N                     | 168°57'44.63149"W                      | 7022158.2460                 | 602088.0370                | 3404673.074                                               | 1811041.134                                              | 49.944                                               | 15.223                                  | HEW104           | 8/2/2018 12:12                   |
| 10095                    | 10095               | 63°18'49.16625"N                     | 168°57'44.70833"W                      | 63°18'49.18175"N                     | 168°57'44.62255"W                      | 7022159.4010                 | 602088.1250                | 3404676.86                                                | 1811041.481                                              | 49.886                                               | 15.205                                  | HEW104           | 8/2/2018 12:12                   |

| Field Survey<br>Point ID | Feature Location ID | Latitude (WGS84) | Longitude (WGS84) | Latitude (NAD 83 (2011)) | Longitude (NAD 83<br>(2011)) | Northing (UTM<br>Zone 2N) | Easting (UTM<br>Zone 2N) | Northing - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Easting - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Elevation (NAVD88,<br>GEOID12B, U.S. Survey<br>Feet) | Elevation (NAVD88,<br>GEOID12B, Meters) | Text Descriptor | Measurement Date/Time |
|--------------------------|---------------------|------------------|-------------------|--------------------------|------------------------------|---------------------------|--------------------------|-----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|-----------------------------------------|-----------------|-----------------------|
| 10096                    | 10096               | 63°18'49.25489"N | 168°57'44.86333"W | 63°18'49.27039"N         | 168°57'44.77753"W            | 7022162.0750              | 602085.8810              | 3404685.748                                               | 1811034.256                                              | 49.807                                               | 15.181                                  | HEW104          | 8/2/2018 12:13        |
| 10097                    | 10097               | 63°18'49.14188"N | 168°57'44.79144"W | 63°18'49.15738"N         | 168°57'44.70566"W            | 7022158.6110              | 602086.9920              | 3404674.323                                               | 1811037.725                                              | 49.855                                               | 15.196                                  | HEW105          | 8/2/2018 12:13        |
| 10098                    | 10098               | 63°18'49.21026"N | 168°57'44.89788"W | 63°18'49.22576"N         | 168°57'44.81210"W            | 7022160.6790              | 602085.4440              | 3404681.19                                                | 1811032.751                                              | 49.834                                               | 15.19                                   | HEW105          | 8/2/2018 12:13        |
| 10099                    | 10099               | 63°18'49.36826"N | 168°57'44.86654"W | 63°18'49.38376"N         | 168°57'44.78076"W            | 7022165.5820              | 602085.7250              | 3404697.26                                                | 1811033.923                                              | 49.655                                               | 15.135                                  | HEW 105         | 8/2/2018 12:14        |
| 10100                    | 10100               | 63°18'49.34336"N | 168°57'44.76469"W | 63°18'49.35886"N         | 168°57'44.67889"W            | 7022164.8560              | 602087.1670              | 3404694.806                                               | 1811038.616                                              | 49.72                                                | 15.155                                  | HEW104          | 8/2/2018 12:14        |
| 10101                    | 10101               | 63°18'49.52480"N | 168°57'44.89256"W | 63°18'49.54031"N         | 168°57'44.80677"W            | 7022170.4130              | 602085.2090              | 3404713.14                                                | 1811032.477                                              | 48.664                                               | 14.833                                  | HEW104          | 8/2/2018 12:15        |
| 10102                    | 10102               | 63°18'49.52235"N | 168°57'44.98656"W | 63°18'49.53784"N         | 168°57'44.90076"W            | 7022170.2950              | 602083.9030              | 3404712.821                                               | 1811028.188                                              | 48.611                                               | 14.817                                  | HEW105          | 8/2/2018 12:15        |
| 10103                    | 10103               | 63°18'49.66215"N | 168°57'45.12745"W | 63°18'49.67765"N         | 168°57'45.04165"W            | 7022174.5590              | 602081.8060              | 3404726.916                                               | 1811021.523                                              | 48.161                                               | 14.68                                   | HEW105          | 8/2/2018 12:16        |
| 10104                    | 10104               | 63°18'49.66643"N | 168°57'45.05710"W | 63°18'49.68192"N         | 168°57'44.97131"W            | 7022174.7220              | 602082.7800              | 3404727.402                                               | 1811024.729                                              | 48.149                                               | 14.676                                  | HEW104          | 8/2/2018 12:16        |
| 10105                    | 10105               | 63°18'48.57734"N | 168°57'46.67847"W | 63°18'48.59284"N         | 168°57'46.59268"W            | 7022140.3100              | 602061.2920              | 3404615.592                                               | 1810952.462                                              | 52.402                                               | 15.972                                  | HEW5            | 8/2/2018 12:23        |
| 10106                    | 10106               | 63°18'48.67661"N | 168°57'46.67561"W | 63°18'48.69211"N         | 168°57'46.58983"W            | 7022143.3830              | 602061.2340              | 3404625.676                                               | 1810952.43                                               | 52.239                                               | 15.923                                  | HEW5            | 8/2/2018 12:23        |
| 10107                    | 10107               | 63°18'48.74868"N | 168°57'46.65537"W | 63°18'48.76417"N         | 168°57'46.56958"W            | 7022145.6210              | 602061.4450              | 3404633.011                                               | 1810953.236                                              | 51.971                                               | 15.841                                  | HEW5            | 8/2/2018 12:23        |
| 10108                    | 10108               | 63°18'48.84062"N | 168°57'46.52775"W | 63°18'48.85612"N         | 168°57'46.44195"W            | 7022148.5220              | 602063.1300              | 3404642.443                                               | 1810958.914                                              | 51.643                                               | 15.741                                  | HEW5            | 8/2/2018 12:24        |
| 10109                    | 10109               | 63°18'48.87408"N | 168°57'46.39866"W | 63°18'48.88958"N         | 168°57'46.31287"W            | 7022149.6150              | 602064.8930              | 3404645.937                                               | 1810964.755                                              | 51.599                                               | 15.727                                  | HEW5            | 8/2/2018 12:24        |
| 10110                    | 10110               | 63°18'49.05508"N | 168°57'46.31051"W | 63°18'49.07058"N         | 168°57'46.22472"W            | 7022155.2530              | 602065.9420              | 3404664.385                                               | 1810968.484                                              | 50.968                                               | 15.535                                  | HEW5            | 8/2/2018 12:24        |
| 10111                    | 10111               | 63°18'49.14065"N | 168°57'46.36274"W | 63°18'49.15615"N         | 168°57'46.27694"W            | 7022157.8780              | 602065.1310              | 3404673.037                                               | 1810965.958                                              | 50.281                                               | 15.326                                  | HEW5            | 8/2/2018 12:25        |
| 10112                    | 10112               | 63°18'49.25401"N | 168°57'46.22439"W | 63°18'49.26951"N         | 168°57'46.13859"W            | 7022161.4460              | 602066.9440              | 3404684.653                                               | 1810972.091                                              | 49.88                                                | 15.204                                  | HEW5            | 8/2/2018 12:25        |
| 10113                    | 10113               | 63°18'49.28725"N | 168°57'46.15620"W | 63°18'49.30275"N         | 168°57'46.07041"W            | 7022162.5050              | 602067.8600              | 3404688.079                                               | 1810975.151                                              | 49.651                                               | 15.134                                  | HEW5            | 8/2/2018 12:25        |
| 10114                    | 10114               | 63°18'49.28976"N | 168°57'46.08051"W | 63°18'49.30526"N         | 168°57'45.99472"W            | 7022162.6160              | 602068.9110              | 3404688.39                                                | 1810978.604                                              | 49.346                                               | 15.041                                  | HEW5            | 8/2/2018 12:26        |
| 10115                    | 10115               | 63°18'49.34209"N | 168°57'46.03895"W | 63°18'49.35759"N         | 168°57'45.95316"W            | 7022164.2530              | 602069.4380              | 3404693.736                                               | 1810980.416                                              | 49.096                                               | 14.965                                  | HEW5            | 8/2/2018 12:26        |
| 10116                    | 10116               | 63°18'49.40062"N | 168°57'46.01090"W | 63°18'49.41612"N         | 168°57'45.92511"W            | 7022166.0770              | 602069.7710              | 3404699.701                                               | 1810981.601                                              | 49.025                                               | 14.943                                  | HEW5            | 8/2/2018 12:26        |
| 10117                    | 10117               | 63°18'49.50317"N | 168°57'46.06166"W | 63°18'49.51867"N         | 168°57'45.97587"W            | 7022169.2270              | 602068.9630              | 3404710.079                                               | 1810979.114                                              | 48.335                                               | 14.733                                  | HEW5            | 8/2/2018 12:27        |
| 10118                    | 10118               | 63°18'49.55150"N | 168°57'46.12105"W | 63°18'49.56701"N         | 168°57'46.03526"W            | 7022170.6960              | 602068.0900              | 3404714.944                                               | 1810976.322                                              | 47.617                                               | 14.514                                  | HEW5            | 8/2/2018 12:27        |
| 10119                    | 10119               | 63°18'49.59989"N | 168°57'46.22331"W | 63°18'49.61540"N         | 168°57'46.13752"W            | 7022172.1480              | 602066.6190              | 3404719.783                                               | 1810971.572                                              | 47.156                                               | 14.373                                  | HEW5            | 8/2/2018 12:27        |
| 10120                    | 10120               | 63°18'49.62413"N | 168°57'46.35472"W | 63°18'49.63963"N         | 168°57'46.26892"W            | 7022172.8400              | 602064.7670              | 3404722.148                                               | 1810965.53                                               | 46.885                                               | 14.291                                  | HEW5            | 8/2/2018 12:30        |
| 10121                    | 10121               | 63°18'49.69301"N | 168°57'46.42931"W | 63°18'49.70851"N         | 168°57'46.34351"W            | 7022174.9380              | 602063.6620              | 3404729.088                                               | 1810962.01                                               | 46.863                                               | 14.284                                  | HEW5            | 8/2/2018 12:30        |
| 10122                    | 10122               | 63°18'49.73076"N | 168°57'46.45065"W | 63°18'49.74626"N         | 168°57'46.36487"W            | 7022176.0960              | 602063.3270              | 3404732.906                                               | 1810960.973                                              | 46.82                                                | 14.271                                  | HEW5            | 8/2/2018 12:30        |
| 10123                    | 10123               | 63°18'49.80540"N | 168°57'46.41933"W | 63°18'49.82090"N         | 168°57'46.33355"W            | 7022178.4190              | 602063.6900              | 3404740.51                                                | 1810962.281                                              | 46.8                                                 | 14.265                                  | HEW5            | 8/2/2018 12:31        |
| 10124                    | 10124               | 63°18'49.87566"N | 168°57'46.33648"W | 63°18'49.89116"N         | 168°57'46.25069"W            | 7022180.6300              | 602064.7740              | 3404747.707                                               | 1810965.95                                               | 46.727                                               | 14.243                                  | HEW5            | 8/2/2018 12:31        |
| 10125                    | 10125               | 63°18'49.95244"N | 168°57'46.33264"W | 63°18'49.96793"N         | 168°57'46.24686"W            | 7022183.0070              | 602064.7510              | 3404755.508                                               | 1810965.999                                              | 46.422                                               | 14.149                                  | HEW5            | 8/2/2018 12:31        |
| 10126                    | 10126               | 63°18'50.01683"N | 168°57'46.12634"W | 63°18'50.03232"N         | 168°57'46.04055"W            | 7022185.0900              | 602067.5590              | 3404762.2                                                 | 1810975.316                                              | 46.283                                               | 14.107                                  | HEW5            | 8/2/2018 12:31        |
| 10127                    | 10127               | 63°18'50.03792"N | 168°57'46.06855"W | 63°18'50.05341"N         | 168°57'45.98276"W            | 7022185.7680              | 602068.3420              | 3404764.385                                               | 1810977.921                                              | 46.248                                               | 14.096                                  | HEW5            | 8/2/2018 12:32        |
| 10128                    | 10128               | 63°18'50.11423"N | 168°57'45.95082"W | 63°18'50.12973"N         | 168°57'45.86501"W            | 7022188.1810              | 602069.9050              | 3404772.223                                               | 1810983.173                                              | 46.224                                               | 14.089                                  | HEW5            | 8/2/2018 12:32        |
| 10129                    | 10129               | 63°18'50.12729"N | 168°57'45.85782"W | 63°18'50.14280"N         | 168°57'45.77203"W            | 7022188.6270              | 602071.1860              | 3404773.618                                               | 1810987.399                                              | 46.22                                                | 14.088                                  | HEW5            | 8/2/2018 12:32        |
| 10130                    | 10130               | 63°18'50.11936"N | 168°57'45.75183"W | 63°18'50.13486"N         | 168°57'45.66604"W            | 7022188.4280              | 602072.6690              | 3404772.891                                               | 1810992.253                                              | 46.16                                                | 14.069                                  | HEW5            | 8/2/2018 12:32        |
| 10131                    | 10131               | 63°18'50.18486"N | 168°57'45.64441"W | 63°18'50.20036"N         | 168°57'45.55862"W            | 7022190.5020              | 602074.0990              | 3404779.622                                               | 1810997.052                                              | 45.809                                               | 13.963                                  | HEW5            | 8/2/2018 12:33        |
| 10132                    | 10132               | 63°18'50.25013"N | 168°57'45.60598"W | 63°18'50.26563"N         | 168°57'45.52019"W            | 7022192.5380              | 602074.5690              | 3404786.28                                                | 1810998.7                                                | 45.473                                               | 13.86                                   | HEW5            | 8/2/2018 12:33        |
| 10133                    | 10133               | 63°18'50.31977"N | 168°57'45.51874"W | 63°18'50.33526"N         | 168°57'45.43296"W            | 7022194.7310              | 602075.7140              | 3404793.417                                               | 1811002.57                                               | 44.957                                               | 13.703                                  | HEW5            | 8/2/2018 12:33        |
| 10134                    | 10134               | 63°18'50.43166"N | 168°57'45.37959"W | 63°18'50.44716"N         | 168°57'45.29380"W            | 7022198.2550              | 602077.5410              | 3404804.884                                               | 1811008.742                                              | 44.831                                               | 13.665                                  | HEW5            | 8/2/2018 12:34        |
| 10135                    | 10135               | 63°18'57.69967"N | 168°57'18.33953"W | 63°18'57.71517"N         | 168°57'18.25372"W            | 7022435.0990              | 602446.5900              | 3405563.107                                               | 1812231.754                                              | 51.4                                                 | 15.667                                  | CHK 2 HV        | 8/2/2018 12:50        |
| 10136                    | 10136               | 63°20'08.82985"N | 168°56'24.47107"W | 63°20'08.84535"N         | 168°56'24.38519"W            | 7024659.7700              | 603125.3080              | 3412827.749                                               | 1814572.565                                              | 5.323                                                | 1.623                                   | CHK 0 HV        | 8/2/2018 14:33        |
| 10137                    | 10137               | 63°18'50.46195"N | 168°57'45.23411"W | 63°18'50.47745"N         | 168°57'45.14831"W            | 7022199.2560              | 602079.5350              | 3404808.068                                               | 1811015.337                                              | 44.715                                               | 13.629                                  | HEW5            | 8/2/2018 15:16        |
| 10138                    | 10138               | 63°18'50.56526"N | 168°57'45.12057"W | 63°18'50.58076"N         | 168°57'45.03477"W            | 7022202.5030              | 602081.0130              | 3404818.645                                               | 1811020.353                                              | 44.418                                               | 13.539                                  | HEW5            | 8/2/2018 15:16        |
| 10139                    | 10139               | 63°18'50.70838"N | 168°57'45.04451"W | 63°18'50.72388"N         | 168°57'44.95871"W            | 7022206.9650              | 602081.9310              | 3404833.237                                               | 1811023.592                                              | 44.264                                               | 13.492                                  | HEW5            | 8/2/2018 15:17        |

| Field Survey<br>Point ID | Feature Location ID | Latitude (WGS84)                     | Longitude (WGS84)                      | Latitude (NAD 83 (2011))             | Longitude (NAD 83 (2011))              | Northing (UTM<br>Zone 2N)    | Easting (UTM<br>Zone 2N)   | Northing - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Easting - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Elevation (NAVD88,<br>GEOID12B, U.S. Survey<br>Feet) | Elevation (NAVD88,<br>GEOID12B, Meters) | Text Descriptor | Measurement Date/Time            |
|--------------------------|---------------------|--------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|------------------------------|----------------------------|-----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|-----------------------------------------|-----------------|----------------------------------|
| 10140                    | 10140               | 63°18'50.89834"N                     | 168°57'45.13705"W                      | 63°18'50.91383"N                     | 168°57'45.05127"W                      | 7022212.8000                 | 602080.4560                | 3404852.461                                               | 1811019.053                                              | 44.114                                               | 13.446                                  | HEW5            | 8/2/2018 15:18                   |
| 10141                    | 10141               | 63°18'50.96871"N                     | 168°57'45.29649"W                      | 63°18'50.98421"N                     | 168°57'45.21071"W                      | 7022214.9070                 | 602078.1690                | 3404859.491                                               | 1811011.655                                              | 44.058                                               | 13.429                                  | HEW5            | 8/2/2018 15:19                   |
| 10142                    | 10142               | 63°18'51.06412"N                     | 168°57'45.13441"W                      | 63°18'51.07962"N                     | 168°57'45.04861"W                      | 7022217.9310                 | 602080.3300                | 3404869.301                                               | 1811018.901                                              | 44.006                                               | 13.413                                  | HEW5            | 8/2/2018 15:19                   |
| 10143                    | 10143               | 63°18'51.09923"N                     | 168°57'45.21825"W                      | 63°18'51.11473"N                     | 168°57'45.13246"W                      | 7022218.9800                 | 602079.1290                | 3404872.805                                               | 1811015.014                                              | 44.007                                               | 13.413                                  | HEW5            | 8/2/2018 15:19                   |
| 10144                    | 10144               | 63°18'51.16299"N                     | 168°57'45.22156"W                      | 63°18'51.17849"N                     | 168°57'45.13578"W                      | 7022220.9510                 | 602079.0200                | 3404879.278                                               | 1811014.758                                              | 43.846                                               | 13.364                                  | HEW5            | 8/2/2018 15:19                   |
| 10145                    | 10145               | 63°18'51.16946"N                     | 168°57'45.07328"W                      | 63°18'51.18496"N                     | 168°57'44.98749"W                      | 7022221.2170                 | 602081.0770                | 3404880.045                                               | 1811021.52                                               | 43.891                                               | 13.378                                  | HEW5            | 8/2/2018 15:20                   |
| 10146                    | 10146               | 63°18'51.22063"N                     | 168°57'45.03157"W                      | 63°18'51.23612"N                     | 168°57'44.94577"W                      | 7022222.8190                 | 602081.6070                | 3404885.272                                               | 1811023.341                                              | 44.02                                                | 13.417                                  | HEW5            | 8/2/2018 15:20                   |
| 10147                    | 10147               | 63°18'51.22130"N                     | 168°57'45.15551"W                      | 63°18'51.23680"N                     | 168°57'45.06971"W                      | 7022222.7850                 | 602079.8820                | 3404885.249                                               | 1811017.679                                              | 43.986                                               | 13.407                                  | HEW5            | 8/2/2018 15:20                   |
| 10148                    | 10148               | 63°18'51.28527"N                     | 168°57'45.28261"W                      | 63°18'51.30076"N                     | 168°57'45.19680"W                      | 7022224.7070                 | 602078.0510                | 3404891.652                                               | 1811011.769                                              | 43.886                                               | 13.377                                  | HEW5            | 8/2/2018 15:21                   |
| 10149                    | 10149               | 63°18'51.36737"N                     | 168°57'45.13883"W                      | 63°18'51.38287"N                     | 168°57'45.05304"W                      | 7022227.3110                 | 602079.9700                | 3404900.097                                               | 1811018.201                                              | 43.9                                                 | 13.381                                  | HEW5            | 8/2/2018 15:21                   |
| 10150                    | 10150               | 63°18'51.26490"N                     | 168°57'44.92732"W                      | 63°18'51.28040"N                     | 168°57'44.84152"W                      | 7022224.2350                 | 602083.0140                | 3404889.846                                               | 1811028.03                                               | 43.971                                               | 13.403                                  | HEW5            | 8/2/2018 15:22                   |
| 10151                    | 10151               | 63°18'51.34430"N                     | 168°57'44.78269"W                      | 63°18'51.35980"N                     | 168°57'44.69690"W                      | 7022226.7550                 | 602084.9480                | 3404898.017                                               | 1811034.505                                              | 44.068                                               | 13.432                                  | HEW5            | 8/2/2018 15:22                   |
| 10152                    | 10152               | 63°18'51.41496"N                     | 168°57'44.80410"W                      | 63°18'51.43047"N                     | 168°57'44.71830"W                      | 7022228.9320                 | 602084.5810                | 3404905.178                                               | 1811033.411                                              | 44.028                                               | 13.42                                   | HEW5            | 8/2/2018 15:23                   |
| 10153                    | 10153               | 63°18'51.47395"N                     | 168°57'44.72340"W                      | 63°18'51.48944"N                     | 168°57'44.63761"W                      | 7022230.7920                 | 602085.6450                | 3404911.228                                               | 1811037                                                  | 43.879                                               | 13.374                                  | HEW5            | 8/2/2018 15:23                   |
| 10154                    | 10154               | 63°18'51.48201"N                     | 168°57'44.43904"W                      | 63°18'51.49750"N                     | 168°57'44.35324"W                      | 7022231.1670                 | 602089.5940                | 3404912.257                                               | 1811049.975                                              | 43.894                                               | 13.379                                  | HEW5            | 8/2/2018 15:24                   |
| 10155                    | 10155               | 63°18'51.58698"N                     | 168°57'44.14908"W                      | 63°18'51.60248"N                     | 168°57'44.06328"W                      | 7022234.5430                 | 602093.5250                | 3404923.133                                               | 1811063.046                                              | 44.013                                               | 13.415                                  | HEW5            | 8/2/2018 15:24                   |
| 10156                    | 10156               | 63°18'51.69732"N                     | 168°57'44.36915"W                      | 63°18'51.71282"N                     | 168°57'44.28336"W                      | 7022237.8600                 | 602090.3550                | 3404934.177                                               | 1811052.813                                              | 43.977                                               | 13.404                                  | HEW5            | 8/2/2018 15:25                   |
| 10157                    | 10157               | 63°18'51.82044"N                     | 168°57'44.24807"W                      | 63°18'51.83594"N                     | 168°57'44.16227"W                      | 7022241.7230                 | 602091.9180                | 3404946.771                                               | 1811058.141                                              | 43.949                                               | 13.396                                  | HEW5            | 8/2/2018 15:25                   |
| 10158                    | 10158               | 63°18'51.98462"N                     | 168°57'44.25416"W                      | 63°18'52.00012"N                     | 168°57'44.16837"W                      | 7022246.8000                 | 602091.6720                | 3404963.441                                               | 1811057.593                                              | 43.956                                               | 13.398                                  | HEW5            | 8/2/2018 15:25                   |
| 10159<br>10160           | 10159<br>10160      | 63°18'52.11051"N<br>63°18'52.24051"N | 168°57'44.29611"W<br>168°57'44.18040"W | 63°18'52.12601"N<br>63°18'52.25601"N | 168°57'44.21030"W<br>168°57'44.09460"W | 7022250.6760<br>7022254.7490 | 602090.9650<br>602092.4470 | 3404976.196<br>3404989.485                                | 1811055.47<br>1811060.541                                | 43.93<br>44.018                                      | 13.39                                   | HEW5            | 8/2/2018 15:26<br>8/2/2018 15:26 |
| 10161                    | 10161               | 63°18'52.35441"N                     | 168°57'43.95769"W                      | 63°18'52.36991"N                     | 168°57'43.87189"W                      | 7022254.7490                 | 602095.4330                | 3405001.218                                               | 1811070.526                                              | 43.983                                               | 13.417                                  | HEW5            | 8/2/2018 15:26                   |
| 10162                    | 10162               | 63°18'52.42370"N                     | 168°57'43.91729"W                      | 63°18'52.43920"N                     | 168°57'43.83150"W                      | 7022260.5330                 | 602095.9270                | 3405008.285                                               | 1811072.257                                              | 43.966                                               | 13.401                                  | HEW5            | 8/2/2018 15:27                   |
| 10163                    | 10163               | 63°18'52.52618"N                     | 168°57'43.79746"W                      | 63°18'52.54168"N                     | 168°57'43.71166"W                      | 7022263.7570                 | 602097.4940                | 3405018.782                                               | 1811077.562                                              | 43.893                                               | 13.378                                  | HEW5            | 8/2/2018 15:27                   |
| 10164                    | 10164               | 63°18'52.60223"N                     | 168°57'43.78765"W                      | 63°18'52.61772"N                     | 168°57'43.70186"W                      | 7022266.1140                 | 602097.5550                | 3405026.513                                               | 1811077.885                                              | 43.776                                               | 13.343                                  | HEW5            | 8/2/2018 15:27                   |
| 10165                    | 10165               | 63°18'52.61232"N                     | 168°57'43.71008"W                      | 63°18'52.62782"N                     | 168°57'43.62430"W                      | 7022266.4610                 | 602098.6240                | 3405027.595                                               | 1811081.411                                              | 43.74                                                | 13.332                                  | HEW5            | 8/2/2018 15:28                   |
| 10166                    | 10166               | 63°18'52.65603"N                     | 168°57'43.67488"W                      | 63°18'52.67153"N                     | 168°57'43.58908"W                      | 7022267.8280                 | 602099.0710                | 3405032.061                                               | 1811082.947                                              | 43.778                                               | 13.343                                  | HEW5            | 8/2/2018 15:28                   |
| 10167                    | 10167               | 63°18'52.70010"N                     | 168°57'43.77635"W                      | 63°18'52.71559"N                     | 168°57'43.69056"W                      | 7022269.1470                 | 602097.6160                | 3405036.461                                               | 1811078.24                                               | 43.77                                                | 13.341                                  | HEW5            | 8/2/2018 15:28                   |
| 10168                    | 10168               | 63°18'52.76694"N                     | 168°57'43.75293"W                      | 63°18'52.78243"N                     | 168°57'43.66712"W                      | 7022271.2250                 | 602097.8760                | 3405043.267                                               | 1811079.2                                                | 43.377                                               | 13.221                                  | HEW5            | 8/2/2018 15:28                   |
| 10169                    | 10169               | 63°18'52.85658"N                     | 168°57'43.68564"W                      | 63°18'52.87208"N                     | 168°57'43.59984"W                      | 7022274.0280                 | 602098.7240                | 3405052.421                                               | 1811082.126                                              | 43.204                                               | 13.169                                  | HEW5            | 8/2/2018 15:29                   |
| 10170                    | 10170               | 63°18'52.87946"N                     | 168°57'43.58701"W                      | 63°18'52.89495"N                     | 168°57'43.50122"W                      | 7022274.7800                 | 602100.0740                | 3405054.818                                               | 1811086.593                                              | 43.158                                               | 13.155                                  | HEW5            | 8/2/2018 15:29                   |
| 10171                    | 10171               | 63°18'52.97007"N                     | 168°57'43.41155"W                      | 63°18'52.98557"N                     | 168°57'43.32576"W                      | 7022277.6610                 | 602102.4260                | 3405064.15                                                | 1811094.458                                              | 43.181                                               | 13.162                                  | HEW5            | 8/2/2018 15:30                   |
| 10172                    | 10172               | 63°18'53.04644"N                     | 168°57'43.24148"W                      | 63°18'53.06194"N                     | 168°57'43.15570"W                      | 7022280.0990                 | 602104.7170                | 3405072.033                                               | 1811102.1                                                | 43.16                                                | 13.155                                  | HEW5            | 8/2/2018 15:30                   |
| 10173                    | 10173               | 63°18'53.24354"N                     | 168°57'43.20310"W                      | 63°18'53.25904"N                     | 168°57'43.11731"W                      | 7022286.2140                 | 602105.0570                | 3405092.079                                               | 1811103.529                                              | 43.126                                               | 13.145                                  | HEW5            | 8/2/2018 15:31                   |
| 10174                    | 10174               | 63°18'53.40291"N                     | 168°57'43.22155"W                      | 63°18'53.41840"N                     | 168°57'43.13575"W                      | 7022291.1360                 | 602104.6440                | 3405108.252                                               | 1811102.424                                              | 43.226                                               | 13.175                                  | HEW5            | 8/2/2018 15:31                   |
| 10175                    | 10175               | 63°18'53.42369"N                     | 168°57'43.24813"W                      | 63°18'53.43919"N                     | 168°57'43.16233"W                      | 7022291.7680                 | 602104.2540                | 3405110.343                                               | 1811101.176                                              | 43.161                                               | 13.156                                  | HEW5 jpn5153    | 8/2/2018 15:32                   |
| 10176                    | 10176               | 63°18'53.97313"N                     | 168°57'43.36841"W                      | 63°18'53.98863"N                     | 168°57'43.28262"W                      | 7022308.7140                 | 602102.0400                | 3405166.057                                               | 1811094.779                                              | 42.03                                                | 12.811                                  | HEW10           | 8/2/2018 15:37                   |
| 10177                    | 10177               | 63°18'54.06062"N                     | 168°57'43.30302"W                      | 63°18'54.07612"N                     | 168°57'43.21721"W                      | 7022311.4500                 | 602102.8640                | 3405174.992                                               | 1811097.622                                              | 41.768                                               | 12.731                                  | HEW10           | 8/2/2018 15:38                   |
| 10178                    | 10178               | 63°18'54.15397"N                     | 168°57'43.09222"W                      | 63°18'54.16947"N                     | 168°57'43.00643"W                      | 7022314.4310                 | 602105.7040                | 3405184.628                                               | 1811107.096                                              | 41.548                                               | 12.664                                  | HEW10           | 8/2/2018 15:38                   |
| 10179                    | 10179               | 63°18'54.24561"N                     | 168°57'42.93564"W                      | 63°18'54.26111"N                     | 168°57'42.84984"W                      | 7022317.3350                 | 602107.7930                | 3405194.052                                               | 1811114.097                                              | 41.444                                               | 12.632                                  | HEW10           | 8/2/2018 15:39                   |
| 10180                    | 10180               | 63°18'54.31931"N                     | 168°57'42.95070"W                      | 63°18'54.33481"N                     | 168°57'42.86490"W                      | 7022319.6090                 | 602107.5110                | 3405201.526                                               | 1811113.288                                              | 41.429                                               | 12.628                                  | HEW10           | 8/2/2018 15:39                   |
| 10181                    | 10181               | 63°18'54.35797"N                     | 168°57'42.82015"W                      | 63°18'54.37347"N                     | 168°57'42.73434"W                      | 7022320.8630                 | 602109.2890                | 3405205.549                                               | 1811119.187                                              | 41.419                                               | 12.625                                  | HEW10           | 8/2/2018 15:39                   |
| 10182                    | 10182               | 63°18'54.46052"N                     | 168°57'42.74243"W                      | 63°18'54.47602"N                     | 168°57'42.65664"W                      | 7022324.0700                 | 602110.2690                | 3405216.022                                               | 1811122.568                                              | 41.142                                               | 12.54                                   | HEW10           | 8/2/2018 15:39                   |
| 10183                    | 10183               | 63°18'54.59162"N                     | 168°57'42.60855"W                      | 63°18'54.60712"N                     | 168°57'42.52275"W                      | 7022328.1850                 | 602112.0030                | 3405229.436                                               | 1811128.467                                              | 41.077                                               | 12.52                                   | HEW10           | 8/2/2018 15:40                   |

| Field Survey<br>Point ID | Feature Location ID | Latitude (WGS84) | Longitude (WGS84) | Latitude (NAD 83 (2011)) | Longitude (NAD 83<br>(2011)) | Northing (UTM<br>Zone 2N) | Easting (UTM<br>Zone 2N) | Northing - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Easting - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Elevation (NAVD88,<br>GEOID12B, U.S. Survey<br>Feet) | Elevation (NAVD88,<br>GEOID12B, Meters) | Text Descriptor | Measurement Date/Time |
|--------------------------|---------------------|------------------|-------------------|--------------------------|------------------------------|---------------------------|--------------------------|-----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|-----------------------------------------|-----------------|-----------------------|
| 10184                    | 10184               | 63°18'54.75162"N | 168°57'42.48331"W | 63°18'54.76713"N         | 168°57'42.39751"W            | 7022333.1910              | 602113.5880              | 3405245.779                                               | 1811133.924                                              | 40.977                                               | 12.49                                   | HEW10           | 8/2/2018 15:40        |
| 10185                    | 10185               | 63°18'54.90946"N | 168°57'42.38825"W | 63°18'54.92496"N         | 168°57'42.30245"W            | 7022338.1160              | 602114.7560              | 3405261.88                                                | 1811138.006                                              | 40.901                                               | 12.467                                  | HEW10           | 8/2/2018 15:41        |
| 10186                    | 10186               | 63°18'54.96559"N | 168°57'42.35278"W | 63°18'54.98109"N         | 168°57'42.26698"W            | 7022339.8690              | 602115.1940              | 3405267.607                                               | 1811139.534                                              | 40.686                                               | 12.401                                  | HEW10           | 8/2/2018 15:41        |
| 10187                    | 10187               | 63°18'55.07434"N | 168°57'42.36163"W | 63°18'55.08983"N         | 168°57'42.27583"W            | 7022343.2290              | 602114.9640              | 3405278.645                                               | 1811138.951                                              | 40.582                                               | 12.369                                  | HEW10           | 8/2/2018 15:42        |
| 10188                    | 10188               | 63°18'55.16272"N | 168°57'42.36547"W | 63°18'55.17822"N         | 168°57'42.27968"W            | 7022345.9620              | 602114.8230              | 3405287.619                                               | 1811138.63                                               | 40.431                                               | 12.323                                  | HEW10           | 8/2/2018 15:42        |
| 10189                    | 10189               | 63°18'55.25918"N | 168°57'42.36787"W | 63°18'55.27468"N         | 168°57'42.28206"W            | 7022348.9450              | 602114.6950              | 3405297.414                                               | 1811138.362                                              | 40.423                                               | 12.321                                  | HEW10           | 8/2/2018 15:42        |
| 10190                    | 10190               | 63°18'55.33222"N | 168°57'42.44658"W | 63°18'55.34772"N         | 168°57'42.36077"W            | 7022351.1700              | 602113.5280              | 3405304.774                                               | 1811134.647                                              | 40.297                                               | 12.283                                  | HEW10           | 8/2/2018 15:43        |
| 10191                    | 10191               | 63°18'55.47040"N | 168°57'42.31999"W | 63°18'55.48591"N         | 168°57'42.23421"W            | 7022355.5020              | 602115.1530              | 3405318.902                                               | 1811140.201                                              | 40.275                                               | 12.276                                  | HEW10           | 8/2/2018 15:43        |
| 10192                    | 10192               | 63°18'55.50102"N | 168°57'42.43023"W | 63°18'55.51652"N         | 168°57'42.34442"W            | 7022356.4000              | 602113.5900              | 3405321.93                                                | 1811135.116                                              | 40.245                                               | 12.267                                  | HEW10           | 8/2/2018 15:43        |
| 10193                    | 10193               | 63°18'55.63753"N | 168°57'42.36348"W | 63°18'55.65303"N         | 168°57'42.27769"W            | 7022360.6530              | 602114.3840              | 3405335.844                                               | 1811137.94                                               | 40.085                                               | 12.218                                  | HEW10           | 8/2/2018 15:44        |
| 10194                    | 10194               | 63°18'55.63140"N | 168°57'42.22986"W | 63°18'55.64689"N         | 168°57'42.14406"W            | 7022360.5220              | 602116.2490              | 3405335.32                                                | 1811144.053                                              | 40.018                                               | 12.197                                  | HEW10           | 8/2/2018 15:44        |
| 10195                    | 10195               | 63°18'55.64805"N | 168°57'42.05924"W | 63°18'55.66354"N         | 168°57'41.97344"W            | 7022361.1130              | 602118.6070              | 3405337.137                                               | 1811151.818                                              | 40.064                                               | 12.212                                  | HEW10           | 8/2/2018 15:45        |
| 10196                    | 10196               | 63°18'55.74691"N | 168°57'41.94051"W | 63°18'55.76241"N         | 168°57'41.85472"W            | 7022364.2240              | 602120.1610              | 3405347.266                                               | 1811157.078                                              | 40.022                                               | 12.199                                  | HEW10           | 8/2/2018 15:45        |
| 10197                    | 10197               | 63°18'55.81611"N | 168°57'41.86890"W | 63°18'55.83161"N         | 168°57'41.78310"W            | 7022366.3970              | 602121.0890              | 3405354.347                                               | 1811160.235                                              | 39.959                                               | 12.179                                  | HEW10           | 8/2/2018 15:45        |
| 10198                    | 10198               | 63°18'55.87591"N | 168°57'41.74858"W | 63°18'55.89142"N         | 168°57'41.66279"W            | 7022368.3000              | 602122.7040              | 3405360.51                                                | 1811165.632                                              | 39.892                                               | 12.159                                  | HEW10           | 8/2/2018 15:46        |
| 10199                    | 10199               | 63°18'56.00519"N | 168°57'41.75288"W | 63°18'56.02069"N         | 168°57'41.66709"W            | 7022372.2980              | 602122.5170              | 3405373.637                                               | 1811165.223                                              | 39.858                                               | 12.149                                  | HEW10           | 8/2/2018 15:46        |
| 10200                    | 10200               | 63°18'56.11520"N | 168°57'41.64104"W | 63°18'56.13070"N         | 168°57'41.55523"W            | 7022375.7510              | 602123.9650              | 3405384.892                                               | 1811170.15                                               | 39.752                                               | 12.117                                  | HEW10           | 8/2/2018 15:46        |
| 10201                    | 10201               | 63°18'56.21618"N | 168°57'41.53027"W | 63°18'56.23168"N         | 168°57'41.44447"W            | 7022378.9240              | 602125.4070              | 3405395.23                                                | 1811175.043                                              | 39.697                                               | 12.1                                    | HEW10           | 8/2/2018 15:47        |
| 10202                    | 10202               | 63°18'56.34387"N | 168°57'41.53053"W | 63°18'56.35937"N         | 168°57'41.44473"W            | 7022382.8750              | 602125.2780              | 3405408.199                                               | 1811174.821                                              | 39.637                                               | 12.081                                  | HEW10           | 8/2/2018 15:47        |
| 10203                    | 10203               | 63°18'56.44479"N | 168°57'41.39870"W | 63°18'56.46029"N         | 168°57'41.31291"W            | 7022386.0550              | 602127.0120              | 3405418.546                                               | 1811180.676                                              | 39.642                                               | 12.083                                  | HEW10           | 8/2/2018 15:48        |
| 10204                    | 10204               | 63°18'56.54775"N | 168°57'41.23819"W | 63°18'56.56325"N         | 168°57'41.15241"W            | 7022389.3120              | 602129.1440              | 3405429.122                                               | 1811187.837                                              | 39.565                                               | 12.06                                   | HEW10           | 8/2/2018 15:48        |
| 10205                    | 10205               | 63°18'56.61255"N | 168°57'41.20862"W | 63°18'56.62805"N         | 168°57'41.12282"W            | 7022391.3300              | 602129.4920              | 3405435.725                                               | 1811189.081                                              | 39.49                                                | 12.036                                  | HEW10           | 8/2/2018 15:49        |
| 10206                    | 10206               | 63°18'56.70988"N | 168°57'41.26432"W | 63°18'56.72537"N         | 168°57'41.17852"W            | 7022394.3160              | 602128.6210              | 3405445.569                                               | 1811186.377                                              | 39.494                                               | 12.038                                  | HEW10           | 8/2/2018 15:49        |
| 10207                    | 10207               | 63°18'56.74798"N | 168°57'41.25294"W | 63°18'56.76348"N         | 168°57'41.16714"W            | 7022395.5000              | 602128.7420              | 3405449.447                                               | 1811186.834                                              | 39.541                                               | 12.052                                  | HEW10           | 8/2/2018 15:50        |
| 10208                    | 10208               | 63°18'56.83930"N | 168°57'41.17615"W | 63°18'56.85480"N         | 168°57'41.09036"W            | 7022398.3600              | 602129.7200              | 3405458.779                                               | 1811190.191                                              | 39.511                                               | 12.043                                  | HEW10           | 8/2/2018 15:50        |
| 10209                    | 10209               | 63°18'56.97168"N | 168°57'41.13900"W | 63°18'56.98719"N         | 168°57'41.05321"W            | 7022402.4720              | 602130.1070              | 3405472.252                                               | 1811191.67                                               | 39.273                                               | 11.97                                   | HEW10           | 8/2/2018 15:51        |
| 10210                    | 10210               | 63°18'57.04388"N | 168°57'40.99180"W | 63°18'57.05938"N         | 168°57'40.90601"W            | 7022404.7710              | 602132.0840              | 3405479.693                                               | 1811198.274                                              | 39.272                                               | 11.97                                   | HEW10           | 8/2/2018 15:52        |
| 10211                    | 10211               | 63°18'57.14947"N | 168°57'41.23261"W | 63°18'57.16496"N         | 168°57'41.14681"W            | 7022407.9310              | 602128.6300              | 3405490.239                                               | 1811187.102                                              | 38.981                                               | 11.881                                  | HEW10           | 8/2/2018 15:53        |
| 10212                    | 10212               | 63°18'57.23777"N | 168°57'41.28724"W | 63°18'57.25327"N         | 168°57'41.20144"W            | 7022410.6390              | 602127.7830              | 3405499.167                                               | 1811184.462                                              | 39.006                                               | 11.889                                  | HEW10           | 8/2/2018 15:53        |
| 10213                    | 10213               | 63°18'57.37569"N | 168°57'41.36727"W | 63°18'57.39119"N         | 168°57'41.28147"W            | 7022414.8700              | 602126.5340              | 3405513.116                                               | 1811180.58                                               | 38.837                                               | 11.838                                  | HEW10           | 8/2/2018 15:54        |
| 10214                    | 10214               | 63°18'57.45414"N | 168°57'41.18582"W | 63°18'57.46964"N         | 168°57'41.10003"W            | 7022417.3780              | 602128.9810              | 3405521.218                                               | 1811188.738                                              | 38.545                                               | 11.749                                  | HEW10           | 8/2/2018 15:54        |
| 10215                    | 10215               | 63°18'57.59574"N | 168°57'41.41023"W | 63°18'57.61124"N         | 168°57'41.32443"W            | 7022421.6600              | 602125.7200              | 3405535.433                                               | 1811178.256                                              | 38.423                                               | 11.711                                  | HEW10           | 8/2/2018 15:54        |
| 10216                    | 10216               | 63°18'57.74338"N | 168°57'41.51266"W | 63°18'57.75887"N         | 168°57'41.42687"W            | 7022426.1820              | 602124.1490              | 3405550.352                                               | 1811173.335                                              | 38.199                                               | 11.643                                  | HEW10           | 8/2/2018 15:55        |
| 10217                    | 10217               | 63°18'57.75943"N | 168°57'41.61149"W | 63°18'57.77493"N         | 168°57'41.52568"W            | 7022426.6350              | 602122.7590              | 3405551.909                                               | 1811168.795                                              | 38.244                                               | 11.657                                  | HEW10           | 8/2/2018 15:55        |
| 10218                    | 10218               | 63°18'57.80225"N | 168°57'41.66764"W | 63°18'57.81775"N         | 168°57'41.58185"W            | 7022427.9350              | 602121.9350              | 3405556.217                                               | 1811166.16                                               | 37.857                                               | 11.539                                  | HEW10           | 8/2/2018 15:55        |
| 10219                    | 10219               | 63°18'57.81454"N | 168°57'41.56687"W | 63°18'57.83004"N         | 168°57'41.48108"W            | 7022428.3600              | 602123.3250              | 3405557.539                                               | 1811170.742                                              | 37.898                                               | 11.551                                  | HEW10           | 8/2/2018 15:56        |
| 10220                    | 10220               | 63°18'57.91710"N | 168°57'41.55967"W | 63°18'57.93260"N         | 168°57'41.47387"W            | 7022431.5360              | 602123.3240              | 3405567.961                                               | 1811170.902                                              | 37.845                                               | 11.535                                  | HEW10           | 8/2/2018 15:56        |
| 10221                    | 10221               | 63°18'57.95916"N | 168°57'41.63933"W | 63°18'57.97466"N         | 168°57'41.55354"W            | 7022432.8020              | 602122.1750              | 3405572.174                                               | 1811167.195                                              | 37.891                                               | 11.549                                  | HEW10           | 8/2/2018 15:56        |
| 10222                    | 10222               | 63°18'58.00352"N | 168°57'41.69260"W | 63°18'58.01902"N         | 168°57'41.60679"W            | 7022434.1510              | 602121.3900              | 3405576.64                                                | 1811164.689                                              | 37.816                                               | 11.526                                  | HEW10           | 8/2/2018 15:57        |
| 10223                    | 10223               | 63°18'58.02658"N | 168°57'41.69225"W | 63°18'58.04207"N         | 168°57'41.60644"W            | 7022434.8640              | 602121.3720              | 3405578.982                                               | 1811164.667                                              | 37.628                                               | 11.469                                  | HEW10           | 8/2/2018 15:59        |
| 10224                    | 10224               | 63°18'58.05008"N | 168°57'41.60925"W | 63°18'58.06559"N         | 168°57'41.52346"W            | 7022435.6280              | 602122.5040              | 3405581.431                                               | 1811168.419                                              | 37.758                                               | 11.509                                  | HEW10           | 8/2/2018 16:01        |
| 10225                    | 10225               | 63°18'58.02459"N | 168°57'41.36203"W | 63°18'58.04010"N         | 168°57'41.27623"W            | 7022434.9490              | 602125.9680              | 3405579.025                                               | 1811179.752                                              | 37.822                                               | 11.528                                  | HEW10           | 8/2/2018 16:02        |
| 10226                    | 10226               | 63°18'58.02094"N | 168°57'41.02129"W | 63°18'58.03644"N         | 168°57'40.93548"W            | 7022434.9870              | 602130.7130              | 3405578.906                                               | 1811195.32                                               | 37.807                                               | 11.524                                  | HEW10           | 8/2/2018 16:02        |
| 10227                    | 10227               | 63°18'58.04022"N | 168°57'40.85278"W | 63°18'58.05573"N         | 168°57'40.76699"W            | 7022435.6580              | 602133.0380              | 3405580.989                                               | 1811202.984                                              | 37.88                                                | 11.546                                  | HEW10           | 8/2/2018 16:03        |

| Field Survey<br>Point ID | Feature Location ID | Latitude (WGS84)                     | Longitude (WGS84)                      | Latitude (NAD 83 (2011))             | Longitude (NAD 83<br>(2011))           | Northing (UTM<br>Zone 2N)    | Easting (UTM<br>Zone 2N)   | Northing - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Easting - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Elevation (NAVD88,<br>GEOID12B, U.S. Survey<br>Feet) | Elevation (NAVD88,<br>GEOID12B, Meters) | Text Descriptor | Measurement Date/Time          |
|--------------------------|---------------------|--------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|------------------------------|----------------------------|-----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|-----------------------------------------|-----------------|--------------------------------|
| 10228                    | 10228               | 63°18'58.11047"N                     | 168°57'40.37958"W                      | 63°18'58.12597"N                     | 168°57'40.29378"W                      | 7022438.0410                 | 602139.5520                | 3405588.474                                               | 1811224.48                                               | 37.885                                               | 11.547                                  | HEW10           | 8/2/2018 16:03                 |
| 10229                    | 10229               | 63°18'58.08616"N                     | 168°57'40.20135"W                      | 63°18'58.10166"N                     | 168°57'40.11555"W                      | 7022437.3680                 | 602142.0560                | 3405586.137                                               | 1811232.66                                               | 37.917                                               | 11.557                                  | HEW10           | 8/2/2018 16:03                 |
| 10230                    | 10230               | 63°18'58.09391"N                     | 168°57'40.04564"W                      | 63°18'58.10941"N                     | 168°57'39.95984"W                      | 7022437.6760                 | 602144.2140                | 3405587.039                                               | 1811239.759                                              | 37.895                                               | 11.55                                   | HEW10           | 8/2/2018 16:04                 |
| 10231                    | 10231               | 63°18'58.20772"N                     | 168°57'39.75409"W                      | 63°18'58.22322"N                     | 168°57'39.66828"W                      | 7022441.3260                 | 602148.1590                | 3405598.814                                               | 1811252.887                                              | 37.914                                               | 11.556                                  | HEW10           | 8/2/2018 16:04                 |
| 10232                    | 10232               | 63°18'58.29578"N                     | 168°57'39.46099"W                      | 63°18'58.31127"N                     | 168°57'39.37520"W                      | 7022444.1800                 | 602152.1490                | 3405607.974                                               | 1811266.128                                              | 37.963                                               | 11.571                                  | HEW10           | 8/2/2018 16:05                 |
| 10233                    | 10233               | 63°18'58.31738"N                     | 168°57'39.21514"W                      | 63°18'58.33288"N                     | 168°57'39.12933"W                      | 7022444.9580                 | 602155.5490                | 3405610.35                                                | 1811277.321                                              | 38.002                                               | 11.583                                  | HEW10           | 8/2/2018 16:05                 |
| 10234                    | 10234               | 63°18'57.69976"N                     | 168°57'18.33929"W                      | 63°18'57.71525"N                     | 168°57'18.25347"W                      | 7022435.1020                 | 602446.5930                | 3405563.116                                               | 1812231.765                                              | 51.418                                               | 15.672                                  | CHK 2 HV        | 8/2/2018 17:11                 |
| 10235                    | 10235               | 63°18'57.69956"N                     | 168°57'18.33886"W                      | 63°18'57.71505"N                     | 168°57'18.25305"W                      | 7022435.0960                 | 602446.5990                | 3405563.096                                               | 1812231.785                                              | 51.426                                               | 15.675                                  | CHK 2 HV        | 8/2/2018 18:09                 |
| 10236                    | 10236               | 63°18'57.69988"N                     | 168°57'18.33970"W                      | 63°18'57.71538"N                     | 168°57'18.25389"W                      | 7022435.1050                 | 602446.5870                | 3405563.128                                               | 1812231.746                                              | 51.433                                               | 15.677                                  | CHK 0 HV        | 8/3/2018 8:57                  |
| 10237                    | 10237               | 63°19'03.96540"N                     | 168°56'44.95903"W                      | 63°19'03.98089"N                     | 168°56'44.87322"W                      | 7022643.8020                 | 602904.7840                | 3406224.434                                               | 1813745.82                                               | 78.543                                               | 23.94                                   | MP flag         | 8/3/2018 9:09                  |
| 10238                    | 10238               | 63°19'03.97244"N                     | 168°56'44.96267"W                      | 63°19'03.98793"N                     | 168°56'44.87685"W                      | 7022644.0180                 | 602904.7270                | 3406225.146                                               | 1813745.642                                              | 78.484                                               | 23.922                                  | GB1             | 8/3/2018 9:10                  |
| 10239                    | 10239               | 63°19'03.92636"N                     | 168°56'45.18033"W                      | 63°19'03.94185"N                     | 168°56'45.09450"W                      | 7022642.4950                 | 602901.7450                | 3406220.303                                               | 1813735.779                                              | 78.239                                               | 23.847                                  | GB1             | 8/3/2018 9:10                  |
| 10240<br>10241           | 10240<br>10241      | 63°19'03.87910"N<br>63°19'03.86195"N | 168°56'45.33485"W<br>168°56'45.47886"W | 63°19'03.89459"N<br>63°19'03.87744"N | 168°56'45.24904"W<br>168°56'45.39304"W | 7022640.9640<br>7022640.3690 | 602899.6420<br>602897.6550 | 3406215.387<br>3406213.537                                | 1813728.801<br>1813722.253                               | 78.527<br>78.632                                     | 23.935                                  | GB1<br>GB1      | 8/3/2018 9:11<br>8/3/2018 9:11 |
| 10241                    | 10241               | 63°19'03.83162"N                     | 168°56'45.44285"W                      | 63°19'03.84712"N                     | 168°56'45.35703"W                      | 7022639.4480                 | 602898.1860                | 3406210.484                                               | 1813722.233                                              | 78.607                                               | 23.959                                  | MP flag         | 8/3/2018 9:12                  |
| 10242                    | 10242               | 63°19'03.80174"N                     | 168°56'45.63743"W                      | 63°19'03.81723"N                     | 168°56'45.55161"W                      | 7022638.4360                 | 602895.5090                | 3406207.303                                               | 1813715.112                                              | 78.461                                               | 23.915                                  | GB1             | 8/3/2018 9:12                  |
| 10244                    | 10244               | 63°19'03.83028"N                     | 168°56'45.83840"W                      | 63°19'03.84578"N                     | 168°56'45.75258"W                      | 7022639.2300                 | 602892.6850                | 3406210.051                                               | 1813705.886                                              | 78.53                                                | 23.936                                  | GB1             | 8/3/2018 9:12                  |
| 10245                    | 10245               | 63°19'03.82605"N                     | 168°56'46.15197"W                      | 63°19'03.84155"N                     | 168°56'46.06615"W                      | 7022638.9590                 | 602888.3270                | 3406209.386                                               | 1813691.573                                              | 78.494                                               | 23.925                                  | GB1             | 8/3/2018 9:13                  |
| 10246                    | 10246               | 63°19'03.82520"N                     | 168°56'46.27267"W                      | 63°19'03.84070"N                     | 168°56'46.18685"W                      | 7022638.8790                 | 602886.6480                | 3406209.209                                               | 1813686.062                                              | 78.394                                               | 23.895                                  | GB1             | 8/3/2018 9:14                  |
| 10247                    | 10247               | 63°19'03.81310"N                     | 168°56'46.29096"W                      | 63°19'03.82859"N                     | 168°56'46.20515"W                      | 7022638.4960                 | 602886.4060                | 3406207.966                                               | 1813685.247                                              | 78.375                                               | 23.889                                  | MP flag         | 8/3/2018 9:14                  |
| 10248                    | 10248               | 63°19'03.81756"N                     | 168°56'46.38734"W                      | 63°19'03.83305"N                     | 168°56'46.30153"W                      | 7022638.5910                 | 602885.0610                | 3406208.347                                               | 1813680.838                                              | 78.455                                               | 23.913                                  | GB1             | 8/3/2018 9:14                  |
| 10249                    | 10249               | 63°19'03.83403"N                     | 168°56'46.51687"W                      | 63°19'03.84952"N                     | 168°56'46.43106"W                      | 7022639.0430                 | 602883.2420                | 3406209.922                                               | 1813674.895                                              | 78.301                                               | 23.866                                  | GB1             | 8/3/2018 9:15                  |
| 10250                    | 10250               | 63°19'03.89286"N                     | 168°56'46.52961"W                      | 63°19'03.90836"N                     | 168°56'46.44380"W                      | 7022640.8580                 | 602883.0070                | 3406215.888                                               | 1813674.215                                              | 78.304                                               | 23.867                                  | GB1             | 8/3/2018 9:15                  |
| 10251                    | 10251               | 63°19'04.00522"N                     | 168°56'46.50985"W                      | 63°19'04.02071"N                     | 168°56'46.42403"W                      | 7022644.3420                 | 602883.1710                | 3406227.314                                               | 1813674.93                                               | 78.469                                               | 23.917                                  | GB1             | 8/3/2018 9:15                  |
| 10252                    | 10252               | 63°19'04.02937"N                     | 168°56'46.48731"W                      | 63°19'04.04486"N                     | 168°56'46.40150"W                      | 7022645.1000                 | 602883.4600                | 3406229.784                                               | 1813675.919                                              | 78.475                                               | 23.919                                  | GB1             | 8/3/2018 9:15                  |
| 10253                    | 10253               | 63°19'04.02801"N                     | 168°56'46.49844"W                      | 63°19'04.04349"N                     | 168°56'46.41263"W                      | 7022645.0530                 | 602883.3060                | 3406229.637                                               | 1813675.413                                              | 78.392                                               | 23.894                                  | MP flag         | 8/3/2018 9:16                  |
| 10254                    | 10254               | 63°19'04.05172"N                     | 168°56'46.36648"W                      | 63°19'04.06721"N                     | 168°56'46.28066"W                      | 7022645.8450                 | 602885.1190                | 3406232.144                                               | 1813681.4                                                | 78.855                                               | 24.035                                  | GB1             | 8/3/2018 9:16                  |
| 10255                    | 10255               | 63°19'04.09130"N                     | 168°56'46.15714"W                      | 63°19'04.10679"N                     | 168°56'46.07131"W                      | 7022647.1630                 | 602887.9920                | 3406236.322                                               | 1813690.894                                              | 79.322                                               | 24.177                                  | GB1             | 8/3/2018 9:17                  |
| 10256                    | 10256               | 63°19'04.11753"N                     | 168°56'45.88422"W                      | 63°19'04.13301"N                     | 168°56'45.79841"W                      | 7022648.0960                 | 602891.7630                | 3406239.19                                                | 1813703.314                                              | 79.356                                               | 24.188                                  | GB1             | 8/3/2018 9:17                  |
| 10257                    | 10257               | 63°19'04.13334"N                     | 168°56'45.66526"W                      | 63°19'04.14884"N                     | 168°56'45.57944"W                      | 7022648.6830                 | 602894.7930                | 3406240.961                                               | 1813713.287                                              | 79.355                                               | 24.187                                  | GB1             | 8/3/2018 9:17                  |
| 10258                    | 10258               | 63°19'04.18864"N                     | 168°56'45.49199"W                      | 63°19'04.20413"N                     | 168°56'45.40617"W                      | 7022650.4710                 | 602897.1490                | 3406246.707                                               | 1813721.108                                              | 79.54                                                | 24.244                                  | GB1             | 8/3/2018 9:17                  |
| 10259                    | 10259               | 63°19'04.21213"N                     | 168°56'45.32808"W                      | 63°19'04.22762"N                     | 168°56'45.24226"W                      | 7022651.2710                 | 602899.4060                | 3406249.216                                               | 1813728.554                                              | 79.234                                               | 24.151                                  | GB1             | 8/3/2018 9:18                  |
| 10260                    | 10260               | 63°19'04.20558"N                     | 168°56'45.26239"W                      | 63°19'04.22107"N                     | 168°56'45.17657"W                      | 7022651.0980                 | 602900.3260                | 3406248.6                                                 | 1813731.565                                              | 79.162                                               | 24.129                                  | GB1             | 8/3/2018 9:18                  |
| 10261                    | 10261               | 63°19'04.20470"N                     | 168°56'45.26350"W                      | 63°19'04.22020"N                     | 168°56'45.17767"W                      | 7022651.0700                 | 602900.3120                | 3406248.51                                                | 1813731.516                                              | 79.135                                               | 24.12                                   | MP flag         | 8/3/2018 9:18                  |
| 10262                    | 10262               | 63°19'04.23233"N                     | 168°56'45.08643"W                      | 63°19'04.24782"N                     | 168°56'45.00061"W                      | 7022652.0040                 | 602902.7470                | 3406251.449                                               | 1813739.556                                              | 79.079                                               | 24.103                                  | GB1             | 8/3/2018 9:18                  |
| 10263                    | 10263               | 63°19'04.20811"N                     | 168°56'44.98164"W                      | 63°19'04.22361"N                     | 168°56'44.89583"W                      | 7022651.3010                 | 602904.2290                | 3406249.068                                               | 1813744.382                                              | 79.05                                                | 24.094                                  | GB1             | 8/3/2018 9:18                  |
| 10264                    | 10264               | 63°19'04.18633"N                     | 168°56'44.82712"W                      | 63°19'04.20183"N                     | 168°56'44.74130"W                      | 7022650.6960                 | 602906.4000                | 3406246.972                                               | 1813751.475                                              | 78.919                                               | 24.055                                  | GB1             | 8/3/2018 9:19                  |
| 10265<br>10266           | 10265<br>10266      | 63°19'04.18336"N<br>63°19'04.13099"N | 168°56'44.84007"W<br>168°56'44.68051"W | 63°19'04.19885"N<br>63°19'04.14648"N | 168°56'44.75426"W<br>168°56'44.59470"W | 7022650.5980<br>7022649.0490 | 602906.2230<br>602908.4950 | 3406246.66<br>3406241.461                                 | 1813750.889<br>1813758.263                               | 78.768<br>78.839                                     | 24.008                                  | MP flag  GB1    | 8/3/2018 9:19<br>8/3/2018 9:19 |
| 10266                    | 10266               | 63°19'04.06415"N                     | 168°56'44.76027"W                      | 63°19'04.07964"N                     | 168°56'44.67447"W                      | 7022646.9460                 | 602907.4510                | 3406241.461                                               | 1813754.732                                              | 78.612                                               | 23.961                                  | GB1             | 8/3/2018 9:19                  |
| 10267                    | 10267               | 63°19'03.98515"N                     | 168°56'44.84659"W                      | 63°19'04.00064"N                     | 168°56'44.76077"W                      | 7022644.4630                 | 602906.3290                | 3406234.613                                               | 1813750.922                                              | 78.75                                                | 24.003                                  | GB1 C           | 8/3/2018 9:20                  |
| 10269                    | 10269               | 63°19'03.96159"N                     | 168°56'44.74646"W                      | 63°19'03.97708"N                     | 168°56'44.66064"W                      | 7022643.7790                 | 602907.7450                | 3406224.207                                               | 1813755.534                                              | 78.624                                               | 23.965                                  | GS              | 8/3/2018 9:20                  |
| 10270                    | 10270               | 63°19'03.90457"N                     | 168°56'44.61436"W                      | 63°19'03.92007"N                     | 168°56'44.52855"W                      | 7022642.0740                 | 602909.6400                | 3406218.515                                               | 1813761.662                                              | 78.626                                               | 23.965                                  | GS              | 8/3/2018 9:20                  |
| 10271                    | 10271               | 63°19'03.82616"N                     | 168°56'44.80360"W                      | 63°19'03.84165"N                     | 168°56'44.71777"W                      | 7022639.5630                 | 602907.0850                | 3406210.409                                               | 1813753.151                                              | 78.57                                                | 23.948                                  | GS              | 8/3/2018 9:20                  |

| Field Survey<br>Point ID | Feature Location ID | Latitude (WGS84)                     | Longitude (WGS84)                      | Latitude (NAD 83 (2011))             | Longitude (NAD 83<br>(2011))           | Northing (UTM<br>Zone 2N)    | Easting (UTM<br>Zone 2N)   | Northing - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Easting - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Elevation (NAVD88,<br>GEOID12B, U.S. Survey<br>Feet) | Elevation (NAVD88,<br>GEOID12B, Meters) | Text Descriptor | Measurement Date/Time          |
|--------------------------|---------------------|--------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|------------------------------|----------------------------|-----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|-----------------------------------------|-----------------|--------------------------------|
| 10272                    | 10272               | 63°19'03.88251"N                     | 168°56'44.95823"W                      | 63°19'03.89800"N                     | 168°56'44.87241"W                      | 7022641.2380                 | 602904.8780                | 3406216.016                                               | 1813745.995                                              | 78.754                                               | 24.004                                  | GS              | 8/3/2018 9:21                  |
| 10273                    | 10273               | 63°19'03.83647"N                     | 168°56'45.11109"W                      | 63°19'03.85196"N                     | 168°56'45.02527"W                      | 7022639.7450                 | 602902.7970                | 3406211.225                                               | 1813739.091                                              | 78.804                                               | 24.02                                   | GS              | 8/3/2018 9:21                  |
| 10274                    | 10274               | 63°19'03.73951"N                     | 168°56'45.03221"W                      | 63°19'03.75500"N                     | 168°56'44.94639"W                      | 7022636.7800                 | 602903.9900                | 3406201.437                                               | 1813742.855                                              | 78.554                                               | 23.943                                  | GS              | 8/3/2018 9:21                  |
| 10275                    | 10275               | 63°19'03.70275"N                     | 168°56'45.22384"W                      | 63°19'03.71825"N                     | 168°56'45.13803"W                      | 7022635.5580                 | 602901.3610                | 3406197.56                                                | 1813734.165                                              | 78.449                                               | 23.911                                  | GS              | 8/3/2018 9:21                  |
| 10276                    | 10276               | 63°19'03.78452"N                     | 168°56'45.35372"W                      | 63°19'03.80002"N                     | 168°56'45.26790"W                      | 7022638.0300                 | 602899.4730                | 3406205.767                                               | 1813728.097                                              | 78.674                                               | 23.98                                   | GS              | 8/3/2018 9:21                  |
| 10277                    | 10277               | 63°19'03.74284"N                     | 168°56'45.54847"W                      | 63°19'03.75833"N                     | 168°56'45.46264"W                      | 7022636.6530                 | 602896.8050                | 3406201.387                                               | 1813719.273                                              | 78.628                                               | 23.966                                  | GS              | 8/3/2018 9:22                  |
| 10278                    | 10278               | 63°19'03.64623"N                     | 168°56'45.47078"W                      | 63°19'03.66172"N                     | 168°56'45.38496"W                      | 7022633.6990                 | 602897.9820                | 3406191.634                                               | 1813722.982                                              | 78.271                                               | 23.857                                  | GS              | 8/3/2018 9:22                  |
| 10279                    | 10279               | 63°19'03.61143"N                     | 168°56'45.67870"W                      | 63°19'03.62692"N                     | 168°56'45.59288"W                      | 7022632.5300                 | 602895.1240                | 3406187.943                                               | 1813713.545                                              | 78.223                                               | 23.843                                  | GS              | 8/3/2018 9:22                  |
| 10280                    | 10280               | 63°19'03.71888"N                     | 168°56'45.73540"W                      | 63°19'03.73437"N                     | 168°56'45.64958"W                      | 7022635.8290                 | 602894.2280                | 3406198.814                                               | 1813710.776                                              | 78.476                                               | 23.919                                  | GS              | 8/3/2018 9:22                  |
| 10281                    | 10281<br>10282      | 63°19'03.79124"N<br>63°19'03.78599"N | 168°56'45.81373"W<br>168°56'45.99100"W | 63°19'03.80673"N<br>63°19'03.80148"N | 168°56'45.72791"W<br>168°56'45.90519"W | 7022638.0320<br>7022637.7910 | 602893.0670<br>602890.6060 | 3406206.104<br>3406205.438                                | 1813707.078<br>1813698.991                               | 78.596<br>78.391                                     | 23.956                                  | GS<br>GS        | 8/3/2018 9:22<br>8/3/2018 9:23 |
| 10282                    | 10282               | 63°19'03.69110"N                     | 168°56'45.98672"W                      | 63°19'03.70659"N                     | 168°56'45.90091"W                      | 7022634.8570                 | 602890.7590                | 3406205.438                                               | 1813699.345                                              | 78.52                                                | 23.933                                  | GS              | 8/3/2018 9:23                  |
| 10284                    | 10284               | 63°19'03.60705"N                     | 168°56'45.90128"W                      | 63°19'03.62254"N                     | 168°56'45.81546"W                      | 7022632.2950                 | 602892.0320                | 3406187.331                                               | 1813703.387                                              | 78.368                                               | 23.887                                  | GS              | 8/3/2018 9:23                  |
| 10285                    | 10285               | 63°19'03.55392"N                     | 168°56'46.09318"W                      | 63°19'03.56941"N                     | 168°56'46.00736"W                      | 7022630.5660                 | 602889.4140                | 3406181.791                                               | 1813694.712                                              | 78.453                                               | 23.913                                  | GS              | 8/3/2018 9:23                  |
| 10286                    | 10286               | 63°19'03.68405"N                     | 168°56'46.19436"W                      | 63°19'03.69954"N                     | 168°56'46.10854"W                      | 7022634.5470                 | 602887.8780                | 3406194.932                                               | 1813689.874                                              | 78.655                                               | 23.974                                  | GS              | 8/3/2018 9:23                  |
| 10287                    | 10287               | 63°19'03.77351"N                     | 168°56'46.23953"W                      | 63°19'03.78901"N                     | 168°56'46.15371"W                      | 7022637.2940                 | 602887.1610                | 3406203.984                                               | 1813687.662                                              | 78.584                                               | 23.952                                  | GS              | 8/3/2018 9:23                  |
| 10288                    | 10288               | 63°19'03.78609"N                     | 168°56'46.38455"W                      | 63°19'03.80158"N                     | 168°56'46.29874"W                      | 7022637.6190                 | 602885.1310                | 3406205.153                                               | 1813681.018                                              | 78.336                                               | 23.877                                  | GS              | 8/3/2018 9:24                  |
| 10289                    | 10289               | 63°19'03.68617"N                     | 168°56'46.39530"W                      | 63°19'03.70166"N                     | 168°56'46.30947"W                      | 7022634.5230                 | 602885.0800                | 3406194.996                                               | 1813680.694                                              | 78.396                                               | 23.895                                  | GS              | 8/3/2018 9:24                  |
| 10290                    | 10290               | 63°19'03.59693"N                     | 168°56'46.43802"W                      | 63°19'03.61242"N                     | 168°56'46.35220"W                      | 7022631.7430                 | 602884.5750                | 3406185.901                                               | 1813678.892                                              | 78.347                                               | 23.88                                   | GS              | 8/3/2018 9:24                  |
| 10291                    | 10291               | 63°19'03.61741"N                     | 168°56'46.69224"W                      | 63°19'03.63290"N                     | 168°56'46.60642"W                      | 7022632.2630                 | 602881.0180                | 3406187.79                                                | 1813667.248                                              | 78.087                                               | 23.801                                  | GS              | 8/3/2018 9:24                  |
| 10292                    | 10292               | 63°19'03.70814"N                     | 168°56'46.75354"W                      | 63°19'03.72363"N                     | 168°56'46.66773"W                      | 7022635.0430                 | 602880.0750                | 3406196.959                                               | 1813664.297                                              | 78.204                                               | 23.837                                  | GS              | 8/3/2018 9:24                  |
| 10293                    | 10293               | 63°19'03.75324"N                     | 168°56'46.55495"W                      | 63°19'03.76873"N                     | 168°56'46.46914"W                      | 7022636.5270                 | 602882.7930                | 3406201.688                                               | 1813673.291                                              | 78.493                                               | 23.925                                  | GS              | 8/3/2018 9:24                  |
| 10294                    | 10294               | 63°19'03.87082"N                     | 168°56'46.60741"W                      | 63°19'03.88631"N                     | 168°56'46.52160"W                      | 7022640.1410                 | 602881.9460                | 3406213.591                                               | 1813670.699                                              | 78.237                                               | 23.847                                  | GS              | 8/3/2018 9:25                  |
| 10295                    | 10295               | 63°19'03.82299"N                     | 168°56'46.79850"W                      | 63°19'03.83849"N                     | 168°56'46.71269"W                      | 7022638.5760                 | 602879.3350                | 3406208.59                                                | 1813662.052                                              | 78.293                                               | 23.864                                  | GS              | 8/3/2018 9:25                  |
| 10296                    | 10296               | 63°19'03.86835"N                     | 168°56'46.91662"W                      | 63°19'03.88385"N                     | 168°56'46.83081"W                      | 7022639.9270                 | 602877.6470                | 3406213.108                                               | 1813656.582                                              | 77.774                                               | 23.706                                  | GS              | 8/3/2018 9:25                  |
| 10297                    | 10297               | 63°19'03.95060"N                     | 168°56'47.03105"W                      | 63°19'03.96609"N                     | 168°56'46.94523"W                      | 7022642.4200                 | 602875.9740                | 3406221.376                                               | 1813651.219                                              | 77.641                                               | 23.665                                  | GS              | 8/3/2018 9:25                  |
| 10298                    | 10298               | 63°19'03.75631"N                     | 168°56'47.01404"W                      | 63°19'03.77181"N                     | 168°56'46.92822"W                      | 7022636.4170                 | 602876.4030                | 3406201.656                                               | 1813652.32                                               | 77.843                                               | 23.727                                  | GS              | 8/3/2018 9:26                  |
| 10299                    | 10299               | 63°19'04.05066"N                     | 168°56'47.14001"W                      | 63°19'04.06615"N                     | 168°56'47.05419"W                      | 7022645.4670                 | 602874.3590                | 3406231.456                                               | 1813646.076                                              | 77.613                                               | 23.657                                  | GS              | 8/3/2018 9:26                  |
| 10300                    | 10300<br>10301      | 63°19'04.07247"N<br>63°19'03.98317"N | 168°56'46.89889"W<br>168°56'46.75774"W | 63°19'04.08796"N<br>63°19'03.99867"N | 168°56'46.81307"W<br>168°56'46.67193"W | 7022646.2500<br>7022643.5500 | 602877.6920<br>602879.7440 | 3406233.852<br>3406224.889                                | 1813657.051<br>1813663.646                               | 78.122<br>78.044                                     | 23.812                                  | GS<br>GS        | 8/3/2018 9:26<br>8/3/2018 9:26 |
| 10301                    | 10301               | 63°19'03.90587"N                     | 168°56'46.70985"W                      | 63°19'03.92136"N                     | 168°56'46.62404"W                      | 7022641.1800                 | 602880.4870                | 3406217.074                                               | 1813665.962                                              | 78.142                                               | 23.818                                  | GS              | 8/3/2018 9:27                  |
| 10302                    | 10303               | 63°19'04.03820"N                     | 168°56'46.58728"W                      | 63°19'04.05369"N                     | 168°56'46.50145"W                      | 7022645.3280                 | 602882.0610                | 3406230.606                                               | 1813671.339                                              | 78.404                                               | 23.898                                  | GS              | 8/3/2018 9:27                  |
| 10304                    | 10304               | 63°19'04.11622"N                     | 168°56'46.76291"W                      | 63°19'04.13171"N                     | 168°56'46.67708"W                      | 7022647.6640                 | 602879.5400                | 3406238.398                                               | 1813663.188                                              | 78.506                                               | 23.929                                  | GS              | 8/3/2018 9:28                  |
| 10305                    | 10305               | 63°19'04.17686"N                     | 168°56'46.54507"W                      | 63°19'04.19235"N                     | 168°56'46.45926"W                      | 7022649.6370                 | 602882.5100                | 3406244.72                                                | 1813673.035                                              | 78.928                                               | 24.057                                  | GS              | 8/3/2018 9:28                  |
| 10306                    | 10306               | 63°19'04.07862"N                     | 168°56'46.43572"W                      | 63°19'04.09411"N                     | 168°56'46.34991"W                      | 7022646.6470                 | 602884.1290                | 3406234.825                                               | 1813678.193                                              | 78.797                                               | 24.017                                  | GS              | 8/3/2018 9:28                  |
| 10307                    | 10307               | 63°19'04.10814"N                     | 168°56'46.20468"W                      | 63°19'04.12363"N                     | 168°56'46.11886"W                      | 7022647.6630                 | 602887.3140                | 3406237.996                                               | 1813688.695                                              | 79.277                                               | 24.164                                  | GS              | 8/3/2018 9:28                  |
| 10308                    | 10308               | 63°19'04.20876"N                     | 168°56'46.28990"W                      | 63°19'04.22425"N                     | 168°56'46.20408"W                      | 7022650.7380                 | 602886.0290                | 3406248.152                                               | 1813684.635                                              | 79.186                                               | 24.136                                  | GS              | 8/3/2018 9:28                  |
| 10309                    | 10309               | 63°19'04.25421"N                     | 168°56'46.10446"W                      | 63°19'04.26971"N                     | 168°56'46.01863"W                      | 7022652.2270                 | 602888.5630                | 3406252.907                                               | 1813693.028                                              | 79.641                                               | 24.275                                  | GS              | 8/3/2018 9:29                  |
| 10310                    | 10310               | 63°19'04.16473"N                     | 168°56'45.94797"W                      | 63°19'04.18021"N                     | 168°56'45.86214"W                      | 7022649.5280                 | 602890.8290                | 3406243.936                                               | 1813700.324                                              | 79.439                                               | 24.213                                  | GS              | 8/3/2018 9:29                  |
| 10311                    | 10311               | 63°19'04.16579"N                     | 168°56'45.71376"W                      | 63°19'04.18128"N                     | 168°56'45.62794"W                      | 7022649.6650                 | 602894.0860                | 3406244.22                                                | 1813711.018                                              | 79.398                                               | 24.201                                  | GS              | 8/3/2018 9:29                  |
| 10312                    | 10312               | 63°19'04.25592"N                     | 168°56'45.79396"W                      | 63°19'04.27141"N                     | 168°56'45.70813"W                      | 7022652.4180                 | 602892.8810                | 3406253.314                                               | 1813707.205                                              | 79.536                                               | 24.243                                  | GS              | 8/3/2018 9:29                  |
| 10313                    | 10313               | 63°19'04.28388"N                     | 168°56'45.96641"W                      | 63°19'04.29937"N                     | 168°56'45.88058"W                      | 7022653.2060                 | 602890.4540                | 3406256.024                                               | 1813699.283                                              | 79.63                                                | 24.271                                  | GS              | 8/3/2018 9:30                  |
| 10314                    | 10314               | 63°19'04.30268"N                     | 168°56'45.60470"W                      | 63°19'04.31817"N                     | 168°56'45.51889"W                      | 7022653.9490                 | 602895.4680                | 3406258.205                                               | 1813715.77                                               | 79.648                                               | 24.277                                  | GS              | 8/3/2018 9:30                  |
| 10315                    | 10315               | 63°19'04.23852"N                     | 168°56'45.57232"W                      | 63°19'04.25402"N                     | 168°56'45.48649"W                      | 7022651.9790                 | 602895.9820                | 3406251.713                                               | 1813717.356                                              | 79.565                                               | 24.251                                  | GS              | 8/3/2018 9:30                  |

| Field Survey<br>Point ID | Feature Location ID | Latitude (WGS84)                     | Longitude (WGS84)                      | Latitude (NAD 83 (2011))             | Longitude (NAD 83<br>(2011))           | Northing (UTM<br>Zone 2N)    | Easting (UTM<br>Zone 2N)   | Northing - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Easting - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Elevation (NAVD88,<br>GEOID12B, U.S. Survey<br>Feet) | Elevation (NAVD88,<br>GEOID12B, Meters) | Text Descriptor | Measurement Date/Time          |
|--------------------------|---------------------|--------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|------------------------------|----------------------------|-----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|-----------------------------------------|-----------------|--------------------------------|
| 10316                    | 10316               | 63°19'04.20507"N                     | 168°56'45.51558"W                      | 63°19'04.22056"N                     | 168°56'45.42977"W                      | 7022650.9690                 | 602896.8040                | 3406248.358                                               | 1813720.003                                              | 79.712                                               | 24.296                                  | GS              | 8/3/2018 9:30                  |
| 10317                    | 10317               | 63°19'04.24671"N                     | 168°56'45.32073"W                      | 63°19'04.26220"N                     | 168°56'45.23492"W                      | 7022652.3440                 | 602899.4740                | 3406252.733                                               | 1813728.832                                              | 79.439                                               | 24.213                                  | GS              | 8/3/2018 9:30                  |
| 10318                    | 10318               | 63°19'04.34976"N                     | 168°56'45.33288"W                      | 63°19'04.36526"N                     | 168°56'45.24706"W                      | 7022655.5270                 | 602899.2020                | 3406263.191                                               | 1813728.105                                              | 79.609                                               | 24.265                                  | GS              | 8/3/2018 9:32                  |
| 10319                    | 10319               | 63°19'04.27433"N                     | 168°56'45.09872"W                      | 63°19'04.28981"N                     | 168°56'45.01289"W                      | 7022653.2970                 | 602902.5350                | 3406255.705                                               | 1813738.925                                              | 79.348                                               | 24.185                                  | GS              | 8/3/2018 9:32                  |
| 10320                    | 10320               | 63°19'04.35162"N                     | 168°56'45.00462"W                      | 63°19'04.36711"N                     | 168°56'44.91880"W                      | 7022655.7310                 | 602903.7670                | 3406263.626                                               | 1813743.093                                              | 79.317                                               | 24.176                                  | GS              | 8/3/2018 9:33                  |
| 10321                    | 10321               | 63°19'04.29215"N                     | 168°56'44.74719"W                      | 63°19'04.30764"N                     | 168°56'44.66136"W                      | 7022654.0060                 | 602907.4080                | 3406257.779                                               | 1813754.949                                              | 79.122                                               | 24.116                                  | GS              | 8/3/2018 9:33                  |
| 10322                    | 10322               | 63°19'04.21913"N                     | 168°56'44.85525"W                      | 63°19'04.23463"N                     | 168°56'44.76942"W                      | 7022651.6980                 | 602905.9770                | 3406250.282                                               | 1813750.136                                              | 79.019                                               | 24.085                                  | GS              | 8/3/2018 9:33                  |
| 10323                    | 10323               | 63°19'04.18904"N                     | 168°56'44.69328"W                      | 63°19'04.20452"N                     | 168°56'44.60746"W                      | 7022650.8390                 | 602908.2600                | 3406247.347                                               | 1813757.583                                              | 79.045                                               | 24.093                                  | GS              | 8/3/2018 9:34                  |
| 10324                    | 10324               | 63°19'04.20228"N                     | 168°56'44.47615"W                      | 63°19'04.21777"N                     | 168°56'44.39032"W                      | 7022651.3460                 | 602911.2670                | 3406248.855                                               | 1813767.477                                              | 79.104                                               | 24.111                                  | GS              | 8/3/2018 9:34                  |
| 10325<br>10326           | 10325<br>10326      | 63°19'03.97782"N<br>63°19'04.04278"N | 168°56'44.46911"W<br>168°56'44.69368"W | 63°19'03.99331"N<br>63°19'04.05826"N | 168°56'44.38330"W<br>168°56'44.60787"W | 7022644.4050<br>7022646.3140 | 602911.5880                | 3406226.063<br>3406232.492                                | 1813768.173<br>1813757.809                               | 78.743<br>78.598                                     | 24.001                                  | GS<br>GS        | 8/3/2018 9:34<br>8/3/2018 9:35 |
| 10326                    | 10326               | 63°19'04.13631"N                     | 168°56'44.58853"W                      | 63°19'04.05826 N                     | 168°56'44.50270"W                      | 7022649.2550                 | 602909.7690                | 3406242.071                                               | 1813762.455                                              | 78.877                                               | 24.042                                  | GS              | 8/3/2018 9:35                  |
| 10327                    | 10327               | 63°19'04.09294"N                     | 168°56'44.27992"W                      | 63°19'04.10843"N                     | 168°56'44.19410"W                      | 7022648.0510                 | 602914.1060                | 3406237.898                                               | 1813776.621                                              | 78.876                                               | 24.041                                  | GS              | 8/3/2018 9:35                  |
| 10329                    | 10329               | 63°19'04.06673"N                     | 168°56'44.97291"W                      | 63°19'04.08222"N                     | 168°56'44.88708"W                      | 7022646.9310                 | 602904.4910                | 3406234.715                                               | 1813745.017                                              | 77.686                                               | 23.679                                  | GB2             | 8/3/2018 9:35                  |
| 10330                    | 10330               | 63°19'04.02722"N                     | 168°56'44.98900"W                      | 63°19'04.04271"N                     | 168°56'44.90319"W                      | 7022645.7010                 | 602904.3060                | 3406230.69                                                | 1813744.348                                              | 77.701                                               | 23.683                                  | GB2             | 8/3/2018 9:36                  |
| 10331                    | 10331               | 63°19'03.99165"N                     | 168°56'45.05459"W                      | 63°19'04.00713"N                     | 168°56'44.96878"W                      | 7022644.5710                 | 602903.4290                | 3406227.028                                               | 1813741.412                                              | 77.806                                               | 23.715                                  | GB2             | 8/3/2018 9:36                  |
| 10332                    | 10332               | 63°19'03.93332"N                     | 168°56'45.23900"W                      | 63°19'03.94882"N                     | 168°56'45.15317"W                      | 7022642.6850                 | 602900.9220                | 3406220.966                                               | 1813733.088                                              | 77.966                                               | 23.764                                  | GB2             | 8/3/2018 9:36                  |
| 10333                    | 10333               | 63°19'03.90299"N                     | 168°56'45.40845"W                      | 63°19'03.91848"N                     | 168°56'45.32263"W                      | 7022641.6710                 | 602898.5940                | 3406217.758                                               | 1813725.4                                                | 78.167                                               | 23.825                                  | GB2             | 8/3/2018 9:36                  |
| 10334                    | 10334               | 63°19'03.87375"N                     | 168°56'45.51313"W                      | 63°19'03.88924"N                     | 168°56'45.42732"W                      | 7022640.7190                 | 602897.1670                | 3406214.71                                                | 1813720.668                                              | 78.151                                               | 23.82                                   | GB2             | 8/3/2018 9:36                  |
| 10335                    | 10335               | 63°19'03.85733"N                     | 168°56'45.63506"W                      | 63°19'03.87282"N                     | 168°56'45.54924"W                      | 7022640.1570                 | 602895.4870                | 3406212.951                                               | 1813715.127                                              | 78.173                                               | 23.827                                  | GB2             | 8/3/2018 9:37                  |
| 10336                    | 10336               | 63°19'03.87845"N                     | 168°56'45.82613"W                      | 63°19'03.89394"N                     | 168°56'45.74032"W                      | 7022640.7250                 | 602892.8080                | 3406214.952                                               | 1813706.366                                              | 78.533                                               | 23.937                                  | GB2             | 8/3/2018 9:38                  |
| 10337                    | 10337               | 63°19'03.86318"N                     | 168°56'46.00773"W                      | 63°19'03.87867"N                     | 168°56'45.92193"W                      | 7022640.1720                 | 602890.2960                | 3406213.265                                               | 1813698.098                                              | 78.414                                               | 23.901                                  | GB2             | 8/3/2018 9:38                  |
| 10338                    | 10338               | 63°19'03.84891"N                     | 168°56'46.21295"W                      | 63°19'03.86440"N                     | 168°56'46.12714"W                      | 7022639.6390                 | 602887.4560                | 3406211.662                                               | 1813688.75                                               | 78.091                                               | 23.802                                  | GB2             | 8/3/2018 9:38                  |
| 10339                    | 10339               | 63°19'03.88009"N                     | 168°56'46.35580"W                      | 63°19'03.89558"N                     | 168°56'46.26998"W                      | 7022640.5400                 | 602885.4380                | 3406214.721                                               | 1813682.174                                              | 77.998                                               | 23.774                                  | GB2             | 8/3/2018 9:38                  |
| 10340                    | 10340               | 63°19'03.94410"N                     | 168°56'46.42255"W                      | 63°19'03.95959"N                     | 168°56'46.33673"W                      | 7022642.4900                 | 602884.4460                | 3406221.172                                               | 1813679.019                                              | 77.889                                               | 23.741                                  | GB2             | 8/3/2018 9:38                  |
| 10341                    | 10341               | 63°19'03.97268"N                     | 168°56'46.37197"W                      | 63°19'03.98817"N                     | 168°56'46.28616"W                      | 7022643.3970                 | 602885.1210                | 3406224.113                                               | 1813681.281                                              | 77.688                                               | 23.679                                  | GB2             | 8/3/2018 9:39                  |
| 10342                    | 10342               | 63°19'03.96124"N                     | 168°56'46.30098"W                      | 63°19'03.97673"N                     | 168°56'46.21516"W                      | 7022643.0750                 | 602886.1200                | 3406223.004                                               | 1813684.542                                              | 77.821                                               | 23.72                                   | GB2             | 8/3/2018 9:39                  |
| 10343                    | 10343               | 63°19'03.98206"N                     | 168°56'46.14979"W                      | 63°19'03.99755"N                     | 168°56'46.06397"W                      | 7022643.7860                 | 602888.2030                | 3406225.232                                               | 1813691.412                                              | 78.104                                               | 23.806                                  | GB2             | 8/3/2018 9:39                  |
| 10344                    | 10344<br>10345      | 63°19'04.01295"N<br>63°19'04.03692"N | 168°56'46.02155"W<br>168°56'45.80904"W | 63°19'04.02845"N<br>63°19'04.05241"N | 168°56'45.93572"W<br>168°56'45.72321"W | 7022644.8000<br>7022645.6360 | 602889.9560<br>602892.8890 | 3406228.466<br>3406231.06                                 | 1813697.217<br>1813706.882                               | 78.564<br>78.719                                     | 23.946                                  | GB2<br>GB2      | 8/3/2018 9:39<br>8/3/2018 9:39 |
| 10345                    | 10345               | 63°19'04.05402"N                     | 168°56'45.60815"W                      | 63°19'04.06951"N                     | 168°56'45.52232"W                      | 7022646.2540                 | 602895.6660                | 3406231.00                                                | 1813716.028                                              | 78.662                                               | 23.976                                  | GB2             | 8/3/2018 9:39                  |
| 10347                    | 10347               | 63°19'04.05397"N                     | 168°56'45.47002"W                      | 63°19'04.06946"N                     | 168°56'45.38420"W                      | 7022646.3140                 | 602897.5880                | 3406233.046                                               | 1813722.336                                              | 78.406                                               | 23.898                                  | GB2             | 8/3/2018 9:40                  |
| 10348                    | 10348               | 63°19'04.10567"N                     | 168°56'45.35547"W                      | 63°19'04.12117"N                     | 168°56'45.26966"W                      | 7022647.9650                 | 602899.1300                | 3406238.383                                               | 1813727.481                                              | 78.308                                               | 23.868                                  | GB2             | 8/3/2018 9:40                  |
| 10349                    | 10349               | 63°19'04.15191"N                     | 168°56'45.24710"W                      | 63°19'04.16740"N                     | 168°56'45.16129"W                      | 7022649.4440                 | 602900.5920                | 3406243.161                                               | 1813732.353                                              | 78.148                                               | 23.819                                  | GB2             | 8/3/2018 9:41                  |
| 10350                    | 10350               | 63°19'04.13485"N                     | 168°56'45.11133"W                      | 63°19'04.15034"N                     | 168°56'45.02552"W                      | 7022648.9770                 | 602902.4980                | 3406241.53                                                | 1813738.582                                              | 77.973                                               | 23.766                                  | GB2             | 8/3/2018 9:42                  |
| 10351                    | 10351               | 63°19'04.08523"N                     | 168°56'45.02851"W                      | 63°19'04.10072"N                     | 168°56'44.94269"W                      | 7022647.4780                 | 602903.6990                | 3406236.552                                               | 1813742.447                                              | 77.786                                               | 23.709                                  | GB2 C           | 8/3/2018 9:42                  |
| 10352                    | 10352               | 63°19'04.11028"N                     | 168°56'44.90512"W                      | 63°19'04.12577"N                     | 168°56'44.81929"W                      | 7022648.3080                 | 602905.3910                | 3406239.189                                               | 1813748.04                                               | 78.325                                               | 23.874                                  | GS              | 8/3/2018 9:43                  |
| 10353                    | 10353               | 63°19'04.18012"N                     | 168°56'45.00962"W                      | 63°19'04.19561"N                     | 168°56'44.92380"W                      | 7022650.4220                 | 602903.8680                | 3406246.204                                               | 1813743.151                                              | 78.599                                               | 23.957                                  | GS              | 8/3/2018 9:43                  |
| 10354                    | 10354               | 63°19'04.07932"N                     | 168°56'45.28054"W                      | 63°19'04.09481"N                     | 168°56'45.19472"W                      | 7022647.1830                 | 602900.1990                | 3406235.763                                               | 1813730.947                                              | 78.246                                               | 23.849                                  | GB3             | 8/3/2018 9:44                  |
| 10355                    | 10355               | 63°19'04.03852"N                     | 168°56'45.45013"W                      | 63°19'04.05401"N                     | 168°56'45.36431"W                      | 7022645.8450                 | 602897.8800                | 3406231.492                                               | 1813723.27                                               | 78.468                                               | 23.917                                  | GB3             | 8/3/2018 9:45                  |
| 10356                    | 10356               | 63°19'04.00224"N                     | 168°56'45.65289"W                      | 63°19'04.01774"N                     | 168°56'45.56706"W                      | 7022644.6330                 | 602895.0950                | 3406227.655                                               | 1813714.071                                              | 78.703                                               | 23.989                                  | GB3             | 8/3/2018 9:45                  |
| 10357                    | 10357               | 63°19'03.98663"N                     | 168°56'45.86045"W                      | 63°19'04.00213"N                     | 168°56'45.77464"W                      | 7022644.0570                 | 602892.2230                | 3406225.914                                               | 1813704.618                                              | 78.739                                               | 24                                      | GB3             | 8/3/2018 9:45                  |
| 10358                    | 10358               | 63°19'03.97463"N                     | 168°56'46.05678"W                      | 63°19'03.99011"N                     | 168°56'45.97095"W                      | 7022643.5980                 | 602889.5040                | 3406224.547                                               | 1813695.672                                              | 78.471                                               | 23.918                                  | GB3             | 8/3/2018 9:45                  |
| 10359                    | 10359               | 63°19'03.94680"N                     | 168°56'46.16477"W                      | 63°19'03.96230"N                     | 168°56'46.07894"W                      | 7022642.6890                 | 602888.0290                | 3406221.64                                                | 1813690.787                                              | 78.198                                               | 23.835                                  | GB3             | 8/3/2018 9:46                  |

| Field Survey<br>Point ID | Feature Location ID | Latitude (WGS84)                     | Longitude (WGS84)                      | Latitude (NAD 83 (2011))             | Longitude (NAD 83<br>(2011))           | Northing (UTM<br>Zone 2N)    | Easting (UTM<br>Zone 2N)   | Northing - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Easting - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Elevation (NAVD88,<br>GEOID12B, U.S. Survey<br>Feet) | Elevation (NAVD88,<br>GEOID12B, Meters) | Text Descriptor | Measurement Date/Time          |
|--------------------------|---------------------|--------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|------------------------------|----------------------------|-----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|-----------------------------------------|-----------------|--------------------------------|
| 10360                    | 10360               | 63°19'03.90457"N                     | 168°56'46.08396"W                      | 63°19'03.92006"N                     | 168°56'45.99814"W                      | 7022641.4180                 | 602889.1950                | 3406217.411                                               | 1813694.548                                              | 78.246                                               | 23.849                                  | GB3             | 8/3/2018 9:46                  |
| 10361                    | 10361               | 63°19'03.90406"N                     | 168°56'45.90713"W                      | 63°19'03.91955"N                     | 168°56'45.82132"W                      | 7022641.4810                 | 602891.6560                | 3406217.492                                               | 1813702.624                                              | 78.505                                               | 23.928                                  | GB3             | 8/3/2018 9:46                  |
| 10362                    | 10362               | 63°19'03.93150"N                     | 168°56'45.69533"W                      | 63°19'03.94699"N                     | 168°56'45.60950"W                      | 7022642.4250                 | 602894.5750                | 3406220.438                                               | 1813712.251                                              | 78.69                                                | 23.985                                  | GB3             | 8/3/2018 9:46                  |
| 10363                    | 10363               | 63°19'03.95445"N                     | 168°56'45.56860"W                      | 63°19'03.96994"N                     | 168°56'45.48278"W                      | 7022643.1910                 | 602896.3150                | 3406222.864                                               | 1813718                                                  | 78.662                                               | 23.976                                  | GB3             | 8/3/2018 9:47                  |
| 10364                    | 10364               | 63°19'03.98052"N                     | 168°56'45.43441"W                      | 63°19'03.99601"N                     | 168°56'45.34859"W                      | 7022644.0580                 | 602898.1560                | 3406225.613                                               | 1813724.085                                              | 78.334                                               | 23.876                                  | GB3             | 8/3/2018 9:47                  |
| 10365                    | 10365               | 63°19'04.02404"N                     | 168°56'45.29360"W                      | 63°19'04.03954"N                     | 168°56'45.20777"W                      | 7022645.4670                 | 602900.0720                | 3406230.139                                               | 1813730.443                                              | 78.208                                               | 23.838                                  | GB3 C           | 8/3/2018 9:47                  |
| 10366                    | 10366               | 63°19'04.04084"N                     | 168°56'44.91318"W                      | 63°19'04.05634"N                     | 168°56'44.82736"W                      | 7022646.1570                 | 602905.3480                | 3406232.131                                               | 1813747.788                                              | 78.207                                               | 23.838                                  | GS              | 8/3/2018 9:47                  |
| 10367                    | 10367               | 63°19'04.08175"N                     | 168°56'45.11868"W                      | 63°19'04.09724"N                     | 168°56'45.03286"W                      | 7022647.3300                 | 602902.4480                | 3406236.131                                               | 1813738.335                                              | 78.085                                               | 23.8                                    | GS              | 8/3/2018 9:48                  |
| 10368                    | 10368               | 63°19'04.17168"N                     | 168°56'45.20532"W                      | 63°19'04.18717"N                     | 168°56'45.11950"W                      | 7022650.0740                 | 602901.1540                | 3406245.2                                                 | 1813734.228                                              | 78.321                                               | 23.872                                  | GS              | 8/3/2018 9:48                  |
| 10369<br>10370           | 10369<br>10370      | 63°19'04.13318"N<br>63°19'04.15362"N | 168°56'45.35011"W<br>168°56'45.46506"W | 63°19'04.14867"N<br>63°19'04.16912"N | 168°56'45.26428"W<br>168°56'45.37925"W | 7022648.8190<br>7022649.4000 | 602899.1780<br>602897.5580 | 3406241.181<br>3406243.171                                | 1813727.68<br>1813722.396                                | 78.499<br>79.165                                     | 23.927<br>24.13                         | GS<br>GS        | 8/3/2018 9:48<br>8/3/2018 9:49 |
| 10370                    | 10370               | 63°19'04.06787"N                     | 168°56'45.34763"W                      | 63°19'04.08337"N                     | 168°56'45.26181"W                      | 7022646.7990                 | 602899.2770                | 3406234.55                                                | 1813727.902                                              | 78.376                                               | 23.889                                  | GS              | 8/3/2018 9:49                  |
| 10371                    | 10371               | 63°19'03.95839"N                     | 168°56'45.25562"W                      | 63°19'03.97388"N                     | 168°56'45.16980"W                      | 7022643.4530                 | 602990.6650                | 3406223.499                                               | 1813732.287                                              | 78.001                                               | 23.775                                  | GS              | 8/3/2018 9:49                  |
| 10373                    | 10373               | 63°19'03.89654"N                     | 168°56'45.51545"W                      | 63°19'03.91203"N                     | 168°56'45.42964"W                      | 7022641.4230                 | 602897.1120                | 3406217.023                                               | 1813720.524                                              | 78.186                                               | 23.831                                  | GS              | 8/3/2018 9:49                  |
| 10374                    | 10374               | 63°19'03.93759"N                     | 168°56'45.56944"W                      | 63°19'03.95308"N                     | 168°56'45.48361"W                      | 7022642.6690                 | 602896.3200                | 3406221.151                                               | 1813717.99                                               | 78.501                                               | 23.927                                  | GS              | 8/3/2018 9:50                  |
| 10375                    | 10375               | 63°19'03.98062"N                     | 168°56'45.61694"W                      | 63°19'03.99611"N                     | 168°56'45.53112"W                      | 7022643.9800                 | 602895.6170                | 3406225.486                                               | 1813715.749                                              | 78.687                                               | 23.984                                  | GS              | 8/3/2018 9:50                  |
| 10376                    | 10376               | 63°19'04.01047"N                     | 168°56'45.42607"W                      | 63°19'04.02596"N                     | 168°56'45.34024"W                      | 7022644.9880                 | 602898.2430                | 3406228.661                                               | 1813724.416                                              | 78.367                                               | 23.886                                  | GS              | 8/3/2018 9:50                  |
| 10377                    | 10377               | 63°19'04.04259"N                     | 168°56'45.31860"W                      | 63°19'04.05808"N                     | 168°56'45.23277"W                      | 7022646.0300                 | 602899.7060                | 3406232.004                                               | 1813729.27                                               | 78.238                                               | 23.847                                  | GS              | 8/3/2018 9:50                  |
| 10378                    | 10378               | 63°19'04.06943"N                     | 168°56'45.68998"W                      | 63°19'04.08492"N                     | 168°56'45.60416"W                      | 7022646.6950                 | 602894.5130                | 3406234.451                                               | 1813712.265                                              | 78.768                                               | 24.009                                  | GS              | 8/3/2018 9:51                  |
| 10379                    | 10379               | 63°19'04.04753"N                     | 168°56'45.93574"W                      | 63°19'04.06302"N                     | 168°56'45.84993"W                      | 7022645.9080                 | 602891.1150                | 3406232.042                                               | 1813701.078                                              | 78.808                                               | 24.021                                  | GS              | 8/3/2018 9:51                  |
| 10380                    | 10380               | 63°19'03.94264"N                     | 168°56'45.86127"W                      | 63°19'03.95813"N                     | 168°56'45.77545"W                      | 7022642.6950                 | 602892.2550                | 3406221.445                                               | 1813704.654                                              | 78.614                                               | 23.962                                  | GS              | 8/3/2018 9:51                  |
| 10381                    | 10381               | 63°19'03.94503"N                     | 168°56'46.03588"W                      | 63°19'03.96052"N                     | 168°56'45.95006"W                      | 7022642.6920                 | 602889.8240                | 3406221.557                                               | 1813696.676                                              | 78.473                                               | 23.919                                  | GS              | 8/3/2018 9:52                  |
| 10382                    | 10382               | 63°19'04.01050"N                     | 168°56'46.32857"W                      | 63°19'04.02599"N                     | 168°56'46.24275"W                      | 7022644.5870                 | 602885.6870                | 3406227.986                                               | 1813683.2                                                | 78.381                                               | 23.891                                  | GS              | 8/3/2018 9:52                  |
| 10383                    | 10383               | 63°19'04.03888"N                     | 168°56'46.13699"W                      | 63°19'04.05438"N                     | 168°56'46.05116"W                      | 7022645.5500                 | 602888.3240                | 3406231.013                                               | 1813691.902                                              | 78.686                                               | 23.983                                  | GS              | 8/3/2018 9:52                  |
| 10384                    | 10384               | 63°19'03.88162"N                     | 168°56'46.44866"W                      | 63°19'03.89711"N                     | 168°56'46.36284"W                      | 7022640.5460                 | 602884.1440                | 3406214.807                                               | 1813677.931                                              | 78.229                                               | 23.844                                  | GS              | 8/3/2018 9:53                  |
| 10385                    | 10385               | 63°19'03.92804"N                     | 168°56'46.30321"W                      | 63°19'03.94353"N                     | 168°56'46.21739"W                      | 7022642.0470                 | 602886.1220                | 3406219.631                                               | 1813684.496                                              | 77.842                                               | 23.726                                  | GS              | 8/3/2018 9:53                  |
| 10386                    | 10386               | 63°19'03.88477"N                     | 168°56'46.24247"W                      | 63°19'03.90025"N                     | 168°56'46.15666"W                      | 7022640.7350                 | 602887.0090                | 3406215.281                                               | 1813687.342                                              | 77.935                                               | 23.755                                  | GS              | 8/3/2018 9:53                  |
| 10387                    | 10387               | 63°19'03.91851"N                     | 168°56'46.20734"W                      | 63°19'03.93400"N                     | 168°56'46.12151"W                      | 7022641.7950                 | 602887.4650                | 3406218.735                                               | 1813688.89                                               | 77.924                                               | 23.751                                  | GS              | 8/3/2018 9:53                  |
| 10388                    | 10388<br>10389      | 63°19'03.88770"N<br>63°19'04.58919"N | 168°56'46.17308"W<br>168°56'45.45067"W | 63°19'03.90319"N<br>63°19'04.60468"N | 168°56'46.08727"W<br>168°56'45.36485"W | 7022640.8570<br>7022662.8820 | 602887.9720<br>602897.3260 | 3406215.631<br>3406287.42                                 | 1813690.506<br>1813722.326                               | 78.021<br>79.388                                     | 23.781                                  | GS<br>GB4       | 8/3/2018 9:53<br>8/3/2018 9:54 |
| 10399                    | 10309               | 63°19'04.59384"N                     | 168°56'45.45475"W                      | 63°19'04.60933"N                     | 168°56'45.36894"W                      | 7022663.0240                 | 602897.2650                | 3406287.889                                               | 1813722.132                                              | 79.515                                               | 24.236                                  | MP flag         | 8/3/2018 9:55                  |
| 10390                    | 10391               | 63°19'04.64916"N                     | 168°56'45.48095"W                      | 63°19'04.66466"N                     | 168°56'45.39514"W                      | 7022664.7240                 | 602896.8460                | 3406293.488                                               | 1813720.843                                              | 79.637                                               | 24.273                                  | GB4             | 8/3/2018 9:55                  |
| 10392                    | 10392               | 63°19'04.72074"N                     | 168°56'45.46018"W                      | 63°19'04.73623"N                     | 168°56'45.37436"W                      | 7022666.9480                 | 602897.0640                | 3406300.773                                               | 1813721.672                                              | 79.373                                               | 24.193                                  | GB4             | 8/3/2018 9:55                  |
| 10393                    | 10393               | 63°19'04.76049"N                     | 168°56'45.35573"W                      | 63°19'04.77598"N                     | 168°56'45.26991"W                      | 7022668.2240                 | 602898.4770                | 3406304.889                                               | 1813726.376                                              | 79.13                                                | 24.119                                  | GB4             | 8/3/2018 9:55                  |
| 10394                    | 10394               | 63°19'04.77052"N                     | 168°56'45.25292"W                      | 63°19'04.78601"N                     | 168°56'45.16710"W                      | 7022668.5800                 | 602899.8980                | 3406305.985                                               | 1813731.054                                              | 79.121                                               | 24.116                                  | GB4             | 8/3/2018 9:56                  |
| 10395                    | 10395               | 63°19'04.77004"N                     | 168°56'45.26280"W                      | 63°19'04.78553"N                     | 168°56'45.17698"W                      | 7022668.5610                 | 602899.7610                | 3406305.928                                               | 1813730.604                                              | 79.188                                               | 24.137                                  | MP f'ag         | 8/3/2018 9:56                  |
| 10396                    | 10396               | 63°19'04.79411"N                     | 168°56'45.14779"W                      | 63°19'04.80960"N                     | 168°56'45.06196"W                      | 7022669.3570                 | 602901.3370                | 3406308.459                                               | 1813735.816                                              | 79.336                                               | 24.182                                  | GB4             | 8/3/2018 9:56                  |
| 10397                    | 10397               | 63°19'04.79143"N                     | 168°56'45.00354"W                      | 63°19'04.80693"N                     | 168°56'44.91771"W                      | 7022669.3390                 | 602903.3460                | 3406308.296                                               | 1813742.408                                              | 79.064                                               | 24.099                                  | GB4             | 8/3/2018 9:56                  |
| 10398                    | 10398               | 63°19'04.78398"N                     | 168°56'45.01610"W                      | 63°19'04.79947"N                     | 168°56'44.93028"W                      | 7022669.1020                 | 602903.1790                | 3406307.529                                               | 1813741.847                                              | 78.891                                               | 24.046                                  | MP flag         | 8/3/2018 9:57                  |
| 10399                    | 10399               | 63°19'04.73521"N                     | 168°56'44.91012"W                      | 63°19'04.75070"N                     | 168°56'44.82430"W                      | 7022667.6410                 | 602904.7020                | 3406302.656                                               | 1813746.768                                              | 79.245                                               | 24.154                                  | GB4             | 8/3/2018 9:57                  |
| 10400                    | 10400               | 63°19'04.67390"N                     | 168°56'44.81968"W                      | 63°19'04.68940"N                     | 168°56'44.73385"W                      | 7022665.7840                 | 602906.0210                | 3406296.497                                               | 1813751.001                                              | 79.371                                               | 24.192                                  | GB4             | 8/3/2018 9:57                  |
| 10401                    | 10401               | 63°19'04.59719"N                     | 168°56'44.80698"W                      | 63°19'04.61267"N                     | 168°56'44.72116"W                      | 7022663.4160                 | 602906.2730                | 3406288.715                                               | 1813751.709                                              | 79.36                                                | 24.189                                  | GB4             | 8/3/2018 9:57                  |
| 10402                    | 10402               | 63°19'04.52729"N                     | 168°56'44.79502"W                      | 63°19'04.54278"N                     | 168°56'44.70921"W                      | 7022661.2590                 | 602906.5090                | 3406281.625                                               | 1813752.372                                              | 79.225                                               | 24.148                                  | GB4             | 8/3/2018 9:57                  |
| 10403                    | 10403               | 63°19'04.46304"N                     | 168°56'44.81254"W                      | 63°19'04.47852"N                     | 168°56'44.72673"W                      | 7022659.2630                 | 602906.3290                | 3406275.086                                               | 1813751.679                                              | 79.157                                               | 24.127                                  | GB4             | 8/3/2018 9:58                  |

| Field Survey<br>Point ID | Feature Location ID | Latitude (WGS84)                     | Longitude (WGS84)                      | Latitude (NAD 83 (2011))             | Longitude (NAD 83<br>(2011))           | Northing (UTM<br>Zone 2N)    | Easting (UTM<br>Zone 2N)   | Northing - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Easting - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Elevation (NAVD88,<br>GEOID12B, U.S. Survey<br>Feet) | Elevation (NAVD88,<br>GEOID12B, Meters) | Text Descriptor | Measurement Date/Time            |
|--------------------------|---------------------|--------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|------------------------------|----------------------------|-----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|-----------------------------------------|-----------------|----------------------------------|
| 10404                    | 10404               | 63°19'04.43327"N                     | 168°56'44.86014"W                      | 63°19'04.44876"N                     | 168°56'44.77432"W                      | 7022658.3210                 | 602905.6960                | 3406272.027                                               | 1813749.555                                              | 79.031                                               | 24.089                                  | GB4             | 8/3/2018 9:58                    |
| 10405                    | 10405               | 63°19'04.43063"N                     | 168°56'44.86875"W                      | 63°19'04.44612"N                     | 168°56'44.78294"W                      | 7022658.2360                 | 602905.5790                | 3406271.752                                               | 1813749.166                                              | 78.903                                               | 24.05                                   | MP flag         | 8/3/2018 9:58                    |
| 10406                    | 10406               | 63°19'04.42646"N                     | 168°56'44.99672"W                      | 63°19'04.44195"N                     | 168°56'44.91091"W                      | 7022658.0500                 | 602903.8030                | 3406271.233                                               | 1813743.329                                              | 79.205                                               | 24.142                                  | GB4             | 8/3/2018 9:59                    |
| 10407                    | 10407               | 63°19'04.45591"N                     | 168°56'45.10526"W                      | 63°19'04.47140"N                     | 168°56'45.01944"W                      | 7022658.9120                 | 602902.2640                | 3406274.142                                               | 1813738.323                                              | 79.463                                               | 24.22                                   | GB4             | 8/3/2018 9:59                    |
| 10408                    | 10408               | 63°19'04.49171"N                     | 168°56'45.21906"W                      | 63°19'04.50720"N                     | 168°56'45.13324"W                      | 7022659.9690                 | 602900.6450                | 3406277.693                                               | 1813733.066                                              | 79.484                                               | 24.227                                  | GB4             | 8/3/2018 9:59                    |
| 10409                    | 10409               | 63°19'04.52917"N                     | 168°56'45.32908"W                      | 63°19'04.54466"N                     | 168°56'45.24327"W                      | 7022661.0790                 | 602899.0770                | 3406281.415                                               | 1813727.979                                              | 79.46                                                | 24.219                                  | GB4             | 8/3/2018 9:59                    |
| 10410                    | 10410               | 63°19'04.56626"N                     | 168°56'45.41972"W                      | 63°19'04.58175"N                     | 168°56'45.33389"W                      | 7022662.1860                 | 602897.7800                | 3406285.114                                               | 1813723.778                                              | 79.416                                               | 24.206                                  | GB4 C           | 8/3/2018 10:00                   |
| 10411                    | 10411               | 63°19'04.52428"N                     | 168°56'45.47216"W                      | 63°19'04.53977"N                     | 168°56'45.38634"W                      | 7022660.8640                 | 602897.0920                | 3406280.811                                               | 1813721.453                                              | 79.488                                               | 24.228                                  | GS              | 8/3/2018 10:00                   |
| 10412                    | 10412               | 63°19'04.44767"N                     | 168°56'45.53614"W                      | 63°19'04.46316"N                     | 168°56'45.45031"W                      | 7022658.4650                 | 602896.2780                | 3406272.982                                               | 1813718.659                                              | 79.679                                               | 24.286                                  | GS              | 8/3/2018 10:00                   |
| 10413                    | 10413               | 63°19'04.35775"N                     | 168°56'45.55577"W                      | 63°19'04.37325"N                     | 168°56'45.46995"W                      | 7022655.6750                 | 602896.0940                | 3406263.835                                               | 1813717.913                                              | 79.703                                               | 24.294                                  | GS              | 8/3/2018 10:00                   |
| 10414                    | 10414               | 63°19'04.43310"N                     | 168°56'45.34146"W                      | 63°19'04.44859"N                     | 168°56'45.25564"W                      | 7022658.1010                 | 602899.0010                | 3406271.648                                               | 1813727.574                                              | 79.748                                               | 24.307                                  | GS              | 8/3/2018 10:01                   |
| 10415                    | 10415               | 63°19'04.48066"N                     | 168°56'45.26946"W                      | 63°19'04.49615"N                     | 168°56'45.18363"W                      | 7022659.6050                 | 602899.9550                | 3406276.533                                               | 1813730.783                                              | 79.413                                               | 24.205                                  | GS              | 8/3/2018 10:01                   |
| 10416                    | 10416               | 63°19'04.41405"N                     | 168°56'45.11132"W                      | 63°19'04.42954"N                     | 168°56'45.02549"W                      | 7022657.6150                 | 602902.2210                | 3406269.886                                               | 1813738.116                                              | 79.542                                               | 24.244                                  | GS              | 8/3/2018 10:01                   |
| 10417                    | 10417               | 63°19'04.33336"N                     | 168°56'45.14418"W                      | 63°19'04.34886"N                     | 168°56'45.05837"W                      | 7022655.1040                 | 602901.8440                | 3406261.667                                               | 1813736.75                                               | 79.468                                               | 24.222                                  | GS              | 8/3/2018 10:01                   |
| 10418                    | 10418               | 63°19'04.26876"N                     | 168°56'44.87380"W<br>168°56'44.70989"W | 63°19'04.28425"N                     | 168°56'44.78797"W                      | 7022653.2260                 | 602905.6700                | 3406255.309                                               | 1813749.206                                              | 79.102                                               | 24.11                                   | GS              | 8/3/2018 10:02                   |
| 10419                    | 10419<br>10420      | 63°19'04.37321"N<br>63°19'04.30089"N | 168°56'44.45301"W                      | 63°19'04.38870"N<br>63°19'04.31638"N | 168°56'44.62406"W<br>168°56'44.36719"W | 7022656.5300<br>7022654.4070 | 602907.8460<br>602911.4910 | 3406266.04<br>3406258.888                                 | 1813756.517<br>1813768.369                               | 79.2<br>79.095                                       | 24.14                                   | GS<br>GS        | 8/3/2018 10:02<br>8/3/2018 10:02 |
| 10420                    | 10420               | 63°19'04.39456"N                     | 168°56'44.37925"W                      | 63°19'04.41005"N                     | 168°56'44.29343"W                      | 7022657.3380                 | 602912.4250                | 3406268.457                                               | 1813771.581                                              | 79.278                                               | 24.164                                  | GS              | 8/3/2018 10:02                   |
| 10421                    | 10422               | 63°19'04.42420"N                     | 168°56'44.53880"W                      | 63°19'04.43969"N                     | 168°56'44.45298"W                      | 7022658.1840                 | 602910.1760                | 3406271.347                                               | 1813764.245                                              | 79.276                                               | 24.163                                  | GS              | 8/3/2018 10:03                   |
| 10423                    | 10423               | 63°19'04.45650"N                     | 168°56'44.71696"W                      | 63°19'04.47199"N                     | 168°56'44.63113"W                      | 7022659.1040                 | 602907.6650                | 3406274.494                                               | 1813756.055                                              | 79.235                                               | 24.151                                  | GS              | 8/3/2018 10:03                   |
| 10424                    | 10424               | 63°19'04.58577"N                     | 168°56'44.66548"W                      | 63°19'04.60127"N                     | 168°56'44.57966"W                      | 7022663.1260                 | 602908.2530                | 3406287.662                                               | 1813758.19                                               | 79.455                                               | 24.218                                  | GS              | 8/3/2018 10:03                   |
| 10425                    | 10425               | 63°19'04.54682"N                     | 168°56'44.49740"W                      | 63°19'04.56231"N                     | 168°56'44.41157"W                      | 7022661.9960                 | 602910.6300                | 3406283.832                                               | 1813765.931                                              | 79.174                                               | 24.132                                  | GS              | 8/3/2018 10:03                   |
| 10426                    | 10426               | 63°19'04.45821"N                     | 168°56'44.57329"W                      | 63°19'04.47370"N                     | 168°56'44.48748"W                      | 7022659.2210                 | 602909.6620                | 3406274.775                                               | 1813762.613                                              | 79.218                                               | 24.146                                  | GS              | 8/3/2018 10:04                   |
| 10427                    | 10427               | 63°19'04.55463"N                     | 168°56'44.30836"W                      | 63°19'04.57012"N                     | 168°56'44.22255"W                      | 7022662.3220                 | 602913.2520                | 3406284.767                                               | 1813774.551                                              | 79.222                                               | 24.147                                  | GS              | 8/3/2018 10:04                   |
| 10428                    | 10428               | 63°19'04.68249"N                     | 168°56'44.30189"W                      | 63°19'04.69798"N                     | 168°56'44.21607"W                      | 7022666.2810                 | 602913.2150                | 3406297.758                                               | 1813774.633                                              | 79.253                                               | 24.156                                  | GS              | 8/3/2018 10:04                   |
| 10429                    | 10429               | 63°19'04.64284"N                     | 168°56'44.51747"W                      | 63°19'04.65833"N                     | 168°56'44.43164"W                      | 7022664.9580                 | 602910.2560                | 3406293.569                                               | 1813764.854                                              | 79.308                                               | 24.173                                  | GS              | 8/3/2018 10:04                   |
| 10430                    | 10430               | 63°19'04.61985"N                     | 168°56'44.67385"W                      | 63°19'04.63535"N                     | 168°56'44.58803"W                      | 7022664.1770                 | 602908.1030                | 3406291.117                                               | 1813757.751                                              | 79.393                                               | 24.199                                  | GS              | 8/3/2018 10:05                   |
| 10431                    | 10431               | 63°19'04.74147"N                     | 168°56'44.76868"W                      | 63°19'04.75696"N                     | 168°56'44.68287"W                      | 7022667.8980                 | 602906.6630                | 3406303.398                                               | 1813753.217                                              | 79.558                                               | 24.249                                  | GS              | 8/3/2018 10:05                   |
| 10432                    | 10432               | 63°19'04.78292"N                     | 168°56'44.58818"W                      | 63°19'04.79841"N                     | 168°56'44.50236"W                      | 7022669.2600                 | 602909.1330                | 3406307.743                                               | 1813761.391                                              | 79.332                                               | 24.18                                   | GS              | 8/3/2018 10:05                   |
| 10433                    | 10433               | 63°19'04.78962"N                     | 168°56'44.35026"W                      | 63°19'04.80511"N                     | 168°56'44.26445"W                      | 7022669.5740                 | 602912.4360                | 3406308.602                                               | 1813772.245                                              | 79.222                                               | 24.147                                  | GS              | 8/3/2018 10:05                   |
| 10434                    | 10434               | 63°19'04.90533"N                     | 168°56'44.40723"W                      | 63°19'04.92082"N                     | 168°56'44.32142"W                      | 7022673.1280                 | 602911.5290                | 3406320.311                                               | 1813769.45                                               | 78.809                                               | 24.021                                  | GS              | 8/3/2018 10:05                   |
| 10435                    | 10435               | 63°19'04.84174"N                     | 168°56'44.66446"W                      | 63°19'04.85723"N                     | 168°56'44.57864"W                      | 7022671.0460                 | 602908.0130                | 3406313.66                                                | 1813757.809                                              | 79.247                                               | 24.155                                  | GS              | 8/3/2018 10:06                   |
| 10436                    | 10436               | 63°19'04.79426"N                     | 168°56'44.83384"W                      | 63°19'04.80975"N                     | 168°56'44.74803"W                      | 7022669.5020                 | 602905.7040                | 3406308.71                                                | 1813750.153                                              | 79.261                                               | 24.159                                  | GS              | 8/3/2018 10:06                   |
| 10437                    | 10437               | 63°19'04.83907"N                     | 168°56'45.02488"W                      | 63°19'04.85456"N                     | 168°56'44.93905"W                      | 7022670.8030                 | 602903.0020                | 3406313.118                                               | 1813741.354                                              | 79.037                                               | 24.091                                  | GS              | 8/3/2018 10:06                   |
| 10438                    | 10438               | 63°19'04.90617"N                     | 168°56'44.84302"W                      | 63°19'04.92166"N                     | 168°56'44.75719"W                      | 7022672.9600                 | 602905.4660                | 3406320.07                                                | 1813749.547                                              | 78.991                                               | 24.077                                  | GS              | 8/3/2018 10:06                   |
| 10439                    | 10439               | 63°19'04.98379"N                     | 168°56'44.63544"W                      | 63°19'04.99928"N                     | 168°56'44.54963"W                      | 7022675.4540                 | 602908.2760                | 3406328.109                                               | 1813758.897                                              | 78.594                                               | 23.955                                  | GS              | 8/3/2018 10:06                   |
| 10440                    | 10440               | 63°19'05.06213"N                     | 168°56'44.76140"W                      | 63°19'05.07763"N                     | 168°56'44.67558"W                      | 7022677.8220                 | 602906.4460                | 3406335.971                                               | 1813753.014                                              | 78.205                                               | 23.837                                  | GS              | 8/3/2018 10:07                   |
| 10441                    | 10441               | 63°19'05.10284"N                     | 168°56'45.04482"W                      | 63°19'05.11834"N                     | 168°56'44.95900"W                      | 7022678.9550                 | 602902.4630                | 3406339.893                                               | 1813740.003                                              | 78.012                                               | 23.778                                  | GS              | 8/3/2018 10:07                   |
| 10442                    | 10442               | 63°19'04.97243"N                     | 168°56'44.97113"W                      | 63°19'04.98792"N                     | 168°56'44.88531"W                      | 7022674.9530                 | 602903.6180                | 3406326.703                                               | 1813743.586                                              | 78.495                                               | 23.925                                  | GS              | 8/3/2018 10:07                   |
| 10443                    | 10443               | 63°19'04.84999"N                     | 168°56'45.15034"W                      | 63°19'04.86548"N                     | 168°56'45.06452"W                      | 7022671.0850                 | 602901.2460                | 3406314.133                                               | 1813735.606                                              | 79.048                                               | 24.094                                  | GS              | 8/3/2018 10:07                   |
| 10444                    | 10444               | 63°19'04.81602"N                     | 168°56'45.35002"W                      | 63°19'04.83151"N                     | 168°56'45.26419"W                      | 7022669.9450                 | 602898.5020                | 3406310.533                                               | 1813726.544                                              | 79.125                                               | 24.117                                  | GS              | 8/3/2018 10:07                   |
| 10445                    | 10445               | 63°19'04.90374"N                     | 168°56'45.43409"W                      | 63°19'04.91924"N                     | 168°56'45.34828"W                      | 7022672.6210                 | 602897.2450                | 3406319.379                                               | 1813722.558                                              | 78.986                                               | 24.075                                  | GS              | 8/3/2018 10:08                   |
| 10446                    | 10446               | 63°19'05.00672"N                     | 168°56'45.58030"W                      | 63°19'05.02221"N                     | 168°56'45.49448"W                      | 7022675.7420                 | 602895.1090                | 3406329.728                                               | 1813715.709                                              | 78.871                                               | 24.04                                   | GS              | 8/3/2018 10:08                   |
| 10447                    | 10447               | 63°19'05.10195"N                     | 168°56'45.34342"W                      | 63°19'05.11744"N                     | 168°56'45.25760"W                      | 7022678.7940                 | 602898.3100                | 3406339.578                                               | 1813726.368                                              | 78.068                                               | 23.795                                  | GS              | 8/3/2018 10:08                   |

| Field Survey<br>Point ID | Feature Location ID | Latitude (WGS84)                     | Longitude (WGS84)                      | Latitude (NAD 83 (2011))             | Longitude (NAD 83<br>(2011))           | Northing (UTM<br>Zone 2N)    | Easting (UTM<br>Zone 2N)   | Northing - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Easting - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Elevation (NAVD88,<br>GEOID12B, U.S. Survey<br>Feet) | Elevation (NAVD88,<br>GEOID12B, Meters) | Text Descriptor | Measurement Date/Time            |
|--------------------------|---------------------|--------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------|------------------------------|----------------------------|-----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|-----------------------------------------|-----------------|----------------------------------|
| 10448                    | 10448               | 63°19'04.96689"N                     | 168°56'45.17425"W                      | 63°19'04.98238"N                     | 168°56'45.08843"W                      | 7022674.6910                 | 602900.7970                | 3406325.988                                               | 1813734.319                                              | 78.549                                               | 23.942                                  | GS              | 8/3/2018 10:08                   |
| 10449                    | 10449               | 63°19'04.75161"N                     | 168°56'45.46882"W                      | 63°19'04.76710"N                     | 168°56'45.38300"W                      | 7022667.8990                 | 602896.9130                | 3406303.902                                               | 1813721.226                                              | 79.417                                               | 24.206                                  | GS              | 8/3/2018 10:09                   |
| 10450                    | 10450               | 63°19'04.79717"N                     | 168°56'45.62405"W                      | 63°19'04.81266"N                     | 168°56'45.53822"W                      | 7022669.2390                 | 602894.7080                | 3406308.413                                               | 1813714.061                                              | 79.483                                               | 24.227                                  | GS              | 8/3/2018 10:09                   |
| 10451                    | 10451               | 63°19'04.86479"N                     | 168°56'45.84545"W                      | 63°19'04.88028"N                     | 168°56'45.75963"W                      | 7022671.2330                 | 602891.5610                | 3406315.114                                               | 1813703.837                                              | 79.148                                               | 24.124                                  | GS              | 8/3/2018 10:09                   |
| 10452                    | 10452               | 63°19'04.96323"N                     | 168°56'45.71310"W                      | 63°19'04.97873"N                     | 168°56'45.62728"W                      | 7022674.3380                 | 602893.3050                | 3406325.212                                               | 1813709.717                                              | 78.91                                                | 24.052                                  | GS              | 8/3/2018 10:10                   |
| 10453                    | 10453               | 63°19'04.81024"N                     | 168°56'46.02446"W                      | 63°19'04.82572"N                     | 168°56'45.93864"W                      | 7022669.4650                 | 602889.1250                | 3406309.439                                               | 1813695.753                                              | 79.126                                               | 24.118                                  | GS              | 8/3/2018 10:10                   |
| 10454                    | 10454               | 63°19'04.72969"N                     | 168°56'45.84949"W                      | 63°19'04.74518"N                     | 168°56'45.76367"W                      | 7022667.0510                 | 602891.6390                | 3406301.39                                                | 1813703.878                                              | 79.423                                               | 24.208                                  | GS              | 8/3/2018 10:10                   |
| 10455                    | 10455               | 63°19'04.68144"N                     | 168°56'45.62894"W                      | 63°19'04.69693"N                     | 168°56'45.54311"W                      | 7022665.6570                 | 602894.7550                | 3406296.655                                               | 1813714.031                                              | 79.591                                               | 24.259                                  | GS              | 8/3/2018 10:10                   |
| 10456                    | 10456               | 63°19'04.55963"N                     | 168°56'45.59531"W                      | 63°19'04.57513"N                     | 168°56'45.50949"W                      | 7022661.9030                 | 602895.3440                | 3406284.309                                               | 1813715.77                                               | 79.56                                                | 24.25                                   | GS              | 8/3/2018 10:11                   |
| 10457                    | 10457               | 63°19'04.61030"N                     | 168°56'45.79982"W                      | 63°19'04.62578"N                     | 168°56'45.71401"W                      | 7022663.3790                 | 602892.4480                | 3406289.301                                               | 1813706.346                                              | 79.476                                               | 24.224                                  | GS              | 8/3/2018 10:11                   |
| 10458                    | 10458               | 63°19'04.66708"N                     | 168°56'46.02989"W                      | 63°19'04.68258"N                     | 168°56'45.94406"W                      | 7022665.0340                 | 602889.1910                | 3406294.896                                               | 1813695.744                                              | 79.31                                                | 24.174                                  | GS              | 8/3/2018 10:11                   |
| 10459                    | 10459               | 63°19'04.53515"N                     | 168°56'46.07901"W                      | 63°19'04.55063"N                     | 168°56'45.99319"W                      | 7022660.9300                 | 602888.6390                | 3406281.459                                               | 1813693.721                                              | 79.295                                               | 24.169                                  | GS              | 8/3/2018 10:11                   |
| 10460                    | 10460               | 63°19'04.52636"N                     | 168°56'45.80026"W                      | 63°19'04.54185"N                     | 168°56'45.71443"W                      | 7022660.7820                 | 602892.5250                | 3406280.776                                               | 1813706.466                                              | 79.541                                               | 24.244                                  | GS              | 8/3/2018 10:12                   |
| 10461                    | 10461               | 63°19'04.40496"N                     | 168°56'45.63462"W                      | 63°19'04.42045"N                     | 168°56'45.54879"W                      | 7022657.1000                 | 602894.9500                | 3406268.57                                                | 1813714.233                                              | 79.564                                               | 24.251                                  | GS              | 8/3/2018 10:12                   |
| 10462<br>10463           | 10462               | 63°19'04.35103"N                     | 168°56'45.79156"W<br>168°56'45.98681"W | 63°19'04.36652"N<br>63°19'04.46594"N | 168°56'45.70574"W<br>168°56'45.90099"W | 7022655.3620<br>7022658.3500 | 602892.8200                | 3406262.975                                               | 1813707.156                                              | 79.455                                               | 24.218                                  | GS              | 8/3/2018 10:13                   |
| 10463                    | 10463<br>10464      | 63°19'04.45045"N<br>63°19'04.34818"N | 168°56'46.06796"W                      | 63°19'04.46394 N                     | 168°56'45.98214"W                      | 7022655.1500                 | 602890.0050<br>602888.9780 | 3406272.926<br>3406262.478                                | 1813698.073<br>1813694.538                               | 79.427<br>79.394                                     | 24.209                                  | GS<br>GS        | 8/3/2018 10:13<br>8/3/2018 10:13 |
| 10465                    | 10465               | 63°19'04.73224"N                     | 168°56'45.06089"W                      | 63°19'04.74773"N                     | 168°56'44.97507"W                      | 7022667.4820                 | 602902.6070                | 3406302.241                                               | 1813739.888                                              | 78.089                                               | 23.802                                  | GB5             | 8/3/2018 10:14                   |
| 10466                    | 10466               | 63°19'04.73527"N                     | 168°56'45.14287"W                      | 63°19'04.75076"N                     | 168°56'45.05704"W                      | 7022667.5390                 | 602901.4640                | 3406302.487                                               | 1813736.139                                              | 78.508                                               | 23.929                                  | GB5             | 8/3/2018 10:14                   |
| 10467                    | 10467               | 63°19'04.71761"N                     | 168°56'45.25635"W                      | 63°19'04.73310"N                     | 168°56'45.17054"W                      | 7022666.9420                 | 602899.9020                | 3406300.608                                               | 1813730.986                                              | 78.676                                               | 23.98                                   | GB5             | 8/3/2018 10:15                   |
| 10468                    | 10468               | 63°19'04.64429"N                     | 168°56'45.32601"W                      | 63°19'04.65978"N                     | 168°56'45.24019"W                      | 7022664.6420                 | 602899.0060                | 3406293.109                                               | 1813727.927                                              | 78.697                                               | 23.987                                  | GB5             | 8/3/2018 10:16                   |
| 10469                    | 10469               | 63°19'04.60041"N                     | 168°56'45.27999"W                      | 63°19'04.61590"N                     | 168°56'45.19417"W                      | 7022663.3050                 | 602899.6900                | 3406288.687                                               | 1813730.102                                              | 78.999                                               | 24.079                                  | GB5             | 8/3/2018 10:17                   |
| 10470                    | 10470               | 63°19'04.54654"N                     | 168°56'45.12084"W                      | 63°19'04.56203"N                     | 168°56'45.03503"W                      | 7022661.7090                 | 602901.9570                | 3406283.335                                               | 1813737.46                                               | 78.637                                               | 23.969                                  | GB5             | 8/3/2018 10:17                   |
| 10471                    | 10471               | 63°19'04.49747"N                     | 168°56'44.97954"W                      | 63°19'04.51296"N                     | 168°56'44.89371"W                      | 7022660.2540                 | 602903.9720                | 3406278.458                                               | 1813743.995                                              | 78.384                                               | 23.892                                  | GB5             | 8/3/2018 10:17                   |
| 10472                    | 10472               | 63°19'04.49058"N                     | 168°56'44.93939"W                      | 63°19'04.50607"N                     | 168°56'44.85357"W                      | 7022660.0590                 | 602904.5370                | 3406277.788                                               | 1813745.84                                               | 78.431                                               | 23.906                                  | GB5             | 8/3/2018 10:17                   |
| 10473                    | 10473               | 63°19'04.51434"N                     | 168°56'44.94813"W                      | 63°19'04.52984"N                     | 168°56'44.86232"W                      | 7022660.7910                 | 602904.3920                | 3406280.195                                               | 1813745.401                                              | 78.477                                               | 23.92                                   | GB5             | 8/3/2018 10:17                   |
| 10474                    | 10474               | 63°19'04.56546"N                     | 168°56'44.90930"W                      | 63°19'04.58095"N                     | 168°56'44.82348"W                      | 7022662.3890                 | 602904.8810                | 3406285.416                                               | 1813747.089                                              | 78.675                                               | 23.98                                   | GB5             | 8/3/2018 10:17                   |
| 10475                    | 10475               | 63°19'04.62938"N                     | 168°56'44.90445"W                      | 63°19'04.64487"N                     | 168°56'44.81863"W                      | 7022664.3690                 | 602904.8850                | 3406291.911                                               | 1813747.204                                              | 78.542                                               | 23.94                                   | GB5             | 8/3/2018 10:17                   |
| 10476                    | 10476               | 63°19'04.69238"N                     | 168°56'44.96291"W                      | 63°19'04.70786"N                     | 168°56'44.87709"W                      | 7022666.2920                 | 602904.0100                | 3406298.266                                               | 1813744.429                                              | 78.514                                               | 23.931                                  | GB5 C           | 8/3/2018 10:18                   |
| 10477                    | 10477               | 63°19'04.71992"N                     | 168°56'45.09271"W                      | 63°19'04.73541"N                     | 168°56'45.00689"W                      | 7022667.0860                 | 602902.1770                | 3406300.966                                               | 1813738.455                                              | 78.02                                                | 23.78                                   | GS              | 8/3/2018 10:18                   |
| 10478                    | 10478               | 63°19'04.68033"N                     | 168°56'45.05884"W                      | 63°19'04.69581"N                     | 168°56'44.97303"W                      | 7022665.8760                 | 602902.6870                | 3406296.97                                                | 1813740.068                                              | 78.548                                               | 23.942                                  | GS              | 8/3/2018 10:18                   |
| 10479                    | 10479               | 63°19'04.63981"N                     | 168°56'45.04546"W                      | 63°19'04.65530"N                     | 168°56'44.95964"W                      | 7022664.6290                 | 602902.9130                | 3406292.865                                               | 1813740.747                                              | 78.885                                               | 24.044                                  | GS              | 8/3/2018 10:18                   |
| 10480                    | 10480               | 63°19'04.59567"N                     | 168°56'44.96958"W                      | 63°19'04.61117"N                     | 168°56'44.88376"W                      | 7022663.2970                 | 602904.0130                | 3406288.439                                               | 1813744.286                                              | 78.709                                               | 23.99                                   | GS              | 8/3/2018 10:19                   |
| 10481                    | 10481               | 63°19'04.56125"N                     | 168°56'45.01314"W                      | 63°19'04.57674"N                     | 168°56'44.92731"W                      | 7022662.2130                 | 602903.4410                | 3406284.91                                                | 1813742.354                                              | 78.459                                               | 23.914                                  | GS              | 8/3/2018 10:19                   |
| 10482                    | 10482               | 63°19'04.58224"N                     | 168°56'45.08673"W                      | 63°19'04.59773"N                     | 168°56'45.00091"W                      | 7022662.8290                 | 602902.3960                | 3406286.987                                               | 1813738.958                                              | 78.776                                               | 24.011                                  | GS              | 8/3/2018 10:19                   |
| 10483                    | 10483               | 63°19'04.63026"N                     | 168°56'45.17375"W                      | 63°19'04.64575"N                     | 168°56'45.08794"W                      | 7022664.2760                 | 602901.1380                | 3406291.799                                               | 1813734.904                                              | 78.962                                               | 24.068                                  | GS              | 8/3/2018 10:19                   |
| 10484                    | 10484               | 63°19'04.69127"N                     | 168°56'45.17034"W                      | 63°19'04.70676"N                     | 168°56'45.08452"W                      | 7022666.1650                 | 602901.1250                | 3406297.998                                               | 1813734.958                                              | 78.482                                               | 23.921                                  | GS              | 8/3/2018 10:20                   |
| 10485                    | 10485               | 63°19'04.72905"N                     | 168°56'45.31356"W                      | 63°19'04.74453"N                     | 168°56'45.22775"W                      | 7022667.2700                 | 602899.0950                | 3406301.727                                               | 1813728.354                                              | 78.981                                               | 24.073                                  | GS              | 8/3/2018 10:20                   |
| 10486                    | 10486               | 63°19'04.66504"N                     | 168°56'45.36272"W                      | 63°19'04.68053"N                     | 168°56'45.27690"W                      | 7022665.2680                 | 602898.4750                | 3406295.189                                               | 1813726.216                                              | 78.84                                                | 24.03                                   | GS              | 8/3/2018 10:20                   |
| 10487                    | 10487               | 63°19'04.60824"N                     | 168°56'45.37380"W                      | 63°19'04.62373"N                     | 168°56'45.28797"W                      | 7022663.5060                 | 602898.3770                | 3406289.412                                               | 1813725.805                                              | 79.255                                               | 24.157                                  | GS              | 8/3/2018 10:20                   |
| 10488                    | 10488               | 63°19'04.55825"N                     | 168°56'45.24256"W                      | 63°19'04.57373"N                     | 168°56'45.15674"W                      | 7022662.0170                 | 602900.2520                | 3406284.433                                               | 1813731.882                                              | 79.016                                               | 24.084                                  | GS              | 8/3/2018 10:20                   |
| 10489                    | 10489               | 63°19'04.51771"N                     | 168°56'45.11147"W                      | 63°19'04.53320"N                     | 168°56'45.02566"W                      | 7022660.8220                 | 602902.1160                | 3406280.414                                               | 1813737.936                                              | 78.917                                               | 24.054                                  | GS              | 8/3/2018 10:21                   |
| 10490                    | 10490               | 63°19'04.46472"N                     | 168°56'44.99004"W                      | 63°19'04.48021"N                     | 168°56'44.90422"W                      | 7022659.2360                 | 602903.8580                | 3406275.124                                               | 1813743.57                                               | 78.698                                               | 23.987                                  | GS              | 8/3/2018 10:21                   |
| 10491                    | 10491               | 63°19'04.49211"N                     | 168°56'44.87101"W                      | 63°19'04.50760"N                     | 168°56'44.78519"W                      | 7022660.1370                 | 602905.4870                | 3406277.995                                               | 1813748.96                                               | 78.832                                               | 24.028                                  | GS              | 8/3/2018 10:21                   |

| Field Survey<br>Point ID | Feature Location ID | Latitude (WGS84) | Longitude (WGS84) | Latitude (NAD 83 (2011)) | Longitude (NAD 83<br>(2011)) | Northing (UTM<br>Zone 2N) | Easting (UTM<br>Zone 2N) | Northing - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Easting - Alaska State Plane<br>Zone 9, U.S. Survey Feet | Elevation (NAVD88,<br>GEOID12B, U.S. Survey<br>Feet) | Elevation (NAVD88,<br>GEOID12B, Meters) | Text Descriptor | Measurement Date/Time |
|--------------------------|---------------------|------------------|-------------------|--------------------------|------------------------------|---------------------------|--------------------------|-----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|-----------------------------------------|-----------------|-----------------------|
| 10492                    | 10492               | 63°19'04.55176"N | 168°56'44.86763"W | 63°19'04.56725"N         | 168°56'44.78181"W            | 7022661.9840              | 602905.4750              | 3406284.056                                               | 1813749.015                                              | 78.95                                                | 24.064                                  | GS              | 8/3/2018 10:21        |
| 10493                    | 10493               | 63°19'04.63756"N | 168°56'44.85733"W | 63°19'04.65305"N         | 168°56'44.77151"W            | 7022664.6430              | 602905.5330              | 3406292.778                                               | 1813749.342                                              | 78.964                                               | 24.068                                  | GS              | 8/3/2018 10:21        |
| 10494                    | 10494               | 63°19'04.70277"N | 168°56'44.91280"W | 63°19'04.71826"N         | 168°56'44.82697"W            | 7022666.6360              | 602904.6970              | 3406299.359                                               | 1813746.7                                                | 78.906                                               | 24.051                                  | GS              | 8/3/2018 10:22        |
| 10495                    | 10495               | 63°19'04.75941"N | 168°56'45.03418"W | 63°19'04.77490"N         | 168°56'44.94837"W            | 7022668.3340              | 602902.9520              | 3406305.02                                                | 1813741.062                                              | 78.761                                               | 24.006                                  | GS              | 8/3/2018 10:22        |
| 10496                    | 10496               | 63°19'04.76055"N | 168°56'45.13126"W | 63°19'04.77604"N         | 168°56'45.04545"W            | 7022668.3260              | 602901.6000              | 3406305.063                                               | 1813736.627                                              | 78.852                                               | 24.034                                  | GS              | 8/3/2018 10:22        |
| 10497                    | 10497               | 63°19'04.69053"N | 168°56'43.71022"W | 63°19'04.70602"N         | 168°56'43.62440"W            | 7022666.7930              | 602921.4380              | 3406299.019                                               | 1813801.64                                               | 78.234                                               | 23.846                                  | GS              | 8/3/2018 10:24        |
| 10498                    | 10498               | 63°19'04.68217"N | 168°56'44.06502"W | 63°19'04.69765"N         | 168°56'43.97920"W            | 7022666.3760              | 602916.5110              | 3406297.903                                               | 1813785.451                                              | 79.093                                               | 24.108                                  | GS              | 8/3/2018 10:24        |
| 10499                    | 10499               | 63°19'04.69604"N | 168°56'44.42176"W | 63°19'04.71153"N         | 168°56'44.33593"W            | 7022666.6470              | 602911.5340              | 3406299.044                                               | 1813769.136                                              | 79.269                                               | 24.161                                  | GS              | 8/3/2018 10:24        |
| 10500                    | 10500               | 63°19'04.69521"N | 168°56'44.72813"W | 63°19'04.71070"N         | 168°56'44.64232"W            | 7022666.4840              | 602907.2730              | 3406298.73                                                | 1813755.146                                              | 79.582                                               | 24.257                                  | GS              | 8/3/2018 10:25        |
| 10501                    | 10501               | 63°19'04.69642"N | 168°56'44.85108"W | 63°19'04.71191"N         | 168°56'44.76526"W            | 7022666.4670              | 602905.5610              | 3406298.76                                                | 1813749.529                                              | 79.311                                               | 24.174                                  | GS              | 8/3/2018 10:25        |
| 10502                    | 10502               | 63°19'04.69017"N | 168°56'44.95933"W | 63°19'04.70566"N         | 168°56'44.87352"W            | 7022666.2250              | 602904.0620              | 3406298.044                                               | 1813744.596                                              | 78.428                                               | 23.905                                  | GS              | 8/3/2018 10:26        |
| 10503                    | 10503               | 63°19'04.69211"N | 168°56'45.04300"W | 63°19'04.70761"N         | 168°56'44.95718"W            | 7022666.2480              | 602902.8960              | 3406298.179                                               | 1813740.772                                              | 78.158                                               | 23.822                                  | GS              | 8/3/2018 10:26        |
| 10504                    | 10504               | 63°19'04.68867"N | 168°56'45.11934"W | 63°19'04.70416"N         | 168°56'45.03353"W            | 7022666.1070              | 602901.8370              | 3406297.772                                               | 1813737.291                                              | 78.485                                               | 23.922                                  | GS              | 8/3/2018 10:26        |
| 10505                    | 10505               | 63°19'04.68816"N | 168°56'45.21615"W | 63°19'04.70365"N         | 168°56'45.13033"W            | 7022666.0480              | 602900.4910              | 3406297.647                                               | 1813732.871                                              | 78.782                                               | 24.013                                  | GS              | 8/3/2018 10:27        |
| 10506                    | 10506               | 63°19'04.69322"N | 168°56'45.33292"W | 63°19'04.70872"N         | 168°56'45.24711"W            | 7022666.1530              | 602898.8610              | 3406298.074                                               | 1813727.53                                               | 78.876                                               | 24.041                                  | GS              | 8/3/2018 10:27        |
| 10507                    | 10507               | 63°19'04.69532"N | 168°56'45.45496"W | 63°19'04.71081"N         | 168°56'45.36914"W            | 7022666.1630              | 602897.1610              | 3406298.195                                               | 1813721.953                                              | 79.416                                               | 24.206                                  | GS              | 8/3/2018 10:27        |
| 10508                    | 10508               | 63°19'04.69497"N | 168°56'45.54379"W | 63°19'04.71046"N         | 168°56'45.45797"W            | 7022666.1130              | 602895.9260              | 3406298.093                                               | 1813717.897                                              | 79.608                                               | 24.265                                  | GS              | 8/3/2018 10:28        |
| 10509                    | 10509               | 63°19'04.68899"N | 168°56'45.76221"W | 63°19'04.70449"N         | 168°56'45.67640"W            | 7022665.8310              | 602892.8930              | 3406297.322                                               | 1813707.932                                              | 79.578                                               | 24.256                                  | GS              | 8/3/2018 10:28        |
| 10510                    | 10510               | 63°19'04.71763"N | 168°56'46.09161"W | 63°19'04.73312"N         | 168°56'46.00580"W            | 7022666.5700              | 602888.2830              | 3406299.983                                               | 1813692.841                                              | 79.373                                               | 24.193                                  | GS              | 8/3/2018 10:28        |
| 10511                    | 10511               | 63°19'04.71669"N | 168°56'46.44513"W | 63°19'04.73217"N         | 168°56'46.35932"W            | 7022666.3830              | 602883.3650              | 3406299.622                                               | 1813676.698                                              | 79.166                                               | 24.13                                   | GS              | 8/3/2018 10:29        |
| 10512                    | 10512               | 63°19'04.72902"N | 168°56'46.79828"W | 63°19'04.74451"N         | 168°56'46.71245"W            | 7022666.6070              | 602878.4410              | 3406300.61                                                | 1813660.55                                               | 78.697                                               | 23.987                                  | GS              | 8/3/2018 10:29        |
| 10513                    | 10513               | 63°19'04.73495"N | 168°56'47.08574"W | 63°19'04.75044"N         | 168°56'46.99993"W            | 7022666.6630              | 602874.4350              | 3406300.996                                               | 1813647.412                                              | 78.654                                               | 23.974                                  | GS              | 8/3/2018 10:29        |
| 10514                    | 10514               | 63°19'04.73586"N | 168°56'47.48483"W | 63°19'04.75134"N         | 168°56'47.39902"W            | 7022666.5130              | 602868.8830              | 3406300.789                                               | 1813629.185                                              | 77.648                                               | 23.667                                  | GS              | 8/3/2018 10:29        |
| 10515                    | 10515               | 63°19'04.75306"N | 168°56'47.84270"W | 63°19'04.76855"N         | 168°56'47.75689"W            | 7022666.8860              | 602863.8870              | 3406302.268                                               | 1813612.813                                              | 77.347                                               | 23.575                                  | GS              | 8/3/2018 10:30        |
| 10516                    | 10516               | 63°19'04.73474"N | 168°56'48.32327"W | 63°19'04.75023"N         | 168°56'48.23745"W            | 7022666.1050              | 602857.2200              | 3406300.046                                               | 1813590.897                                              | 76.467                                               | 23.307                                  | GS              | 8/3/2018 10:30        |
| 10517                    | 10517               | 63°19'04.73242"N | 168°56'48.75475"W | 63°19'04.74791"N         | 168°56'48.66893"W            | 7022665.8410              | 602851.2190              | 3406299.487                                               | 1813571.196                                              | 75.41                                                | 22.985                                  | GS              | 8/3/2018 10:30        |
| 10518                    | 10518               | 63°19'04.74052"N | 168°56'49.10209"W | 63°19'04.75601"N         | 168°56'49.01628"W            | 7022665.9370              | 602846.3790              | 3406300.049                                               | 1813555.32                                               | 75.106                                               | 22.892                                  | GS              | 8/3/2018 10:30        |
| 10519                    | 10519               | 63°19'05.77838"N | 168°56'49.31114"W | 63°19'05.79388"N         | 168°56'49.22532"W            | 7022697.9540              | 602842.4430              | 3406405.302                                               | 1813544.042                                              | 72.067                                               | 21.966                                  | CHK 0 HV        | 8/3/2018 10:32        |
| 10520                    | 10520               | 63°18'42.73270"N | 168°57'29.95010"W | 63°18'42.74820"N         | 168°57'29.86431"W            | 7021966.8890              | 602299.8070              | 3404034.372                                               | 1811726.18                                               | 73.044                                               | 22.264                                  | CHK 0 HV        | 8/3/2018 12:41        |

#### Exhibit F3-4 Logbook

018 - MISC - 3



CROSS SECTION FIELD BOOK

Nº 370-6F

2018 - MISC - 3

No. 370-6F - Cross Section - 6 3/4x83/4

6 3 2 2 8 1 3 7 0 6 1 1
ISBN 978-1-932149-49-4

|       |         | INDEX) |          |           |         |  |
|-------|---------|--------|----------|-----------|---------|--|
|       |         |        |          |           |         |  |
|       |         |        |          |           |         |  |
| PGĦ   | DATE    | wlo    | DESC     |           |         |  |
|       |         |        |          |           |         |  |
| 1 2   |         | 10 0   | A        |           |         |  |
| 1-3   | 6/19/18 | 18-030 | COLSDONE | ASBUILT   |         |  |
| 4-13  | 7/26/19 | 18-027 | JBER     | MON. WEL  |         |  |
| , ,   | 7/26/18 | 10-021 | 3012     | NON. WEL  | <u></u> |  |
|       |         |        |          |           |         |  |
|       | , ,     |        |          |           |         |  |
| 14-24 | 7/31/18 | 18-002 | ECC 1    | V.E. CAPE |         |  |
|       | -8/4/18 |        |          |           |         |  |
|       |         |        |          |           |         |  |
|       |         |        |          |           |         |  |
|       |         |        |          |           |         |  |
|       |         |        |          |           |         |  |
|       |         |        |          |           |         |  |
|       |         |        |          |           |         |  |
|       |         |        |          |           |         |  |
|       |         |        |          |           |         |  |
|       |         |        |          |           |         |  |
|       |         |        |          |           |         |  |
|       |         |        |          |           |         |  |
|       |         |        |          |           |         |  |
|       |         |        |          |           |         |  |
|       |         |        |          |           |         |  |
|       |         |        |          |           |         |  |
|       |         |        |          |           |         |  |
|       |         |        |          |           |         |  |
|       |         |        |          |           |         |  |
|       |         |        |          |           |         |  |
|       |         |        |          |           |         |  |
|       |         |        |          |           |         |  |
|       |         |        |          |           |         |  |
|       |         |        |          |           |         |  |
|       |         |        |          |           |         |  |
|       |         |        |          |           |         |  |
|       |         |        |          |           |         |  |
|       |         |        |          |           |         |  |
|       |         |        | 1        |           |         |  |
|       |         |        |          |           |         |  |
|       |         |        |          |           |         |  |
|       |         |        |          |           |         |  |
|       |         |        |          |           |         |  |
|       |         |        |          |           |         |  |
|       |         |        |          |           |         |  |

#### PROJECT DESCRIPTION

- · PURPOSE OF SURVEY IS TO PROVIDE SURVEY SUPPORT TO ECC /JACOBS @ N.E. CAPE.
- · SURVEY GOALS :
  - THE INTO EXISTING SURVEY CONTROL
    P SUPPLE MENT AS NECESSARY
  - · 2x CRUSS SECTIONS & MICRO- TUPO
  - · STAKE 90 SAMPLE SPOTS @ SITE # 8
  - . STAKE ~ 51 SAMPLE SPOTS @ STTE 28
  - · SURVEY EDGE OF WATER @ SITE \$ 28

JULY 3151, 2018
E.CERNEY

#### SURVEYOR'S CERTIFICATE

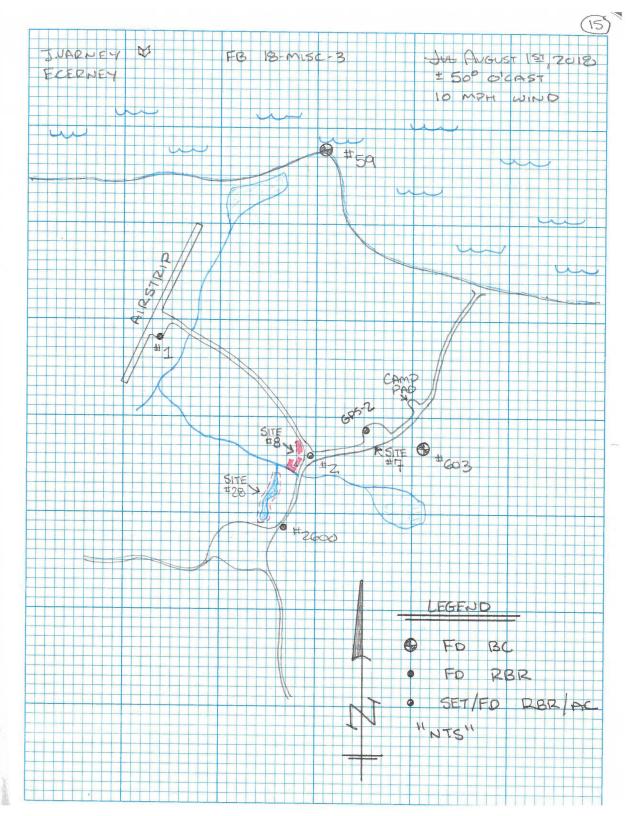
I, JOSHUAW. VARNEY, DO
HEREBY CERTIET THAT I
WAS IN RESPONSIBLE CHARGE
OF ALL FIELD ACTIVITIES
FROM 1/31/18 - 8/4/18.

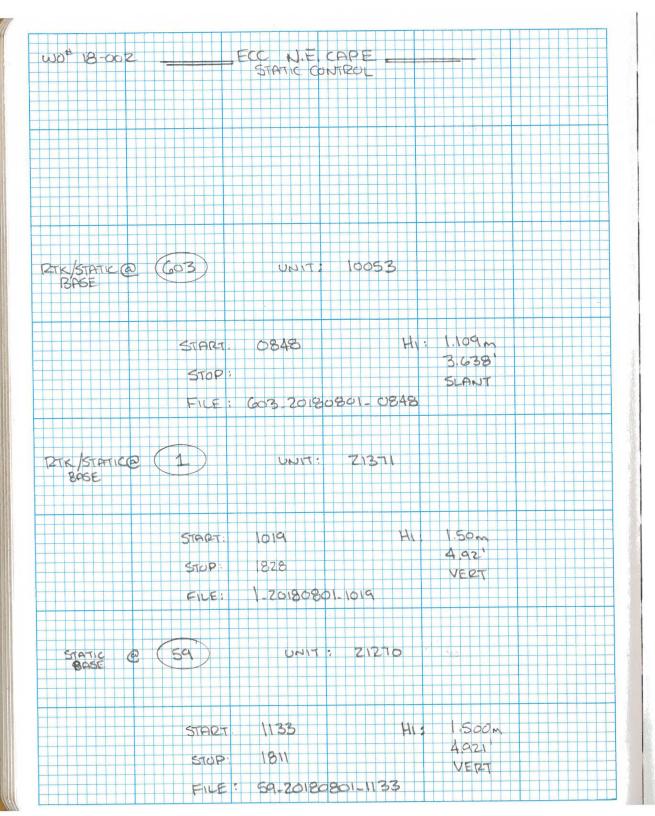


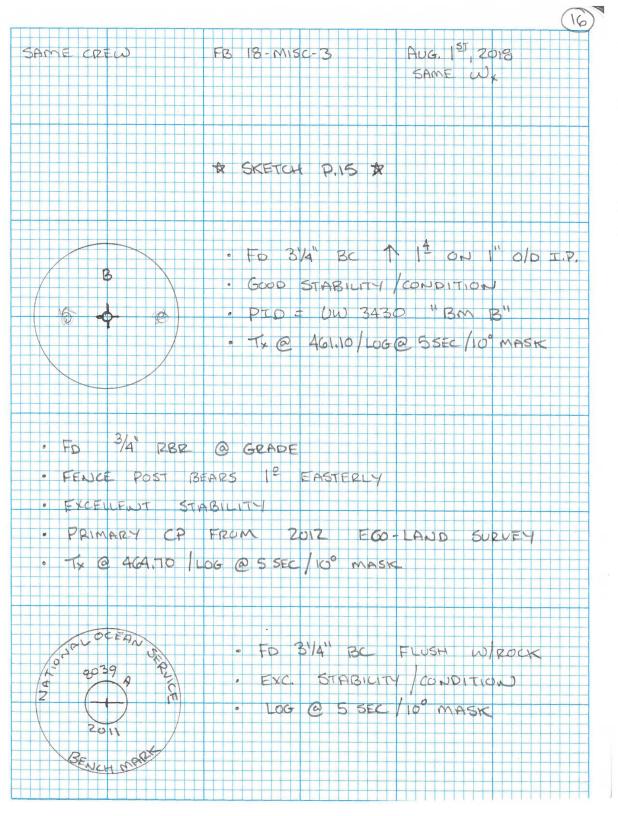
#### aulement LAST

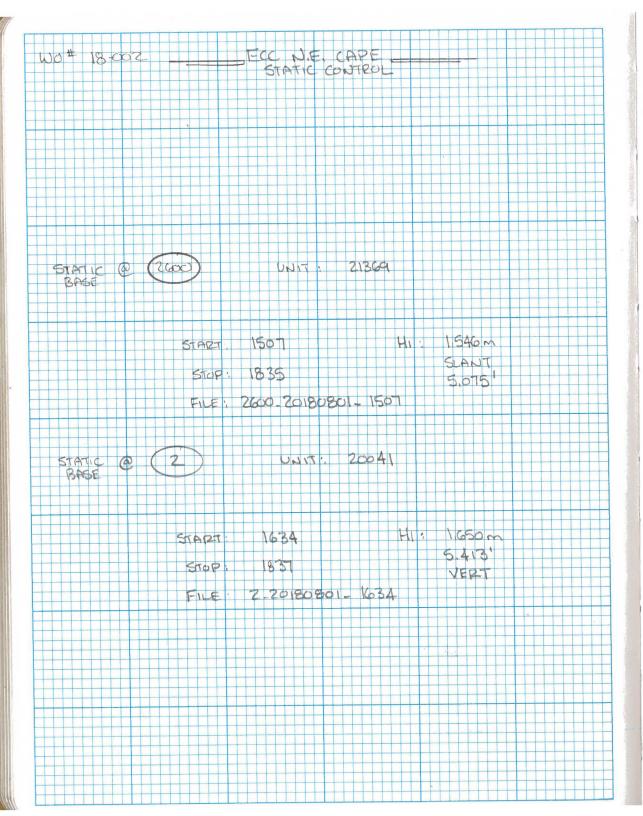
TOPCON GR-5 RECEIVERS

1117 - 21270 715 - 10021 1117 - 21371 715 - 10053 1177 - 21369 1117 - 2004


TOPCON FC-5000 P


P/N = 1010086-01


SIN = 729084


#### PRIMARY CONTROL NOTES:

- RECORD COORDINATES RECEIVED FROM JACOBS
  ON 04-18-18 WERE DERIVED FROM "ECO-LAND" SURVEYS
  RISCOTT MICLINITIES 8904-5
- · COORDINATES LISTED AS "AK STATE PLANE ZONE Q",
  BUT INITIAL FIELD CHECKS FOUND THIS TO BE WRONG.
- · ROTATION OF +0.87° IS LISTED IN THE "BASIS-OF SURVEY DATUM REPORT" BUT THERE IS NO MENTION OF A SCALE FACTOR.
- · USING STATIC DATA ON #1 5 # 2000, WE WERE
  ABLE TO LOCALIZE INTO OLD SYSTEM.
- · ALL OTHER 8904-SET CONTRUL WAS FOUND TO
- FROM "ECO-LAND" FOSITION BY 0.71
- · HOLDING OUR OPUS SOLUTION ON # 1 MATCHES THE PUBLISHED POSITION OF # 59 by 0.08'.
- # ALL FIELD PROCESSING HOLDS OUR SPRA
  POSITION OF #1 DERIVED BY OPUS (NOT ECO-LAND'S
  POSITION)









AUG. 19, 2018 SAME CREW FB 18-MISC - 3 SAME WX \* SEE VICINITY SKETCH P.15 A . FO \$/8" BBR @ GRADE . GOO STABILITY · LUG @ 5 SEC / 100 MASK 2 PD CP FROM "ECO-LAND" SURVEY · SET 2" AC ON 5/6" × 30" 1282 · FUSH WIGHTON YOS . LOG @ 5 SEC /109 MASK · LOCATED @ G OF INTERSECTION
OF AIRSTRIP CAMP/MOC ROADS

| 0# 18-002 |          | E     | CC N.E.<br>Rik Cr | CAPE      |          |             |
|-----------|----------|-------|-------------------|-----------|----------|-------------|
| ROUER     | Jos " 18 | 3-cx) | 2 3 111           |           |          |             |
| PT #      | CODE     |       | DESC              |           |          | HAL         |
| 5001      | CHK      | @     | "STOKE"           | ' RM 2    |          | 1.500m VT   |
| 5002      | CHIK     | ۵     | 59                | AH 0.66   | N. 0.19  | w           |
| 5003      | CHY      | @     | 118039            | B" (#59 A | (m * 1)  | +, 5.42' VT |
| 5004      | CHIK     | @     | 18039-0           | " (*59 R1 | *2)      | N.          |
| 5005      | CHK      | @     | 34009             | sH: 0.16  | aV: 0.54 | N.          |
| 5006      | CHK      | @     | 2600              | AH: 0.03  | W: 0.03  | W           |
| 5007      | CHK      | @     | 34006             | 80.0 ; UA | 14.0 V4  |             |
| 5008      | CHK      | @     | 34008             | aH: 0.09  | sv: 0.83 |             |

AUG. 151 2018 SAME WX SAME CREW · CHECK SHOT COORDINATES DERIVED

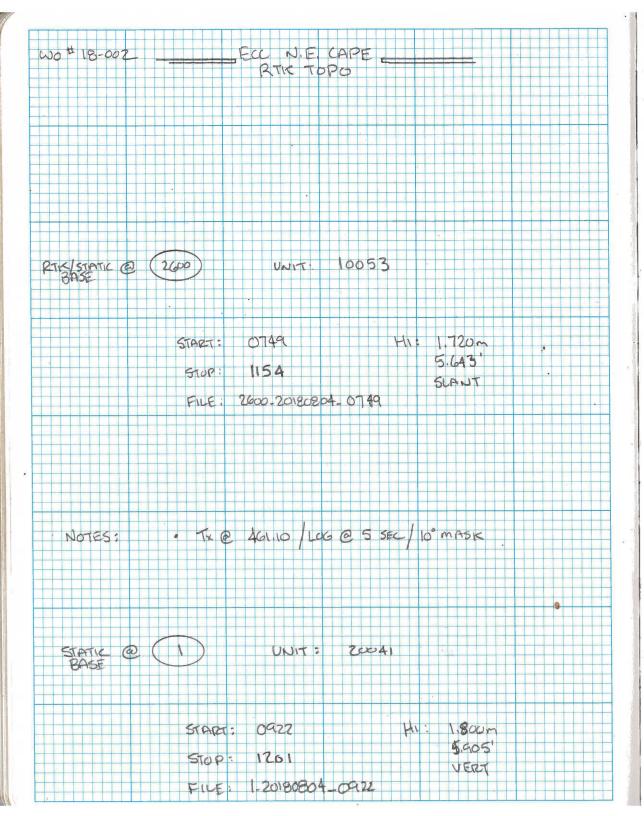
@ END OF DAY WITH POST- PROCESSED

STATIC COORDINATS FOR # 1,59,2000. NOTE: . # 34006/8/9 ARE MECHATOCK COORDS. · TRANSLATING TO OPUS # 1 · 120TATING TO # 2600 · SCAUNG TO # 2600 NEW JOBS START 8/2 W/ POST-

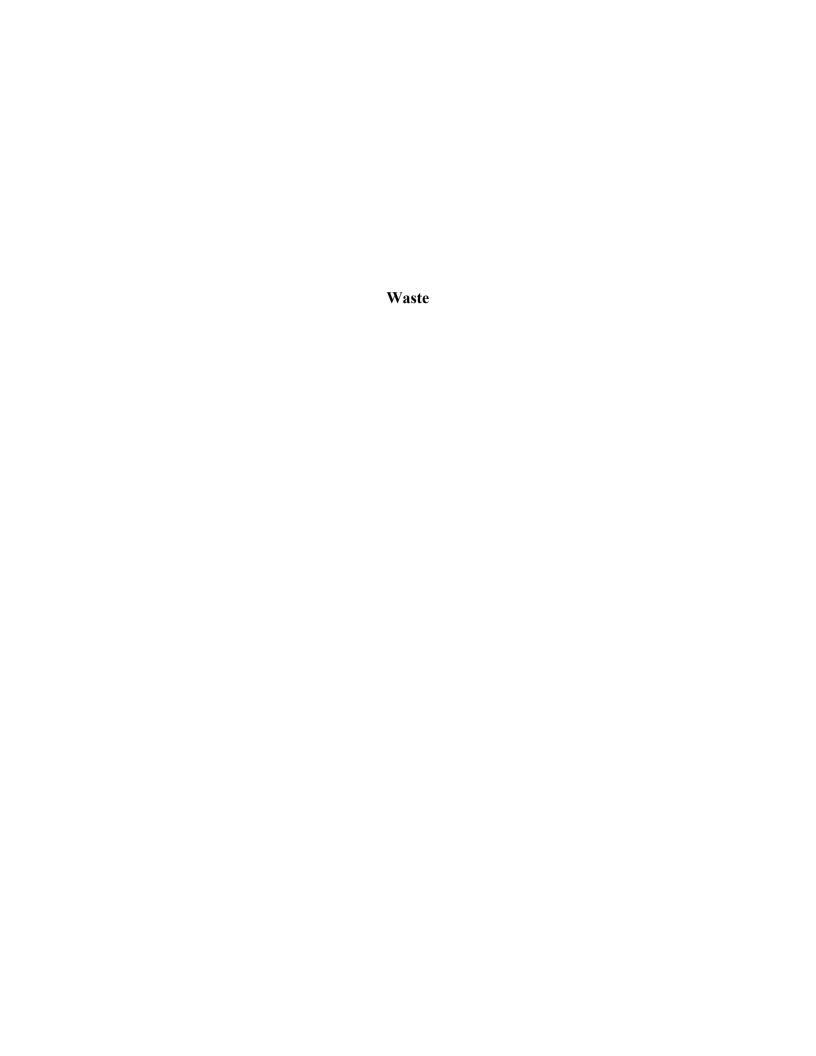

|            |       |                     |      |                            |                       |                       | ાવૈ                               |
|------------|-------|---------------------|------|----------------------------|-----------------------|-----------------------|-----------------------------------|
| 104 18-005 |       | SECC N.E. CAPE      |      |                            | J.VARNEY<br>E. CERNEY | ## F8 18-misc-3       | AUGUST 2018<br>± 50° RAIN<br>CALM |
| РТ#        | UNIT  | FILE/START          | STUP | HI                         | DESC                  |                       |                                   |
| (603)      | 16053 | 603-2018-0802-0827  | 1401 | 3,64'<br>5LAJT             | ClaC                  | PEF. P.NG             |                                   |
|            | 2/37/ | 1.20180802.0915     | 1100 | 1.500m<br>4 az'<br>VERT    | CRB                   | · PEF. P.16           |                                   |
| (2600)     | 21369 | 2600-20180802-09115 | 1239 | 5,07°<br>SUANT             | CRB                   | · REF. P.17           |                                   |
| 2          | 20041 | 2-20180802-0931     | 1248 | 5.415'<br>VECT             | CRBC                  | • REF. P.17           |                                   |
| 59         | 21270 | 59-20180802-0953    | 1428 | 1.500m<br>4.92'<br>VERT    | СВС                   | PEF. PIG              |                                   |
| 2600       | 21369 | 2600-201808C2_ \2A5 | 1526 | 1.720 m<br>5.643'<br>5.647 | CRB                   | · 2 <sup>2</sup> 08s. |                                   |

| 603               | (+)             | (4)              | 800               | (9)             | PT#        | WO # 18-002    |
|-------------------|-----------------|------------------|-------------------|-----------------|------------|----------------|
| 10053             | 7737            | 21270            | 10053             | 20041           | Cali       |                |
| 603_20180802_1160 | 1_20180802_1631 | 59.20180802.1437 | 603-20180802-1405 | 2.70180802-1253 | TILE START | STATIC CONTROL |
| 9                 | 8:50            | 8,30             |                   | \(\( \bar{4}\)3 | STOP       |                |
| 3,726             | VEP 3           | 4.265°           | \$1.500°          | 1.894<br>VERT   | 王          |                |

| 27 10           |
|-----------------|
| 220             |
|                 |
| CBC . The CBS   |
| 0.00            |
| CRA .           |
| CBC . ZWD CIBS. |
|                 |


|               |              | RTK TO                                                          |          |                     |          |
|---------------|--------------|-----------------------------------------------------------------|----------|---------------------|----------|
| DOVER         | JOB " 18-008 | 5 2/5 "                                                         |          |                     |          |
| PT#           | CODE         | DESC-                                                           |          |                     | H        |
| 5009          | CHIK @       |                                                                 | sH:0.01  | 50.0 ·VA            | 4.921 VT |
| 5010<br>-5113 | HEW          | @                                                               | SITE 28  |                     | 4.711 27 |
| 5114          | CHK @        | 2600                                                            | pH:0.02  | aJ: 0.02            | 4.71 07  |
| 5115          | CHIK @       | 59                                                              | AH: 0.04 | V 0.0Z              | 1        |
| 5116<br>-5227 | HEW          | @                                                               | SITE 28  |                     | W.       |
| 5228          | CHK @        | ¥ 1                                                             | sH: 0.01 | 10,0 : Va           | 5.905 VT |
| 5229          | CHK @        | 2                                                               | aH: 0.03 | 10,0 : Va           | 5.42' VT |
| -             | LAYOUT       | FLAGS                                                           | WITHIN   | SITE 8              |          |
|               |              | 32<br>36<br>38<br>312<br>313<br>316<br>317<br>318<br>320<br>323 |          | 24 2264<br>344 -222 | 4        |

SAME CREW AUG. 2-0, 2018 FB 18-MISK-3 SAME WX JUB "18-002 ECZ" PTH CODE DESC HI CHK 10001 AH; 0.01 AV: 0.02 4.921 VT 10002 CHK AH: 0.02 2600 AV: 0.01 5.07 SLANT 10003 @ 2 CHK AH: 0,02 AV: 0,01 5.415 VT 10004 CHK @ 59 AH : 0.01 4.921' VT DV: 0.01 10005-HEW 0 SITE 28 5.43 VT 10055 WATER INFALL @ POUD @ SITE > 10056 MP 10057-HEW SITE 28 10134 10135 CHK @ 2 AH: 0,01' AV: 0,03 11 10136 CHK @ 59 AH: 0.01 AV: 0.01 4.265' VT 10137 -HEW SITE 28 5.43 VT 10233 10234 CHK 0 2 AH: 0.02 AU: 0.01 5.43 VT 10235 CHK @ 2 AH: 0.04 AV; 0.01 5,43 VT LAYOUT FLA 65 WITHIN SITE B 2007 A7 2020 - A20 2033- A33 2008 -2022 - AZZ Z036 - A36 A8 2011 All 7023 - A23 2038 - A38 A10 NOT SET AIZ 2012 2027-A21 2014 8 14 2029 - A29 2016 A16 7030 - A30 2020 AZ0 2031 - A31




JUARNEY FB 18-MISC-3 AUGUST 32 2018 F.CERNEY ± 50° CALM FOGGY POUER JOB "18-002- JVZ" PT# CODE DESC 5231 CHK AH: 0,03 10.0 : Va 5.46 5232 \* SITE # 17 X-SECT # 1 - 5313 - FULL WIDTH -\* SITE # 77 X-SECT # Z 5314 5374 \* ADD'L HEW @ SITE # \$ 28 HEW 5.46 -5386 5387 CHK AH: 0.05 DV: 0.03 2600 5.42' V - STAKE (a) SITE 28 (INSTALL LATH @ ALL POINTS) 5388 MP 5W Ø3 5389 MP 5W Ø1 5390 5w Ø Z MP 5391 CHK "GPS 2" FD 2" AC CHK @ 5397 aH 0.02 AV 0.01 5.42' - FINISH ALL SITE \$8 LAYOUT (C-1 > C-30) 5393 2 AH: 0.03 OV: 0.01 CHK @ 5.42

| 20                         |                                                 |        |                               |                                           |                    | 1    |                          |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |      |              |       |
|----------------------------|-------------------------------------------------|--------|-------------------------------|-------------------------------------------|--------------------|------|--------------------------|---|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|------|--------------|-------|
| 350,2018<br>14124          |                                                 |        |                               |                                           |                    |      |                          |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |      |              |       |
| 4 22 6                     |                                                 |        |                               |                                           |                    |      |                          |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |      |              |       |
| Au6 ust<br>750 c           |                                                 |        |                               |                                           |                    |      |                          | 2 |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |      |              |       |
| 4 4 6 6                    |                                                 |        |                               |                                           |                    |      |                          |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |      |              |       |
|                            |                                                 |        |                               |                                           |                    |      |                          |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |      |              |       |
|                            |                                                 |        |                               |                                           |                    |      |                          |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |      |              |       |
| m                          |                                                 |        |                               |                                           |                    |      |                          |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |      |              |       |
| MISC                       |                                                 |        |                               |                                           |                    |      |                          |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |      |              |       |
| ٤                          |                                                 |        |                               |                                           |                    |      |                          |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |      |              |       |
| 00                         |                                                 |        |                               |                                           |                    |      |                          |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |      |              |       |
|                            |                                                 |        |                               |                                           |                    |      |                          |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |      |              |       |
| E E E                      |                                                 |        |                               |                                           |                    |      |                          |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |      |              |       |
|                            |                                                 |        |                               |                                           |                    |      |                          |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |      |              |       |
|                            |                                                 |        |                               |                                           |                    |      |                          |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |      |              |       |
|                            |                                                 |        |                               |                                           |                    |      |                          |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |      |              |       |
|                            |                                                 |        |                               |                                           |                    |      |                          |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |      |              |       |
| VARNEY                     |                                                 |        |                               |                                           |                    |      |                          |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |      |              |       |
|                            |                                                 |        |                               |                                           |                    |      |                          |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |      |              |       |
| # 3                        |                                                 |        |                               |                                           |                    |      |                          |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |      | +            | ++    |
|                            |                                                 | •      | i                             |                                           |                    |      |                          |   |  | DX4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |  |      |              |       |
|                            |                                                 | 14     | 5,43 VT                       |                                           |                    | [*   |                          |   |  | DX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70/5 |  | 20.0 | St. St. Case |       |
|                            |                                                 | 1      | 5,43                          |                                           |                    | 1    |                          |   |  | The state of the s |      |  |      |              | 2703  |
|                            |                                                 | •      | 5,43                          |                                           |                    |      |                          |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |      |              |       |
|                            |                                                 |        | 5,43,                         |                                           |                    |      | M: 0.01                  |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |      |              | 77103 |
| PO                         | 00 TE C S J I I I I I I I I I I I I I I I I I I |        | 43, 43,                       |                                           |                    |      | DV: 0.01                 |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |      |              |       |
| NE CAPE                    | \$ -000 P                                       |        | 43, 43,                       | L the                                     | - SEC 1            |      | DV: 0.01                 |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |      |              |       |
| WE CAPE                    | 11 8 -002, EC2                                  |        | ( 0,03 AV: 0.01 S, 43         | ST TE                                     |                    |      | DV: 0.01                 |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |      |              |       |
| NE CAPE                    | 11 8 -002, EC2                                  |        | 0,03 AV: 0.01 5,43            | L the                                     | X - SECTTON        | N 10 |                          |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |      |              |       |
| WE CAPE                    | 508 " 8 -002 EC2                                |        | ( 0,03 AV: 0.01 S, 43         |                                           | * 7 X - SEC 1 T ON |      | DH: 0.03                 |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |      |              |       |
| WE CAPE                    | 508 " 8 -002 EC2                                |        | Z AH: 0,03' AV: 0.01' 5,43'   |                                           | * 7 X - SEC 1 T ON | 90   | DH: 0.03                 |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |      |              |       |
| WE CAPE                    | 508 " 8 -002 EC2                                | DE SC. | ( 0,03 AV: 0.01 S, 43         | ST TE                                     | X - SECTTON        |      | DV: 0.01                 |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |      |              |       |
| WE CAPE                    | 11 8 -002, EC2                                  | DE SC. | © 2 AH: 0,03' AU: 0.01' 5,43' |                                           | * 7 X - SEC 1 T ON | 90   | 2600 DH: 0,03 DV: 0.01   |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |      |              |       |
| K TOPO                     | 508 " 8 -002 EC2                                | DE SC. | © 2 AH: 0,03' AU: 0.01' 5,43' | 10 PO O O T T T T T T T T T T T T T T T T | S                  | 3    | Q 2600 DH; 0,03 DV: 0.01 |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |      |              |       |
| ECC NE CAPE  RTK TO PO  EE | 508 " 8 -002 EC2                                |        | © 2 AH: 0,03' AU: 0.01' 5,43' |                                           | * 7 X - SEC 1 T ON | 90   | 2600 DH: 0,03 DV: 0.01   |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |      |              |       |
| K TOPO                     | 508 " 8 -002 EC2                                | DE SC. | © 2 AH: 0,03' AU: 0.01' 5,43' | 10 PO O O T T T T T T T T T T T T T T T T | S                  | 3    | Q 2600 DH; 0,03 DV: 0.01 |   |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |  |      |              |       |



| J.UARNEY<br>E.CEPNEY |           | -B 18-MISC-3                            | AUGUST ATH<br>#50° O'CAS<br>CALM                   |            |
|----------------------|-----------|-----------------------------------------|----------------------------------------------------|------------|
| (ROVER JOB           | 11 18-007 | .5vz")                                  |                                                    |            |
| PTA                  | (ODE      | DESC                                    |                                                    | HU         |
| 5394                 | CHIK @    | 2 st                                    | 1. 0.04 AV: 5.01                                   | 5.43 ' UT  |
| 5395<br>-5414        |           | LAYOUT LAT<br>DRECTIONS F<br>H20 @ SILV | H @ CARDINAL<br>AROUND STANDING<br>1 END SITE # 28 | <b>V</b>   |
| 5415                 | EPP       | BASE ONLY                               |                                                    |            |
| 546/7                | ML(1)     | SUBMERGED                               | PP                                                 |            |
| 5418/19              | ML (2)    | PARTIALLY                               | SUBMERGED PP                                       |            |
| 5420                 | CHIK . C  | 2 04                                    | : 0.03 N: 0.02                                     | 5.43 VT    |
| 5421                 | CHK @     | 1 2                                     | 1. 0.01 2/3 0.05                                   | 7 / ~ 08.1 |
| STATIC @             | GP5-2     | UNIT ' A                                | 20 10021                                           |            |
|                      | START!    | 0933                                    | Hv: 5.43'                                          |            |
|                      | STOPi     | 1143                                    | VERZT                                              |            |
| AAG9-5               | FILE:     | GP52_201808                             | 804_0933                                           |            |
| GP\$ 2               | 0         | Fo 2" AC 1"<br>OK STABILITY             | 02_                                                |            |



## 2018 Northeast Cape Second Periodic Review Waste Summary

| Container      | Container ID | Quantity   | Contents                         | Waste Characterization<br>Result | Generation<br>Date | Manifest # | Classification | Date Shipped offsite | Weight (pounds) |
|----------------|--------------|------------|----------------------------------|----------------------------------|--------------------|------------|----------------|----------------------|-----------------|
| 55-gallon drum | WW-1         | 50 gallons | well development and purge water | Non-Hazardous                    | 8/1/2018           | 2018-00405 | Non-Hazardous  | 9/14/18              |                 |
| 55-gallon drum | WW-2         | 50 gallons | well development and purge water | Non-Hazardous                    | 8/2/2018           | 2018-00405 | Non-Hazardous  | 9/14/18              |                 |
| 55-gallon drum | WW-3         | Started    | well development and purge water | Non-Hazardous                    | 8/3/2018           | 2018-00405 | Non-Hazardous  | 9/14/18              | 1913            |
| 55-gallon drum | WW-4         | 2 gallons  | Site 28 Decon water              | Non-Hazardous                    | 8/6/2018           | 2018-00405 | Non-Hazardous  | 9/14/18              | 1913            |
| 55-gallon drum | WW-4         | 2 gallons  | Site 28 Decon water              | Non-Hazardous                    | 8/7/2018           | 2018-00405 | Non-Hazardous  | 9/14/18              |                 |
| 55-gallon drum | WW-4         | 3 gallons  | Site 28 Decon water              | Non-Hazardous                    | 8/8/2018           | 2018-00405 | Non-Hazardous  | 9/14/18              |                 |

#### 

| MON-HEROURS   Concent of Name   2 Page   of   2 Emproyer pressure Flow   Waste Name(by Revolute   Concentration   Concentratio | •            |                                                 |                                                                             |                                                                 | •                                     |                                                    |                                          |                                        |                   |                     |               |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------|----------------------------------------------------|------------------------------------------|----------------------------------------|-------------------|---------------------|---------------|-------|
| PO BX 8886, CEPOALP-K-EFER   USACE, AK NEC PACILITY WIDE   USACE, AK NECONOCOADA   USACE, AK NECONOC   |              | WASTE MANIFEST                                  | AK0000228395                                                                |                                                                 | 3                                     |                                                    |                                          |                                        |                   |                     |               |       |
| BBER_N. REDICE-DIDIS   NE CAPE_ST_LAWREDCE SLAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5. (         | Generator's Name and Mail                       | ing Address US ARMY ENGIN                                                   | NEER DISTRICT, A                                                | LASKA G                               |                                                    |                                          | -                                      | ess)              |                     |               |       |
| Generation Process   Grant P   | 11           | •                                               |                                                                             |                                                                 | U:                                    | SACE, AK, NEC                                      | FACILITY                                 | WIDE                                   |                   |                     |               |       |
| S. TRANSPORT COURSY Name or Contract TING   SUT) 222-7518   U.S. EPA ID Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 1          | •                                               |                                                                             |                                                                 |                                       |                                                    |                                          | ISLAND                                 |                   |                     |               |       |
| RIDGE CONTRACTING  T. TERROPHE CONTROL TO MANY TO THE SECRET CASE OF THE SECRET CONTROL  |              |                                                 |                                                                             |                                                                 | 5/                                    | AVOONGA, AK                                        | 99759                                    | U.S. FPA ID                            | Number            |                     |               |       |
| T. Tienergous / Zonomo Control   Committee   Control   Committee   Control   Committee   Control   Committee   Control   Con   | "            |                                                 |                                                                             |                                                                 | 1                                     | 907) 222-751                                       | 18                                       | 0.5. 27715                             | rianibe:          |                     |               |       |
| 8. Designant Society Notes and Size Address CLEAN HARBORS GRASSY MOUNTAIN LLC 3 MILES EAST 7 MILES NORTH OF KNOLLS Feature Principal Registrations of the Control of the Co | 7.           |                                                 |                                                                             |                                                                 |                                       |                                                    |                                          | U.S. EPA ID                            | Number            |                     | _             |       |
| CLEAN HARBORS GRASSY MOUNTAIN LLC 3 MILES EAST 7M ILES NORTH OF KNOLLS FRONTSVILLE, UT 84029  M or Weels Shipping Name and Description  No. 1959  No. 1950   |              | ECC, INC.                                       |                                                                             |                                                                 | (                                     | 907) 644-042                                       | 28                                       | AK                                     | R00021            | 02408               |               |       |
| 3 MLES EAST 7 MILES NORTH OF KNOLLS Faday Profits ATTSVILLE, LT 84029  (A35) 884-8900  UTD991301748  11. Containers 11. Tall 11. Unit 11.  | 8. 9         | •                                               |                                                                             | NTAINLLO                                                        |                                       |                                                    |                                          | U.S. EPA ID                            | Number            | <del>_</del> ·      |               |       |
| Easility a Price Support Name and Description  NON-REGULATED LIQUID  A DM 1913 P  13. General Handley Instructions and Additional Information 1) CH1458548 IDW WATER  13. General Handley Instructions and Additional Information 1) CH1458548 IDW WATER  14. GENERATOR SOFFEROR'S CERTIFICATION: I hardly declare that the contents of this consignment are firstly and accurately described show the proper displaying name, and are caselfort packaged, mentioned and behavior/placental cut of an in in imports in proper condition for transport according to applicate instructional and an instruction of the proper displaying name, and are caselfort packaged, mentioned and behavior/placental cut of an in in imports in proper condition for transport according to applicate instructional and placental placental down for the proper displaying name, and are caselfort packaged, mentioned and behavior/placental cut of an in import to U.S. Port of estipolist.  In Information Floring Place Register in Prince Typed Happen (Parkaged Company)  In Transporter Synthesis for engoin of Manifesta Information (Parkaged Company)  In Transporter Prince Typed Happen (Parkaged Company)  In Transporter Typed Typed Happen (Parkaged Company)  In Transporter Prince Typed Happen (Parkaged Company)  In |              |                                                 |                                                                             |                                                                 |                                       |                                                    |                                          |                                        |                   |                     |               |       |
| No.   Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11           | GRANTSVII                                       | LLE. UT 84029                                                               | NIVOLLO                                                         |                                       | (435) 8                                            | 884-890                                  | Oi UT                                  | D9913             | 01748               |               |       |
| No. Type Quantity Wit-Vol.  No. Type Quantity Quan | Fa           | cility's Phone:                                 |                                                                             |                                                                 |                                       |                                                    |                                          |                                        | 1                 |                     |               |       |
| NON-REGULATED LIQUID   1.3 Special Harding Instructions and Additional Information   1.3 Special Harding Instructions   1.3 Special    | HM           | 9. Waste Shipping Nam                           | ne and Description                                                          |                                                                 |                                       |                                                    |                                          |                                        | 1                 |                     |               |       |
| 13. Stocial Hundring Instructions and Additional Information   1) CH1458548 IDW WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | 1NON-REGULA                                     | TED LIQUID                                                                  |                                                                 |                                       |                                                    | 1 2                                      |                                        |                   |                     | <del>.</del>  |       |
| 13. Special Hardting Instructions and Additional Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 힏            | W)                                              |                                                                             |                                                                 |                                       | 4                                                  | DM                                       | 1913                                   | 👂                 |                     |               |       |
| 13. Special Hardting Instructions and Additional Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EBA          | *                                               |                                                                             |                                                                 |                                       |                                                    |                                          |                                        |                   |                     |               |       |
| 13. Special Hardting Instructions and Additional Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NE NE        | 2.                                              |                                                                             |                                                                 |                                       |                                                    |                                          |                                        |                   |                     |               |       |
| 13. Special Handling Instructions and Additional Information 1) CH1458548 IDW WATER  14. GENERATOR'SIGNEEPOR'S CERTERCATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper displayment and are in all respects in proper condition for transport according to applicable—insensitional and national governmental insulations.  15. International Signments   Import to U.S.   Export from U.S.   Port of entrylviolit.   16. Transportur 2 infinited Typed Nature   Transport | ĭ            |                                                 |                                                                             |                                                                 |                                       |                                                    |                                          |                                        |                   |                     | *             |       |
| 13. Special Handling Instructions and Additional Information 1) CH1458548 IDW WATER  14. GENERATOR'SIGNEEPOR'S CERTERCATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper displayment and are in all respects in proper condition for transport according to applicable—insensitional and national governmental insulations.  15. International Signments   Import to U.S.   Export from U.S.   Port of entrylviolit.   16. Transportur 2 infinited Typed Nature   Transport |              | 7 0                                             |                                                                             |                                                                 |                                       |                                                    |                                          |                                        | ļ. · .            |                     |               |       |
| 13. Special Fending Instructions and Additional Information 1) CH1458548 IDW WATER  To # W9II KB18 F00 20  Cell and # W9II KB18 F00  |              |                                                 |                                                                             |                                                                 |                                       |                                                    |                                          |                                        |                   |                     |               |       |
| 13. Special Fending Instructions and Additional Information 1) CH1458548 IDW WATER  To # W9II KB18 F00 20  Cell and # W9II KB18 F00  |              |                                                 |                                                                             |                                                                 |                                       |                                                    |                                          |                                        |                   |                     |               |       |
| 13. Special Fending Instructions and Additional Information 1) CH1458548 IDW WATER  To # W9II KB18 F00 20  Cell and # W9II KB18 F00  | 1 2 3        | 4.                                              |                                                                             | <del></del>                                                     |                                       |                                                    |                                          |                                        | +                 |                     |               |       |
| 14. GENERATOR'S/OFFEROR'S CERTIFICATION: 1 hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarified, and are in all respects in proper condition for transport according to applications. Signature  15. International Shipments   Import to U.S.   Export from U.S.   Port of entry/levist:   Date leaving U.S.:   16. Transporter Advanced/general of Receipt of Materials   Signature   Morth   Day   Year    |              |                                                 |                                                                             |                                                                 |                                       |                                                    | 1                                        |                                        |                   |                     |               |       |
| 14. GENERATOR'S/OFFEROR'S CERTIFICATION: 1 hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarified, and are in all respects in proper condition for transport according to applications. Signature  15. International Shipments   Import to U.S.   Export from U.S.   Port of entry/levist:   Date leaving U.S.:   16. Transporter Advanced/general of Receipt of Materials   Signature   Morth   Day   Year    |              |                                                 |                                                                             |                                                                 |                                       |                                                    |                                          |                                        |                   |                     |               |       |
| 14. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classifled, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable releaseshicous and agricular governmental regulations.  Generator's Offeror's Printed Typed Nagre    15. International Shipments   Import to U.S.   Export from U.S.   Port of entry/lexit:   Date leaving U.S.:     16. Transporter Ashonovindgment of Receipt of Materials   Month   Day   Year     17. International Shipments   Import to U.S.   Port of entry/lexit:   Date leaving U.S.:     18. International Shipments   Import to U.S.   Date leaving U.S.:     19. International Shipments   Import to U.S.   Port of entry/lexit:   Date leaving U.S.:     19. International Shipments   Import to U.S.   Port of entry/lexit:   Date leaving U.S.:     19. International Shipments   Import to U.S.   Port of entry/lexit:   Date leaving U.S.:     10. International Shipments   Import to U.S.   Port of entry/lexit:   Post of entr | 11           |                                                 |                                                                             |                                                                 |                                       |                                                    |                                          |                                        |                   |                     |               |       |
| marked and labeled/placanted, and are in all respects in proper condition for transport according to applicable international and national shipments    15. International Shipments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                                                 |                                                                             |                                                                 | (                                     | 2-thanks                                           | waii                                     | KB-17                                  | 1-D-C             | 017                 |               |       |
| Generator's Offeror's Printed/Typed Name    15. International Shipments   Import to U.S.   Export from U.S.   Post of entrylexit:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.          | GENERATOR'S/OFFERO<br>marked and labeled/placar | R'S CERTIFICATION: I hereby decla<br>ded, and are in all respects in proper | re that the contents of this of<br>condition for transport acco | consignment are<br>ording to applices | fully and accurately de<br>le international and na | escribed above<br><u>tio</u> nal governn | by the proper st<br>nental regulations | nipping nam<br>3. | e, and are classifi | ed, packag    | jed,  |
| 15. International Shipments   Import to U.S.   Export from U.S.   Date leaving U.S.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ge           |                                                 |                                                                             |                                                                 |                                       |                                                    | /_                                       |                                        |                   | Month               | Day           | 4 )   |
| Transporter Signature (for exports only):  Transporter Signature (for exports only):  Date leaving U.S.:  Transporter Acknowledgment of Receipt of Materials  Transporter 2 Brinted Typed Name  Transporter 2 Brinted Typed Name  Month Day Year  Month Day Year  Transporter 2 Brinted Typed Name  Month Day Year  Month Day Year  Month Day Year  Transporter 2 Brinted Typed Name  Month Day Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>∀</b>   * | Stanle                                          | n Seega                                                                     | <b>73</b>                                                       |                                       | 100                                                | 20                                       |                                        |                   | - 4                 | 10            | 18    |
| ## 16. Transporter 1 Printed/Typed Name    Transporter 1 Printed/Typed Name   Transporter 2 Fifthted/Typed Name   Transporter 1 Printed/Typed Name   Transporter 2 Fifthted/Typed Name   Transporter 2 Fifthted/Ty | <b>년</b> 15  | International Shipments                         | Import to U.S.                                                              |                                                                 | Export from U.S                       | S. Port of e                                       | entry/exit:                              |                                        |                   |                     |               |       |
| Transporter 1 Printed/Typed Name    Transporter 2 Printed/Typed Name   Signature   Month   Day   Year   1/2   1/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                                                 |                                                                             |                                                                 | -                                     | Date lea                                           | ving U.S.:                               |                                        |                   |                     |               |       |
| 17. Discrepancy 17a. Discrepancy Indication Space Quantity  Type Residue Partial Rejection    Partial Rejection   Full Rejection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | # 16         | <del>_</del>                                    |                                                                             |                                                                 | Signa                                 | turo O I                                           |                                          |                                        |                   | Month               | Day           | Vear  |
| 17. Discrepancy 17a. Discrepancy Indication Space Quantity  Type Residue Partial Rejection    Partial Rejection   Full Rejection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>ام</u>    | uispoiter i Piliteuri peu N                     | .+L                                                                         |                                                                 | ) Signio                              | TAM                                                |                                          |                                        |                   | 19                  | 114 1         | ιŸ    |
| 17. Discrepancy 17a. Discrepancy Indication Space Quantity  Type Residue Partial Rejection    Partial Rejection   Full Rejection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S Tr         | Insporter 2 Printed/Typed N                     | lame                                                                        |                                                                 | SIGIL                                 | 200000                                             | /                                        |                                        |                   | Month               | Day           |       |
| 17. Discrepancy 17a. Discrepancy Indication Space Quantity  Type Residue Partial Rejection    Partial Rejection   Full Rejection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ¥            | D. Mal                                          |                                                                             | Mangas                                                          |                                       |                                                    | $T^{+}$                                  |                                        |                   | 10                  | 1,            | 18    |
| Manifest Reference Number:  17b. Alternate Facility (or Generator)  Facility's Phone:  17c. Signature of Alternate Facility (or Generator)  Month  Day  Year  18. Designated Facility Owner or Operator: Certification of receipt of materials covered by the manifest except as noted in Item 17a  Signature  Month  Day  Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | Discrepancy                                     | or one                                                                      |                                                                 |                                       |                                                    | <del>)</del> —                           |                                        |                   | 1.                  | -9-1          | 4     |
| Manifest Reference Number:  17b. Alternate Facility (or Generator)  Facility's Phone:  17c. Signature of Alternate Facility (or Generator)  Month Day Year  18. Designated Facility Owner or Operator: Certification of receipt of materials covered by the manifest except as noted in Item 17a  Printed/Typed Name  Month Day Year  Month Day Year  Month Day Year  Month Day Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17           | a. Discrepancy Indication S                     | pace Ouantity                                                               | Tune                                                            | <del></del>                           | Residue                                            |                                          | Partial Re                             | ejection          |                     | Full Beject   | ion   |
| The Alternate Facility (or Generator)  Facility's Phone:  17c. Signature of Alternate Facility (or Generator)  Month Day Year  18. Designated Facility Owner or Operator: Certification of receipt of materials covered by the manifest except as noted in Item 17a  Signature  Signature  Aday  Month Day Year  Month Day Year  And Day Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                                                 | Cuantry                                                                     |                                                                 |                                       | ( leaduc                                           |                                          | Tartia Tic                             | Accusi.           | _                   | r all riojoot |       |
| Facility's Phone:  17c. Signature of Alternate Facility (or Generator)  Month Day Year  18. Designated Facility Owner or Operator: Certification of receipt of materials covered by the manifest except as noted in Item 17a  Printed Typed Name  Signature  Month Day Year  Month Day Year  Month Day Year  Month Day Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 _          |                                                 |                                                                             |                                                                 |                                       | Manifest Reference                                 | Number:                                  |                                        |                   |                     |               |       |
| 17c. Signature of Alternate Facility (or Generator)  Month Day Year  18. Designated Facility Owner or Operator: Certification of receipt of materials covered by the manifest except as noted in Item 17a  Printed Typed Name Signature Signature White Table Typed Name Signature White Typed Name Signature Sign | <u>E</u> 17  | b. Alternate Facility (or Gen                   | erator)                                                                     |                                                                 |                                       |                                                    |                                          | U.S. EPA ID                            | Number            |                     |               |       |
| 17c. Signature of Alternate Facility (or Generator)  Month Day Year  18. Designated Facility Owner or Operator: Certification of receipt of materials covered by the manifest except as noted in Item 17a  Printed Typed Name Signature Signature White Table Typed Name Signature White Typed Name Signature Sign | 힣            |                                                 |                                                                             |                                                                 |                                       |                                                    |                                          | 1                                      |                   |                     |               |       |
| 18. Designated Facility Owner or Operator: Certification of receipt of materials covered by the manifest except as noted in Item 17a  20/9000379  Printed/Typed Name  Signature  Signature  Hugh Staffel 1/16/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fa           |                                                 | cility (or Generator)                                                       |                                                                 | -                                     |                                                    |                                          |                                        | <del>.</del>      | Month               | Dav           | Year  |
| 18. Designated Facility Owner or Operator: Certification of receipt of materials covered by the manifest except as noted in Item 17a  20/9000379  Printed/Typed Name  Signature  Signature  Hugh Staffel 1/16/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H            | c. Signature of Alternate i a                   | only for deneratory                                                         |                                                                 | 1                                     |                                                    |                                          |                                        | -                 |                     | 1 1           | 1     |
| 18. Designated Facility Owner or Operator: Certification of receipt of materials covered by the manifest except as noted in Item 17a  20/9000379  Printed/Typed Name  Signature  Signature  Hugh Staffel 1/16/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                                                 |                                                                             |                                                                 |                                       |                                                    |                                          | . P. Marely agent                      | Harris            |                     |               |       |
| 18. Designated Facility Owner or Operator: Certification of receipt of materials covered by the manifest except as noted in Item 17a  20/9000379  Printed/Typed Name  Signature  Signature  Hugh Staffel 1/16/9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DES          |                                                 |                                                                             |                                                                 |                                       |                                                    |                                          |                                        |                   |                     |               |       |
| Printed Typed Name Signature Sty Sell 1 16 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | H132                                            |                                                                             |                                                                 |                                       |                                                    | <u> Sagail 1880 i</u>                    |                                        |                   |                     |               |       |
| Printed/Typed Name Signature Signature Sty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18           | . Designated Facility Owner                     | r or Operator: Certification of receipt of                                  | of materials covered by the                                     | manifest except a                     | ıs noted in İtem 17a                               |                                          | 2019                                   | 000               | 279                 |               |       |
| The state of the s | Pr           | inted/Typed Name                                | 1/1                                                                         |                                                                 | Signa                                 | ituro                                              | 2.11                                     | 1                                      | •                 | Month               |               | . (   |
| 169-BLC-O 5/11977 (Rev. 9/09) / / DESIGNATED FACILITY TO GENERATOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>V</b>     | My Se                                           | 11el                                                                        |                                                                 |                                       | They is                                            | He                                       | <u> </u>                               |                   |                     |               |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 169-B        | LC-O 5 11977 (Re                                | v. 9/09)                                                                    |                                                                 |                                       | /                                                  | 0'                                       | DESIGNAT                               | ED FA             | CILITY TO (         | SENER         | RATOR |



#### **Certificate of Disposal / Treatment - Storage and Transfer**

Run Date: 3/6/2019

Manifested To Site: Grassy Mountain, UT Facility

3 Miles East 7 Miles North of KnollsExit 41 off I-80

Grantsville, UT 84029

**EPA ID/Prov ID:** UTD991301748

Generator ID Manifest No. Generation Date Received Date

US31722 NH2018-00405 8/10/2018 1/16/2019

The above described waste, received at the Clean Harbors facility listed above pursuant to the manifest(s) listed above, has/will be treated and/or disposed of by Clean Harbors, or another licensed facility approved by Clean Harbors, in accordance with applicable federal, state and provincial laws and regulations. Any waste received by Clean Harbors and subsequently shipped to another licensed facility has been or shall be identified as being generated by Clean Harbors in accordance with 40CFR 264.71(c).

For waste imported/exported to/from Canada the waste has/will be disposed or recycled according to the Canadian export and import of hazardous waste or hazardous recyclable material regulation as published in the Canadian Gazette Part II, vol 139, No 11, SOR/2005-149 May 17, 2005

Under civil and criminal penalties of law for the making of submission of false or fraudulent statements or representations (18 U.S.C. 1001 and 15 U.S.C. 2615), I certify that the information contained in or accompanying this document is true, accurate, and complete. As to the identified section(s) of this document for which I cannot personally verify truth and accuracy, I certify as the company official having supervisory responsibility for the persons who, acting under my direct instructions, made the verification that this information is true, accurate, and complete.

| Signed: | Paul 1. mello | Date: | 3/6/2019 |
|---------|---------------|-------|----------|
| -       |               |       |          |

**Title: Director Facility Applications** 

# ATTACHMENT F-4 Photograph Log

#### PHOTOGRAPH LOG **TABLE OF CONTENTS**

| Photo Number                                                                                                                                          | <b>Page</b> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| <b>Photo No. 1</b> – 07 August 2018 Sample location 01 and 02 (profile transect 1 and 2) confluence with the Suqi River at Site 28. View looking east | .F4-1       |
| <b>Photo No. 2</b> – 07 August 2018 Sample location 01 and 02 (profile transect 1 and 2) within discrete pond at Site 28. View looking north          | .F4-1       |
| <b>Photo No. 3</b> $-$ 07 August 2018 Sample location 03 at Site 28. View looking northeast                                                           | .F4-2       |
| <b>Photo No. 4</b> – 07 August 2018 Profile transect 5; sample location 04 was relocated due to vegetative mat. View looking northeast                | .F4-2       |
| <b>Photo No. 5</b> – 07 August 2018 Profile transect 6 and 7; sample locations 05 and 06, respectively. View looking north.                           | .F4-3       |
| <b>Photo No. 6</b> – 07 August 2018 Profile transects 8 and 9; sample locations 07, 08 and 09. View looking northeast.                                | .F4-3       |
| <b>Photo No. 7</b> – 07 August 2018 Profile transect 10; sample location 10. View looking north.                                                      | .F4-4       |
| <b>Photo No. 8</b> – 07 August 2018 Profile transect 12; sample locations 11 and 12. View looking northwest.                                          | .F4-4       |
| <b>Photo No. 9</b> – 07 August 2018 Profile transect 13; sample location 13. View looking north.                                                      | .F4-5       |
| <b>Photo No. 10</b> – 07 August 2018 Profile transects 14, 15, 16 and 17; sample locations 14, 15, 16, 17 and 18. View looking north                  | .F4-5       |
| <b>Photo No. 11</b> – 07 August 2018 Profile transects 19 and 20; sample locations 19 and 20. View looking north.                                     | .F4-6       |
| <b>Photo No. 12</b> – 07 August 2018 Profile transects 22 and 23; sample locations 21 and 22. View looking north.                                     | .F4-6       |
| <b>Photo No. 13</b> – 07 August 2018 Profile transects 25 and 26; sample locations 23 and 24. View looking north.                                     | .F4-7       |
| <b>Photo No. 14</b> – 07 August 2018 Profile transect 28; sample location 25. View looking southwest.                                                 | .F4-7       |
| <b>Photo No. 15</b> – 07 August 2018 Profile transects 30, 32 and 33; sample locations 26 and 28. View looking south.                                 | .F4-8       |
| <b>Photo No. 16</b> – 07 August 2018 Profile transect 31; sample location 27. View looking down.                                                      | .F4-8       |
| <b>Photo No. 17</b> – 07 August 2018 Profile transects 34 and 35; sample locations 29 and 30. View looking south.                                     | .F4-9       |
| <b>Photo No. 18</b> – 07 August 2018 Profile transect 36; sample location 31. View looking south.                                                     | .F4-9       |

## PHOTOGRAPH LOG TABLE OF CONTENTS (Continued)

| Photo Number                                                                                                                             | <b>Page</b> |
|------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| <b>Photo No. 19</b> – 07 August 2018 Profile transects 38, 39, 40 and 41; sample locations 32, 33, 34 and 35. View looking south.        | .F4-10      |
| <b>Photo No. 20</b> – 07 August 2018 Profile transect 41; sample location 35, an artesian upwelling. View looking down.                  | .F4-10      |
| <b>Photo No. 21</b> – 07 August 2018 Profile transects 50 and 51; sample locations 36 and 37. View looking north.                        | .F4-11      |
| <b>Photo No. 22</b> – 07 August 2018 Profile transects 42 and 43; pond containing sample locations 38, 39 and 40. View looking southwest | .F4-11      |
| <b>Photo No. 23</b> – 07 August 2018 Profile transects 48 and 49; sample location 41. View looking north.                                | .F4-12      |
| <b>Photo No. 24</b> – 07 August 2018 Profile transects 44 and 45; sample location 42. View looking north.                                | .F4-12      |
| <b>Photo No. 25</b> – 07 August 2018 Sample location 43. View looking north.                                                             | .F4-13      |
| <b>Photo No. 26</b> – 07 August 2018 Profile transects 46 and 47; sample locations 44, 45 and 46. View looking north                     | .F4-13      |
| <b>Photo No. 27</b> – 07 August 2018 Profile transects 52 and 53; sample locations 47, 48, 49, 50 and 51. View looking southwest.        | .F4-14      |

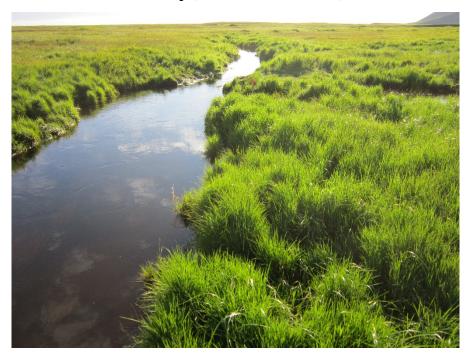



Photo No. 1-07 August 2018 Sample location 01 and 02 (profile transect 1 and 2) confluence with the Suqi River at Site 28. View looking east.



**Photo No. 2** – 07 August 2018
Sample location 01 and 02 (profile transect 1 and 2) within discrete pond at Site 28. View looking north.



**Photo No. 3** – 07 August 2018 Sample location 03 at Site 28. View looking northeast.



Photo No. 4 – 07 August 2018

Profile transect 5; sample location 04 was relocated due to vegetative mat. View looking northeast.



**Photo No. 5** – 07 August 2018 Profile transect 6 and 7; sample locations 05 and 06, respectively. View looking north.



**Photo No. 6** – 07 August 2018 Profile transects 8 and 9; sample locations 07, 08 and 09. View looking northeast.



**Photo No. 7** – 07 August 2018 Profile transect 10; sample location 10. View looking north.



**Photo No. 8** – 07 August 2018 Profile transect 12; sample locations 11 and 12. View looking northwest.



**Photo No. 9** – 07 August 2018 Profile transect 13; sample location 13. View looking north.



Photo No. 10 – 07 August 2018
Profile transects 14, 15, 16 and 17; sample locations 14, 15, 16, 17 and 18. View looking north.



**Photo No. 11** - 07 August 2018 Profile transects 19 and 20; sample locations 19 and 20. View looking north.



**Photo No. 12** - 07 August 2018 Profile transects 22 and 23; sample locations 21 and 22. View looking north.



**Photo No. 13** - 07 August 2018 Profile transects 25 and 26; sample locations 23 and 24. View looking north.



**Photo No. 14** – 07 August 2018 Profile transect 28; sample location 25. View looking southwest.



**Photo No. 15** – 07 August 2018 Profile transects 30, 32 and 33; sample locations 26 and 28. View looking south.



**Photo No. 16** – 07 August 2018 Profile transect 31; sample location 27. View looking down.



**Photo No. 17** - 07 August 2018 Profile transects 34 and 35; sample locations 29 and 30. View looking south.



**Photo No. 18** – 07 August 2018 Profile transect 36; sample location 31. View looking south.



**Photo No. 19** - 07 August 2018 Profile transects 38, 39, 40 and 41; sample locations 32, 33, 34 and 35. View looking south.



**Photo No. 20** – 07 August 2018 Profile transect 41; sample location 35, an artesian upwelling. View looking down.



**Photo No. 21** - 07 August 2018 Profile transects 50 and 51; sample locations 36 and 37. View looking north.



Photo No. 22 – 07 August 2018
Profile transects 42 and 43; pond containing sample locations 38, 39 and 40. View looking southwest.



**Photo No. 23** – 07 August 2018 Profile transects 48 and 49; sample location 41. View looking north.



**Photo No. 24** – 07 August 2018 Profile transects 44 and 45; sample location 42. View looking north.



**Photo No. 25** – 07 August 2018 Sample location 43. View looking north.



**Photo No. 26** – 07 August 2018 Profile transects 46 and 47; sample locations 44, 45 and 46. View looking north.



**Photo No. 27** – 07 August 2018 Profile transects 52 and 53; sample locations 47, 48, 49, 50 and 51. View looking southwest.

# ATTACHMENT F-5 Sediment Mapping and Sampling SOP

# Site 28 Sediment Mapping and Sample Collection

| Document No: NEC-SOP-02       | Page: <b>1 of 7</b> |
|-------------------------------|---------------------|
| Effective Date: 17 April 2018 | Rev. <b>1</b>       |

#### **TABLE OF CONTENTS**

| 1.0  | SCOPE AND APPLICATION                  | . 1 |
|------|----------------------------------------|-----|
| 1.1. | Background and Rationale               | . 1 |
| 2.0  | EQUIPMENT                              |     |
| 3.0  | SEDIMENT MAPPING AND SAMPLING APPROACH | 2   |
| 3.1. | Measure Extent of Waterbodies          | 4   |
| 3.2. | Measure Extent of Sediment             | 5   |
| 3.3. | Collect Sediment Samples               | 6   |
| 4.0  | VOLUME ESTIMATION                      | 7   |
| 5.0  | LABORATORY ANALYSIS                    | 7   |
| 6.0  | HEALTH AND SAFETY                      | 7   |
| 7.0  | REFERENCES                             | 7   |

#### **EXHIBITS**

Exhibit F5-1 Figure
Exhibit F5-2 Sediment Sampling Form

#### 1.0 SCOPE AND APPLICATION

The purpose of this standard operating procedure (SOP) is to describe the process for mapping the extent of sediment present at Northeast Cape Formerly Used Defense Site (Ne Cape FUDS) Site 28. The goal of the sediment mapping and sample collection effort will be to achieve comparable results to the previous sediment mapping effort conducted in 2018 and described in the *Site 28 Sediment Mapping and Sampling Report* (U.S. Army Corps of Engineers [USACE] 2018).

This SOP defines the procedures that will be applied to evaluate the lateral extent of sediment in a waterbody, estimating the sediment volume, and determining the location of sediment samples at Site 28. Once sampling locations are determined using this SOP, the field team will collect and store the samples according to the contractors work plan.

This plan may need to be revised if warranted by site conditions or other factors. Modifications to this plan will be coordinated with the USACE Quality Assurance representative (QAR) and documented in the field logbooks.

#### 1.1. Background and Rationale

Sediment mapping and sampling occurred in 2012 at Site 28 prior to sediment removal activities (dredging). Another sediment mapping and sampling event occurred in 2018 to evaluate the post-removal quantity of sediment. A sediment mapping SOP was established to define an approach for the 2018 effort and potential future mapping efforts. This SOP has been refined since the 2018 sediment mapping and sampling event (USACE 2018) and was designed to use a similar approach to what was used in the 2012 sediment mapping and sampling effort, reported in *Site 28 Technical Memorandum Addendum* (USACE 2013).

The 2012 effort was completed in two distinct phases. The first phase included mapping activities such as the measuring the extent of waterbodies in the study area and measuring the thickness of sediment at discrete points within each waterbody. Locations for sediment thickness measurements were chosen at the discretion of field personnel based on observations. This discretionary approach in 2012 resulted in 66 measurements of sediment thickness for all of the waterbodies found in the Site 28

study area. The second phase included sediment sampling activities. Using the results of the sediment mapping effort, sediment sample locations were selected. Requirements for sample location density in 2012, as document in the Daily Quality Control Reports (DQCRs), were a minimum of three sediment samples per water body (where sediment is present), and within a maximum spacing of 50 feet (DQCR# NEC 2012-15). This approach generated 51 primary sediment sample locations. Sediment mapping locations and sediment sample locations in 2012 were not collocated.

The 2018 effort was completed in three phases. The first phase consisted of measuring the extent of waterbodies within the study area. The second phase consisted of mapping activities, as described in this SOP, to include measuring the thickness of sediment by probing along primary transects. The third phase consisted of sediment sampling activities. Samples were collected from the 2012 sample locations where possible but were moved if they were within vegetative mat or on dry land. When possible, the primary transects were collocated with sediment sample locations.

#### 2.0 EQUIPMENT

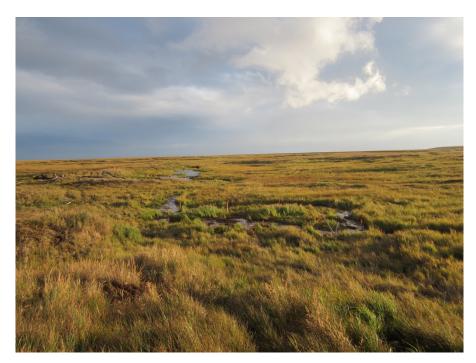
Sediment sampling equipment may include, but is not limited to, the following items:

- Appropriate personal protective equipment (PPE). At minimum, PPE will include safety glasses and nitrile gloves. Refer to the project Accident Prevention Plan (APP) for details.
- Appropriate size and quantity of sample containers.
- Sample labels
- Camera
- Logbook
- Chain-of-custody (CoC)
- Survey stakes, pin flags, or similar to mark measurement and sample locations
- Tape measure
- Compass
- Graduated probe
- Stainless steel spoons or spatulas
- Aluminum pie pans, large bowl, or gallon Ziploc bags
- Shovel, trowel, or other digging tools
- Hand coring tool
- Hand auger
- Clam Gun
- Grab sampler
- Chest waders
- Elbow-length gloves
- Inflatable boat or plastic sled
- Equipment decontamination bucket, with Alconox® or similar detergent and stiff-bristled cleaning brush, and duck pond

#### 3.0 SEDIMENT MAPPING AND SAMPLING APPROACH

During the 2018 field effort, sediment mapping and sediment sampling will occur at Site 28 to evaluate post-removal conditions and to determine volume of sediment at Site 28. For this evaluation, the

following definition of sediment will be applied to differentiate soil and sediment: sediment is defined as all continuously submerged loose mineral and organic material, except that which is actively growing vegetation and is part of the vegetative mat.


Sediment mapping and sampling will include the following:

- Measure extent of waterbodies (lateral and vertical).
- Measure extent of sediment within all waterbodies greater than 30 feet in diameter (lateral and vertical).
- Collect sediment samples.

For sediment thickness measurements, this SOP will utilize a graduated hand probe that will be advanced through the sediment layer. The relative resistance of the sediment layer will be different from the native soil that underlies the sediment. The point at which this resistance is encountered will be deemed the bottom of the sediment layer. Photographs 1 through 3 from previous fieldwork portray general site conditions expected at Site 28, showing ponded and flowing surface waterbodies in a landscape predominately covered in vegetative mat.



**Photo No. 1 –** 15 September 2013 Overview of Site 28. View facing southwest.



**Photo No. 2 –** 15 September 2013 Overview of Site 28. View facing northeast.



**Photo No. 3 –** 07 August 2018 Ponded area within Site 28. View facing southwest.

### 3.1. Measure Extent of Waterbodies

The lateral and vertical extent of surface waterbodies encountered at the Site 28 study area (confluence with the Suqitughneq (Suqi) river to the border of the MOC) will be measured during field season for waterbodies greater than 30 feet in diameter. Surface waterbodies at Site 28 measured during the 2018 sediment mapping effort are presented on Figure 1 (Exhibit 1).

The perimeter of each waterbody will be surveyed at the waterline (shoreline) using survey-grade Global Positioning Systems (GPS) equipment. Elevation of the waterbody will also be established using a temporary survey control point of established elevation. Surveying will take the form of either "continuous" data collection, or as an assortment of discrete points collected at intervals along the shorelines. For continuous data collection, the surveyor will walk the shoreline of any encountered waterbodies, ensuring the GPS antenna traces over the water/land boundary. For discrete point collection, the surveyor will record the position of the water/land boundary at intervals along the shorelines. Spacing of GPS points will vary based on the intricacy of the shoreline. Generally, spacing of points 5-10 feet apart along the shoreline will adequately describe the extent of most surface waterbodies. Closer spacing may be used to capture more complex shorelines, and looser spacing may be used along straight sections of shorelines. Spacing greater than 30 feet will be avoided. The assortment of points can then be combined and processed using geographic information systems (GIS) software to display a continuous outline of measured waterbodies.

The depth of the waterbody will be measured by the field team using a graduate probe and will be collected from across the primary transect that is described within Section 3.2. The probe will be lowered into the water until it rests on the top of the sediment layer. While the probe is in a vertical position and resting on the sediment, the depth of the water will be recorded to the nearest 0.1 foot. Additional water depth measurements will be collected during sediment thickness probing described in Section 3.2.2.

#### 3.2. Measure Extent of Sediment

Within the surveyed waterbodies from Section 3.1, submerged areas will be characterized and documented as sediment or vegetative mat. If there is no material that meets the Section 3 definition of sediment (only the vegetative mat present) no further evaluation will occur in that area of the waterbody. No assessment below the vegetative mat will occur. Submerged debris may be encountered during the sediment investigation; the location and description of any debris should be documented.

#### 3.2.1. Lateral Extent of Sediment

When sediment is present, the lateral extent of sediment will be determined by visual inspection of submerged material. Hand tools will be used when needed to retrieve submerged material for evaluation to aid the visual inspection. The lateral extent of sediment will be recorded using survey-grade GPS equipment similarly to the lateral extent of surface water. The lateral extent of the sediment may not always extend the length of the surveyed surface water boundaries. Conditions between the sediment and surface water boundaries should be documented.

### 3.2.2. Vertical Extent of Sediment

Generally, two types of waterbodies are expected to contain sediment at Site 28. The first type of waterbody will be a discrete pond that is not interconnected to another surface water feature. The second type of waterbody will be an elongated feature that is interconnected to other surface water features typically observed at Site 28 in a north/south orientation with flowing water that runs towards the Sugi River.

For discrete waterbodies that contain sediment, a compass will be used to establish a north/south transect and an east/west transect crossing at the center of the sediment area to measure thickness. A graduated hand probe will be used to measure sediment thickness to the nearest 0.1 foot starting from the edge of the sediment area and at intervals not exceeding 10 feet. For smaller sediment areas, probe spacing should be reduced to provide a minimum of 5 evenly-spaced measurements for each transect. Following probing along the primary transects, additional measurements of thickness maybe be collected from the adjacent guadrants at the discretion of the field team (Photograph No. 4).

For linear waterbodies, sediment thickness will be evaluated every 30 feet along the length of area that contains sediment. At these intervals, sediment thickness will be measured across the width of the

sediment area with 3 evenly-spaced measurements. Additional thickness measurements may be collected if significant variation in sediment thickness is encountered due to removal activities.

At both discrete and linear waterbodies, the water depth to the top of sediment (bathymetry) will be measured and recorded to the nearest 0.1 foot at each measurement location using the graduated markings along the probe. Depth of sediment will be recorded at both waterbodies to the nearest 0.1 foot when resistance of the subsurface underlying sediment is felt.

The 2018 transect locations and probe spacing are illustrated on Figure 1 (Exhibit 1). Note that these transect locations will not be strictly followed; similar transect and probe spacing will be used in the field, but specific locations will vary based on the sediment distribution encountered.



Photo No. 4 – 07 August 2018
Ponded area within Site 28. View facing southwest.

### 3.3. Collect Sediment Samples

Hand tools including (but not limited to) a hand auger, sludge and sediment sampler, clam gun, or shovel may be used to recover sediment. Hand tools and containers used for sample handling should be disposed of after each use, or properly decontaminated in between handling of analytical samples according to the procedures defined within the contractors work plan.

Sediment samples will be collected from within the submerged areas identified as sediment from 3.1 and 3.2. Sediment samples will be collected at a minimum of 3 samples per water body (where sediment is present), and at a maximum spacing of 50 linear feet. Approximately 54 locations are anticipated based on previous mapping efforts. Where possible, samples are to be collected from the identified sample locations from previous sample efforts. If significantly different quantities of sediment are encountered, an alternative sample plan or sample density will be discussed with the QAR. Sediment sampling locations will be determined in the field, with the objective to produce uniform spatial coverage and representative sampling of the observed distribution of sediment (based on sediment probing from 3.2.2). Sediment samples will target areas of thickest sediment deposits to ensure adequate quantities for analysis. Figure 1 (Exhibit 1) shows the 2018 sample locations. These locations may be adjusted in consultation with the USACE if needed based on actual field conditions found at the time of sample collection and contract requirements. If a new sample location is to be

selected, attempts should be made to remain as close as possible to the original sample location identified from previous sample efforts.

Field personnel will inspect and describe the recovered material in field notes, using the sediment sampling form provided in Attachment 2 of this SOP. Sediment from each sample location will be evaluated to a depth of two feet or until substrate (such as underlying dense peat layer) is encountered (whichever occurs first).

Sediment thickness as described in recovered sediment cores should be compared to sediment THICKNESS AS MEASURED FROM PROBING LOCATIONS.

### 4.0 VOLUME ESTIMATION

Sediment mapping activities are conducted to build a volume estimate of sediment present at Site 28. Survey data recording the lateral extent of sediment areas and mapping locations will provide the spatial information necessary to calculate volume from the thickness measurements.

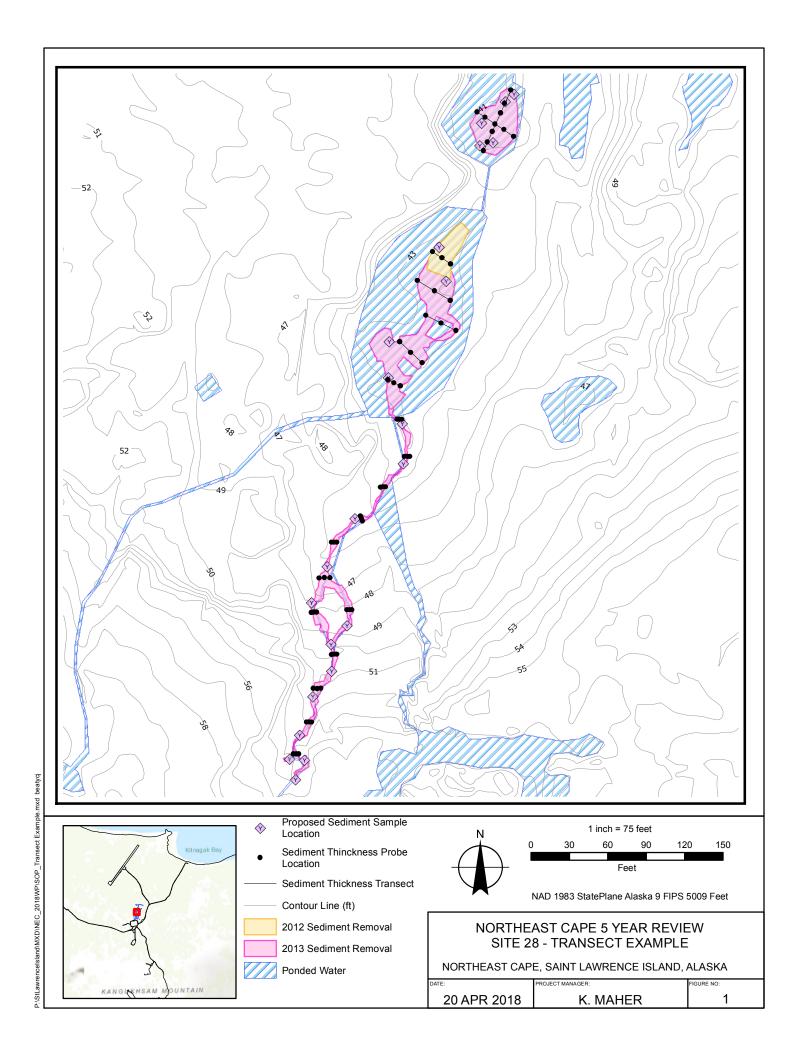
Volume of sediment will be estimated using an average thickness for each identified sediment area. The volume will be estimated as the average thickness multiplied by the surface area of the associated sediment (as mapped during 3.2.1). The volumes of sediment present at each sediment area will then be added for a total volume of sediment at Site 28. More complex estimates of volume can be conducted as requested, within the limits of the resolution of the dataset.

### 5.0 LABORATORY ANALYSIS

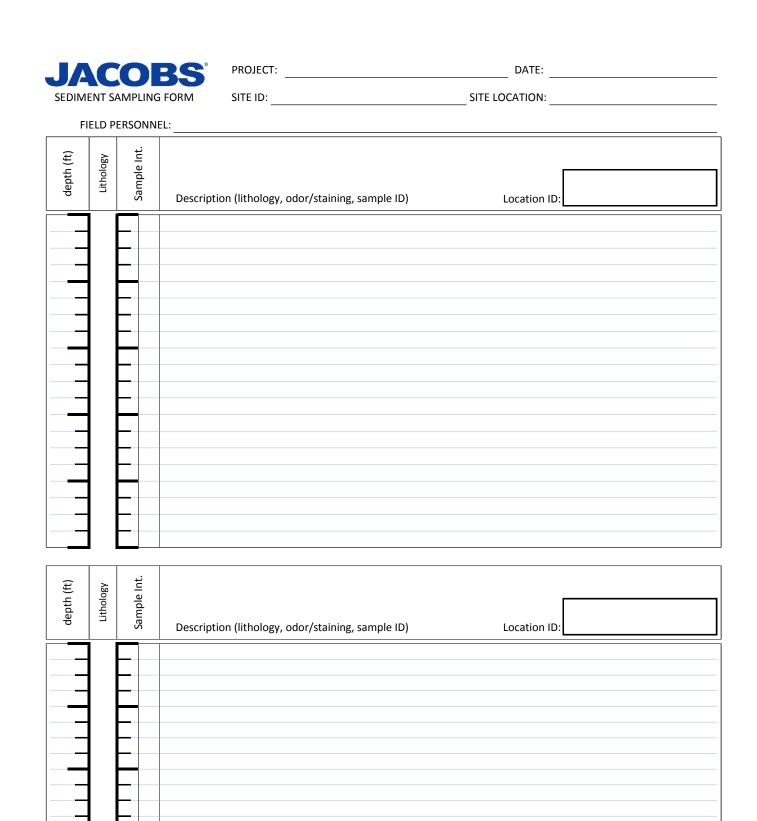
Sediment samples will be sent to an offsite laboratory and will be analyzed for DRO and RRO by AK102/AK103, PAHs by SW8270 selective ion monitoring (SIM), PCBs by SW8082, metals by SW6020 (arsenic, chromium, lead, selenium, and zinc only), and total organic carbon (TOC) by SW9060. TOC will be reported from a single run per sample. DRO and RRO sample extracts will be split by the laboratory and undergo silica gel cleanup procedure as described in ADEC Technical Memorandum 06-001 so that a before and after silica gel cleanup result is available. Quality Control samples will be collected at Site 28 based on the frequency presented in the contractors work plan.

### 6.0 HEALTH AND SAFETY

Procedures for working with potentially hazardous materials, as well as the relevant Safety Data Sheets (SDS) for each chemical that will be used at the site, should be included in the contractors work plan. Personnel using this procedure must be trained on the information contained in the SDSs, engineering controls, and the PPE outlined in this procedure.


All sediment samples will be treated as potentially containing contaminants of concern. Care must be used when handling soil samples to prevent the possible spreading of contaminants in the work area. At a minimum, Level D PPE, including nitrile gloves and safety glasses, will be worn while collecting soil samples.

### 7.0 REFERENCES


USACE (U.S. Army Corps of Engineers). 2013 (January). Site 28 Technical Memorandum Addendum. Revision 1. St. Lawrence Island. Alaska. Prepared by Bristol Environmental Remediation Services, LLC. FRMD No. F10AK096903\_03.10\_0022\_a.

USACE. 2018 (December). 2018 Site 28 Sediment Mapping and Sampling Report, Pre-Draft. Northeast Cape, St. Lawrence Island, Alaska, Prepared by Jacobs Technology, Inc. FRMD No. F10AK096903\_xx.xx\_yyyy\_a.

Exhibit F5-1 Figure



### Exhibit F5-2 Sediment Sampling Form



# APPENDIX G Public Notices, Interviews, and Public Comments



#### **COMMUNITY ISSUES**

Issues raised by the community regarding the Northeast Cape (NEC) Formerly Used Defense Site (FUDS) cleanup were identified through a public meeting conducted on April 11, 2018 and through interviews conducted with community members and the Alaska Department of Environmental Conservation (ADEC) regulator. General issues were grouped based on similar topics and the U.S. Army Corps of Engineers (USACE) response to the general issues are provided in this appendix. The detailed April 11, 2018 meeting minutes and interview documentation are included in this appendix following these USACE responses. USACE appreciates the feedback and recommendations we have received from community members and the regulator, which it always considers carefully.

Sites were prematurely closed without the consent of the tribes and they were not part of the Record of Decision (ROD). Tribal governments and people do not approve the minimal site characterization and remediation, it is not protective of the Sivuqaq Yupik peoples' health and well-being.

USACE response: The USACE followed the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process for cleanup at the NEC FUDS. Specifically, a site assessment, four phases of remedial investigation, and a feasibility study were conducted prior to development of the Proposed Plans and Decision Documents (DDs), and subsequent remedial actions. The sites that were closed were found not to pose an unacceptable risk to human health and the environment. The USACE gave serious consideration to the public comments received during the Proposed Plan stage and incorporated some of the comments into the DDs. The USACE is the lead agency. Under CERCLA, as the lead agency representative, USACE has sole decision making authority on non-National Priority List (NPL) sites, such as Northeast Cape FUDS. In accordance with the Defense Environmental Restoration Program-FUDS (DERP-FUDS), the USACE cannot incorporate cooperating agencies on CERCLA DDs.

There is not a good mechanism for re-opening sites because the process is too lengthy, "taking 2-3 years."

USACE response: The USACE is bound by law to follow the CERCLA process to address contamination on FUDS properties. The CERCLA process is lengthy.

### There is no clarity on which sites are open and which sites are closed.

USACE response: The NEC FUDS is a complicated site. A summary of which sites are open and which sites are closed is provided in Appendix C, pages C-1-1 and C-1-2.

The full nature and extent of contamination has not been fully investigated, so the remediation is incomplete. Source areas of contamination, including the main complex and uncontrolled landfills, have not been fully characterized or removed and these continue to contaminate the Suqi River. The contaminants at NEC pose a significant source of pollution to traditional subsistence foods, water supplies, and medicinal plants. Contamination continues to affect water sources, traditional medicinal and food plants, fish, and wildlife, as well as the health of the people. The remedies are not protective of human health and the environment.

USACE response: The USACE followed the CERCLA process and conducted a site assessment, four phases of remedial investigation, and a feasibility study of contamination at the NEC FUDS. The ADEC concurred with the adequacy of the investigation, provided that the remedy is properly implemented and the CERCLA process continues to be followed in order to achieve and/or maintain protectiveness.

Remediation is considered complete and a site is closed when the site reaches conditions that allow unlimited use and unrestricted exposure. For each site that remains open, Five-Year Reviews or periodic reviews will continue to occur to ensure the remedy at the site remains protective of human health and the environment.

Remedies selected in the DDs were developed based on the human health and ecological risk assessment and are considered protective of future residential use. Ground disturbing activities (e.g., construction, excavation, or debris removal) are not recommended on the Site 7 and 9 landfill caps, and it is not recommended that groundwater in the vicinity of Sites 4, 6, 7, 9, and

the Main Operations Complex (MOC) be used for drinking water. Land use controls (LUCs) apply to these areas. Though the LUCs are not yet fully implemented, two signs have been installed at the FUDS to inform site visitors of these locations. The signs are printed in both English and Siberian Yupik.

A community member stated that they had uncovered a landfill and reburied it when performing dirt work with heavy equipment near the dome associated with the White Alice site on top of Kangukhsam Mountain.

USACE response: The USACE will contact the community member to get a specific location of the landfill so it can investigate this report.

Remediation may have made the sites more toxic by mobilizing contaminants. Many sites at NEC remain highly toxic and will continue to harm future generations.

USACE response: The potential mobilization of contaminants during remediation was considered when developing and implementing the remedy for each site, and actions were taken to minimize the potential migration of contaminants. For example, at Site 28 Drainage Basin, a variety of actions were taken to minimize the movement of contaminated sediments from upstream source areas into downstream areas or the Suqi River during sediment removal. Those actions are discussed in Sections 3.2.1.2 of Appendix C of the second Five-Year Review report.

The remedy for each site was designed to protect human health and the environment by either removing contamination to risk-based cleanup levels or eliminating exposure pathways. At sites where contamination was left in place, institutional controls are being implemented to ensure relevant exposure pathways remain incomplete, and reviews are being conducted to ensure remedies remain protective of human health and the environment. Thus, current and future generations will not be exposed to unsafe levels of contamination, and their health will not be harmed.

There is a long way to go to achieve restoration and removal of the contamination. The premature closures, partial excavations, natural attenuation, and/or LUCs are completely inadequate. Additional remedies should be implemented including source

## removal and well-planned and executed remedial technologies such as in situ peroxidative and biological remediation.

USACE response: The remedy for each site was designed to protect human health and the environment by either removing contamination to risk-based cleanup levels, or eliminating exposure pathways. At sites where contamination was left in place, LUCs are being implemented to ensure relevant exposure pathways remain incomplete, and five-year and periodic reviews are being conducted to ensure remedies remain protective of human health and the environment. Thus, current and future generations will not be exposed to unsafe levels of contamination, and their health will not be harmed.

## The plan for only one or two signs that describe the land use restrictions at NEC FUDS is not enough.

USACE response: USACE originally planned to install one sign along the road near Site 4, and subsequently accommodated a request from the Native Village of Savoonga Council for one additional sign near the NEC airstrip. Two signs were developed and installed during the summer of 2018. The signs are printed in both English and Siberian Yupik. The signs indicate locations where ground disturbing activities (e.g., construction, excavation, or debris removal) are not recommended on the Sites 7 and 9 landfill caps, and it is not recommended that groundwater in the vicinity of Sites 4, 6, 7, 9, and the MOC be used for drinking water. LUCs in the form of deed notices, consistent with the Uniform Environmental Covenants Act (UECA), will also be developed in accordance with the multi-site DD

Everything before and after the NEC ROD happened without government to government consultation with our tribes. Local voices and knowledge have not been heard or considered. The USACE did not fulfill their government to government obligation.

USACE response: The USACE follows U.S. Department of Defense Native American Indian and Alaska Native Policy. We believe government to government relationships have been established with the Native Village of Savoonga and the Native Village of Gambell. The USACE will continue to consult with the Tribes on a government to government basis. The

USACE strongly values the knowledge we have gained about NEC through consultation with the Tribes, and has incorporated that knowledge into site investigations and remedies.

It is requested that a new ROD be implemented with the full participation and consultation with tribal governments. The omission of the tribes from the ROD warrants inclusion of the tribes in any decisions concerning site remediation, acknowledging and using local knowledge and community-based participatory research data to drive adequate site characterization and remediation.

USACE response: USACE is required to follow the CERCLA clean-up process. The USACE consulted the Tribes during the proposed plan phase, and will continue to consult with the Tribes through the 5-year review process. It is not possible to implement a new ROD with Tribes as signatories. Under CERCLA, as the lead agency representative, USACE, has sole decision making authority on non- NPL sites, such as NEC. In accordance with the DERP-FUDS, the USACE cannot incorporate cooperating agencies on CERCLA DDs.

Native Village of NEC residents are now displaced due to the military toxic contamination from the abandoned FUDS at NEC. There is interest in re-establishing the NEC site because of the growing population of Savoonga. The site has not been cleaned up to residential standards.

USACE response: Many of the NEC sites have been cleaned up to residential standards. The remedy for each site was designed to protect human health and the environment for future residential use by either removing contamination to risk-based cleanup levels, or eliminating exposure pathways. At sites where contamination was left in place, institutional controls in the form of deed notices, consistent with UECA, are being implemented to ensure relevant exposure pathways remain incomplete, and five-year and periodic reviews are being conducted to ensure remedies remain protective of human health and the environment.

The real estate value at NEC has been severely depreciated and the community would like to see compensation for that.

USACE response: Compensation for real estate depreciation is not authorized by the Defense Environmental Restoration Program-FUDS.

There is concern that people are drinking water from the Suqi River and other sources at NEC. They are also concerned that families who live and/or travel through NEC may be exposed to hazardous chemicals though inhalation, ingestion, and consumption of traditional foods. A community member requested that signs should be placed to warn the public against consuming the fish and the water from the Suqi River. A community member also requested that seals and fish coming into the Suqi River be tested.

USACE response: Water quality sampling has found contaminants are not present above cleanup levels in Suqi River water.

Two signs were developed and installed at NEC during the summer of 2018. The signs are printed in both English and Siberian Yupik. The signs state that ground disturbing activities (e.g., construction, excavation, or debris removal) are not recommended on the Sites 7 and 9 landfill caps. They also state that it is not recommended to use groundwater as drinking water at Sites 4, 6, 7, 9, and the MOC. LUCs in the form of deed notices, consistent with UECA, are also being developed.

According to the human health risk assessment, site users will not be exposed to unsafe levels of contamination through the inhalation, ingestion, or traditional food consumption pathways.

Testing the seals and fish coming into the Suqi River is not warranted. The Agency for Toxic Substances and Disease Registry (ATSDR) performed a health consultation to evaluate the community's contaminant concerns at NEC (Public Comment draft released July 24, 2017). The health consultation concluded that "eating fish from NEC in the summer (3 months) is not expected to harm people's health" because "contaminants are not present in fish at sufficiently elevated levels to be harmful."

The watershed of the nearby Tapissak ("Tapi") River is also contaminated and that area has not been investigated or characterized. Their research shows elevated levels of polychlorinated biphenyls (PCBs).

USACE response: Review of historical maps and as-built documents indicated there was no sign of military use in the watershed of the Tapi River. This area is outside the FUDS property boundary, and is not eligible for cleanup under FUDS.

The USACE has not assessed the effects of climate warming on the mobilization of contaminants that have been sequestered in landfills and within permafrost. Erosion and permafrost melting will likely increase the mobilization and bioavailability of contaminants at NEC, thus increasing hazards to the health of fish, wildlife, and people.

USACE response: Information gathered during future five-year and periodic review site inspections and long-term monitoring (LTM) events will be used to evaluate protectiveness of the remedies at each site. If during a future review USACE finds evidence a remedy is no longer protective, then actions would be taken to ensure protectiveness.

The military did not honor the agreement that was signed by the Secretary of State (1951) not to pollute the Suqi with any human waste or any other pollutants or violate our hunting/trapping grounds. The community does not believe they will see the river come back to life in their lifetime and it is questionable if the river will ever come back to its former state. A human rights violation was committed – the Suqi river was wiped out with fish and the seals do not haul out anymore.

USACE response: The USACE appreciates these concerns. The USACE is constrained by the cleanup authority of the DERP-FUDS. Our mandate for environmental remediation is to achieve protection of human health and the environment, rather than return the site to its pristine condition.

USACE has yet to develop a Notice of Environmental Contamination as well as institutional controls with the landowner, which is a primary requirement for several of the remedies associated with NEC sites. This requirement is specified in both 2009 DDs, the LTMMP, and other project documents and correspondence since the removal actions were completed in 2014, and is also a site closure requirement of 18 Alaska Administrative Code (AAC) 75. The current Five-Year Review effort needs to discuss and include these issues as well as outline milestone dates for their completion.

USACE response: USACE agrees LUCs such as Environmental Covenants, which will now replace Notices of Environmental Contamination under UECA, and institutional controls are an important part of the remedy. LUCs will be implemented at NEC in the form of Deed Notices, consistent with UECA, containing information regarding designated non-drinking water source areas, recommendations for preventing construction of buildings on top of the landfill areas, and the recommendation to not install drinking water wells within the MOC area until RAOs (cleanup levels) are achieved through natural attenuation processes. Deed Notices

provide information or notification to local communities and landowners that residual or contained contamination may remain on site. Deed Notices will play an important role at NEC, by notifying site visitors of the locations of non-drinking water source areas and landfills. The USACE will continue efforts to coordinate with the landowner to develop Deed Notices. Once finalized, Deed Notices will be implemented through filing an Environmental Covenantat the State Recorder's Office.

A discussion of LUCs and milestone dates is included in Section 2, Table 4 of this Five-Year Review report.

There is concern regarding whether or not the issues of contaminant migration and/or exposure pathways via sediment and/or surface water at Site 28 and related drainages have been adequately investigated and/or monitored. This includes concerns regarding the state of the residual contamination source areas which remain within the tundra at Site 28 as well as likely ongoing sources from the MOC plumes which are located immediately adjacent to/upgradient of Site 28. Surface water monitoring data from Site 28 may be necessary in the future in order to make conclusive determinations regarding the status of migration and/or exposure pathways.

USACE response: Residual soil contamination remaining within the tundra in the southern portion of Site 28 adjacent to the MOC is overlain with naturally occurring vegetative mat and therefore is not migrating. The presence and quality of sediment at Site 28 is periodically evaluated. When accumulated contaminated sediment is periodically removed from Site 28 the concern about contaminated sediment migration is eliminated. Between sediment removal events, naturally existing ponds within Site 28 act as sedimentation ponds and limit migration of sediment that may become suspended in surface water at Site 28. In addition, the presence of a natural stilling area present between sediment Removal Areas 9 and 10 within Site 28 further inhibits migration of suspended sediment.

Previous surface water sample results have indicated future surface water monitoring in Site 28 is not warranted. In 2013, active sediment removal from Site 28 using a dredge modeled the worst-case scenario for potential contamination of surface water from suspended sediment as the surface water flowed through Site 28. To monitor whether or not contaminated sediment removal activities performed during 2013 were causing surface water contamination at Site 28,

surface water samples were collected before, during, and after sediment removal activities. The three sample locations were in the active stream channel located downstream of sediment removal operations. The samples were analyzed for diesel-range organics (DRO), residual-range organics (RRO), benzene, toluene, ethylbenzene, and xylenes (BTEX), polycyclic aromatic hydrocarbons (PAHs), PCBs, Resource Conservation and Recovery Act (RCRA) 8 metals plus nickel, vanadium, and zinc, and turbidity. None of the surface water samples exceeded the multi-site DD criteria for total aromatic hydrocarbons (TAH)/total aqueous hydrocarbons (TaqH), and no hydrocarbon sheen was observed.

Surface water samples were also collected at three locations downstream of suspended sediment mitigation measures during active sediment removal. The samples were analyzed for DRO, RRO, BTEX, PAHs, PCBs, RCRA 8 metals plus nickel, vanadium, and zinc, and turbidity. None of the surface water samples exceeded the multi-site DD criteria for TAH/TaqH, and no hydrocarbon sheen was observed. The sample collected within Site 28 upstream of the confluence with the Suqi River contained an estimated concentration of only 0.042 milligrams per liter DRO.

The USACE will continue to evaluate dredging methods and techniques within Site 28 to improve the effectiveness of future contaminated sediment removal activities. Effectiveness and protectiveness of the remedy will continue to be assessed as part of future reviews.

Regarding Site 8, the extents of subsurface soil and groundwater contamination on both sides of the road remain the primary data gap at the site and require further evaluation in the current Five-Year Review in order to determine/recommend the appropriate and necessary path forward.

USACE response: Agreed. The second periodic review for Site 8 will be available in a separate document. It is anticipated the second periodic review for Site 8 will include a recommendation for a supplemental investigation to delineate the lateral and vertical extent of soil contamination east of the 2016 sampling area and revise the location of the historic pipeline spill based on all available site data.

All applicable surface water criteria should apply as ARARs at all applicable sites; even though the DDs may have limited the specifications of surface water cleanup level(s) and/or criteria to TAH/TAqH and sheen.

USACE response: ARARs were established in the DDs, and are considered protective of human health and the environment. ARARs as specified in the DDs will not be changed for the NEC FUDS unless it is determined the DD remedies are no longer protective of human health and the environment. The surface water criteria applicable to Northeast Cape sites, as stated in Section 2.10 of the DD, "are the same [levels] as the Main Complex groundwater cleanup levels, assuming the water is used as a drinking water source. In addition, surface water must meet water quality standards as promulgated by the State of Alaska in 18 AAC 70. The water quality criteria for petroleum hydrocarbons, oil, and grease are set out in regulation at 18 AAC 70.020(b) and stipulate these compounds may not cause a visible sheen upon the surface of the water. In addition, the regulations contain surface water quality levels of 0.010 milligrams per Liter (mg/L) total aromatic hydrocarbons (TAH) and 0.015 mg/L total aqueous hydrocarbons (TAqH)." Surface water considered a drinking water source are the surface waters of the Squitughneq River, upstream of the intersection of the Airport and Cargo Beach Road, which is presented in Section 2.8.3 of the DD.

Site 7 and other uncharacterized landfills at NEC will continue to require CERCLA Five-Year Reviews until such time that the agencies concur that periodic reviews are appropriate. Although the DD states the term periodic reviews, the Site 7 landfill has had prior sources and residual concentrations of CERCLA contaminants identified; while the agencies have agreed to disagree on this issue based upon prior deliberations, the uncharacterized areas of concern require CERCLA Five-Year Reviews until otherwise determined appropriate to change the process to periodic reviews. Additionally, ongoing monitoring of the downgradient surface water and/or groundwater at these landfills is also applicable and necessary during the CERCLA Five-Year Review until such time that the agencies conclusively concur that any contaminant migration and/or exposure pathways are incomplete and that the remedy remains protective.

USACE response: The second periodic review for Site 7 (Cargo Beach Landfill) will be available as a separate document. The selected remedy at Site 7 (Cargo Beach Landfill) did not include a requirement for monitoring surface water or groundwater. Sampling of shallow groundwater was attempted in the vicinity of Site 7 with only limited success due to the

tundra/wetland environment, the presence of subsurface rock/boulders, the intermittent presence of water, and slow recharge of shallow groundwater within temporary wells. A LUC at Site 7 will be implemented because groundwater use as drinking water is not recommended at Site 7. Though the LUCs are not yet fully implemented, two signs have been installed at the FUDS to inform site visitors of these locations. The signs are printed in both English and Siberian Yupik. In addition, the groundwater exposure pathway at Site 7 is incomplete because there is not a sufficient quantity of water produced to be considered a reasonable potential future source for drinking water. Periodic reviews in accordance with the Long-Term Management Plan will continue at this site.

The second periodic review for Site 9 (Housing and Operations Landfill) will be available as a separate document. The remedy at Site 9 included removal of submerged debris in active stream channels adjacent to the landfill, construction of a minimum 2-foot thick landfill cap, visual inspection of the landfill cap on an annual basis for settlement and erosion for five years, implementing LUCs, and LTM. LTM included three monitoring events spaced five years apart to demonstrate the shallow groundwater meets RAOs for a non-drinking water source, and six monitoring events spaced five years apart to demonstrate the shallow groundwater meets RAOs for a non-drinking water source. Removal of submerged debris in active stream channels adjacent to the landfill, construction of a minimum 2-foot thick landfill cap, and visual inspection of the landfill cap on an annual basis for settlement and erosion for five years have been implemented. LUC implementation is underway, but not yet complete. As a result of insufficient shallow groundwater volumes in the vicinity of the landfill, surface water has been used to demonstrate the shallow groundwater meets RAOs for a non-drinking water source. Surface water sample results to-date indicate the remedy is protective. Periodic reviews in accordance with the Long-Term Management Plan will continue at this site.

Settling/subsidence has been observed at the Site 7 landfill, as well as poor and inadequate vegetation establishment associated with the covers and adjacent surfaces of the Site 7 and Site 9 landfills.

USACE response: The second periodic review for Site 7 (Cargo Beach Landfill), will be available as a separate document, and will include details of issues noted during landfill visual

inspections. The second periodic review for Site 7 includes a recommendation to conduct cap maintenance in areas where settling was observed. Granular fertilizer and seed were spread over the landfill cap following cap construction in 2009. In an attempt to address poor vegetative growth observed on the Site 7 landfill cap, granular fertilizer and seed were again spread over the landfill cap during 2011. A stabilization analysis conducted in 2011 determined the landfill cap met non-vegetative permanent stabilization requirements established in the 2011 Alaska Construction General Permit. During the 2018 landfill visual inspection, it was noted the soil used to construct the cap was very coarse and rocky, which significantly contributed to the sparse nature of vegetative growth.

Site 9: Vegetative cover observed during visual landfill cap inspections has been estimated at 70 to 80 percent on the cap surface and side slopes. Vegetative cover was noted as being short, but with good coverage. The cap appeared structurally sound and stable with no evidence of leaching or erosion. The landfill cap will continue to be visually monitored on a periodic basis, likely in conjunction with CERCLA Five-Year Reviews at other NEC sites, for up to 30 years.

## SUGGESTIONS REGARDING FUTURE OPERATION, MAINTENANCE, AND MONITORING AT THE SITE

The community and ADEC provided the following suggestions for the future operation, maintenance, and monitoring at NEC:

**Suggestion**: Assess the residual contamination remaining at the Fish Camp sites as indicated by the most recent site investigation analysis results (most/all of which were conducted under the prior Native American Lands Environmental Mitigation Program [NALEMP] efforts) – which appear to indicate that residual concentrations of PCBs, petroleum, oil, and lubricants, and metal chemicals of concern remained in soil and surface water.

**Response**: The USACE has requested funding to conduct a preliminary assessment at the Fish Camp site to determine if a FUDS-eligible project exists there.

**Suggestion**: Complete removal of the solid and hazardous waste materials at the NEC Site 7 and other landfills.

**Response**: The current remedy remains protective of human health and the environment. The USACE does not intend to remove remaining materials at the Site 7 and 9 landfills. Periodic reviews in accordance with the Long-Term Management Plan will continue at Sites 7 and 9.

**Suggestion**: Evaluate and continue the extent investigation as determined necessary for soil and groundwater at Site 8.

**Response**: The second periodic review for Site 8 will be available in a separate document. It is anticipated the second periodic review for Site 8 will include a recommendation for a supplemental investigation to delineate the lateral and vertical extent of soil contamination east of the 2016 sampling area and revise the location of the historic pipeline spill based on available site data.

Suggestion: Continue to include LTM of surface water and groundwater at landfill sites.

Response: Continued LTM of surface and groundwater at the landfill sites is not warranted. The second periodic review for Site 7 (Cargo Beach Landfill) will be available in a separate document. The selected remedy at Site 7 (Cargo Beach Landfill) did not include a requirement for monitoring surface water or groundwater. Sampling of shallow groundwater was attempted in the vicinity of Site 7 with only limited success due to the tundra/wetland environment, the presence of subsurface rock/boulders, the intermittent presence of water, and slow recharge of shallow groundwater within temporary wells. An LUC at Site 7 will be implemented because groundwater use as drinking water is not recommended at Site 7. Though the LUCs are not yet fully implemented, two signs have been installed at the FUDS to inform site visitors of these locations. The signs are printed in both English and Siberian Yupik. In addition, the groundwater exposure pathway at Site 7 is incomplete because there is not a sufficient quantity of water produced to be considered a reasonable potential future source for drinking water.

Details of the most recent periodic review related to Site 9 (Housing and Operations Landfill) will be included in a separate document. The remedy at Site 9 included removal of submerged debris in active stream channels adjacent to the landfill, construction of a minimum 2-foot thick landfill cap, visual inspection of the landfill cap on an annual basis for settlement and erosion for five years, implementing LUCs, and LTM. LTM included three monitoring events spaced five years apart to demonstrate the shallow groundwater meets RAOs for a non-drinking water source, and six monitoring events spaced five years apart to demonstrate the shallow groundwater meets RAOs for a non-drinking water source. Removal of submerged debris in active stream channels adjacent to the landfill, construction of a minimum 2-foot thick landfill cap, and visual inspection of the landfill cap on an annual basis for settlement and erosion for five years have been implemented. LUC implementation is underway, but not yet complete. As a result of insufficient shallow groundwater volumes in the vicinity of the landfill, surface water has been used to demonstrate the shallow groundwater meets RAOs for a non-drinking water source. Surface water sample results to-date indicate the remedy is protective. Periodic reviews will continue at this site.

**Suggestion:** Remove and treat the White Alice site soil and groundwater to effectively remove associated contaminants.

Response: The White Alice site is also referred to as Site 31. Further soil removal is not warranted at this site. In 1990, transformers, drums, tanks, fire extinguishers, and other containerized hazardous waste were removed from Site 31. Antennas, buildings, and aboveground storage tanks were demolished and removed in 2003. PCB-contaminated concrete was also removed from portions of the Main Electronics Building foundation. PCB contamination was also identified at a possible sewage outfall area located west of the main electronics building, and adjacent to the former transformer pad. In 2005, approximately 118 tons of PCB-contaminated soil was excavated from the three identified areas within Site 31. Excavations at the septic tank outfall and west of the building successfully removed all PCB contamination to concentrations below 1 milligram per kilogram (mg/kg). Confirmation samples collected in 2005 from the former transformer pad excavation indicate PCBs remained between 1.53 and 7.09 mg/kg in approximately 110 cubic yards of soil. The selected remedy of

excavation and disposal of PCB-contaminated soil was initiated at Site 31 in 2010 and continued annually through the 2013 field season. Confirmation samples taken after 2013 soil removal indicated remaining site soil did not have PCB contamination above the multi-site DD cleanup level of 1 mg/kg. The site was recommended for No Further Action during the first Five-Year Review.

**Suggestion:** Removal/remediation of contaminants in source areas that remain within the NEC MOC soil and groundwater, as well as ongoing monitoring to ensure safe drinking water supplies.

Response: Contaminated soil has been removed to the extent practicable at the MOC sites. Insitu chemical oxidation, which was the selected remedy for contaminated MOC groundwater, was deemed ineffective during a 2009 pilot-scale test as a result of the presence of peat and highly organic peat soil, presence of permafrost or semi-permafrost zones, and observed preferential flow pathways. As a result, the contingency remedy of monitored natural attenuation (MNA) for groundwater was implemented and is ongoing. It is not recommended that groundwater in the vicinity of the MOC be used for drinking water until RAOs (cleanup levels) are achieved through natural attenuation processes. LUCs apply to the MOC. Though the LUCs are not yet fully implemented, two signs have been installed at the FUDS to inform site visitors of the location around the MOC where groundwater use is not recommended. The signs are printed in both English and Siberian Yupik. Groundwater monitoring is ongoing at the MOC sites.

**Suggestion**: Evaluate additional LTM investigation in soils and groundwater in areas adjacent to and immediately downgradient of MOC (aka the upgradient areas of the Site 28 Drainage)

**Response:** In 2010, UVOST borings confirmed the presence of petroleum-contaminated soil within the tundra in the southern portion of Site 28 adjacent to the MOC. The shallow groundwater was investigated during the 1994 remedial investigation. Two monitoring wells were installed within the eastern drainage of Site 28. The 1994 sampling results

indicated the potential for DRO and lead contamination. Subsequent sampling in 2001 demonstrated the levels of DRO and lead were below groundwater cleanup levels. No contaminants of concern were retained for the shallow groundwater. As stated in this FYR, the selected remedies are currently protective and are functioning as intended, therefore collecting additional data in this area is not warranted at this time.

**Suggestion**: Conduct surface water sampling at Site 28 and consider whether tissue sampling is necessary based upon historical and/or 2018 sediment sample results.

Response: Previous surface water sample results have indicated future surface water monitoring in Site 28 is not warranted. In 2013, active sediment removal from Site 28 using a dredge modeled the worst-case scenario for potential contamination of surface water from suspended sediment as the surface water flowed through Site 28. To monitor whether or not contaminated sediment removal activities performed during 2013 were causing surface water contamination in Site 28, surface water samples were collected before, during, and after sediment removal activities. The three sample locations were in the active stream channel located downstream of sediment removal operations. The samples were analyzed for DRO, RRO, BTEX, PAHs, PCBs, RCRA 8 metals plus nickel, vanadium, and zinc, and turbidity. None of the surface water samples exceeded the multi-site DD criteria applicable to non-drinking water sources for TAH/TaqH, and no hydrocarbon sheen was observed.

Surface water samples were also collected at three locations downstream of suspended sediment mitigation measures during active sediment removal. The samples were analyzed for DRO, RRO, BTEX, PAHs, PCBs, RCRA 8 metals plus nickel, vanadium, and zinc, and turbidity. None of the surface water samples exceeded the multi-site DD criteria for TAH/TaqH, and no hydrocarbon sheen was observed.

Contaminants remaining in sediment at Site 28 are organic chemicals (POL) that partition much more strongly to sediment than to surface water. Thus, sampling sediment captures the "worst-case" media contamination, and additional surface water samples are unlikely to provide substantial additional benefit.

At ADEC's request, USACE considered whether additional fish tissue sampling is warranted at NEC. We concluded that tissue sampling is not warranted, for the following three reasons:

- 1. An independent federal public health agency, ATSDR, evaluated contaminant levels in Suqi River fish tissue and concluded that "eating fish from NEC in the summer (3 months) is not expected to harm people's health" because "contaminants are not present in fish at sufficiently elevated levels to be harmful." Thus, contaminant levels in edible fish species have been determined not to threaten the health of Saint Lawrence Island residents who might consume them.
- 2. Contaminant levels in biota are not specified as an RAO, and "comparison" or "threshold" values of site contaminants in biota were not specified in the multisite DD.
- 3. Site 28 contaminants are not present in Suqi River surface water or sediments at levels of human health or environmental concern.

**Suggestion**: Effective remediation and LTM of the Suqi River drainage basin sediments and surface water (fuels and PCB contamination).

Response: Remedial investigations of the Suqi River were conducted between 1996 and 2004. Additional sediment and surface water sampling was performed during 2016. One sediment sample collected in 1996 exceeded the multi-site DD cleanup level of 3,500 mg/kg DRO with a DRO concentration of 25,000 mg/kg at one location about 850 feet downstream of the Site 28 Drainage Basin confluence with the Suqi River. Subsequent sampling events could not duplicate or substantiate this anomalous diesel detection. All other sediment samples collected from Site 29 Suqi River were below multi-site DD cleanup levels. PCBs have not been detected in Suqi River sediments above the multi-site DD cleanup level of 0.7 mg/kg. All surface water sample results from the Suqi River have been within drinking water standards. Remediation is not warranted because there is not an unacceptable risk to human health or the environment.

**Suggestion**: Complete removal or destruction of the contaminants identified at the former village site at NEC. Provide adequate funding for Native American Lands Environmental Mitigation Program at Native Village of NEC, including provisions to adequately support and build capacity with training and jobs for the Native Village of Savoonga.

**Response**: Petroleum contaminated soils were excavated from this site by the FUDS program in 2000-2001. The NEC decision document stated that no further action was required at this site. In 2014, the Native Village of Savoonga excavated PCB-contaminated soil under the NALEMP program. Confirmation sample results indicated that PCBs remained in the soil slightly above the ADEC clean-up level of 1.0 mg/kg.

The Native Village of Savoonga is not currently eligible to participate in NALEMP due to financial issues. However, the USACE has requested funding to conduct a preliminary assessment at the former village site, also known as the Fish Camp, to determine if a FUDS-eligible project exists there.

**Suggestion**: Review of the failure of the chemical oxidation project and attention to the problems/solutions identified by the Restoration Advisory Board technical advisor Dr. Ron Scrudato.

**Response**: The results of the chemical oxidation pilot test have been reviewed. In situ chemical oxidation was deemed ineffective during a 2009 pilot-scale test as a result of the presence of peat and highly organic peat soil, presence of permafrost or semi-permafrost zones, and observed preferential flow pathways.

**Suggestion**: Restoration of the Suqi River watershed and shallow groundwater resources within the area of the MOC and upgradient regions of the MOC to ensure adequate and safe drinking water at NEC.

**Response**: The USACE is constrained by the cleanup authority of the DERP-FUDS. Our mandate for environmental remediation is to achieve protection of human health and the environment, rather than return the site to its pristine condition. The remedy for each NEC site was designed to protect human health and the environment by either removing contamination to risk-based cleanup levels, or eliminating exposure pathways. At sites where contamination was left in place, LUCs are being implemented to ensure relevant exposure pathways remain

incomplete, and five-year and periodic reviews are being conducted to ensure remedies remain

protective of human health and the environment.

Suggestion: Tracking and analysis of materials salvaged from NEC that have been used by

families for construction of homes and camps. These present a likely exposure pathway for

contaminants such as PCBs, lead, asbestos, and others.

**Response**: The FUDS program is not legally authorized to address issues related to beneficial

use of salvaged materials.

Suggestion: Provide more advanced notice to ADEC, community members, and other

stakeholders whenever USACE is planning and scheduling future community meetings in order

to ensure all parties have adequate time to make arrangements for travel, schedule participation,

provide input to the agenda, etc.

Response: Agreed. USACE will make every effort to work with the ADEC, community, and

other stakeholders to identify the most appropriate dates to schedule meetings. Once scheduled,

USACE will announce meetings well in advance to ensure optimal opportunity for

participation.

Suggestion: Ensure that complete and comprehensive responsiveness summaries (e.g.,

complete responses to comments, meeting minutes, review and/or deliberation determinations)

be provided to all stakeholders and attached to all respective documents for all applicable

actions.

**Response**: Agreed.

Suggestion: Evaluate and apply the revisions and changes to 18 AAC 75 cleanup levels and

what impacts have resulted to any sites and their respective remedies.


Page 19 of 20

**Response**: Protectiveness of the remedy at each site which has not reached a condition that allows for unrestricted use and unrestricted exposure is re-evaluated during each five-year review as stipulated in CERCLA guidance, and/or during periodic reviews for non-CERCLA (POL) sites. This involves consideration of whether ADEC cleanup levels have changed since the last review. More fundamentally, the review assesses changes to scientific knowledge about the toxicity of COCs by evaluating whether EPA-derived reference doses or cancer slope factors for COCs have changed since the prior review.

**Suggestion**: Incorporate ATSDR health consultation conclusions and status of draft or final documents into this Five-Year Review.

**Response**: USACE confirmed ATSDR has not yet released a final version of the health consultation, "Northeast Cape Formerly Used Defense Site (FUDS), St. Lawrence Island, Alaska". Thus, the public comment version is still the most recent version available (July 24, 2017). Conclusions of the public comment version are incorporated in Sections 3.0 and 9.0 of this Five-Year Review.

----End of Comments---



PAGE 1 OF 4

PAM MILLER – ACAT (VIA PHONE)

NORTHEAST CAPE FORMERLY DATE HELD: 11 APRIL 2018 USED DEFENSE SITE 5-YEAR DATE ISSUED: 16 APRIL 2018 REVIEW PUBLIC MEETING RECORDED BY: HALEY HUFF & JESSICA BAY DOC. NO: AE-ECC-J07-5FGA4600-G01-0001 PLACE: SAVOONGA CITY HALL SUBJECT: SECOND NE CAPE FIVE-YEAR REVIEW

PARTICIPANTS:

ANDREA ELCONIN – USACE JESSICA BAY – ECC AARON SCHEWMAN – USACE **KEVIN MAHER – JACOBS** 

CURTIS DUNKIN – ADEC HALEY HUFF – JACOBS

12 RESIDENTS OF SAVOONGA (SEE INCLUDED SIGN-IN SHEET)

### **MEETING NOTES**

Andrea Elconin opened the meeting by introducing USACE and ECC/Jacobs staff followed by a brief overview of the meeting purpose. Kevin Maher began the slide presentation following the USACE introduction.

### **Meeting Overview**

The USACE met with the community of Savoonga to kick-off the Second Five-Year Review (5YR) at Northeast Cape Formerly Used Defense Site (NE Cape FUDS) and provide community members the opportunity to have ECC/Jacobs staff assist with the completion of a site questionnaire.

During the slide presentation, the following questions and USACE responses occurred: **QUESTIONS** 

- Once sites are closed, how often is the site monitored?
  - a. Response The sites will be closed when the remedial action objectives defined in the decision document have been met. Once the site is closed, there will be no further monitoring at the site unless new information is presented to the USACE that justifies re-opening the site.
- Will global warming/climate change have an effect on the contaminated sites?
  - a. Response If the site changes due to climate change (e.g., melting permafrost), then this will be noted during the next five-year review site inspections. Additional sampling may be warranted if new contamination is discovered.
- Which sites have not received site closure? Is there a way to re-open a site once it is closed?
  - a. Response New data that indicates a risk to human health can re-open a site.
- Sites with PCBs are not listed specifically in the mailer.
  - a. Response Sites with PCBs were cleaned up and are not listed because the USACE believes that all PCBs above the 1 ppm cleanup level have been removed from the Northeast Cape FUDS.

A community member stated that they do not feel like there is a good mechanism for re-opening sites because the process is too lengthy, "taking 2-3 years".

A community member stated that they do not feel like there is clarity on which sites are open and which sites are closed. Additional community member statements at this time included:

The five-year review report documents are not understandable to the public who are not familiar with the scientific information presented.

### **MEETING NOTES**

 A summary of the draft five-year review report findings in the form of a public meeting would help the community provide comments during the draft five-year review report public comment period.

USACE Response - The USACE would consider the request to add a public meeting during the public comment period related to the draft five-year review report.

A community member stated that the plan for only one or two signs that describe the land use restrictions at NE Cape FUDS is not enough.

USACE Response – The USACE response included a summary of the current signage plan as follows:

- The Signage will be added this summer and will indicate the areas where groundwater use is discouraged and the capped landfill areas where construction is discouraged.
- A meeting with the Native Village of Savoonga Council resulted in a request for an additional sign near the Northeast Cape airstrip.

The USACE stated that the signs would be in English and Siberian Yupik. A community member recommended George Noonwook as a translator.

A community member requested that signs should be placed to warn the public against consuming the fish and the water from the Suqi River.

• Alaska Community Action on Toxics (ACAT) mentioned that they have data suggesting that the Sugi River is still highly contaminated.

USACE Response - The USACE responded that the sample results from the Suqi River, described in the administrative record, do not show contamination is present above the cleanup levels. The USACE requested that ACAT provide the data they referenced to the USACE PM, Andrea Elconin, for evaluation.

A community member requested that seals and fish coming into the Suqi River be tested.

USACE Response included the following:

- The USACE cannot test animals or fish at the NE Cape Site.
- The USACE suggests that another entity, such as ACAT, can pursue a grant to conduct this type of testing and would alert ACAT if they become aware such a grant is available.
  - ACAT replied that there is not currently a grant available or a funding mechanism for fish/animal testing and would like to collaborate with the USACE for possible funding sources and a letter of support for the work.
  - ACAT is currently collaborating with the universities for further research at the Northeast Cape FUDS.

A community member stated that they had uncovered a landfill and reburied it when performing dirt work with heavy equipment near the dome associated with the White Alice site on top of Kangukhsam Mountain. The type of debris uncovered and reburied was not identified in the discussion.

USACE Response – The USACE asked if there was a way to identify the location such as GPS coordinates. The community member did not have GPS coordinates.

A community member asked "What if the military wants to build another site at NE Cape due to tensions with North Korea or Russia?"

### **MEETING NOTES**

The USACE responded that they would not be made aware of this type of information and that they are only involved with the Northeast Cape FUDS clean-up.

A community member asked if the Suqi River could be stocked with fish in the future?

USACE Response – Their technical expertise was not in the field of fishery management. However, they were not aware of any reason why this could not occur.

During the presentation of the slide describing 2018 Northeast Cape FUDS fieldwork, Pam Miller with ACAT requested more detailed information regarding the number of analytical samples and the associated analytical suites, and which areas would be sampled. The USACE suggested that this discussion occur after the slide presentation concluded so that others who did not want to hear the detailed information could leave the meeting.

USACE SUMMARY OF THE SAMPLING PLAN WITH PAM MILLER (ACAT) AFTER THE SLIDE PRESENTATION CONCLUDED:

Approximately four community members remained in the room and Pam Miller remained on the teleconference line for the detailed description of 2018 fieldwork. The USACE described the sample quantities and analytical methods that are planned for surface water samples, groundwater samples, and sediment samples, as well as the locations where samples will be collected.

Pam Miller asked if the USACE will analyze samples for PCB congeners instead of Aroclors? USACE Response – The USACE said they are not planning on analyzing for congeners because the Decision Document cleanup levels are specific to total PCBs and that there are no regulatory-based cleanup levels for congeners.

Pam Miller stated that recent samples of Suqi River fish collected by a third party identified congeners are present and are a human health risk. Therefore, specific congeners should be measured.

### **USACE** Response:

- The USACE requested that these data be provided to USACE PM, Andrea Elconin, for evaluation.
- Congeners do not have a regulatory cleanup level and the DD remedial action objective was to cleanup total PCBs to 1 ppm. Note: This was a mis-statement. The PCB cleanup level applicable to Site 29 Sugi River sediment is 0.93 ppm.

Pam Miller stated an Incremental Sampling Method (ISM) was not adequate because hot spots could be missed. Comment was specific to Site 8.

USACE Response - Decision Unit placement and extents have been revised to account for the 2016 discrete sample data set which identified the suspected area of release.

Pam Miller asked if mercury would be sampled for at Site 28.

USACE Response - Mercury has not been found in previous Site 28 samples above the cleanup level and Mercury would not be part of the analytical suite at Site 28.

Pam replied that her samples indicated mercury was present in the sediment of Site 28.

### **MEETING NOTES**

USACE Response - The USACE asked that data which showed mercury is present above the cleanup level, through third party sampling, be provided to the USACE for evaluation. Additionally, the USACE responded the MOC buildings that may have contained mercury light switches wer removed along with any potentially contaminated soil. Therefore, all sources of mercury which could contribute to Site 28 have been removed.

A community member stated the USACE is not sampling at locations suggested by the community, is only following the work plan, and is doing the minimum requirements to satisfy the law.

USACE Response - The USACE is bound by the regulation and the USACE is complying with regulation for the cleanup of the Northeast Cape FUDS.

A community member stated the community feels the previous 5 year-review did not address community concerns. The community feels their opinions are not impactful.

USACE Response - The USACE responded that the community input is impactful but the request of PCB congener analysis has to go down a different route and become an established cleanup level by regulation. The USACE identified that the planned signage was a result of community comments and that having onsite accommodations for community members to be present during 2018 fieldwork was also a result of community comments.

A community member recommended USACE meet with the Native corporations, as the landowners, in addition to the Native Village of Savoonga Council before the 2018 fieldwork occurs. Other suggestions included:

- Allow the corporations to review the sampling plan
- Present a digestible format of the results of the draft five-year review report

USACE Response – The USACE identified that the Native corporations were contacted and that they provided a right-of-entry to conduct 2018 fieldwork.

The public would also like the USACE to write a courtesy note to the Native corporations – re-stating the USACE is bound by law (specifically, the DD) and is limited in the types of sampling that can be performed. The note should also include appreciation of the public involvement and being welcomed into the village.

The meeting concluded.

Note – Nobody from the community remained after the meeting to complete and submit a five-year review questionnaire. Additionally, no one from the community returned to City Hall the next day to complete and submit a five-year review questionnaire.

#### The Second Five-Year Review for Northeast Cape Formerly Used Defense Site

**Public Meeting** 

| PRINT Public Meeting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|--|
| Name/Organization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Signature           |  |  |
| Oean Kulowiyi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dear Kulonius       |  |  |
| Irving Kava                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dring Kova          |  |  |
| Solom City of Savone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | San Shor            |  |  |
| the town flower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dota flows          |  |  |
| Short Short                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A                   |  |  |
| Coty 57 July                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 hit formal        |  |  |
| OF THE STATE OF TH | (250)               |  |  |
| JEN TRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ray Worn.           |  |  |
| Perry rungowing/Kakalget                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Yeur Pungpenigs     |  |  |
| Kullget Su.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Shuff Our           |  |  |
| JULIAN SAPPILY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Glillian Depletu    |  |  |
| BRYAN KODICK DRY KULDINGET, INC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the straight of |  |  |
| ROBERT ANNOGITUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ribert anny         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |  |  |
| 7000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1200                |  |  |



#### Interview Record

| Name: Curtis Dunkin                            | Date: February 15, 2019         |  |
|------------------------------------------------|---------------------------------|--|
| Organization: ADEC                             | Phone Number: 907.269.3053      |  |
| Title: ADEC Regulatory Project                 | Email: Curtis.dunkin@alaska.gov |  |
| Manager for the Northeast Cape FUDS            |                                 |  |
| Interview Type: X Mail/Ema                     | □ Phone/In Person               |  |
| Site Name: Northeast Cape, St. Lawrence Island |                                 |  |

The following interview questions are based on EPA guidance (EPA 540-R-01-007). Questions may be left unanswered if they do not apply to you.

#### **Interview Questions**

#### 1. What is your overall impression of the project (general sentiment)?

ADEC appreciates the opportunity to submit its comments and concerns on the prospective second five-year review (FYR) effort for the Northeast Cape (NEC) Formerly Used Defense Site (FUDS).

Within the current FYR period, spanning between 2014 and 2019, the Army Corps of Engineers (USACE) has continued to conduct monitoring and periodic reviews at specified sites of the NEC FUDS as required by both the 2009 NEC Site 7 Decision Document (DD) and the 2009 NEC Site Wide DD, and the 2016 NEC Long-term Management Plan (LTMP). USACE has made progress on addressing site management needs including developing the 2016 LTMP and developing conceptual Land Use Control (LUC) boundaries at sites where required by the DD.

USACE has been responsive to evaluating and implementing additional investigation activities to address newly identified data gaps and site characterization needs at several NEC sites during the current FYR period.

USACE has continued to work on and has achieved many of the action items and milestones which were specified in the preceding FYR report (2015) section 9.0 table 9.1. In general, the Alaska Department of Environmental Conservation's Contaminated Sites Program (ADEC) continues to agree with and perceives the site-specific protectiveness statements that were presented in the 2015 FYR report section 10 as continuing to be applicable and appropriate at the time of this questionnaire. ADEC is not aware of any major site management changes, issues, and/or concerns (i.e. land use changes, contamination migration, exposure risk, etc.) that would be considered inconsistent with what was identified in the 2009 DDs and/or the 2015 FYR that have been identified since the 2015 FYR report.

One of the accomplishments of the 2018 site work was the USACE installing signage along the Cargo Beach Road which had information detailing and figures depicting site locations, conceptual land use control boundaries, and warnings - as requested by community members and other stakeholders including ADEC. The signage included information in English on one side, and Siberian Yupik on the other.

ADEC's overall impression is that USACE has kept stakeholders adequately apprised of the project activities and schedules and have been responsive to community and agency involvement.

2. From your perspective, what effects have site operations had on the surrounding community? Are you aware of any community concerns/complaints regarding site operations, administration, implementation, or overall protectiveness of the remedies in the Decision Documents? ADEC perceives USACE's site operations to have had overall positive effects on the communities of Saint Lawrence Island. During the numerous mobilizations and implementations of field efforts over the years (both prior to as well as during the current FYR period), USACE consistently made it a priority objective to include community members in its hired field crews, has provided opportunities for community members to be designated community observers, and has also coordinated the logistics for community and agency members to travel to NEC to conduct field visits. USACE has also coordinated with ADEC for staff to conduct multiday site inspections during the implementation of field work as well as participation in community outreach.

ADEC is aware of numerous instances over the years, including during the current FYR period, that the USACE field staff provided major critical medical care to community members who were traveling to visit the Native Village of Northeast Cape (NVNC) and/or traveling between the surrounding fish and hunting camps.

USACE site operations over the years have resulted in economic contributions to the local economies of the communities of Gambell and Savoonga.

ADEC is aware of several ongoing concerns which have been expressed by community members via written and/or oral comments on projects (documents) and/or public meetings which have occurred prior to as well as during the current FYR period, including but not limited to the following: 1) potential leachate in surface and/or groundwater that could be associated with the landfills, 2) residual contamination in waters, sediments, and/or fish within the Site 28 and Suqi River drainages – including respective concerns associated with potential exposure risk(s); 3) potential residual FUDS contamination at several of the NVNC fish camp sites, and 4) FUDS debris and structural materials that represent health hazards to community members and/or wildlife.

- 3. Are you aware of any events, incidents, or activities at the site such as vandalism, trespassing, or emergency responses from local authorities? If so, please provide details. ADEC is not aware of any such events listed in the question as having occurred in association with the Northeast Cape FUDS areas of concern (sites).
- 4. Do you feel well informed about the site's activities and progress? Have there been communications or activities regarding the site? ADEC feels that it is adequately informed regarding the site's activities and progress. USACE has coordinated public meetings in Savoonga to discuss the planning of and to solicit input for the prior draft 2014 FYR report and also in April 2018 to inform the community and to solicit input from stakeholders regarding the draft 2018 Remedial Action Review Work Plan. USACE has provided ADEC with the opportunity to review and comment on the LTM work plans and reports that have been implemented during the current FYR period, and has also hosted numerous technical planning meetings USACE has provided ADEC with regular updates during the implementation of field work during this FYR period. In instances that warranted consideration of potential or

necessary changes to the field and/or project plans, USACE has apprised ADEC and allowed ADEC the opportunity to review, make additional comments, and approve those changes prior to implementing them in the field. USACE has generally provided ADEC with complete and thorough documentation (electronic and hard copy) for draft and final documents, meeting materials, agendas, minutes, and decisions during this FYR period. While there have been a couple of minor instances where USACE's responsive summary to ADEC was delayed and/or not complete, (including meeting minutes and final responses associated with the two draft reports in 2016 associated with the Main Operations Complex LTM, Suqi River Current Conditions Evaluation, and the Site 8 LTM and investigation, as well as the meeting minutes from the April 2018 public meeting for the draft 2018 Remedial Action Review Work Plan), these instances have not resulted in negative impacts to any sites, their respective remedies and/or protectiveness, or the progress of implementing respective site work.

5. Do you have any suggestions regarding future operation, maintenance, and monitoring at the site? ADEC requests USACE consider the following to be included in the current FYR evaluation as well as future site investigation and/or monitoring activities: 1) evaluate and continue the extent investigation as determined necessary for soils and groundwater at Site 8: 2) continue to include LTM of surface water and groundwater at landfill sites; 3) continue LTM of groundwater at the MOC sites and evaluate additional LTM investigation in soils and groundwater in areas adjacent to and immediately downgradient of MOC (aka the upgradient areas of the Site 28 Drainage); 4) conduct surface water sampling at Site 28 and consider whether tissue sampling is necessary based upon historical and/or 2018 sediment sample results; 5) assess the residual contamination remaining at the Fish Camp sites as indicated by the most recent site investigation analysis results (most/all of which were conducted under the prior NALEMP efforts) – which appear to indicate that residual concentrations of PCBs, metals, and POL COCs remained in soils and surface water; and 6) evaluate and apply the revisions and changes to 18AAC75 cleanup levels and what impacts have resulted to any sites and their respective remedies.

Additionally, USACE has yet to develop a Notice of Environmental Contamination as well as Institutional Controls with the landowner, which is a primary requirement for several of the remedies associated with NEC sites. This requirement is specified in both 2009 DDs, the LTMMP and other project documents and correspondence since the removal actions were completed in 2014, and is also a site closure requirement of 18 AAC 75. The current FYR effort needs to discuss and include these issues as well as outline milestone dates for their completion.

## 6. <u>Have any problems been encountered which required, or will require, changes to</u> the remedy or Decision Document?

As of the date of the subject questionnaire, ADEC is not aware of any problems having been encountered, specifically during this FYR period that would require changes to the remedy or DDs. However, ADEC has noted its concerns (both prior to as well as within the current FYR period), via written comments and discussions associated with work plans, reports, meetings, etc., with regard to several issues and concerns discussed below. Site 28 Drainage: ADEC continues to have concerns regarding whether or not the issues of contaminant migration and/or exposure pathways via sediments and/or surface water at Site 28 and related drainages have been adequately investigated and/or monitored; including concerns regarding the state of the residual contamination source areas which

plumes which are located immediately adjacent to/upgradient of Site 28. ADEC acknowledges that additional Site 28 sediment investigation data will be available and evaluated based upon the results of the 2018 investigation activities. However, ADEC noted in its responses to additional RTCs on the revised final 2018 work plan, that data gaps could still result from USACE's decision to not include surface water sampling at Site 28. Per ADEC's email to USACE dated July 11, 2018, "ADEC's comment was based on the issue that all of the existing surface water data from sample locations collected within the Site 28 drainage (i.e. upgradient of the confluence with the Suqi River), were either collected over the years of the RI phases or during the remedy implementation and sediment removal actions completed in 2013/14. ADEC's rationale for requesting additional surface water sampling from within the drainage during the 2018 effort was to provide current data to confirm whether surface water criteria are still being met five years after completion of the removal action; to support making a defensible determination with re: to the protectiveness of the remedy within this five-year review period."

remain within the tundra at Site 28 as well as likely ongoing sources from the MOC

Additionally, in the years following the finalization of the DDs in 2009, ADEC has emphasized its position that all applicable surface water criteria continue to apply as ARARs at all applicable sites; even though the DDs may have limited the specifications of surface water cleanup level(s) and/or criteria to i.e. TAH/TAqH and sheen. ADEC's current position is that additional surface water monitoring data from Site 28 may be necessary in the future in order to make conclusive determinations regarding the status of migration and/or exposure pathways. Further deliberations regarding comments and responses on the revised final 2018 work plan noted that USACE would include further evaluation of this issue in the prospective 2018-19 FYR report.

Site 8: Field conditions at the time of implementing the initial field activities, including surveying and locates of planned 2018 sediment sampling and mapping locations, indicated that sediment and/or surface water were not present within the targeted decision units. Subsequent site inspections conducted by ADEC, USACE, and the field team resulted in concurrence that the Site 8 sediment and surface water could not be investigated as specified in the 2018 work plan. Further discussion and observations by the project team members resulted in concurrence that the extents of subsurface soil and groundwater contamination on both sides of the road remained the primary data gap at this site and would require further evaluation in the current FYR in order to determine/recommend the appropriate and necessary path forward.

Site 7: ADEC has previously commented and noted its position that this and other uncharacterized landfills at Northeast Cape will continue to require CERCLA FYRs until such time that the agencies concur that Periodic Reviews are appropriate. While ADEC acknowledges that the DD states the term periodic reviews, the Site 7 landfill has had prior sources and residual concentrations of CERCLA contaminants identified; and while the agencies have agreed to disagree on this issue based upon prior deliberations, ADEC's position is that the uncharacterized areas of concern require CERCLA FYRs until otherwise determined appropriate to change the process to periodic reviews. Additionally, ongoing monitoring of the downgradient surface water and/or groundwater at these landfills is also applicable and necessary during the CERCLA FYR until such time that the agencies conclusively concur that any contaminant migration and/or exposure pathways are incomplete and that the remedy remains protective. Fish Camp: Please see and apply ADEC's comment on this area of concern in response to

<u>Fish Camp</u>: Please see and apply ADEC's comment on this area of concern in response to question #5 in this questionnaire.

General: Please see and apply other applicable comments, responses, and/or deliberations from meeting and resolution minutes associated with activities which occurred within the current FYR period that are relevant to considerations regarding the functionability and/or protectiveness of the implemented remedies, site statuses, etc. including for example the development of the 2016 LTMMP, the development and implementation of the 2016 LTM and Suqi River and Site 8 LTM Work Plans and Reports, the 2018 public meeting, and the 2018 Remedial Action Review Work Plan; including related email correspondence between ADEC and USACE such as that referenced in the Site 28 discussion, dated July 2018 above and others.

- 7. Are you aware of any changes in land use, access, or other site conditions that have occurred in the past five years that you feel may impact the protectiveness of the site? ADEC is not aware of any changes to land use or access in association with the Northeast Cape FUDS and/or immediately adjacent areas. ADEC however does note that changes in site conditions have been observed and confirmed to have occurred at several sites as identified since the DDs and within this FYR period including: 1) the drainage and surface water characteristics within the Site 8 areas of concern; 2) increased concentrations and extents of contamination in soils associated with Site 8 that have been identified since the DD and within this FYR period, 3) settling/subsidence at the Site 7 landfill; 4) poor and inadequate vegetation establishment associated with the covers and adjacent surfaces of the Site 7 and Site 9 landfills; and 5) sediment transport and deposition appears to have recurred within the Site 28 drainage however it is still unclear whether or not residual contamination is continuing to migrate through the system.
- Do you have any comments, suggestions, or recommendations regarding the site's 8. management or operation? ADEC would request/suggest the following of USACE: 1) to provide more advanced notice to ADEC, community members, and other stakeholders whenever USACE is planning and scheduling future community meetings in order to ensure all parties have adequate time to make arrangements for travel, schedule participation, provide input to the agenda, etc.; 2) ensure that complete and comprehensive responsiveness summaries (i.e. complete responses to comments, meeting minutes, review and/or deliberation determinations) be provided to all stakeholders and attached to all respective documents for all applicable actions (noting the two instances described in more detail in response #3 above); 3) incorporate ATSDR health consultation conclusions and status of draft or final documents into this FYR; and 4) ADEC appreciates USACE's coordination of the November 15, 2018 technical meeting which enabled the project team members to have a pre-draft FYR report discussion of the preliminary data from the 2018 efforts. ADEC was notified at that meeting that the results of the 2018 work would be presented as an appendix in and distributed simultaneously with the draft FYR report. ADEC noted that while it did not necessarily object to that approach, that having an earlier opportunity to review and comment on the draft 2018 report in its entirety would have allowed ADEC to be better-informed for submittal of the subject questionnaire; as it would have also likely addressed some of ADEC's comments and concerns which are notated in the subject questionnaire.

#### Interview Record

| Name: Larry Kava                               | Date: 01/28/2019           |  |
|------------------------------------------------|----------------------------|--|
| Organization: Kawerak Inc.                     | Phone Number: 907-984-6414 |  |
| -                                              |                            |  |
| Title: Savoonga Representative                 | Email: tc.sva@kawerak.org  |  |
| Interview Type:                                | ail X Phone/In Person      |  |
| Site Name: Northeast Cape, St. Lawrence Island |                            |  |

The following interview questions are based on EPA guidance (EPA 540-R-01-007). Questions may be left unanswered if they do not apply to you.

#### **Interview Questions**

1. What is your overall impression of the project (general sentiment)?

Mr. Kava has no comment on the site. He has not traveled to Northeast Cape and does not use the land for hunting or fishing. He travels elsewhere. He does not have friends or family that he wanted to comment on behalf of for general impressions of the site.

2. From your perspective, what effects have site operations had on the surrounding community? Are you aware of any community concerns/complaints regarding site operations, administration, implementation, or overall protectiveness of the remedies in the Decision Documents?

| 3. Are you aware of any events, incidents, or activities at the site such as vandalism, trespassing, or emergency responses from local authorities? If so, please provide details. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4. Do you feel well informed about the site's activities and progress? Have there been communications or activities regarding the site?                                            |
| 5. Do you have any suggestions regarding future operation, maintenance, and monitoring at the site?                                                                                |

| 6. Have any problems been encountered which required, or will require, changes to the remedy or Decision Document?                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
| 7. Are you aware of any changes in land use, access, or other site conditions that have occurred in the past five years that you feel may impact the protectiveness of the site? |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
| 8. Do you have any comments, suggestions, or recommendations regarding the site's management or operation?                                                                       |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |
|                                                                                                                                                                                  |

#### Interview Record

| Name: Pungowiyi, Delbert                       | Date: 2/5/2019             |  |
|------------------------------------------------|----------------------------|--|
| Organization: Native Village of Savoonga       | Phone Number: 907-984-6414 |  |
| Tribal Government                              |                            |  |
| Title: President                               | Email:                     |  |
| Interview Type: ×Mail/Email                    | ☐ Phone/In Person          |  |
| Site Name: Northeast Cape, St. Lawrence Island |                            |  |

The following interview questions are based on EPA guidance (EPA 540-R-01-007). Questions may be left unanswered if they do not apply to you.

#### **Interview Questions**

1. What is your overall impression of the project (general sentiment)?

I was on and off on the project from the start of the cleanup. It was pretty tough working with the government. Overall, the tribe and the native corporation are not too happy about the outcome of it. There were some old monofills that were requested to have more investigation. We also wanted the site to be cleaned up to residential standards and do not believe that the site has been cleaned up to residential standards. The people would like to re-establish the community in NE Cape.

We sacrificed a lot to our nation, willingly, with our utmost patriotism. When they proposed to use our island, we did not have any requests except not to pollute the area – the Suqi, which was very rich with Dolly Varden and ocean-going trout. Because of the high number of fish that entered the Suqi river, the food was abundant there (for seal). The military did not honor the agreement that was signed by the Secretary of State (1951) not to pollute the Suqi with any human waste or any other pollutants or violate our hunting/trapping grounds. We do not believe we will see the river come back to life in our lifetime and it is questionable if the river will ever come back to it's state.

A human rights violation was committed – the Suqi river was wiped out with fish and the seals do not haul out anymore. We had no choice but to go to the dumps after breakfast, lunch, and dinner. I was a four-year-old child, up to five years old. We can still taste that sour taste when we talk about it.

We argued very hard that the five members of the tribal council should sign off on the Decision Document. The liaison who chaired the meeting said I had put up the most powerful argument for our people (in 2008). It was a one hour and fifty-minute teleconference which was initially for an hour and fifteen minutes. Our liason put the USACE on the spot to extend the teleconference until our issues were resolved. We were not notified of the reasons why they went ahead with the signing of the ROD without informing us why the tribe was excluded from

signing of the ROD. 10 years ago, when we agreed to a 30-year cleanup, I asked a gentleman (believe he is the director of the USACE) for the justification of the exclusion – Bush II had signed an executive order that the USACE solely represented the US of America. We are not happy with that and are more or less insulted by that. I would like to see in black and white how they justified that 2009 signing of the ROD and excluding our tribe in 2008. The lady from Oregon had said that I put up the strongest argument for my people. To date, the gentleman said that he would provide me the information for why the tribal government was excluded. I have not seen nothing in black and white or in writing how they justified that signing off of the ROD on the NE Cape cleanup. We do have unfinished business with our senators in Washington and I'm just not pushing it right now with the current president that we have. We are just waiting to see what comes out of the current administration. I'm afraid to push it hard because of the current president we have. We are holding off to see if we can receive any compensation for the human rights violations. We have all agreed that the NEC will not be cleaned up to its pristine condition as before. The real estate value of the area over there has been severely depreciated and we would like to see compensation for that. If we end up with nothing after all of our sacrifice to our country – willingly and patriotically.

When they requested adults for Alaska territorial guards – all men and women over 13 years old stepped up. All were issued semi-automatic rifles. Radar stations in Gambell – subject to eating off of the garbage during times of food in security. We were never given thanks or recognition of the sacrifice – the letter of appreciation was an insult to us. The country as a whole does not understand the role that our island and my people played during the Cold War Era. The ultimate sacrifice in my opinion – sacrificing our existence. We knew about the nuclear weapons that they created. When we agreed to let them use our island we knew the risks we were undertaking. One nuclear strike to this island and we knew we would lose everything. We feel that our nation is really indebted to us as opposed to struggling and having food security issues that we are faced with now with our climate change and our food stamp being cut off due to this president and administration. It has been very tough dealing with the USACE right from the beginning of the clean up – biggest concern was the dollar amount. This shouldn't have been an issue because of the sacrifice we have given to our nation.

We argued the best we could to have the monofill investigated and removed. Congress to cleanup the FUDS. Annie Alowa had ACAT do a documentary prior to her death. She had been going to Washington for over 20 years with Pam Miller. 7 branches. Each branch said they had to go to the other branch. A lot of running around. The documentary is titled "I will fight until I melt." She had that documentary sent to Congress and she was diagnosed herself with liver cancer. This was really most powerful thing to have Congress take action to cleanup the FUDS – not only on the island but across Alaska. I have been arguing that she have recognition. Not one person in the state of Alaska stepped up to the plate. She fought this all alone for over 20 years. I'm happy and proud that she got to hear that it was going to be done. There is a lot of history to that. When things settle down in Washington, our commander in chief could take our case to see if we could have some sort of agreement/settlement, possibly like the Aleuts did. The best way to bring some closure to this situation would be to have a delegation from the Savoonga and Gambell with blessing from the tribal council of what would bring closure to the site and to negotiate with congress for a settlement that would be dignified to our people and our tribes and with Washington. Something that the community can agree to - yes, we can live with this settlement. That's where I'm really at. We have unfinished business. I'm really holding off on pushing forward on that. Our president is kind of scary right now.

We are not happy with the outcome of it, not happy to have the monofills left there – we asked for them to be categorized and removed. We don't know what more is in the monofills. There is so much more in there. Overall, the community was really not happy with the – it was an uphill battle, uphill fight right from the beginning. We were not happy with the certificate of appreciation – that itself should have been done more officially – state of the Union address. Some how that the world would know the sacrifice that we provided to our nation. It was enormous. Our geographic position we are in – right next door to Russia could have been taken in an instant.

Disgruntled is a word that could be used. We are not disgruntled with hatred – those are diseases that destroy humanity. We are still proud of the sacrifice that we gave to our nation. But nevertheless, once they put the satellites and no longer needed land-based radar systems and antennas – they just closed down shop, turned their back on us, and up and left. All of those years we had no choice but to eat off the garbage that was being dumped on the site. We do know that cooks and personell had pity for us because they found new shirts with money in them, pants, whole cooked turkeys that were neatly wrapped up, bags of potatoes neatly bagged up. Somebody in the cooks or staff felt pity for us. The people were thankful. The adults would gather as much as they could and lay out as much as they could at the village. It was divided equally up to the households. Those are horrible memories that we have to live with.

2. From your perspective, what effects have site operations had on the surrounding community? Are you aware of any community concerns/complaints regarding site operations, administration, implementation, or overall protectiveness of the remedies in the Decision Documents?

*This question was answered under question 1.* 

3. Are you aware of any events, incidents, or activities at the site such as vandalism, trespassing, or emergency responses from local authorities? If so, please provide details.

They say that we can drink the Suqi. We still carry water and the USACE told us not to disturb the bottom – that is where all of the heavy metals are at. They've basically torn down the whole base. There are still 3 houses that are used seasonally by Eugene Toolie, Raymond Toolie. 3 or 4 houses that remained because they are still being used. We were told by Dr. Ron that if we picked salmon berries or greens over there, then have them washed thoroughly. After the cleanup was done, disturbance of dust had settled on the greens and berries. He would not pick and eat them himself. Washing them would reduce the PCBs by at least 30 percent. He was surprised in some cases by 50 percent. He would not eat them now because they are in the tissues still. Very powerful, painful experience. We feel like we were used, abused, and turned our backs on and walked away from us without so much as saying thank you for all of the sacrifice you have done for our nation.

4. Do you feel well informed about the site's activities and progress? Have there been communications or activities regarding the site?

Not really. The best ones that gave us the best information – all of the things we would not have known – top, lead toxicologists that have done many sites around the world - Dr. Ron and ACAT. Without them, we would not have known what kind of toxic chemicals we were exposed to.

Three different studies were done on the blood for PCBs – all came up with the same numbers. PCB levels... at least 6-9x, some times up to 10x higher than national average. The national average is 0.01 ppb. We learned from the experts. The highest level was 0.02 in the national average. Our PCB levels were off the chart for Savoonga and Gambell. 7.50 on up to 9.50.

Commercial grade PCB levels are not as high as military grade PCB. PCB levels taken on our island were high grade, which identified them as military PCBs. We have been ravaged by cancer and it is still a crisis to us.

It would be very hard for the USACE to say that the contamination is not causing the still born babies, cancer rates, and other issues.

5. Do you have any suggestions regarding future operation, maintenance, and monitoring at the site?

I think it's really difficult to answer with the climate change right now because the monofills they did – they just capped them with gravel. The monofills are not to be used for building structures or doing anything with it period. The one thing that scares me a lot is what toxic chemicals are in those monofills. With the permafrost melting at an unprecedent rate – with sewage and water systems sinking – that's a scary thought to the monofills. Eventually, with the way things are going now, we believe they will start leaching out into the ocean and into the beaches. Those are scary thoughts to us.

6. Have any problems been encountered which required, or will require, changes to the remedy or Decision Document?

*This question was answered under question 1.* 

7. Are you aware of any changes in land use, access, or other site conditions that have occurred in the past five years that you feel may impact the protectiveness of the site?

The interest in re-establishing in the community is because if you look at the map – we are running out of space. If we start building more houses east of us, it will cost us lots. The airport is the biggest obstacle in our way. We are running out of space for building houses. Our population is growing. That is why there is interest in re-establishing the NE Cape site – which was very beautiful in it's pristine condition. It was so beautiful over there. That is one of the motivators for the tribal members. We do not believe that the site was cleaned up to residential standards. They had spills of over 230,000 gallons of diesel. It still seeps out. We still can smell it. Unrecorded spills is a big question mark. Apparently there was a pumphouse from the beach to the base – they had diesel pipes somewhere under the ground going up to the base. Eugene Toolie was a long time employee of the base... They had filled up a several thousand tank with diesel. The tanker – Mona Lisa – did not fully deliver the load and knew that there was a break somewhere. They found a pipe that was pulled apart – about a foot apart. Thousands and thousands of gallons spilled and seeped into the ground.

| 8. Do you have any comments, suggestions, or recommendations regarding the site's management or operation? |
|------------------------------------------------------------------------------------------------------------|
| This question was answered under question 1.                                                               |

#### Interview Record—Second Five-Year Review

| Name: Vi Waghiyi and Pamela Miller             |              | Date: 12/21/18                              |  |
|------------------------------------------------|--------------|---------------------------------------------|--|
| Organization: ACAT                             |              | Phone Number: 222-7714                      |  |
| Title:                                         |              | Email: vi@akaction.org; pamela@akaction.org |  |
| Interview Type:                                | x Mail/Email | □ Phone/In Person                           |  |
| Site Name: Northeast Cape, St. Lawrence Island |              |                                             |  |

The following interview questions are based on EPA guidance (EPA 540-R-01-007). Questions may be left unanswered if they do not apply to you.

#### **Interview Questions**

#### 1. What is your overall impression of the project (general sentiment)?

Vi: Sites were prematurely closed without the consent of the tribes and they were not part of the Record of Decision. Everything before and after the NEC ROD happened without government-government consultation with our tribes. Our tribal governments and people do not approve the minimal site characterization and remediation—it is not protective of our Sivuqaq Yupik peoples' health and well-being. A new ROD must be implemented with the full participation and consultation with our tribal governments.

Pam: The full nature and extent of contamination has not been fully investigated, so the remediation is incomplete. Source areas of contamination, including the main complex and uncontrolled landfills, have not been fully characterized or removed and these continue to contaminate the Suqi River. The contaminants at NEC pose a significant source of pollution to traditional subsistence foods, water supplies, and medicinal plants. Recent studies by our community-based research team show that fish (stickleback and blackfish) continue to have elevated levels of PCBs. Also, these sentinel fish in the Suqi River show estrogenic effects, thyroid disruption, and altered gene expression linked with exposure to PCBs. Fish and humans share the same hormone systems and most of the genes underlying diseases in humans are the same genes underlying those diseases in fish. Estrogenic effects are associated with abnormal development and certain cancers. Altered gene expression results are also consistent with higher cancer risk. Contamination continues to affect water sources, traditional medicinal and food plants, fish, and wildlife, as well as the health of the people.

2. From your perspective, what effects have site operations had on the surrounding community? Are you aware of any community concerns/complaints regarding site operations, administration, implementation, or overall protectiveness of the remedies in the Decision Documents?

Vi: Native Village of NE Cape residents are now displaced due to the military toxic contamination from the abandoned FUD sites at NE Cape. This contamination is causing health disparities associated with PCBs and other chemical exposures including cancers, heart disease, strokes,

reproductive health harms, birth defects, learning disabilities, diabetes and thyroid disease. Army Corps has been patronizing, not transparent or inclusive. The Corps did not fulfill their government to government obligation. Remediation may have made the sites more toxic by mobilizing contaminants. Many sites at NE Cape remain highly toxic and will continue to harm future generations.

Pam: Yes. There have been extensive complaints that the concerns and knowledge of community members have not been taken into account in the decisions about the remedial investigations, site characterization, or remedial actions. The remedies are not protective of human health and the environment.

# 3. Are you aware of any events, incidents, or activities at the site such as vandalism, trespassing, or emergency responses from local authorities? If so, please provide details.

Pam: We are concerned that people are drinking water from the Suqi River and other sources at NE Cape—this is a health hazard. In addition, families who live and/or travel through NE Cape may be exposed to hazardous chemicals though inhalation, ingestion, and consumption of traditional foods.

## 4. Do you feel well informed about the site's activities and progress? Have there been communications or activities regarding the site?

Vi: We are well informed ourselves that the site characterization and remediation have failed. Local voices and knowledge have not been heard or taken into account. As stated above, the omission of the tribes from the ROD warrants inclusion of the tribes in any decisions concerning site remediation, acknowledging and using local knowledge and community-based participatory research data to drive adequate site characterization and remediation. A new inclusive decision-making process and ROD with the tribes must take place.

### 5. Do you have any suggestions regarding future operation, maintenance, and monitoring at the site?

Vi: see answer to #4.

Pam: warning signs in Yupik (St. Lawrence Island Yupik created by local translators) and English should be placed to prevent consumption of water and/or fish from the Suqi and Tapi Rivers. Additional warning signs should be placed to prevent the gathering of plants and berries in and around NE Cape because of possible contamination.

An extensive ground- and surface water monitoring program should be implemented with monitoring well placement advised by the tribes and knowledgeable local community members. Leachate from the landfills and drainage downstream from the main complex should be monitored over the long-term, including water sampling as well as integrative sampling technologies such as SPMDs, sediment cores, and biological monitoring. A regular and comprehensive monitoring plan must be independently conducted using a community-based participatory research model that includes the people of SLI in the design, implementation, and interpretation of results. In addition to integrated analysis of surface and groundwater (use of SPMDs), and sediments, biological monitoring should include plants/berries, sentinel and edible species of fish, and marine mammals.

Remediation is not complete. Additional remedies should be implemented including source removal and well-planned and executed remedial technologies that such as in situ peroxidative and biological remediation. The Corps really botched the chemical oxidation project, then concluded it wouldn't work. Proper regulatory oversight and enforcement has been lacking. There should be provisions for: 1) use of innovative clean-up technologies relevant to the Arctic; 2) accountability to the leadership of the communities of Savoonga and Gambell, government-to-government consultation with Tribes, and citizen participation in remedial decisions. Tribes, as sovereign governments, must have the right to determine clean-up standards and serve as official parties to the Records of Decision. There is a long way to go to achieve restoration and removal of the contamination. The premature closures, partial excavations, natural attenuation, and/or land use controls are completely inadequate.

Matters of primary urgency for attention and action include:

- Complete removal of the solid and hazardous waste materials at the Northeast Cape Site 7 and other landfills;
- Removal and treatment of the White Alice site soils and groundwater to effectively remove associated contaminants;
- Removal/remediation of contaminants in source areas that remain within the Northeast Cape Main Complex soils and groundwater, as well as on-going monitoring to ensure safe drinking water supplies;
- Effective remediation and long-term monitoring of the Suqi River drainage basin sediments and surface water (fuels and PCB contamination);
- Complete removal or destruction of the contaminants identified at the former village site at Northeast Cape. Adequate funding for NALEMP program at Native Village of Northeast Cape, including provisions to adequately support and build capacity with training and jobs for the Native Village of Savoonga;
- Review of the failure of the chemical oxidation project and attention to the problems/solutions identified by RAB technical advisor Dr. Ron Scrudato;
- Restoration of the Suqi River watershed and shallow groundwater resources within the area of the Main Complex and up-gradient regions of the Main Complex to ensure adequate and safe drinking water at Northeast Cape;
- Tracking and analysis of materials salvaged from NE Cape that have been used by families for construction of homes and camps. These present a likely exposure pathway for such contaminants as PCBs, lead, asbestos, and others.

# 6. Have any problems been encountered which required, or will require, changes to the remedy or Decision Document?

Vi: There has been no real inclusion of the community or tribes in the decision making. No government to government consultation. As stated above, a new process and ROD is needed with tribes' full participation in the decision documents.

Pam: see answer to #6

## 7. Are you aware of any changes in land use, access, or other site conditions that have occurred in the past five years that you feel may impact the protectiveness of the site?

Vi: We know that the watershed of the nearby Tapissak ("Tapi") River is also contaminated and that area has not been investigated or characterized. Our research shows elevated levels of PCBs.

Pam: The Corps has not assessed the effects of climate warming on the mobilization of contaminants that have been sequestered in landfills and within permafrost. Erosion and permafrost melting will likely increase the mobilization and bioavailability of contaminants at NE Cape, thus increasing hazards to the health of fish, wildlife, and people.

# 8. Do you have any comments, suggestions, or recommendations regarding the site's management or operation?

Vi: The Corps needs to take the tribes' direction in the characterization, remediation, long-term monitoring to ensure that actions are protective of the health of humans, fish and wildlife.

Pam: A regular and comprehensive monitoring plan must be independently conducted using a community-based participatory research model that includes the people of SLI in the design, implementation, and interpretation of results. This should include integrated analysis of surface and groundwater (use of SPMDs), sediments, plants/berries, sentinel and edible species of fish, and marine mammals.

#### Interview Record

| Name: June Walunga         |                | Date: 01/29/2018        |
|----------------------------|----------------|-------------------------|
| Organization: Kawerak Inc. |                | Phone Number:           |
| Title:                     |                | Email: jwalunga@gci.net |
| Interview Type:            | X Mail/Email   | Phone/In Person         |
| Site Name: Northeast Cape, | St. Lawrence I | sland                   |

The following interview questions are based on EPA guidance (EPA 540-R-01-007). Questions may be left unanswered if they do not apply to you.

#### **Interview Questions**

1. What is your overall impression of the project (general sentiment)?

There should have been more done; i.e. barging

debris out instead of using mono fill.

2. From your perspective, what effects have site operations had on the surrounding community?

Are you aware of any community concerns/complaints regarding site operations, administration, implementation, or overall protectiveness of the remedies in the Decision Documents? The site needs to be completely contaminant and depris free so people of Gambell and Savoonga Can Start using the land for hunting and fishing and start a new community there. There is fear contaminants and lack of trust from both communities due to high rate of cancer. Pressing fact now is to finish cleaning the Site.

3. Are you aware of any events, incidents, or activities at the site such as vandalism, trespassing, or emergency responses from local authorities? If so, please provide details.

None

4. Do you feel well informed about the site's activities and progress? Have there been No. communications or activities regarding the site?

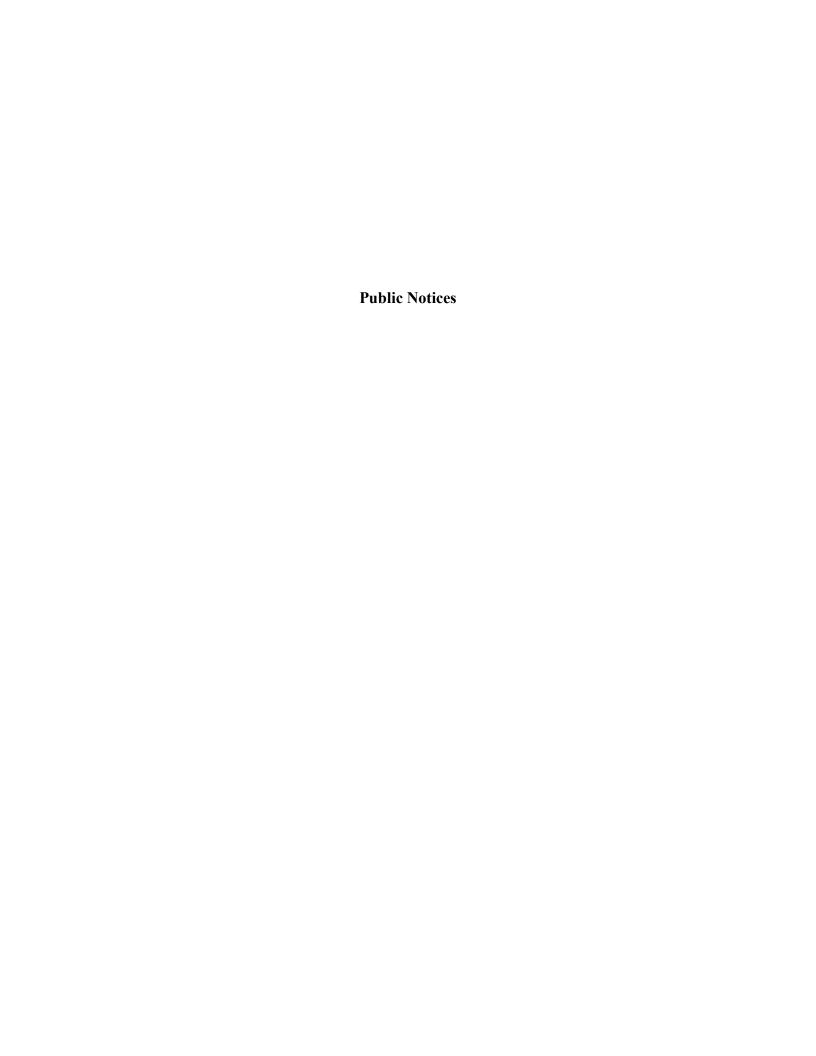
From the very beginning, there should have been open communication between the two tribes and EPA, DEC communications between the two tribes and the two tribes are two tribes and the two tribes and the two tribes and the two tribes are two

5. Do you have any suggestions regarding future operation, maintenance, and monitoring at the site?

Lo cal knowledge should have been used; more input from Gambell & Savoonger communities. There are people who knows about the oil spills. Lo cal monitors, at least two, one from each community, should be in place.

6. Have any problems been encountered which required, or will require, changes to the remedy or Decision Document?

Yes, there is still contaminants persistant to the Site and surrounding areas where contaminants are known to exist.


7. Are you aware of any changes in land use, access, or other site conditions that have occurred in the past five years that you feel may impact the protectiveness of the site?

Settling is occurring at the easting landfill and buried debris is being exposed.

We are hoping the reindeer grazing does not happen in the area or to the small lakes that still shows contamination.

8. Do you have any comments, suggestions, or recommendations regarding the site's management or operation?

Re-evaluate the whole site and clean again where there are still contaminants. Re-evaluate again in there are still contaminants. Re-evaluate again in there are still contaminants. Re-evaluate again in there are still contaminants. Heep re-assessing every four years, few years. Heep re-assessing every four years.



# Publisher's Affidavit

| UNITED | <b>STATES</b> | OF | <b>AMERI</b> | CA, |
|--------|---------------|----|--------------|-----|
|        |               | -  |              |     |

State Of Alaska

**Second Division** 

SS:

| Nils Jahn, being first duly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| sworn on oath deposes and says:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| That I am and was at all times herein this affidavit mentioned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| of THE NOME NUGGET,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| newspaper of general circulation and published weekly a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Nome, Second Division, State of Alaska, and online tha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| the US Army Corps of Engineers<br>announces Start of Five-Year Review                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| announces Start of tive- year Kevica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| a printed copy of which is hereto annexed, was published                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| in said paper once and every week for _ove_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| successive and consecutive weeks in the issues of the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| dates:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3.29.2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Q. ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SUBSCRIBED and SWORN to before me this                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| management of control (1 to 10 |
| 29 day of <u>March</u> , 20 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| NOTARY PUBLIC in and for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| State of Alaska.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| My commission expires                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Oct 1. 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

State of Alaska
NOTARY PUBLIC
Diana Haecker
My Commission Expires Oct. 1, 2020

# US Army Corps of Engineers Announces Start of Five-Year Review

The Unites States Army Corps of Engineers at Joint Base Elmendorf-Richardson (JBER) announces the beginning of the Five-Year Review of cleanup remedies being implemented at the Northeast Cape Formerly Used Defense Site located on St. Lawrence Island, Alaska.

The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), Section 121, and the National Contingency Plan require that remedial actions which result in any hazardous substances, pollutants, or contaminants remaining at the site above levels that allow for unlimited use and unrestricted exposure be subject to a five-year review.

The purpose of the Five-Year Review is to evaluate whether the remedies selected to clean up contaminated sites are operating as designed and remain protective of human health and the environment.

The community is encouraged to participate in the review process. A public meeting to review the five-year review process will be held at the Savoonga City Hall on 11 April 2018 at 2:00 pm.

Detailed information concerning the Northeast Cape cleanup effort is available at the following information repositories:

Alaska Resources Library & Information Services, University of Alaska, Anchorage 3211 Providence Drive (907) 786-1871

> Savoonga City Hall (907) 984-6614

Gambell Sivuqaq Lodge (907) 985-5335

The findings of the Five-Year Review will be available after February 2020.

Interested persons can participate in the Five-Year Review process through August 2018 by responding to a questionnaire available from:

Kevin Maher, Jacobs Engineering 949 E 36th, Suite 500 Anchorage, AK 99508 kevin.maher@jacobs.com (907) 762-1500

Information on the cleanup process is shared with interested persons through periodic Northeast Cape public meetings held in Savoonga, Alaska. If you would like to be added to the contact list, then please contact USACE Public Affairs at (907) 753-2615 or POA-FUDS@usace.army.mil

#### **ADDITIONAL INFORMATION**

Documents pertaining to Northeast Cape background information and the decision documents for Northeast Cape are on file at the following Information Repository locations:

Alaska Resources Library and Information Services, University of Alaska, Anchorage 3211 Providence Drive (907) 786-1871

Savoonga City Hall (907) 984-6614

Gambell Sivuqaq Lodge (907) 985-5335

Information on the cleanup process is shared with interested persons through periodic Northeast Cape public meetings held in Savoonga, Alaska. If you would like to be added to the contact list, please contact USACE Public Affairs at (907) 753-2615 or POA-FUDS@usace.army.mil

**US ARMY CORPS OF ENGINEERS** 

Alaska District P.O. Box 6898 (CEPOA-PM-ESP) JBER, AK 99506-0898

**OFFICIAL BUSINESS** 

**DELIVER TO:** 

# FIVE-YEAR REVIEW NORTHEAST CAPE FORMERLY USED DEFENSE SITE ST. LAWRENCE ISLAND, ALASKA



March 2018

#### **FIVE-YEAR REVIEW**

The United States Army Corps of Engineers (USACE) at Joint Base Elmendorf Richardson is conducting a Five-Year Review of remedial actions implemented at the Northeast Cape Formerly Used Defense Site located on St. Lawrence Island, Alaska.

The Five-Year Review is a detailed evaluation of the implementation and performance of the selected remedy (i.e., the environmental cleanup work). The objective of the evaluation is to document if cleanup activities (or "remedies") are protecting people and the environment from contamination. If the remedies are not protective, the Five-Year Review makes recommendations to improve protectiveness. Federal regulations require this type of evaluation, and the Alaska Department of Environmental Conservation (ADEC) will review the process to ensure completeness and accuracy. This will be the second five-year review for Northeast Cape.

#### SITES INCLUDED IN THE FIVE-YEAR REVIEW

Based on the signed decision document, remedial actions were selected for various sites to address surface soil, subsurface soil, groundwater, and sediment, contaminated with polychlorinated biphenyls (PCB), diesel-range organics (DRO), residual-range organics (RRO), arsenic, benzene, and naphthalene. These actions include.

| Site Number and Name |                                     | Action                           |
|----------------------|-------------------------------------|----------------------------------|
| Site 1               | Air Strip                           | EX/D                             |
| Site 3               | Fuel Pumphouse                      | EX/D                             |
| Site 6               | Gravel Pad                          | EX/D                             |
| Site 7               | Cargo Beach Road<br>Landfill        | C/LUC                            |
| Site 8               | Petroleum, Oil, and Lubricant Spill | MNA/LUC                          |
| Site 9               | Housing and Operations Landfill     | C/LUC                            |
| Site 10              | Buried Drums                        | EX/D and<br>MNA/LUC <sup>1</sup> |
| Site 11              | Fuel Tanks                          | EX/D and<br>MNA/LUC <sup>1</sup> |
| Site 13              | Heat and Power Plant                | EX/D and<br>MNA/LUC <sup>1</sup> |

| Site No | umber and Name                | Action                           |
|---------|-------------------------------|----------------------------------|
| Site 15 | Fuel Pipeline                 | EX/D and<br>MNA/LUC <sup>1</sup> |
| Site 16 | Paint and Dope<br>Storage     | EX/D                             |
| Site 19 | Auto Maintenance              | EX/D and<br>MNA/LUC <sup>1</sup> |
| Site 21 | Wastewater Tank               | EX/D                             |
| Site 27 | Diesel Fuel Pump              | EX/D and<br>MNA/LUC <sup>1</sup> |
| Site 28 | Drainage Basin                | EX/D                             |
| Site 29 | Suqitughneq<br>River          | Incidental<br>Debris<br>Removal  |
| Site 31 | White Alice<br>Communications | EX/D                             |
| Site 32 | Lower Tramway                 | EX/D                             |

Notes:

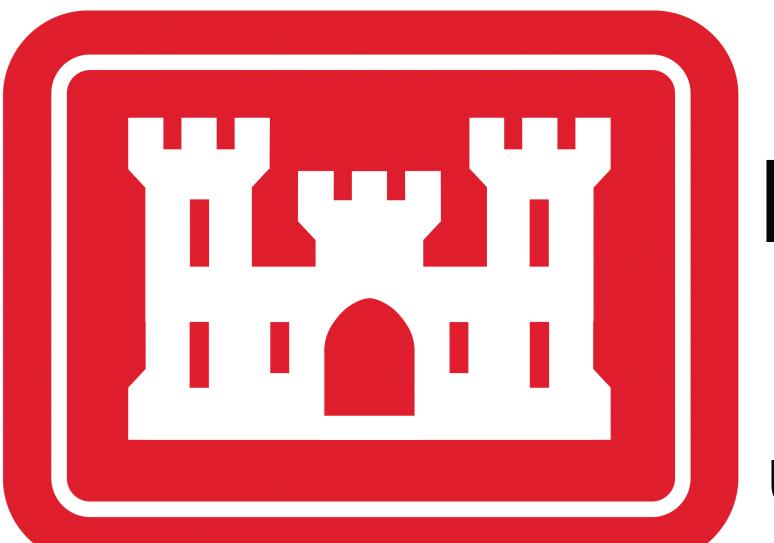
EX/D – Excavation with disposal or treatment

MNA/LUC - Monitored natural attenuation with land use controls

C/LUC - Capping with land use controls

<sup>1</sup>Although chemical oxidation was identified as the primary remedy in the decision document, it was not implemented. The decision document contingency remedy, excavation of soil and monitored natural attenuation of groundwater, will be implemented.

#### **COMMUNITY INVOLVEMENT**


The community is encouraged to participate in the review process. A public meeting to review the five-year review process will be held at the Savoonga City Hall on 11 April 2018 at 2:00 pm. For those in other locations, please join us via teleconference using the toll free call-in number:

Toll Free Call-in Number: 1-855-209-1113

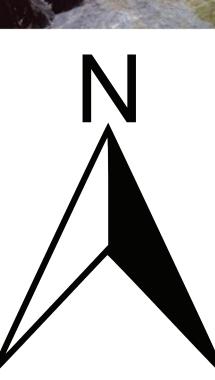
Access Code: 9077513429

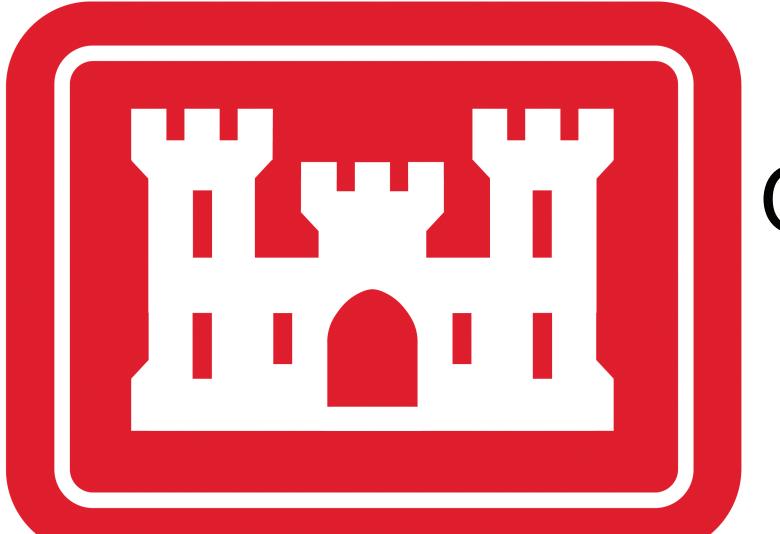
Public comments may be provided immediately following a public meeting in Savoonga, or by responding to a written questionnaire through August 2018. The questionnaire can be requested from and comments submitted to:

Kevin Maher, Jacobs Engineering Group Inc. 949 E. 36th Ave Suite 500 Anchorage, AK 99508 kevin.maher@jacobs.com (907) 762-1500



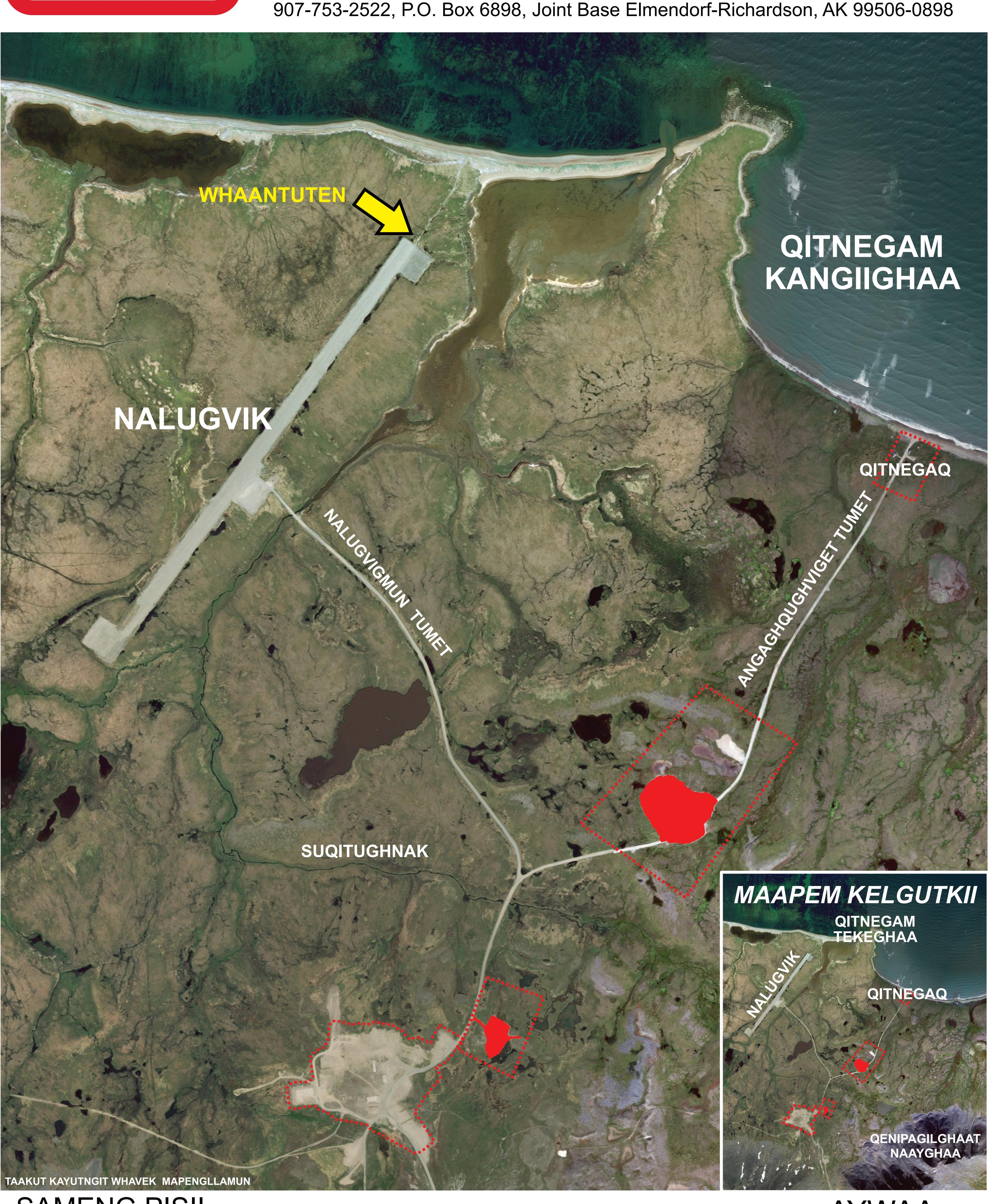
# U.S. Army Corps of Engineers Northeast Cape Formerly Used Defense Site Land Use Controls Map


U.S. ARMY CORPS OF ENGINEERS - ALASKA DISTRICT PUBLIC AFFAIRS OFFICE 907-753-2522, P.O. Box 6898, Joint Base Elmendorf-Richardson, AK 99506-0898




Legend




Ground Disturbing Activities (Construction, Excavation, or Debris Removal) Not Recommended





# US ARMI KURET ENGINEER-NGIT QITNEGAMELNGUQ NEKSAQANGA KELENGASIQ KELGUTELGHET NATEN NUNA ATUQELEGHQAQ

US ARMI KURET ENGINEER-NGIT - ALASKA DISTRICT PUBLIC AFFAIRS OFFICE 907-753-2522, P.O. Box 6898, Joint Base Elmendorf-Richardson, AK 99506-0898



SAMENG PISII

MEQ NUNAMELGNUQ MEGHESNANILLEQ

NUNAM QAYVIGHQELLGHA IINGHULLUNI AYUQUQ (ULIMAMUN, IIGGMUN, PEGHWAAGHET NUSUGRAMUN) IINGHUSAGUT AYWAA

A

# APPENDIX H Response to Comments



#### Department of Environmental Conservation

DIVISION OF SPILL PREVENTION AND RESPONSE Contaminated Sites Program

> 555 Cordova Street Anchorage, Alaska 99501 Main: 907-269-7528 Fax: 907-269-7687

ADEC File Number: 475.38.013

February 14, 2020

US Army Corps of Engineers USACE, AK District Attention: Ms. Andrea Elconin CEPOA-PM-ESP P.O. Box 6898 JBER, AK 99506-0898

Re:

1) ADEC's Post-resolution Review of RTCs on the Draft 2019 NEC Second CERCLA FYR Report for Sites 21 and 28

2) ADEC's Non-Concurrence with USACE's non-POL (Petroleum, Oil, Lubricants) CERCLA Contaminant Determination at Site 28

Dear Ms. Elconin:

This letter serves as Alaska Department of Environmental Conservation's Contaminated Sites Program (ADEC) formal notification to the Army Corps of Engineers' Formerly Used Defense Site Program (USACE) that ADEC does not concur with USACE's determinations with regard to CERCLA contamination issues associated with Site 28 at Northeast Cape that are discussed further in the following paragraphs.

Thank you for providing ADEC with responses to comments (RTCs) on the Draft 2019 Northeast Cape (NEC) Second CERCLA Five-year Review (FYR) Report for Sites 21 and 28; which is dated October 15, 2019 and was received by ADEC electronically from USACE on October 24, 2019. ADEC had previously completed its review of the document and electronically transmitted its review comments via email to USACE on December 13, 2019. Thank you for providing the first round of RTCs which were received electronically by ADEC from USACE on January 21, 2020. ADEC completed review of the RTCs and submitted RTC review determinations electronically in the template to USACE on February 5, 2020. ADEC and USACE participated in a comment resolution meeting on February 11 and USACE provided additional responses to ADEC based upon those discussions that were received electronically by ADEC on February 13, 2020. ADEC completed its second round of RTC review and is providing its final review determinations as notated in the template which is attached with this letter for USACE's records.

Also attached with this letter please find a copy of ADEC's email to USACE dated February 12, 2020; this email was intended to provide USACE with a preliminary summary of ADEC's position that it does not concur with USACE's following determinations that 1) non-POL CERCLA contamination is no longer

present at Site 28, and 2) that the subject 'no remaining non-POL CERCLA contamination' determination warrants discontinuing FYRs and transitioning to Periodic Reviews as a result of only POL contamination remaining at Site 28.

The basis for ADEC's position of non-concurrence are based upon the following determinations: 1) soil and groundwater across all areas of Site 28 have not been entirely/adequately characterized to date in order to definitively determine whether or not non-POL CERCLA contamination remains at Site 28, and 2) the presentation of information in prior documents as well as the current FYR lacks the continuity and supporting information that would be necessary in order to definitively demonstrate that the media of concern with regard to non-POL CERCLA contaminants is limited to sediment at Site 28, and 3) that prior investigation results have definitively determined that non-POL CERCLA contaminants were not present in soil and/or groundwater at Site 28.

ADEC respectfully requests USACE include this letter, along with copies of the email and template which are attached with this letter in the final version of the FYR document. ADEC will provide USACE with a separate follow on letter once the final version of the subject five-year review report is received.

Please contact me at <a href="mailto:curtis.dunkin@alaska.gov">curtis.dunkin@alaska.gov</a> or at (907)269-3053 if you have any questions regarding ADEC's comments, the enclosed attachments, and/or this letter.

Sincerely,

Curtis Dunkin

Environmental Program Specialist

Enclosures:

- 1) ADEC Comment Template Dated February 14, 2020
- 2) ADEC Email to USACE Dated February 12, 2020

cc:

- 1) Melinda Brunner ADEC (via email)
- 2) Jennifer Currie ALAW (via email)
- 3) Kenneth Andraschko USACE (via email)
- 4) Robert Glascott USACE (via email)
- 5) Haley Huff Jacobs Engineering (via email)

#### Alaska Department of Environmental Conservation (ADEC)

#### Contaminated Sites Program

Document Reviewed: Draft October 2019 Northeast Cape Sites 21 and 28 Second Five-year Review and Site Assessment Reports

Commenters: Curtis Dunkin-ADEC Project Manager

Date Submitted: December 13, 2019; ADEC Received RTCs on January 21, 2020 and Submitted Review Determinations on February 5, 2020

Comment Resolution meeting held February 11, 2020; USACE submitted responses on February 13, 2020

ADEC Completed and Submitted Final Post-resolution RTC Reviews on February 14, 2020 USACE final responses February 19, 2020

| #  | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                                    | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----|--------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. | 1      | 1.0     | The discussion in the fourth paragraph that specifies this FYR to only pertain to Sites 21 and 28, and why, should be relocated and emphasized in the first paragraph of this section.                                                                                                                                          | Clarification. Although it does make sense to specify the sites the FYR covers in the first paragraph, USACE is mandated to follow EPA's FYR template, and the template specifies the FYR sites in the 4 <sup>th</sup> paragraph.  ADEC-Noted February 5, 2020                                                                                                                                                                                                                     |
|    |        |         | Further discussion should be added to briefly summarize the POL sites as well as sites which are managed under Periodic Reviews, LTM, future UECA and LUCs, etc. vs. those that are only addressed under CERCLA as well as the subject FYR document (or mention and reference the more detailed section later in the document). | Partially Accepted. The main body of this document was organized to be consistent with the streamlined EPA FYR guidance and therefore, intentionally eliminated discussion of non-CERCLA petroleum sites.  ADEC-Noted February 5, 2020 The following sentence will be added to the paragraph beginning with "The other NEC FUDS": "For more information regarding NEC FUDS sites not addressed in this FYR, refer to Appendix C, "Site Chronology". ADEC-Accepted February 5, 2020 |
|    |        |         | Please revise the last sentence on this page, and also revise other similar statements throughout the document wherever applicable, in order to always specify e.g. 'who made the recommendation', the status of the recommendation and or proposed action, whether or not it was approved, the associated dates, etc.          | Accepted. The last sentence will be revised as follows: "recommended for No Further Action by USACE in the first FYR (USACE 2015b).  ADEC-Accepted February 5, 2020                                                                                                                                                                                                                                                                                                                |

Page 1 of 62

February 19, 2020

| #  | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                                                                                                                                              | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----|--------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. | 2      | 1.0     | Please revise the first sentence of the first paragraph on this page since its present wording does not make grammatical sense.                                                                                                                                                                                                                                                                                                           | Accepted. The sentence will be revised to state: "Site 3, Site 6, Site 7, Site 8, Site 9, Site 10, Site 11, Site 13, Site 15, Site 16, Site 19, Site 27, and Site 32 are not addressed in this FYR because of the CERCLA petroleum exclusion; however, separate Periodic Review report(s) will be prepared for these sites because petroleum contamination remains above cleanup levels."  ADEC-Accepted February 5, 2020                                                                                                                                                                                                                                                                                       |
|    |        |         | Additionally, the information discussed in the first paragraph on this page needs to be better correlated with the discussion related to the comment above associated with the fourth paragraph.                                                                                                                                                                                                                                          | Clarification. This paragraph is a follow-on to the last paragraph on page 1, and in alignment with EPA's template.  ADEC-Noted February 5, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3. | 5      | II.     | Basis for Taking Action: ADEC records of post-DD soil analysis results indicate that numerous elevated concentrations of arsenic were observed during removal actions that were higher than the stated 170 mg/kg, notably as high as 340 mg/kg arsenic in soil; please clarify/emphasize this better in this statement and elsewhere throughout the document where non- vs. anthropogenic arsenic sources are mentioned and/or discussed. | Clarification. Section II discusses the basis for taking action at Site 21. At the time of the 2009 DD, arsenic at 170 mg/kg was the maximum detected concentration of arsenic in soil at Site 21. Arsenic in soil greater than 170 mg/kg has been found during investigations after the 2009 DD; however, these higher concentrations of arsenic discovered after the 2009 DD did not prompt the remedial action at Site 21.  ADEC-Noted February 5, 2020 Arsenic concentrations up to 340 mg/kg will be presented in Appendix C Section 3.1.1 and state: "Thirteen of the 19 soil borings contained arsenic at concentrations exceeding SSCLs up to 340 mg/kg (USACE 2015a)."  ADEC-Accepted February 5, 2020 |
|    |        |         | <u>Table 1</u> : Please add table notes to specify what is defined                                                                                                                                                                                                                                                                                                                                                                        | Accepted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    |        |         | as surface vs. subsurface soil and clarify throughout the                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| # | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                                               | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---|--------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |        |         | document the site-specific applications at both sites 21 and 28.                                                                                                                                                                                                                                                                           | The following notes defining surface soil depth and subsurface soil depth will be added to Table 1: "1Surface soils considered 0 to 2 feet depth (USACE 2009).  2Subsurface soils considered > 2 feet depth (USACE 2009)." ADEC-Accepted February 5, 2020                                                                                                                                                                                                                                                                                                                       |
|   |        |         | Please clarify whether decisions re: removal actions were made with respect to the water table and/or encountering surface water that resulted in arsenic being left in place above the respective applicable cleanup level and/or whether and how confirmation sampling was conducted.                                                    | Accepted. The following text will be added to the paragraph in the Status of Implementation Section to state: "One soil boring sample (13NC21SS17-0.5) containing arsenic at 14 mg/kg, collected outside the extent of any excavation, was not removed due to active surface water flow (USACE 2016) and one excavation sidewall sample containing arsenic at 13 mg/kg was left in place (USACE 2015a). Although the sample exceeded the site-specific cleanup level of 11 mg/kg, it was below the targeted removal concentration of 17 mg/kg."  ADEC-Accepted February 5, 2020 |
|   |        |         | Response Actions: Please revise the statement that 'no site-specific RAOs were developed for Site 21' to clarify that the site wide soil cleanup levels established in the 2009 DD were determined to be appropriate and protective at Site 21; and for that reason no additional site-specific cleanup levels were considered or applied. | Accepted. The text will be revised to state: "multi-site DD (USACE 2009). Sitewide RAOs were applied to Site 21 because the sitewide soil cleanup levels established in the multi-site DD were determined to be appropriate and protective at Site 21". ADEC-Accepted February 5, 2020 Section II Basis for Taking Action and Response Actions present the DD identified COCs and media for Site 21. ADEC-Accepted February 5, 2020                                                                                                                                             |
|   |        |         | Please also specify how the sitewide cleanup levels applied at site 21 are different than the site-specific cleanup levels for arsenic at Site 28.                                                                                                                                                                                         | Clarification. Site-specific cleanup levels for Site 21 and Site 28 were not specified in the multi-site DD. Rather,                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| #  | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                                                               | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----|--------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |        |         | Please clarify what is meant by '(ARARs) (PCBs)' in the                                                                                                                                                                                                                                                                                                    | general sitewide soil cleanup levels that were developed based on the Human Health Risk Assessment were applied to Site 21 and were protective of future residential land use. Sitewide cleanup levels for sediment at Site 28 were specified in the multi-site DD. Sediment cleanup levels are protective of future human and ecological receptors.  ADEC-Accepted February 5, 2020  The following text will be added to the second paragraph in Section II to state:  "Sitewide cleanup levels for PCBs and arsenic in soil were applied to Site 21."  ADEC-Accepted February 5, 2020  Accepted. |
|    |        |         | first bullet of this section (is this a typo?).                                                                                                                                                                                                                                                                                                            | The typo will be fixed. The bullet will be revised to state:  "appropriate requirements (ARARs) for PCBs or pertinent" ADEC-Accepted February 5, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4. | 6      | II.     | Response Actions: Please amend prior discussions in the beginning of the document as well as in association with applicable statements and references throughout the document to clarify the multi-site DD vs. the standalone DD for Site 7.                                                                                                               | Accepted. The terms "multi-site" or "Site 7" will precede mention of the applicable DDs. ADEC-Accepted February 5, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    |        |         | Expand the discussion in the last paragraph of this section following Table 2 to identify the current and future actions that should be considered in order to update site documentation including e.g. amendment(s) to the Decision Document, Memorandum for Record, etc. associated with confirmed changes to site conditions and site management needs. | Accepted. The following sentence will be added to the last paragraph of "Response Actions": It is recommended an explanation of significant differences be prepared to clarify groundwater LUCs are not needed at Site 21.  ADEC-Accepted February 5, 2020                                                                                                                                                                                                                                                                                                                                         |

| #  | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----|--------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |        |         | Please amend the last paragraph in this section in order to clarify that a portion of Site 21 (e.g. wastewater tank and PCB-contaminated soil area) is located further upgradient and potentially in hydrological communication with the contaminated groundwater associated the MOC versus the groundwater and hydrologically connected surface water that is located near the areas where the greater extents of arsenic-contaminated soils were removed.                                                  | Partially Agree. The following text will be added to the Status of Implementation Section to state: "Groundwater associated with the MOC is separate and distinct from Site 21."  ADEC-Accepted February 5, 2020; recommend amending the proposed revision with e.g. 'distinct from groundwater associated with all Site 21 AOCs.'.  Accepted. The previously referenced text will be revised to: "Groundwater associated with the MOC is separate and distinct from groundwater associated with all Site 21 AOCs." ADEC-Accepted February 14, 2020                                                                                                                                      |
| 5. | 7.     | II.     | Status of Implementation: Please clarify what is meant by the statement 'remain in force'.  Progress Since Last Review: Table 3: Please add either a table note and/or expand the statement of the protectiveness determination in order to clarify the time gap between what is stated as the 'last determination' vs. the 'last FYR in 2014' vs. the determination that 'the remedy is expected to be protective'; noting that the removal actions had already been completed at the time of the last FYR. | Accepted. The statement, "No elements of the selected remedy remain in force." will be removed.  ADEC-Accepted February 5, 2020  Accepted. Removal actions at Site 21 had not been completed at the time of the last FYR. The last removal action discussed in the previous FYR occurred in 2013. The final removal action at Site 21 occurred in the summer of 2014. The review period for the previous FYR ended in May 2014, which was prior to September 2014 when final remedial action field work was completed at Site 21.  ADEC-Accepted February 5, 2020  The following statement will be added to the first paragraph in the section titled, "Progress Since the Last Review": |

| #  | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----|--------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Protectiveness statements, issues, and recommendations made in the previous FYR were based upon remedies applied prior to May 2014.  ADEC-Accepted February 5, 2020  Also, in Table 4, the first row for Current Implementation Status Description will be changed to read, "All locations along the utilidor route were removed by excavation."  ADEC-Accepted February 5, 2020                                                                                                                                                                                                                                                                                                 |
| 6. | 8.     | II.     | Progress Since Last Review: Table 4: Please similarly apply the clarification requested in the paragraph above re: Table 3 to statements in Table 4 and throughout the remainder of the document where applicable.  Please also add a reference and clarification to identify Site                                                                                                                                                                          | Accepted. Please see the response to comment 7. ADEC-Accepted February 5, 2020  Disagree.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    |        |         | 7 in association with references to 'landfills' including Site 9.  New Comment February 5, 2020: All of the outstanding LUCs which are listed in Issues column are actually applicable to Site 28 and are also conditionally necessary in order for the remedy to be protective. Related to the original comment request and RTC on the right, this should be revised and table noted for clarification.  ADEC-Partially Accepted February 14, 2020; noting | The issues presented in Table 4 are the statements from the 2014 FYR and are accurate. As a result, this statement cannot be amended or revised.  In addition, Site 7 is discussed under a separate cover.  ADEC-Not Accepted February 5, 2020; the first FYR document was for all of the sites except site 7 and actually included the review for Site 9 while this document only addresses Sites 21 and 28. Further, the statement as it currently reads 'landfills at Site 9' is erroneous since there is not more than one landfill at Site 9. ADEC's request to provide a table note and/or to edit the statement with a table note in order to clarify this is reasonable. |
|    |        |         | that ADEC does not disagree with the RTC, as well as USACE's proposal to incorporate management of the southern boundary areas of Site 28 into the UECA for                                                                                                                                                                                                                                                                                                 | Accepted. The following table note will be added to Table 4:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| # | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                              | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---|--------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| # | Page # | Section | the MOC, however ADEC notes its non-concurrence with USACE's position that no CERCLA contamination remains at Site 28 (specifically but not limited to extents of CERCLA contamination in soil and groundwater); as will also be further discussed in ADEC's non-concurrence letter transmitted along with this template. | The issue presented in the 2014 FYR erroneously referenced "landfills" at Site 9. Only one landfill is present at Site 9.  ADEC-Accepted February 14, 2020  Please see additional new comment on the left. Accepted.  The following table note will be added to Table 4: An informational LUC, in accordance with UECA, describing residual POL-related contamination in sediment within the Site 28 drainage basin is recommended to prohibit disturbance of Site 28 sediment. LUCs with regard to soil and groundwater POL-related contamination at the southern boundary of Site 28 and within the previously defined "UVOST plumes" are also recommended, however, these will be included within the Environmental Covenant for the MOC. ADEC-Partially Accepted February 14, 2020; please see additional response on the left.  Upon further USACE review, the note referred to above will not be added because the issues/recommendations provided in this document pertain to CERCLA contamination only. The recommendation for an informational LUC for sediment at Site 28 will be documented in the Multiple Sites Periodic Review Report. In addition, the recommendation for LUCs with regard to soil and groundwater POL-related contamination at the southern boundary of Site 28 and within the previously defined "UVOST plumes" will also be |

| #  | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                                                                                      | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----|--------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |        |         | In the last paragraph of this section, please reference and include an explanation of ADEC's recent technical memorandum on determinations associated with non-anthropogenic sources of arsenic; and also specify the determination that the elevated concentrations of arsenic at site 21 are the result of anthropogenic activities.                                            | documented in the Multiple Sites Periodic Review Report.  Clarification.  Please note, the assessment in Appendix D concluded that arsenic concentrations remaining at Site 21 are naturally occurring and below the arsenic SSCL of 11 mg/kg. ADEC-Accepted February 5, 2020  A reference to the ADEC Technical Memorandum "Guidance for Evaluating Metals at Contaminated Sites" (August 2018), explanation of non-anthropogenic sources of arsenic, and the lines of evidence approach for the remaining arsenic in soil concentrations used at Site 21 will be added.  ADEC-Accepted February 5, 2020 |
|    |        |         | Note, this should also be referenced in the 'Other Findings' subsection of Section V on page 12; which should also state whether groundwater status was confirmed with discrete confirmation sampling and analysis.                                                                                                                                                               | The above response will also be referenced in Section V. ADEC-Accepted February 5, 2020 Clarification.  Arsenic in groundwater is not a concern. Only one 1994 groundwater result for total arsenic (at 0.072 mg/L) exceeded the cleanup level of 0.01 mg/L whereas no results for dissolved arsenic exceeded the cleanup level and arsenic was subsequently eliminated as a COC in groundwater (USACE 2009).  ADEC-Accepted February 5, 2020                                                                                                                                                             |
| 7. | 11     | IV.     | Question B Summary: Please add a reference and clarification that surface water and groundwater were also investigated at Site 21 and were used as additional lines of evidence in making considerations and decisions associated with nature and extent determinations. Additionally please clarify the distance between the PCB- and arsenic-contaminated AOCs being discussed. | Accepted. The following will be added to the end of the first paragraph in Question B Summary to state: "The distance between the area of PCB excavation at Site 21 and the nearest area of arsenic excavation at Site 21 is approximately 500 feet. Arsenic in water is not a concern. Only one 1994 groundwater result for total arsenic (at 0.072 mg/L) exceeded the cleanup                                                                                                                                                                                                                           |

| #  | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                                                          | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----|--------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |        |         |                                                                                                                                                                                                                                                                                                                                                       | level of 0.01 mg/L whereas no results for dissolved arsenic exceeded the cleanup level and arsenic was subsequently eliminated as a COC in groundwater (USACE 2009). Surface water samples collected in 2014 (where none of nine results for total or dissolved arsenic exceeded the cleanup level of 0.01 mg/L) demonstrated soil removal activities did not adversely impact surface water (USACE 2015a)."  ADEC-Accepted February 5, 2020                                                                                                                                                         |
| 8. | 14     | VIII.   | Table 5: Please amend the title of the table and add table notes as needed to clarify that the stated cleanup levels are specific to sediment associated with Site 28 and not relevant or applicable to other AOCs or 'sitewide' at NECape                                                                                                            | Clarification.  No change will be made to Table 5. Section 2.10 of the multi-site DD does not present site-specific sediment cleanup levels for Site 28. Sediment cleanup levels presented in the multi-site DD are applicable to continuously submerged sediments including Site 29, Site 28, and Site 8.  ADEC-Accepted February 5, 2020                                                                                                                                                                                                                                                           |
| 9. | 15     | VIII.   | Status of Implementation: The discussions re: contaminated sediment removal as well as statements that UU/UE has been achieved need to be revised and amended in order to be very clear that 1) only contaminated sediment located up to but no deeper than two-feet deep and was also otherwise determined to be practically accessible was removed, | Accepted. The first sentence in the Status of Implementation Section will be revised to state: "Excavation of contaminated sediment (suction dredging) to a depth of 1 to 2 feet began in 2012 and ended in 2013, which resulted in the excavation of 152 tons of sediment (USACE 2013b, 2015a)."  ADEC-Accepted February 5, 2020 Additionally, the first bullet in the description of the selected remedy for Site 28 in the Response Action will be revised to state: " removal of near-surface sediments (to a depth of 6 to 12 inches) from the narrow channel".  ADEC-Accepted February 5, 2020 |

| # | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---|--------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |        |         | and 2) that sediment contaminated with both CERCLA- and POL-contaminants was left in place, and that contaminants still persist across the site in the tundra in both previously investigated as well as non-characterized areas. ADEC-Not Accepted February 5, 2020; statements in the RTC as well as the document are out of context and only specifically address sediment that has been associated with prior sampling, analysis and/or removal activity at specific locations. The RTC as well as statements in the document do not address ADEC's comment that residual contamination (both CERCLA and non-CERCLA contaminants) in sediment, organic mat, and/or soil throughout the drainage are known to be present at concentrations that exceed respective applicable cleanup levels. Further, while sitewide sediment cleanup levels have been achieved at specific locations where removal actions have occurred, this is not applicable to residual contamination within the remainder of the drainage. Lastly, the subject sitewide sediment cleanup levels are site-specific risk-based ACLs, and it is not accurate or appropriate to state that these achieve UU/UE. | Clarification. 2013 sediment removal confirmation sample results, and results from the 2018 sediment mapping and sampling effort indicated all CERCLA (non-POL) Site 28 COCs (PCBs, chromium, lead, and zinc) were below the sitewide sediment cleanup levels established in the multi-site DD, and thus achieved UU/UE relative to all non-POL CERCLA contaminants. Following sediment removal in 2013, POL-related Site 28 COCs (diesel-range organics [DRO], residual-range organics [RRO], and PAHs) remained at some locations above the sitewide sediment cleanup levels.  ADEC-Not Accepted February 5, 2020; please see additional response on the left.  Accepted.  Please note the statement presented above will be revised to state: The 2013 sediment removal confirmation sample results and results from the 2018 sediment mapping and sampling effort indicated all non-POL CERCLA Site 28 COCs (PCBs, chromium, lead, and zinc) were below the sitewide sediment cleanup levels established in the multi-site DD, and thus achieved UU/UE relative to all non-POL CERCLA contaminants in sediment. Following sediment removal in 2013, POL-related Site 28 COCs (diesel-range organics [DRO], residual-range organics [RRO], and PAHs) remained at some locations above the sitewide sediment cleanup levels. |

| # | Page # | Section | ADEC Comment | Response                                                                                              |
|---|--------|---------|--------------|-------------------------------------------------------------------------------------------------------|
|   |        |         |              | ADEC-Accepted February 14, 2020                                                                       |
|   |        |         |              | Additional text will be added to Section VII,                                                         |
|   |        |         |              | "Response Action Summary" for Site 28 – Drainage                                                      |
|   |        |         |              | Basin and to Appendix C describing historical                                                         |
|   |        |         |              | investigations of Site 28 that informed the CSM and                                                   |
|   |        |         |              | the selection of the remedy in the 2009 DD.                                                           |
|   |        |         |              | ADEC-Accepted February 14, 2020                                                                       |
|   |        |         |              | The following text will be added to the end of the first                                              |
|   |        |         |              | paragraph of Section VII to state:                                                                    |
|   |        |         |              | "The conceptual site model presented for the Site 28                                                  |
|   |        |         |              | Drainage Basin in the multi-site DD (USACE 2009)                                                      |
|   |        |         |              | included an incised surface water channel with no                                                     |
|   |        |         |              | evidence of overbank flow contaminating surface soil                                                  |
|   |        |         |              | or the surrounding tundra. Results from surface soil                                                  |
|   |        |         |              | samples collected during pre-decisional investigations                                                |
|   |        |         |              | performed in 1994, 1996, and 1998 supported this                                                      |
|   |        |         |              | CSM (USACE 1999)."                                                                                    |
|   |        |         |              | ADEC-Accepted February 14, 2020                                                                       |
|   |        |         |              | The following text will be added as a new subsection                                                  |
|   |        |         |              | in Appendix C Section 3.2 and state:                                                                  |
|   |        |         |              | "Soil samples were collected in 1994, 1996, and 1998                                                  |
|   |        |         |              | from within the boundary of the Site 28 Drainage                                                      |
|   |        |         |              | Basin. Concentrations of DRO and PCBs exceeded                                                        |
|   |        |         |              | soil cleanup standards and reached as high as 83,000                                                  |
|   |        |         |              | mg/kg and 1.1 mg/kg, respectively (USACE 1999).                                                       |
|   |        |         |              | However, these samples were collected adjacent to the                                                 |
|   |        |         |              | MOC boundary at the upgradient extent of the drainage basin, are attributed to activities at the MOC, |
|   |        |         |              |                                                                                                       |
|   |        |         |              | and were removed during soil excavation activities conducted at the MOC."                             |
|   |        |         |              | ADEC-Accepted February 14, 2020                                                                       |
|   |        |         |              | See response to comment 15, part 2.                                                                   |
|   |        |         |              | see response to comment 13, part 2.                                                                   |

| # | Page # | Section | ADEC Comment                                            | Response                                                                                          |
|---|--------|---------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------|
|   |        |         |                                                         | ADEC-Partially/Accepted February 14, 2020; per                                                    |
|   |        |         |                                                         | further related responses.                                                                        |
|   |        |         | Further clarify that the statement(s) that UU/UE being  | Clarification.                                                                                    |
|   |        |         | achieved (as it is mentioned and referenced in this     | Based on 2013 sediment removal confirmation sample                                                |
|   |        |         | document), is accurate and limited to non-POL CERCLA    | results, accessible accumulated sediment was                                                      |
|   |        |         | COCs only and further is only applicable to that re-    | removed, and results from the 2018 sediment                                                       |
|   |        |         | accumulated sediment that was sampled in 2018 –and not  | sampling effort, which were indicative of re-                                                     |
|   |        |         | for the entire Site 28. ADEC-Not Accepted February 5,   | accumulated sediment, non-POL CERCLA COCs are                                                     |
|   |        |         | 2020; ADEC's emphasis is that only 'accessible          | no longer present at Site 28 in exceedance of the multi-site DD cleanup levels.                   |
|   |        |         | sediment' was removed, and further that primarily only  | "non-POL" will be added prior to "CERCLA                                                          |
|   |        |         | those same 'accessible' locations were targeted and     | contaminants". ADEC-Not Accepted February 5,                                                      |
|   |        |         | resampled in 2018. The boundary and AOC of what         | 2020; please see additional responses to the left and                                             |
|   |        |         | has been considered Site 28 is not limited to the       | in the above-left to the RTC immediately above.                                                   |
|   |        |         | 'accessible sediment' within the drainage, rather the   | Accepted.                                                                                         |
|   |        |         | extent of the release and/or impacted area(s) which has | See response to comment 9, part 2 for a description of                                            |
|   |        |         | historically included the entire drainage and adjacent  | the conceptual site model of the Site 28 drainage and                                             |
|   |        |         | tundra that is located between the downgradient area of | why sediment within the main drainage channel is the                                              |
|   |        |         | the MOC and the confluence with the Sugi River.         | only media of concern at Site 28. Known non-                                                      |
|   |        |         | , , , , , , , , , , , , , , , , , , ,                   | CERCLA POL soil and groundwater contamination                                                     |
|   |        |         |                                                         | associated with the MOC on the southern end of the                                                |
|   |        |         |                                                         | site are recommended for management under MOC                                                     |
|   |        |         |                                                         | Site 11. LUCs associated with this contamination are                                              |
|   |        |         |                                                         | also recommended under the Environmental Covenant                                                 |
|   |        |         |                                                         | for the MOC. ADEC-Partially Accepted February                                                     |
|   |        |         |                                                         | 14, 2020; per related additional response(s) above.                                               |
|   |        |         |                                                         | See response to comment 15 part 2 for a description of LUCs. ADEC-Partially/Accepted February 14, |
|   |        |         |                                                         | 2020; per further related responses.                                                              |
|   |        |         |                                                         | Please note that first bullet of the "Other Findings" in                                          |
|   |        |         |                                                         | Section XI contains a recommendation to formally                                                  |

| # | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---|--------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |        |         | The discussion in the second paragraph of this section (and elsewhere throughout the document where applicable), should specify that the targeted removal actions were intended to remove the most contaminated sediment that was practically accessible, and that the remedy was not intended nor anticipated to achieve UU/UE in all sediment or across the entire Site 28. ADEC-Partially Accepted February 5, 2020; related to prior responses above, statements and discussion throughout the document do not provide the adequate or accurate context that the remedial action objective(s) did not include removing/remediating all of the contamination in water, soil and/or sediment at Site 28. More emphasis and context is necessary re: the primary RAO which was in fact to limited and focused removal of accessible contaminated sediment and to manage and monitor the remaining soil, groundwater, and sediment contamination in place. | document the contamination remaining at the southern end of Site 28 associated with MOC Site 11.  ADEC-Accepted February 14, 2020  Accepted.  The following sentence will be added to the second paragraph of "Status of Implementation": The targeted removal actions were intended to remove all continuously submerged sediment contaminated with COCs above the site-wide sediment cleanup levels, including removal of near-surface (6-12 inches deep) continuously submerged sediments from the narrow channel upgradient of the Suqi River. The intent was to remove the most highly contaminated materials closest to the main complex.  ADEC-Partially Accepted February 5, 2020; please see additional response on the left.  Accepted.  See response to comment 9, part 3.  ADEC-Partially Accepted/Noted February 14, 2020; per related additional response(s) above. |
|   |        |         | Re: the discussion in the last paragraph of this section, please see and apply related comment below on section XI., in association with the selected remedy to construct a stilling basin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Accepted. The discussion will be revised to include the following: A sedimentation pond or other institutional controls, as described in the multi-site DD (USACE 2009), have not been implemented. Construction of a sedimentation pond within the drainage basin would cause unnecessary adverse impacts to the wetland environment. There is a natural stilling area in Site 28 approximately 200 feet south of the Suqi River                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| #   | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----|--------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (Figures B-6 through B-10) where the surface water flow channels disperse. Based on confirmation samples collected during the 2013 excavation, samples collected from the Suqi river in 2016, and resampling of sediment in 2018, the stilling area and existing, natural ponds are functioning as sedimentation ponds and have prevented migration of contaminants above the multi-site DD cleanup levels from Site 28 into the Suqi River.  ADEC-Accepted February 5, 2020  The following sentence will be added to "Response Actions":  It is recommended an explanation of significant differences be prepared to clarify a sedimentation pond or other institutional control is not needed at Site 28. ADEC-Accepted February 5, 2020 |
| 10. | 16     | VIII.   | Progress Since the Last Review: Table 6: The protectiveness statement should be revised and amended, and table note clarifications added as needed in order to clarify that removal actions to the extent practical have resulted in achieving limited/targeted mitigation of exposure and offsite migration to the extent practical for non-POL CERCLA COCs only, however not for POL COCs and not for the entirety of Site 28 source areas; and further that this will require CERCLA FYRs and remedy monitoring in perpetuity until otherwise demonstrated that UU/UE has been achieved. | Disagree. The protectiveness statement in Table 6 is the statement from the 2014 FYR, and is accurate. As a result, this statement cannot be amended or revised.  ADEC-Not Accepted February 5, 2020; however in association with numerous other related responses to RTCs, this issue requires additional clarification here and in other related discussions and statements throughout the document. The request for a table note to clarify this and provide the adequate context is reasonable.  Accepted. The following table note will be added to Table 6: Removal actions within the Site 28 drainage have been successful in achieving SSCLs for non-POL                                                                          |

| #   | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----|--------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CERCLA COCs in sediment. However, POL COCs remaining in sediment above SSCLs will require Periodic Reviews until UU/UE has been achieved. ADEC-Partially Accepted February 14, 2020; per related additional response(s) above. ADEC agrees with the conclusions with re: to non-POL CERCLA contaminants in sediment but does not concur with applying that conclusion sitewide to Site 28.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 11. | 17     | IX.     | Data Review: The second sentence of the first paragraph, as well as other related discussion and statements throughout the document, should be revised and amended in order to better clarify and emphasize the differences between 1) the residual contamination in Site 28 sediment that was removed - which also for the most part represented locations that were resampled in subsequent years, versus 2) contaminated sediment that was left in place vs. site wide contamination in tundra that was left in place, and 3) 2012-13 mapping and survey locations vs. 2013-14 removal action locations vs. 2016 Suqi River and 2018 Site 28 sediment sampling and analysis locations. The varying extent of site conditions, source areas, removal actions, and sampling locations over time make it complicated (and from ADEC's perspective inappropriate), to apply conclusions drawn from sediment associated with surface water locations to the entire site wide area/drainage basin of what is considered Site 28. | Accepted. The second sentence of the first paragraph will be revised as follows: The new data for Site 28 included data from the 2013 removal action report (USACE 2015a), which included results for sediment confirmation samples; 2016 sediment and surface water sampling in the Suqi River (USACE 2017), which enabled evaluation of potential impacts to sediment and surface water in the Suqi River that may have resulted from upgradient Site 28 contamination; and the 2018 Site 28 Sediment Mapping effort (USACE 2018), which included sampling data at the original 2012 sediment sampling locations within Site 28 for comparison between preremoval and post-removal sediment accumulation and evaluation of residual contamination. ADEC-Partially Accepted February 5, 2020; ADEC agrees with what is stated the RTC, however in relation to other similar responses, the RTC does not address several of the primary issues raised in the original comment. ADEC's position is that too much emphasis is being placed on the previously mapped, sampled, and/or removed, and/or re- |

| # | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                                                                                                                                     | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---|--------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                  | accumulated sediment, and is potentially overlooking/underemphasizing and thus misrepresenting the status and extent of contamination across the whole of what is considered Site 28.  Accepted.  Please see response to comment 9, part 2.  ADEC-Partially Accepted February 14, 2020; per related additional response(s) above.  Additionally, the first paragraph in Data Review will be revised to state:  " 2016 sediment and surface water sampling in the Suqi River (USACE 2017) used as a line of evidence for evaluation of potential impacts to sediment and surface water in the Suqi River that may have resulted from upgradient Site 28 contamination; and the Site 28 re-accumulated sediment mapping effort (USACE 2018), which included collecting samples at the original 2012 sediment sample locations within Site 28 for comparison between pre-removal sediment results and post-removal (i.e., re-accumulated) sediment results."  ADEC- Accepted February 14, 2020 |
|   |        |         | Please elaborate on the discussion in the second two sentences of the last paragraph on this page to better clarify 1) the evaluation process and determinations that resulted in the stated conclusion re: sediment re-accumulation and extent of contaminated sediment observed in 2018 (e.g. provide a brief summary statement here and also reference the section of the report that contains the more in-depth discussion), | Accepted. The last paragraph will be split into three paragraphs in order to more fully describe the process by which the determinations were made. The first clarification will be made with the addition of the following text: This was determined by comparing the volume of sediment estimated in 2012, the volume of sediment removed in 2012 and 2013, and the volume of sediment estimated in 2018 by removal area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| # | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                   | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---|--------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| # | Page # | Section | and 2) when and how the contaminated sediment volume was estimated and whether this was based upon e.g. comparing only 2018 sampling and surveyed locations with prior removal locations (noting the contaminated sediment that was left in place in 2013-14). | Additionally, discrete locations were compared within select removal areas for sediment thicknesses measured during the 2012 and 2018 mapping efforts. Visual field observations, such as surface evidence of sloughing, were also used to determine the likelihood of sediment re-accumulation.  ADEC-Accepted February 5, 2020  Accepted.  Contaminated sediment that was left in place in 2013 was accounted for through the re-mapping of the entire Site 28 drainage and re-sampling of the 2012 mapping locations, with the exception of Area 1, which was not re-sampled.  The second clarification will be made with the addition of the following text:  This estimate was derived by using the sediment depth measurements collected during the 2018 mapping effort, estimating extents of contamination based on analytical results from the 2018 sediment samples, and calculating volume of contaminated sediment using the average thickness of sediment as illustrated on the cross sections for each transect (Attachment F-1 of Appendix F). Where multiple transects were collected to represent an elongated water body, the sediment |
|   |        |         |                                                                                                                                                                                                                                                                | thickness averaged from each transect was further weighted to account for differences in the width of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |        |         |                                                                                                                                                                                                                                                                | water body. For additional information regarding how<br>the sediment was measured and how volume<br>calculations were performed, refer to Section 4.0 of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   |        |         |                                                                                                                                                                                                                                                                | Appendix F. ADEC-Accepted February 5, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| #   | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----|--------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12. | 18     | IX.     | Data Review: Please elaborate the statement in the last sentence of the second paragraph of this page to adequately clarify and emphasize that no subsurface soil remedy component is described in the DD for Site 28 because it was determined and agreed upon by the parties that any invasive activities in the Site 28 tundra (outside of the proposed dredge removal that would be limited to only practically accessible sediment), would likely result in excessive adverse impacts that would be far greater to the natural resources, habitat, and site conditions than managing the contamination in place – as long as future LTM, FYRs, and protectiveness determinations concluded that the selected remedy was still appropriate and protective. | Accepted. The following text will be added to the end of the second paragraph in Data Review: "No subsurface soil remedy is described in the multisite DD for the site (USACE 2015b) because invasive activities in the Site 28 tundra, such as excavation in excess of the proposed suction dredge removal of practically accessible sediment, would likely result in adverse impacts that would be far greater to the natural resources and habitat than the remaining contamination. The selected remedy of removing the most highly contaminated and accessible sediment closest to the MOC, and from the narrow drainage channel and ponded areas in the lower half of Site 28 using a minimally invasive removal technique (such as suction dredging) while also managing the contamination in place by controlling downstream migration of suspended sediments and performing FYRs to ensure the remedy remains protective, was determined and agreed upon in the DD in order to minimize adverse impacts to existing natural resources and habitat." ADEC-Accepted February 5, 2020 |
|     |        |         | Further, the mention in the preceding sentence re: the MOC excavations that did not proceed and associated contamination that was subsequently left in place for similar reasons as noted above should be elaborated on in order to specify that this was proposed by USACE to ADEC (and subsequently approved by ADEC), during insitu removal actions in years following the 2009 DD.                                                                                                                                                                                                                                                                                                                                                                         | Accepted. The referenced text will be revised as follows: "MOC Site 11 excavations adjacent to Site 28 did not proceed into Site 28 at Ultraviolet Optical Screening Tool (UVOST) plumes D2, D3, I1, and J1B due to concern of impacting the wetland environment (USACE 2015a). Ceasing excavation activities associated with Site 11 before these activities entered into Site 28 was proposed by USACE during the 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| #   | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----|--------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | removal action and subsequently agreed upon by ADEC. "ADEC-Accepted February 5, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |        |         | ADEC has previously noted on numerous occasions over the years since the 2009 DD was finalized (and still maintains the position), that the potential ambiguities re: specified cleanup levels and required site actions based upon what is and what is not 'specified in the 2009 DD(s), as well as changes to the implementation and management of some remedies and also site conditions over time all warrant and justify the need to consider amending and/or revising the DD, or developing an ESD, or memorandum, etc. in order to reconcile and accurately document the prior discrepancies in conjunction with current site conditions and future management needs.                                                                                                                                                                                            | Clarification. As a result of ADEC comments on the draft FYR document, "Other Findings" have been added to Section XI "Issues/Recommendations" this FYR as stated in these responses to comments.  ADEC-Accepted February 5, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 13. | 18     | X.      | Technical Assessment; Question A Summary: Please apply comments and change requests stated above (and further below), in association with statements re: contaminated sediments vs. site wide considerations and references to the applicability of UU/UE statements.  ADEC-Partially Accepted February 5, 2020; statements associated with UU/UE need to be amended/revised in order to provide adequate emphasis that 1) UU/UE would only apply to those specific sediment areas/locations associated with historical activities and/or the DD, and 2) that UU/UE is based upon a risk-based cleanup level for the subject specific sediment locations, and is not necessarily applicable across the entirely of what is considered Site 28. Meeting the criteria/cleanup levels that are identified in a DD does not necessarily result in the site achieving UU/UE; | Accepted. The referenced text will be revised as follows: The selected remedy remains protective and has functioned as intended for CERCLA contaminants. The selected remedy in the 2009 Decision Document included removing the most highly contaminated and accessible sediment closest to the MOC and from the narrow drainage channel and ponded areas in the lower half of Site 28 using a minimally invasive removal technique (such as suction dredging). The remedy also included management of the contamination in place by controlling downstream migration of suspended sediments and performing FYRs to ensure the remedy remains protective. CERCLA non-POL COC (PCBs, chromium, lead and zinc) concentrations in sediment samples have been reduced to levels that would allow UU/UE; however, |

| # | Page # | Section | ADEC Comment                                                                                                                                                                                               | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---|--------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| # | rage # | Section | rather meeting the criteria for UU/UE which in this case would be residential land use which in the long-term is not acceptable for the majority of the area inside the boundary considered to be Site 28. | the remedy did not function as intended for POL- related Site 28 COCs (DRO, RRO, and PAHs). The results of the confirmation samples following excavation and data collected in 2018 indicated that POL-related Site 28 COCs (DRO, RRO, and PAHs) are present in Site 28 sediment above the sitewide sediment cleanup levels.  ADEC-Partially Accepted February 5, 2020; please see additional response on the left.  Accepted.  The comment response will be revised as follows:                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   |        |         |                                                                                                                                                                                                            | The selected remedy remains protective and has functioned as intended for CERCLA contaminants in sediment within the Site 28 drainage. The selected remedy in the 2009 Decision Document included removing the most highly contaminated and accessible sediment closest to the MOC and from the narrow drainage channel and ponded areas in the lower half of Site 28 using a minimally invasive removal technique (such as suction dredging). The remedy also included management of the contamination in place by controlling downstream migration of suspended sediments and performing FYRs to ensure the remedy remains protective.  ADEC- Accepted February 14, 2020  CERCLA non-POL COC (PCBs, chromium, lead and zinc) concentrations in sediment samples have been reduced to the SSCLs, which were risk-based levels that meant to achieve UU/UE; however, the remedy did not function as intended for POL-related Site 28 |

| # | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---|--------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |        |         | Please clarify the reference to sediment in the last sentence on this page, whether this is intended to and/or appropriate to be associated with only re-accumulated sediment that was surveyed and sampled in 2019 or site wide.                                                                                                                                                                                                                                                    | COCs (DRO, RRO, and PAHs) in sediment. The results of the sediment confirmation samples following excavation and data collected from reaccumulated sediment in 2018 indicated that POL-related Site 28 COCs (DRO, RRO, and PAHs) are present in Site 28 sediment within the drainage basin above the sitewide sediment cleanup levels.  ADEC- Accepted February 14, 2020  Accepted.  Please see the last sentence of RTC 13 above. ADEC-Partially Accepted February 5, 2020; please amend to provide additional emphasis that the statement applies to re-accumulated sediment only.  Accepted.  Please see the additional revisions to the RTC above. |
|   |        |         | Similarly apply other related comments re: contaminated sediment that was left in place (e.g. greater than 2 feet below the water surface, impractical access, etc.), in association with the statement in the last sentence of this subsection in the first paragraph at the top of page 18. Please also revise/amend this and other references throughout the document to 'limiting removal to the first 2 feet) to specify that this was based on 2 feet below the water surface; | ADEC- Accepted February 14, 2020  Accepted.  The following sentence will be added to the paragraph describing the calculations of sediment volume and reaccumulation (in the "Data Review" Section of IX): Sediment measured that was not the result of reaccumulation may be the result of the removal activity ceasing beyond 2-feet below the surface of the water, management decisions between USACE and ADEC to limit the excavation activity to accessible sediments to reduce impacts to the wetland environment, and mechanical limitations of a suction dredge in highly vegetated areas. ADEC- Accepted February 5, 2020                    |

| #   | Page # | Section | ADEC Comment                                                                                                                                                                                                        | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----|--------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |        |         | and further include statements that specify how sediment at Site 28 was defined and approved by the project delivery team and ADEC post 2009 DD.                                                                    | Accepted. The first two sentences of the first paragraph of the "Data Review" section of IX will be revised to: The data review for Site 28 primarily focused on contaminated sediment data that were generated after the 2014 FYR. "Sediment", as defined by the USACE project delivery team and ADEC project manager, is considered to be "all continuously submerged loose material (mineral and/or organic) except for that which is actively growing vegetation or is part of a vegetative mat." ADEC- Accepted February 5, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 14. | 19     | X.      | Question B Summary: Please elaborate the statement in the last sentence on this page to specify/clarify how and why the stated revisions would 'not significantly affect risk' and further how this was determined. | Accepted In the Question B Summary, A new table (Table 8) will be added (see bottom of RTCs for full table)  ADEC- Accepted February 5, 2020 and Paragraph 3 will be replaced with the following: The sources of the multi-site DD cleanup levels were evaluated to ascertain if any value had decreased in more recent versions of the source document (Table 7) as well as other available benchmarks for benthic macroinvertebrates, birds, and mammals (Table 8) to determine if the multi-site DD cleanup levels continue to be protective of wildlife at Site 28. As shown in Table 8, the multi-site DD cleanup levels are more conservative than the new sediment cleanup levels (WAC, 2013), equilibrium partitioning (EqP) sediment benchmarks (EPA, 2003 and EPA, 2012), as well as ecological preliminary remedial goals (EcoPRGs) for birds and mammals (LANL, 2017).  The 2013 WAC sediment cleanup levels (Table 8) are higher than the multi-site DD cleanup levels for fluoranthene and total HPAHs and are lower |

| #   | Page # | Section | ADEC Comment                                                 | Response                                                                                            |
|-----|--------|---------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|     |        |         |                                                              | than the multi-site DD cleanup levels for                                                           |
|     |        |         |                                                              | benzo(g,h,i)perylene and indeno(1,2,3-cd)pyrene.                                                    |
|     |        |         |                                                              | • The default equilibrium partitioning (EqP)                                                        |
|     |        |         |                                                              | sediment benchmarks for PAHs (Table 8) are derived                                                  |
|     |        |         |                                                              | using final chronic values for surface water and a total                                            |
|     |        |         |                                                              | organic carbon of 1%. The derivation methodology is                                                 |
|     |        |         |                                                              | presented in EPA (2012). All EqP sediment                                                           |
|     |        |         |                                                              | benchmarks for PAHs are higher (less) conservative                                                  |
|     |        |         |                                                              | than the multi-site DD cleanup levels.                                                              |
|     |        |         |                                                              | • Ecological preliminary remedial goals                                                             |
|     |        |         |                                                              | (EcoPRGs) from the LANL database are the lowest                                                     |
|     |        |         |                                                              | available for birds and mammals for exposure to soils                                               |
|     |        |         |                                                              | or sediments. The EcoPRGs are calculated using the lowest observed adverse effect level (LOAEL) and |
|     |        |         |                                                              | either a default area use factor (AUF=1) or a site-                                                 |
|     |        |         |                                                              | specific AUF (based on the acreage of Site 28 of                                                    |
|     |        |         |                                                              | 14.65 acres). Both sets of EcoPRGs as wells as the                                                  |
|     |        |         |                                                              | species with the lowest value are presented in Table 8.                                             |
|     |        |         |                                                              | The EcoPRGs assuming an AUF=1 are higher (less                                                      |
|     |        |         |                                                              | conservative) for all COCs, with the exception of lead                                              |
|     |        |         |                                                              | and zinc. The EcoPRGs using Site 28 AUFs are higher                                                 |
|     |        |         |                                                              | (less conservative) for all COCs.                                                                   |
|     |        |         |                                                              | Based on comparison of the multi-site DD cleanup                                                    |
|     |        |         |                                                              | levels to updated WAC sediment cleanup levels as                                                    |
|     |        |         |                                                              | well as available benchmarks for the protection of                                                  |
|     |        |         |                                                              | benthic macroinvertebrates, birds, and mammals, the                                                 |
|     |        |         |                                                              | multi-site DD cleanup levels continue to be protective                                              |
|     |        |         |                                                              | of wildlife that may potentially use Site 28.                                                       |
|     |        |         |                                                              | ADEC- Accepted February 5, 2020                                                                     |
| 15. | 20     | X.      | Question B Summary; Table 7: Please amend the table          | Disagree.                                                                                           |
|     |        |         | notes and associated narrative discussion to specify/clarify |                                                                                                     |
|     |        |         | that the SSCLs identified for sediment at Site 28 were       |                                                                                                     |

| # | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                                                                                                                                             | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---|--------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |        |         | intended to only be applied to 'sediment' at Site 28 and are not applicable in general to sediment or other non-Site 28 locations.                                                                                                                                                                                                                                                                                                       | The 2009 multi-site DD does not contain Site 28-specific cleanup levels, rather, a Northeast Cape-wide sediment cleanup level was determined.  ADEC- Accepted February 5, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |        |         | Re: the discrepancy discussed in the comment immediately above as well as those identified in the subject table notes re: the sources, and others throughout the document associated with discrepancies, inconsistencies, and/or site condition changes related to the 2009 DD, ADEC recommends that this FYR include an itemized list of potential revisions, amendments, etc. that should be considered to the DD for Sites 21 and 28. | Clarification. The only outstanding issue that was identified during the FYR for Site 28 was the effectiveness of the remedy at the site, for which, pilot testing to improve the effectiveness of remedy implementation (suction dredging) was recommended. Additional findings are provided in bulleted lists under "Other Findings" of Section V., "Issues/Recommendations".  ADEC- Partially Accepted February 5, 2020; related to other similar responses, further emphasis discussion and statements are necessary where applicable throughout the document re: the outstanding LUCs, and residual contamination that remains in place. |
|   |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                          | Accepted.  A final sentence will be added to the last bullet of "Other Findings" of Section XI. Please note the reference (Section V.) in the RTC above was erroneous.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   |        |         | ADEC-Partially Accepted February 14, 2020; noting that ADEC does not disagree with the RTC, as well as USACE's proposal to incorporate management of the southern boundary areas of Site 28 into the UECA for the MOC, however ADEC notes its non-concurrence with USACE's position that no CERCLA                                                                                                                                       | ADEC-Accepted February 14, 2020  "An informational LUC, in accordance with UECA, describing residual POL-related contamination in sediment within the Site 28 drainage basin is recommended to prohibit disturbance of Site 28 sediment. LUCs with regard to soil and groundwater                                                                                                                                                                                                                                                                                                                                                             |

| #   | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----|--------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |        |         | contamination remains at Site 28 (specifically but not limited to extents of CERCLA contamination in soil and groundwater); as will also be further discussed in ADEC's non-concurrence letter transmitted along with this template.                                                                                                                                                                                                                                                                                                                  | POL-related contamination at the southern boundary of Site 28 and within the previously defined "UVOST plumes" are also recommended, however, these will be included within the Environmental Covenant for the MOC." ADEC-Partially Accepted February 14, 2020; please see additional response on the left.  Upon further review, the final sentence referred to above will not be added because the issues/recommendations provided in this document pertain to CERCLA contamination only. However, the recommendation for an informational LUC for sediment at Site 28 will be documented in the Multiple Sites Periodic Review Report. In addition, the recommendation for LUCs with regard to soil and groundwater POL-related contamination at the southern boundary of Site 28 and within the previously defined "UVOST plumes" will also be documented in the Multiple Sites Periodic Review Report. |
| 16. | 21     | X.      | Question B Summary: Please amend the statement and discussion in the last sentence of the second to last paragraph of the Question B subsection on this page in order to specify/clarify 1) has it been definitively demonstrated that the stilling area 'prevents' or, is 'reduces' a more appropriate description – noting additionally that the 2016 Suqi River sampling was not intended to characterize upgradient transport and deposition rather was prescriptively intended to only 'repeat sampling and evaluations' specifically associated | Accepted. Additional discussion will be added to the second to last paragraph: This has been confirmed by the 2018 sediment mapping and sampling event (Appendix F), the results of which indicated no contaminants exceeded the SSCLs downstream of the natural stilling area. In addition, results of a surface water and sediment sampling effort of the Suqi River conducted in 2016 (USACE 2017) also indicated no contaminants exceeded the SSCLs in Suqi River samples.                                                                                                                                                                                                                                                                                                                                                                                                                              |

| # | Page # | Section | ADEC Comment                                              | Response                                                                                       |
|---|--------|---------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------|
|   |        |         | with the historical Suqi River locations?; ADEC-Partially | Therefore, the Suqi River is not receiving                                                     |
|   |        |         | Accepted February 5, 2020; previous discussion and        | contamination from an upgradient source such as Site                                           |
|   |        |         | resolution between USACE and ADEC resulted in             | 28.                                                                                            |
|   |        |         | concurrence that prior surface and sediment sampling      | ADEC- Partially Accepted February 5, 2020;                                                     |
|   |        |         | activities and results associated with the Suqi River     | please see additional response on the left.                                                    |
|   |        |         | were intended to be and are considered only applicable    | A                                                                                              |
|   |        |         | to those Suqi River locations, and are not appropriate    | Accepted.                                                                                      |
|   |        |         | to draw conclusions with re: to whether or not            | The additional discussion referenced above will be                                             |
|   |        |         | upgradient contaminant sources are migrating to the       | revised as follows:                                                                            |
|   |        |         | subject Suqi River sampling locations.                    | Tovised as follows.                                                                            |
|   |        |         |                                                           | This has been confirmed by the 2018 sediment                                                   |
|   |        |         |                                                           | mapping and sampling event (Appendix F), the results                                           |
|   |        |         |                                                           | of which indicated no contaminants exceeded the                                                |
|   |        |         |                                                           | SSCLs in re-accumulated sediment downstream of the                                             |
|   |        |         |                                                           | natural stilling area. DRO concentrations in sediment                                          |
|   |        |         |                                                           | samples analyzed with the silica gel method were                                               |
|   |        |         |                                                           | detected well below the cleanup level in this area, at a                                       |
|   |        |         |                                                           | maximum concentration of 1,890 mg/kg. The highest detected RRO concentration in re-accumulated |
|   |        |         |                                                           | sediment analyzed with the silica gel method was                                               |
|   |        |         |                                                           | 1,660 mg/kg. The SSCL for both of these analytes is                                            |
|   |        |         |                                                           | 3,500 mg/kg. PAHs were either not detected or were                                             |
|   |        |         |                                                           | detected with estimated concentrations well below the                                          |
|   |        |         |                                                           | cleanup level. Metals were detected in this area, but                                          |
|   |        |         |                                                           | also well below the cleanup levels. Therefore, the Suqi                                        |
|   |        |         |                                                           | River is not receiving contamination from an                                                   |
|   |        |         |                                                           | upgradient source such as Site 28. Data tables for                                             |
|   |        |         |                                                           | these results are available in Attachment F-2. In                                              |
|   |        |         |                                                           | addition, results of a surface water and sediment                                              |
|   |        |         |                                                           | sampling effort of the Suqi River conducted in 2016                                            |
|   |        |         |                                                           | (USACE 2017) also indicated no contaminants                                                    |

| # | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                             | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---|--------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |        |         | and 2) the informal agreement between USACE and ADEC to tentatively and temporarily postpone the construction of an engineered stilling basin to allow the opportunity to evaluate whether the natural stilling actions provided adequate functionability and protectiveness as required by the 2009 DD. | exceeded the SSCLs in Suqi River sediment or surface water samples. Silica gel method was not performed on these samples, however, DRO (540 mg/kg in sediment) and RRO (2,500 mg/kg) at the confluence of the Suqi River, location S29-002, did not exceed SSCLs. Surface water samples were non-detect for all PAHs except for a j-flagged naphthalene result of 0.0000043 mg/L. TAH and TAqH did not exceed the DD criterion and sheen was not observed at this location. ADEC- Accepted February 14, 2020  Accepted.  The "Changes in Exposure Pathways" will be split into three paragraphs and revised to include the following text:  The multi-site DD (USACE 2009) remedy for Site 28 includes construction of a man-made settling pond "or other appropriate controls" in order to manage the contamination in place by controlling downstream migration of suspended sediments and prevent migration of contamination into the Suqi River. There is a natural stilling area in Site 28 approximately 200 feet south of the Suqi River (Figure B-5) where the surface water flow channels disperse. The USACE and ADEC temporarily postponed the construction of a settling pond to allow the opportunity to evaluate whether the natural stilling actions provided adequate functionality and protectiveness as required to meet the RAO to prevent migration of contaminants into the Suqi River.  This stilling area, in addition to the natural, existing ponds, have proven effective at preventing migration of contaminants above risk-based sediment cleanup |

| #   | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----|--------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | levels into the Suqi River. This has been confirmed by the 2018 sampling (Appendix F), in which no contaminants exceeded the SSCLs beyond the natural stilling area in Site 28. In addition, results of a surface water and sediment sampling effort of the Suqi River conducted in 2016 (USACE 2017) also indicated no contaminants exceeded the SSCLs in Suqi River samples. Therefore, the Suqi River is not receiving contamination from an upgradient source such as Site 28. ADEC- Partially Accepted February 5, 2020; please see and apply related response immediately above left re: RTCs associated with fate and transport of contamination to the Suqi River.  Accepted.  Please see the response to the comment above. ADEC- Accepted February 14, 2020 |
| 17. | 22     | XI.     | Issues/Recommendations: ADEC does not concur with the proposed timeline in the recommendation statement to conduct bench scale remedy implementation 'by 2023'; noting that this should be conducted sooner given that 1) sediment removal had minimum/limited effectiveness in reducing contamination and/or mitigating re-accumulation and the potential for offsite migration and/or exposure, and 2) additional action should be prioritized, scheduled and implemented sooner in order to allow for earlier decisions and actions to address the remaining contamination.  Other Findings: The discussion re: the unconstructed engineered stilling basin second bullet (and throughout the document where applicable), should be expanded in order | Clarification. The proposed timeline is five years from the start of the review period of this Five-Year Review. If a current exposure pathway is identified (of which currently, there is only risk of future exposure), additional actions may be prioritized.  ADEC- Accepted February 5, 2020  Accepted. The second bullet paragraph under "Other Findings" will be modified to the following:                                                                                                                                                                                                                                                                                                                                                                    |

| # | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                                                                                                                                | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---|--------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |        |         | to emphasize the site management issues that were considered and decisions that were made post-decision document with re: to concerns whether or not the naturally occurring low-flow settling areas within the Site 28 drainage would function as needed in order to achieve protectiveness without running the risk of causing adverse site impacts as a result of invasive construction of an engineered stilling basin. | Construction of a sedimentation pond or other institutional controls, as described in the multi-site DD (USACE 2009), have not occurred at Site 28. There is a natural stilling area in Site 28 approximately 200-ft. south of the Suqi River (Figure B-6) where the surface water flow channels disperse. This stilling area, in addition to the existing, natural ponds, has been found to prevent migration of contaminants above risk-based cleanup levels into the Suqi River. This has been confirmed by the 2018 sampling (Appendix F), in which no contaminants exceeded the SSCLs beyond the natural stilling area in Site 28. In addition, results of a surface water and sediment sampling effort of the Suqi River conducted in 2016 (USACE 2017) also indicated no contaminants exceeded the SSCLs in Suqi River samples. Therefore, the Suqi River is not receiving contamination from an upgradient source such as Site 28. Construction of a sedimentation pond within the drainage basin would cause unnecessary impacts to the wetland environment, as natural features are successfully preventing contaminant migration. Although this has been documented in the LTM plan (USACE 2016b), it is recommended that an explanation of significant differences be completed for Site 28 to document the post-DD change.  ADEC- Accepted February 5, 2020  Please note that although this response was accepted, the second bullet paragraph under "Other Findings" will be modified to be consistent with other comments. ADEC- Accepted February 14, 2020 See response to comment 25 part 9. |

| #   | Page # | Section | ADEC Comment                                               | Response                                                                                    |
|-----|--------|---------|------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|     |        |         |                                                            | ADEC- Accepted February 14, 2020                                                            |
|     |        |         | Is an ESD and/or amendment(s) to the DD the more           | Clarification.                                                                              |
|     |        |         | appropriate method of formally documenting the change?     | An ESD is required when the remedy has changed                                              |
|     |        |         |                                                            | significantly from the preferred alternative presented                                      |
|     |        |         |                                                            | in the Proposed Plan. A DD amendment is required                                            |
|     |        |         |                                                            | when the remedy has changed fundamentally from the                                          |
|     |        |         |                                                            | preferred alternative presented in the Proposed Plan.                                       |
|     |        |         |                                                            | It is recommended that an ESD is completed to                                               |
|     |        |         |                                                            | document a sedimentation pond will not be constructed in Site 28. This is not a fundamental |
|     |        |         |                                                            | change to the remedy. The remedy as stated in the                                           |
|     |        |         |                                                            | Decision Document is the "construction of                                                   |
|     |        |         |                                                            | sedimentation pond <i>or other appropriate controls</i> at                                  |
|     |        |         |                                                            | Site 28 Drainage Basin." The components of the                                              |
|     |        |         |                                                            | remedy have not changed – a stilling basin and natural                                      |
|     |        |         |                                                            | ponds are preventing migration of contaminated                                              |
|     |        |         |                                                            | sediment from the Site 28 drainage to the Suqi River.                                       |
|     |        |         |                                                            | The use of a contingency remedy should be                                                   |
|     |        |         |                                                            | documented with an ESD.                                                                     |
|     |        |         |                                                            | ADEC- Accepted February 5, 2020                                                             |
|     |        |         | How will ongoing developments for the LUCs, LTMPP,         | Clarification.                                                                              |
|     |        |         | UECA, etc. be impacted by changes to site conditions,      | The UECAs are currently under development and will                                          |
|     |        |         | future site management needs, etc. in order to adequately  | incorporate findings from the Periodic and Five-Year                                        |
|     |        |         | address the residual contamination that prohibits UU/UE,   | Reviews as necessary. Once the UECAs are signed,                                            |
|     |        |         | or inversely, where changes to the requirements of the DD  | they will be reviewed during each subsequent review                                         |
|     |        |         | are being considered?                                      | to ensure current and future protectiveness. ADEC-                                          |
|     |        |         |                                                            | Accepted February 5, 2020; however please include                                           |
|     |        |         |                                                            | the RTC and additional narrative clarifications                                             |
|     |        |         |                                                            | throughout the document where applicable.                                                   |
| 18. | 23     | XII.    | Dust active Ctatement, this statement in 1-11 - 41         | Accepted. ADEC- Accepted February 14, 2020                                                  |
| 10. | 23     | Λ11.    | Protective Statement: this statement, including other      | Accepted.                                                                                   |
|     |        |         | related discussions and references throughout the document |                                                                                             |

| # | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---|--------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |        |         | where applicable, should be revised/amended in order to specify/clarify that the remedy is currently only conditionally protective based upon there being no current offsite migration or unacceptable exposure risk of non-POL CERCLA contaminants only. ADEC-Not Accepted February 5, 2020; the statement is not accurate and misrepresents the site conditions. The tundra and vegetative mat areas of Site 28 that are adjacent to and on both sides of the stream drainage have been confirmed to have varying extents of POL and non-POL CERCLA contaminants and this is not adequately presented and/or emphasized throughout the document. | The protectiveness statement will not be revised as it is specific and applicable to only non-POL CERCLA contaminants.  However, a note will be added to the protectiveness statement table that states the following: The protectiveness statement above is specific to non-POL CERCLA contaminants. POL contaminants (DRO, RRO, and PAHs) are present at Site 28 above the site-wide sediment cleanup levels.  ADEC-Not Accepted February 5, 2020; please see additional response on the left.  Accepted.  Please see response to comment 9 part 2 and comment 15 part 2.  ADEC-Partially/Accepted February 14, 2020; per related additional response(s) above.  The table note will be revised to state: "The protectiveness statement above is specific to non-POL CERCLA contaminants in sediment. POL contaminants (DRO, RRO, and PAHs) are present at Site 28 above the site-wide sediment cleanup levels."  ADEC- Accepted February 14, 2020 |
|   |        |         | Additionally revise/amend to clarify that based upon known residual contamination left in place in sediment, as well as contamination remaining in the tundra across the Site 28 drainage in general, that CERCLA contaminants still remain at the site; noting ADEC acknowledges that                                                                                                                                                                                                                                                                                                                                                             | Disagree. Non-POL CERCLA contaminants do not remain at the site above the site-wide sediment cleanup levels.  ADEC-Not Accepted February 5, 2020; the statement is not accurate and misrepresents the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| #   | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                    | Response                                                                                                                                                                                                                                                                                                             |
|-----|--------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |        |         | sampling and analysis results as well as surveys and reconnaissance conducted post-DD indicate that non-POL CERCLA-contaminants are currently demonstrated as controlled and/or currently not mobilizing/migrating at unacceptable risk levels to human health. | site conditions. The tundra and vegetative mat areas of Site 28 that are adjacent to and on both sides of the stream drainage have been confirmed to have varying extents of POL and non-POL CERCLA contaminants and this is not adequately presented and/or emphasized throughout the document.                     |
|     |        |         |                                                                                                                                                                                                                                                                 | Accepted.                                                                                                                                                                                                                                                                                                            |
|     |        |         | Protectiveness statements should also be revised in order to emphasize that the current remedy and its functionability have been determined to not be protective as intended and required by the DD for some contaminants.                                      | Please see response to comment 9, part 2 and comment 23, part 1.  ADEC-Partially/Accepted February 14, 2020; per related additional response(s) above.  Accepted.  Please see the response to comment 18 above.  Specifically, a note will be added to the protectiveness statement table that states the following: |
|     |        |         | required by the DD for some contaminants.                                                                                                                                                                                                                       | The protectiveness statement above is specific to non-POL CERCLA contaminants. POL contaminants (DRO, RRO, and PAHs) are present at Site 28 above the site-wide sediment cleanup levels. ADEC-Partially Accepted February 5, 2020; per respective responses to RTCs #18 above.                                       |
|     |        |         |                                                                                                                                                                                                                                                                 | See response to comment 18, parts 1 and 2. ADEC-Partially/Accepted February 14, 2020; per related additional response(s) above.                                                                                                                                                                                      |
| 19. | 23     | XIII.   | Next Review: ADEC disagrees with the statement in the one sentence included in this section. Please see and apply comments above related to section XII. and the protectiveness statement. Both CERCLA and non-                                                 | Accepted. The following text will be added to Section XIII: However, POL-contaminants (DRO, RRO, and PAHs) present above the sitewide sediment cleanup levels                                                                                                                                                        |

| # | Page # | Section | ADEC Comment                                                                                                                                                                                                   | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---|--------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |        |         | CERCLA contaminants remain at/across the site at concentrations exceeding applicable cleanup levels and therefore will require ICs, land use limitations, LTM, and future CERCLA FYRs until UU/UE is achieved. | will require additional action in order to meet UU/UE. Future reviews for petroleum and petroleum related compounds at Site 28 will be included in the Periodic Review for other petroleum related NEC FUDS sites.  ADEC-Partially Accepted February 5, 2020; ADEC does not disagree with the RTC however the context is incomplete and requires additional language as identified in prior related comments.                                                                                                                                                                                                                                                                                                                                                                     |
|   |        |         |                                                                                                                                                                                                                | Accepted. See response to comment 9, part 3.  ADEC-Partially/Accepted February 14, 2020; per related additional response(s) above.  The following text will be added to the end of Section XIII Next Review to state:  "An informational LUC, in accordance with UECA, describing residual POL-related contamination in sediment within the Site 28 drainage basin is recommended to prohibit disturbance of Site 28 sediment. LUCs with regard to soil and groundwater POL-related contamination at the southern boundary of Site 28 and within the previously defined "UVOST plumes" are also recommended, however, these will be included within the Environmental Covenant for the MOC." ADEC-Partially/Accepted February 14, 2020; per related additional response(s) above. |
|   |        |         |                                                                                                                                                                                                                | Upon further review, an informational land use control at Site 28 will not be recommended, as issues/recommendations provided in this document pertain to CERCLA contamination only. The table note referenced above will not be added to the end of Section XIII, "Next Review". However, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| #   | Page # | Section                         | ADEC Comment                                                                                                                                                                                                                                                                                                                 | Response                                                                                                                                                                                                                                                                                                                                                                                           |
|-----|--------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |        |                                 |                                                                                                                                                                                                                                                                                                                              | recommendation for an informational LUC for sediment at Site 28 will be documented in the Multiple Sites Periodic Review Report. In addition, the recommendation for LUCs with regard to soil and groundwater POL-related contamination at the southern boundary of Site 28 and within the previously defined "UVOST plumes" will also be documented in the Multiple Sites Periodic Review Report. |
| 20. |        | Appendix A<br>Reference<br>List | The FYR document references and/or makes associative statements to ADEC and/or 18AAC75 guidance, regulations, etc. and should be listed accordingly and/or noted in the narrative, this list, etc. where those specific references are cited (similar to the reference lists included in other appendices of this document). | Accepted. 18 AAC 75 will be added to Appendix A. ADEC- Accepted February 5, 2020                                                                                                                                                                                                                                                                                                                   |
| 21. |        | Appendix B<br>Figures           | Figure B-5: This and all other relevant figures should identify and label the primary stilling area(s).                                                                                                                                                                                                                      | Accepted. The "Natural Stilling Area" will be added to and labeled on the following Figures: B-5 (now B-6), F-3, F-4, F-5, F-6, F-7, and F-8.  ADEC- Accepted February 5, 2020                                                                                                                                                                                                                     |
|     |        |                                 | Please depict the primary groundwater flow direction(s) from the MOC AOCs that are known and/or suspected in association with the areas within and immediately adjacent to what is presented as the Site 28 boundary.                                                                                                        | Accepted. Contours developed based on groundwater sampling performed at the MOC in 2018 will be added to Figures B-3, B-5, B-6, B-7, B-8, B-9, F-3, F-5, F-6, F-7, and F-8. <b>ADEC- Accepted February 5, 2020</b>                                                                                                                                                                                 |
|     |        |                                 | The figure should include an explanatory note to clarify that the yellow highlight boundary depictions in the legend and on the figure represent only the contamination associated with the MOC AOCs for representation purposes; and are not intended to represent extents and/or                                           | Accepted. Figure B-5 (now B-6) will be revised to include the following note: "UVOST data represent contamination associated with the MOC and are not intended to represent                                                                                                                                                                                                                        |

| # | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Response                                                                                                                                                                                                                                                                                                                                                                |
|---|--------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |        |         | presence or absence of contamination that is associated with what is considered to be Site 28.                                                                                                                                                                                                                                                                                                                                                                                                                                    | extents and/or presence or absence of contamination associated with Site 28"  ADEC- Accepted February 5, 2020                                                                                                                                                                                                                                                           |
|   |        |         | This and other related figure notes and figures should respectively clarify and depict the northernmost boundary limits of the 2010 UVOST investigation and clarify that extents of POL and non-POL contamination remain throughout the tundra, groundwater, and sediment features within the Site 28 boundary.                                                                                                                                                                                                                   | Accepted. The UVOST boundaries depicted on Figure B-5 along with the note presented above will be added to Figures B-6 (now B-7), B-7 (now B-8), B-8 (now B-9), B-9 (now B-10), F-5, F-6, F-7, and F-8.  ADEC- Accepted February 5, 2020                                                                                                                                |
|   |        |         | Figure B-9: Please include a figure note on this and all other relevant figures to clarify/specify which sample locations are representative of what is considered to be reaccumulated sediment and which locations were sampled for the first time in 2018.                                                                                                                                                                                                                                                                      | Accepted. Figures B-6, B-7, B-8, B-9, F-5, F-6, F-7, and F-8 will be revised to distinguish between sample locations representative of re-accumulated sediment and locations sampled for the first time in 2018.  ADEC- Accepted February 5, 2020                                                                                                                       |
|   |        |         | It would also be helpful to depict general locations where either 1) contaminated sediment was left in place e.g. 2 feet below the water surface or inaccessibility reasons, or 2) locations where contaminated sediment was removed in prior years but where no sampling was conducted in 2018, and 3) sampling locations in tundra and/or groundwater across Site 28 (e.g. the prior transect during the RI) where contamination was identified relevant to each respective figure. ADEC- Noted February 5, 2020; the intent of | Accepted. The removal areas will be depicted on figures in the main body appendix by including figures F-4a through F-4i from Appendix F.  ADEC- Accepted February 5, 2020 Sampling locations from the RI will not be added, as they are no longer representative of current site conditions. ADEC- Noted February 5, 2020; please see additional response on the left. |
|   |        |         | ADEC's comment was to have locations depicted where respective applicable cleanup level exceedances were previously confirmed outside of the removal areas. While ADEC acknowledges that these may no longer represent actual site conditions, the location data is still useful in identifying locations where removal/remedial                                                                                                                                                                                                  | Noted. Displaying sample results that are not representative of current site conditions is not appropriate in this FYR. Historical sample locations can be found in their respective source documents.  ADEC- Accepted February 14, 2020                                                                                                                                |

| is potentially misleading to the reader with re: to residual contamination remaining across Site 28 that are not represented by the specific sampling locations within previously defined sediment accumulation areas – especially with respect to statements re: UU/UE throughout the narrative of the FYR. ADEC- Not Accepted February 5, 2020; ADEC's position is that these are out of context e.g. 1) 'the only areas not sampled in 2018' is actually 'only areas not re-sampled', 2) confirmation analytical results mostly only pertain to the zone(s) of re-accumulated sediment where removal actions previously occurred and are not representative of investigated and/or non-investigated sediment that was left in place, 3) the context of UU/UE needs to be                                                                                                                            | # | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ADEC notes that while it does not disagree with the current presentation and depiction of results from the 2018 effort, it is potentially misleading to the reader with re: to residual contamination remaining across Site 28 that are not represented by the specific sampling locations within previously defined sediment accumulation areas – especially with respect to statements re: UU/UE throughout the narrative of the FYR. ADEC- Not Accepted February 5, 2020; ADEC's position is that these are out of context e.g. 1) 'the only areas not sampled in 2018' is actually 'only areas not re-sampled', 2) confirmation analytical results mostly only pertain to the zone(s) of re-accumulated sediment where removal actions previously occurred and are not representative of investigated and/or non-investigated sediment that was left in place, 3) the context of UU/UE needs to be |   |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| USACE in order to ensure that its application is consistent, appropriate, and protective going forward.  ADEC's current position is that it disagrees with USACE's current interpretation and application of UU/UE. ADEC also notes that these issues will need to be reconciled and included in the UECA covenants/ICs  accavation did not contain non-POL CERCLA contaminants above the SSCLs in sediment, include those areas where CERCLA contaminants had been previously found in sediment. CERCLA contaminants have been removed from sediment within the drain to below their respective SSCLs, which were calculated based on site-specific data in order to                                                                                                                                                                                                                                  |   |        |         | exceedances were confirmed.  ADEC notes that while it does not disagree with the current presentation and depiction of results from the 2018 effort, it is potentially misleading to the reader with re: to residual contamination remaining across Site 28 that are not represented by the specific sampling locations within previously defined sediment accumulation areas — especially with respect to statements re: UU/UE throughout the narrative of the FYR. ADEC- Not Accepted February 5, 2020; ADEC's position is that these are out of context e.g. 1) 'the only areas not sampled in 2018' is actually 'only areas not re-sampled', 2) confirmation analytical results mostly only pertain to the zone(s) of re-accumulated sediment where removal actions previously occurred and are not representative of investigated and/or non-investigated sediment that was left in place, 3) the context of UU/UE needs to be discussed and resolved further between the ADEC and USACE in order to ensure that its application is consistent, appropriate, and protective going forward. ADEC's current position is that it disagrees with USACE's current interpretation and application of UU/UE. ADEC also notes that these issues will need to be reconciled and included in the UECA covenants/ICs | The only area which was not sampled during the 2018 effort was Area 1. Confirmation analytical samples confirm that only POL contamination remains in this area. It is UU/UE with regard to non-POL CERCLA contaminants. All other areas are also UU/UE with regard to non-POL CERCLA contaminants.  Additional known POL-contamination within the Site 28 boundary, separate from the sediment sampled in 2018, has been depicted by the UVOST delineated plumes. ADEC- Not Accepted February 5, 2020; please see additional response on the left.  Accepted.  The only removal area which was not re-sampled during the 2018 effort was Area 1. Confirmation analytical samples collected immediately following excavation did not contain non-POL CERCLA contaminants above the SSCLs in sediment, including those areas where CERCLA contaminants had been previously found in sediment. CERCLA contaminants have been removed from sediment within the drainage to below their respective SSCLs, which were calculated based on site-specific data in order to achieve UU/UE. Known CERCLA contamination was not left in-place within the sediment of Site 28 |

| #   | Page # | Section    | ADEC Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----|--------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |        |            | ADEC-Partially Accepted February 14, 2020; noting that ADEC does not disagree with the RTC, as well as USACE's proposal to incorporate management of the southern boundary areas of Site 28 into the UECA for the MOC, however ADEC notes its non-concurrence with USACE's position that no CERCLA contamination remains at Site 28 (specifically but not limited to extents of CERCLA contamination in soil and groundwater); as will also be further discussed in ADEC's non-concurrence letter transmitted along with this template.                                                                                                                                                                                                                                                                                                                                                                                              | USACE agrees that an informational LUC, in accordance with UECA, describing residual POL-related contamination in sediment within the Site 28 drainage basin is recommended to prohibit disturbance of Site 28 sediment.  ADEC- Accepted February 14, 2020  LUCs with regard to soil and groundwater POL-related contamination at the southern boundary of Site 28 and within the previously defined "UVOST plumes" are also recommended, however, these will be included within the Environmental Covenant for the MOC. ADEC-Partially/Accepted February 14, 2020; per related additional response(s) above and                                                                                                                                                           |
| 22. |        | Appendix C | Section 1.0: This section should include a summary of how the history and chronology of the sites is presented, e.g. is the majority or the narrative discussions taken verbatim from existing documents and/or is it summarized for the purpose of dove-tailing the information into the objectives of this FYR effort; noting that based upon ADEC's comments on this section below, the information as presented appears to be more verbatim of historical statements and not in line with current site status.  Section 2.0 page C-2-1: The narrative preceding Table C-2-1 should be elaborated to clarify that general statements in the table e.g. 'all transformers removed' and 'POL-contaminated soil removed' are intended to reflect focused activities associated with that specific mobilization; further clarify that additional and extensive removal and/or investigative actions continued to occur throughout the | Accepted. Additional text will be added to Section 1.1.3 (which prefaces the text in Section 1.2) that describes where the narrative discussions originated. References to the multi-site DD will be included in Section 1.1.3. The last sentence of the section will be revised to state: "Investigations have been performed since the early 1990s and the information detailed in historical documents is briefly summarized in subsequent sections." ADEC- Accepted February 5, 2020  Accepted. The introductory text in Section 2.0 will be revised to state: "Important events, the associated document reference for each important event, and relevant dates for the NEC sites listed in Table C-1-2 are shown in Table C-2-1. The focused activities presented in |

| # | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                         | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---|--------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |        |         | subsequent years listed. Otherwise, the information as currently presented in the table is misleading to the reader with re: to what actions were actually conducted during which years vs. what actions were not.                                                                                   | Table C-2-1 are associated with specific mobilizations. Additionally, investigative and/or removal actions continued to occur throughout the subsequent years listed."  ADEC- Accepted February 5, 2020                                                                                                                                                                                                                                                                                                                          |
|   |        |         | Table C-2-1 page C-2-2: Additional documents and summaries associated with the ATSDR's second health consultation were distributed in addition to what is listed as the 'public comment release' in 2017. Those documents should be summarized, referenced, and included in the reference list.      | Accepted. Table C-2-1 will be updated to include the revised reference to the ATSDR health consultation: Public Comment release and Summary Publication of the ATSDR Health Consultation (ATSDR 2017a, 2017b) The summary document will also be included in the Site Chronology references as ATSDR 2017b.  ADEC- Accepted February 5, 2020                                                                                                                                                                                      |
|   |        |         | Section 3.1.1 page C-3-2: Amend the discussion/statement in the first paragraph of this section to specify whether groundwater investigations and/or discrete groundwater confirmation sampling and analysis were conducted at Site 21 to demonstrate that no groundwater contamination was present. | Accepted. The second sentence of the first paragraph will be revised to state: "Groundwater sampling performed in 1994 confirmed that no groundwater contamination exists at Site 21". ADEC- Partially Accepted February 5, 2020; please amend this further to specify 1) whether the 1994 results were determined adequate at the time of the DD to be the basis for the determination, and 2) whether or not the older 1994 data is adequate given what is currently known about the site dynamic, conditions, etc.  Accepted. |
|   |        |         |                                                                                                                                                                                                                                                                                                      | Text in Appendix C Section 3.1.1 will be revised to state:                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

|  |                                                                                                                                                                                                                                                                                                                                                                                  | "Groundwater sampling performed in 1994 detected total arsenic, total chromium, and total lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | It should also be further clarified that the primary concerns with contaminated water at Site 21 were in association with hydrologically connected groundwater and surface water and tie this in to the surface water sampling discussion in the last paragraph on page C-3-4, and additional references in related narrative sections throughout the document where applicable. | concentrations above cleanup levels, but dissolved concentrations of these metals were below the cleanup levels. As a result, the presence of these metals was attributed to sediment suspended in the water (USACE 1999). Therefore, as stated in the multi-site DD, metals contamination in groundwater was likely due to sediments in the water column of the collected sample and metals were eliminated as a COC (USACE 2009a)."  ADEC- Accepted February 14, 2020  The 1994 data is adequate because site use and exposure assumptions have not changed since the data were collected. ADEC- Accepted February 14, 2020; please state this response in the narrative.  Accepted.  The following text will be added to the last paragraph on page C-3-4, the discussion of the 2014 surface water sampling event:  "Surface water was monitored due to the potential hydrologic interconnectivity of groundwater and surface water in the area. This sampling was a precautionary measure to ensure contaminated soil removal activities at the MOC were not negatively affecting groundwater or surface water at Site 21."  ADEC- Accepted February 5, 2020 |
|  | Lastly, discuss the extent to which groundwater protections (e.g. LUCs) associated with the MOC are protective of adjacent downgradient sites such as Site 21.                                                                                                                                                                                                                   | Accepted. The following text will be added to the first paragraph of Section 3.1.1.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| # | Page # | Section | ADEC Comment                                                                                                                                                                                                                                              | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---|--------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |        |         | Section 3.1.2 page C-3-5: Please amend this section to elaborate on the stated 'two signs' that were installed, noting that ADEC's prior understanding is that one sign location was installed to date (during the 2018 mobilization) near the Fish Camp. | Although Site 21 is near the MOC, it has not been affected by contamination emanating from the MOC. Continued periodic monitoring of MOC groundwater, as required by the multi-site DD until cleanup levels are met, will ensure any potential contaminant migration does not affect adjacent sites and is therefore protective of Site 21 groundwater. Migration of groundwater contaminants at the MOC is not anticipated as monitoring results indicate contaminated groundwater at the MOC is steady-state.  ADEC- Accepted February 5, 2020  Clarification.  Two separate two-sided signs were installed at Northeast Cape. One sign was installed northeast of the Site 1 Airstrip and another sign was installed near the Site 4 Fishing and Hunting Camp. These signs were installed along each of the two main travel corridors to the sites. The English sign example included in Appendix G shows the location of the Site 4 Fishing and Hunting Camp sign (indicated by the yellow arrow). The Yupik sign example included in Appendix G shows the location of the Site 1 Airstrip sign. Please note the signs at both sign locations included English on one side, and Yupik on the other side. No revision will be made to the text.  ADEC- Accepted February 5, 2020 |
|   |        |         | Additionally, the mention of the LUCs to 'designate the area as not suitable for drinking water' is potentially conflicting with other statements in the FYR document and should be reviewed and reconciled for consistency.                              | Accepted. The text will be updated to, "limit future drinking water uses for groundwater" to be consistent with the multi-site Decision Document.  ADEC- Accepted February 5, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| #   | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----|--------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 23. |        |         | Section 3.2.1: Discussion in applicable statements and references in this section needs to be amended in order to adequately emphasize and clarify that it was understood by the parties at the time of developing and finalizing the 2009 DD, as well as during the investigation and survey efforts and removal action efforts, that activities would primarily be focused on and limited to practically accessible contaminated sediment within 2 feet below the water surface, and that it was known and presumed during development of the DD that significant extents of both contaminated sediment and contaminated soil/tundra would require being left in place. This needs to be clarified and emphasized especially in association with general non-specific statements e.g. that the remedy called for 'removal of contaminated sediment'. Please see and apply other related comments on this subject throughout the document where applicable. | Accepted. The following paragraph will be added subsequent to the bulleted list of remedies in Section 3.2.1.: "Although the selected remedies for Site 28 included the excavation and removal of contaminated sediment, at the time of the development and finalization of the multi-site DD in 2009 that removal activities would target the top six to twelve inches of silty/sandy sediment. Additionally, a sedimentation basin or other appropriate controls may be necessary to prevent downstream migration of contamination." ADEC-Partially Accepted February 5, 2020; ADEC agrees with what is stated in the RTC, however the response does not address the latter portion of ADEC's comment highlighted on the left. This issue also relates to several of the comments/RTCs re: potential disagreement about the intended functions of the remedy and the extent of contamination that remains at the site. |
|     |        |         | ADEC-Partially Accepted February 14, 2020; noting that ADEC does not disagree with the RTC, as well as USACE's proposal to incorporate management of the southern boundary areas of Site 28 into the UECA for the MOC, however ADEC notes its non-concurrence with USACE's position that no CERCLA contamination remains at Site 28 (specifically but not limited to extents of CERCLA contamination in soil and groundwater); as will also be further discussed in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Accepted.  The following text will be added to the end of the referenced paragraph:  "An informational LUC, in accordance with UECA, describing residual POL-related contamination in sediment within the Site 28 drainage basin is recommended to prohibit disturbance of Site 28 sediment. LUCs with regard to soil and groundwater POL-related contamination at the southern boundary of Site 28 and within the previously defined "UVOST plumes" are also recommended, however, these will                                                                                                                                                                                                                                                                                                                                                                                                                           |

| # | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---|--------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |        |         | ADEC's non-concurrence letter transmitted along with this template.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | be included within the Environmental Covenant for<br>the MOC." ADEC-Partially Accepted February 14,<br>2020; per additional response on the left.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |        |         | Section 3.2.1 page C-3-8: The second to last bullet of this section on this page which discusses the cleanup level exceedances that remained after the last removal action needs to be referenced throughout the document in relation to numerous related comments. This bullet should also be amended to clarify the accumulated sediment areas where cleanup levels for COCs were exceeded however no removal actions were conducted - i.e. contaminated sediment was left in place due to inaccessibility and/or > 2ft. below the water surface. This and other related statements throughout the document should also be expanded in order to specify/clarify whether exceedances being referred to were related to confirmation sample locations and/or sediment left in place per one of the reasons mentioned above, or other. | Clarification. This bullet is only referencing the confirmation samples collected in 2013, not the re-accumulated sediment sampled in 2018. "remained" will be replaced with "were measured in confirmation samples". ADEC- Accepted February 5, 2020; please ensure this is adequately clarified in the presentation (e.g. add a note if necessary).  Accepted.  The first sentence of the referenced bullet will be revised to: At the conclusion of the 2013 field season, several analytes, including DRO, RRO, low molecular weight PAHs, arsenic, chromium, 2-methylnaphthalene, acenaphthene, fluorene, naphthalene, and phenanthrene, were measured in sediment confirmation samples collected immediately following sediment removal at concentrations greater than the site-specific cleanup levels.  ADEC- Accepted February 14, 2020 |
|   |        |         | Section 3.2.1, Water Treatment, pages C-3-8 – C-3-9: Discussion in this section should be expanded in order to specify/clarify that 'TAH/TAqH' were not the only water quality criteria that applied (and that currently apply) to surface water. The discussion needs to be elaborated to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Clarification. Text will be added to the first paragraph in Section 3.2.1 "Water Treatment" to describe the other applicable criteria. The text to be added will state:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| # | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---|--------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |        |         | specify that although the TAH/TAqH and sheen were the only criteria that were specified in the DD as well as the water discharge permit, that all applicable surface water criteria have been applicable to the sites at the time of and since the 2009 DD and also continue to apply for all COCs.                                                                                                                                                               | " and total and dissolved arsenic did not meet the drinking water standards presented in the 2008 (ADEC) Alaska Water Quality Criteria Manual for Toxic and Other Deleterious Organic and Inorganic Substances". ADEC-Partially Accepted February 5, 2020; additional text needs to be added in order to clarify and adequately emphasize that although the DD only specifies TAH/TAqH and sheen as the applicable surface water criteria, that all applicable surface water criteria apply for all confirmed Site 28 COCs. |
|   |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Accepted.  An additional sentence will be added to the first paragraph of Section 3.2.1, "Water Treatment": Applicable surface water criteria were determined from the SSCLs for a non-drinking water source, as stated in the 2009 DD (USACE 2009a).  ADEC- Accepted February 14, 2020                                                                                                                                                                                                                                     |
|   |        |         | This section needs to further discuss and elaborate on the coordination between the project delivery team, (USACE, ADEC, and field contract support), re: the process to determine adequate sample collection, analysis, analytes, and decision criteria with re: to managing the treated water and making discharge decisions. It is misleading to the reader to exclude this information and for the document to only focus on the reference 'permit criteria'. | Clarification. The first paragraph of page C-3-10 will be revised to include the following text: After demonstration of the effectiveness of the modified treatment system through adequate analytical sampling, ADEC and USACE agreed pretreated water containment samples were no longer needed and treated water was discharged to the ground (USACE 2015a). ADEC-Accepted February 5, 2020 In addition, the fourth sentence of the referenced paragraph will be modified to state:                                      |

| # | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---|--------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |        |         | Section 3.2.1, Surface Water Sampling, page C-3-10: Per related comments above, please always specify the respective applicable criteria being referenced (e.g. 18AAC70 for all site COCs). Is this and other similar statements throughout the document intended to imply that all of the analytes included in post-DD sample analyses were below respective 18AAC70 criteria? Or is this a scenario where all of the listed analytes were included in analysis however only TAH/TAqH and sheen are being evaluated and reported as 'meeting criteria'? | After the first batch of water was processed in 2013, analytical results indicated water was still above TAqH criterion (USACE 2015a) and was therefore not discharged and remained in the holding tank for further treatment. ADEC-Accepted February 5, 2020 Accepted.  The text will be revised to specify the referenced criteria. The paragraph will be revised to state: "Surface water samples were collected at three locations before, during, and after sediment removal and at one location downstream of the sediment trap in 2013. Samples were analyzed for DRO, RRO, benzene, toluene, ethylbenzene, and xylenes (BTEX), PAHs, PCBs, and total metals (Resource Conservation and Recovery Act metals plus nickel, vanadium, and zinc). All surface water samples were below applicable surface water criteria (TAH, TAqH, and no visible sheen) presented in the 2009 multi-site DD and the 2008 (ADEC) Alaska Water Quality Criteria Manual for Toxic and Other Deleterious Organic and Inorganic Substances (USACE 2015a)."  ADEC-Accepted February 5, 2020 |
|   |        |         | Section 4.0 Table C-4-1 page C-4-1: Please amend the Action entry for Site 8 to clarify that the decision to not collect samples in 2018 was made by the project delivery team, which included a site inspection and conditional approval from ADEC based upon the project team's concurrence that additional extent investigation of soil and groundwater were necessary and the USACE's assurance that it would program this additional work for future actions within the next FYR period.                                                            | Accepted. The Action entry will be revised to state: "An attempt to complete MNA sampling occurred at the revised decision units. After field personnel performed an initial site inspection, the project delivery team was consulted and decided to not collect incremental sediment MNA samples at Site 8 due to the lack of sediment which met the DD definition of "continuously submerged" and above the vegetative mat. Subsequently, the ADEC PM performed a site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| #   | Page # | Section    | ADEC Comment                                                                                                                                                                                                                                                    | Response                                                                                                                                                                                                                                                              |
|-----|--------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |        |            |                                                                                                                                                                                                                                                                 | inspection and agreed with the PDT decision to not collect incremental sediment MNA samples at Site 8 due to the lack of sediment, with the understanding additional sampling at Site 8 would occur within the next FYR period."  ADEC-Accepted February 5, 2020      |
| 24. |        | Appendix D | Section 2.0 LoE Approach, page D-2-1: Re: the discussion of the anthropogenic sources and activities associated with the concentrated arsenic contamination, has the possible prior and discharges of descaling solutions from boiler equipment been evaluated? | Discharges of descaling solutions from the boiler equipment has not been evaluated as a potential anthropogenic source for arsenic in soil because there is no record of use of a descaling solution in a boiler system at this site.  ADEC-Accepted February 5, 2020 |
|     |        |            | The discussion of the 2014 sampling effort at the bottom of page D-2-1 should be separated as a standalone paragraph and combined with the discussion in the last paragraph of this section on page D-2-2.                                                      | Accepted. The discussions of the 2014 sampling will be combined with the final paragraph of the section. The following introductory text will be inserted to state: "The final excavation was performed in 2014."  ADEC-Accepted February 5, 2020                     |
|     |        |            | Table D-2.1: Recommend adding the year '2014' to the soil boring title of the first table and add a date range '2012-2014' for the excavation confirmation sample tables.                                                                                       | Accepted. The titles will be revised as recommended. ADEC-Accepted February 5, 2020                                                                                                                                                                                   |

| #   | Page # | Section    | ADEC Comment                                                                                                                                                                                                                                                                                                                                                                                                                                               | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----|--------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25. |        | Appendix E | It would be helpful if the primary electronic bookmark title was amended to better specify that the field documentation is related to the FYRs for Sites 21 and 28 – since this appendix contains FYR documents for both sites but is bookmarked further down in the document and in between the individual site assessments for the respective sites; e.g. rename to '2 <sup>nd</sup> FYR Field Documentation'.                                           | Accepted. The primary electronic bookmark title will be revised to state: "Second FYR Field Documentation". ADEC-Accepted February 5, 2020                                                                                                                                                                                                                                                                                                                                                                                 |
|     |        |            | Site 21, page 1: Remedy at the time of the FYR inspection should have still included and required CERCLA FYRs.  ADEC acknowledges that the FYR requirement may be revised per additional findings since last removal action, however per other related comments above, this needs to be better clarified in applicable discussions and references throughout the document.                                                                                 | Noted.  "CERCLA FYRs" was inadvertently not included as a portion of the remedy because it was not included as a check-box in the EPA standard form. Although USACE agrees this is a component of the remedy, the field documentation cannot be revised or amended.  ADEC-Accepted February 5, 2020                                                                                                                                                                                                                        |
|     |        |            | Site 21: The checklist is missing pages 3 and 4 for this site. The section V part C needs to reflect the comment in paragraph immediate above.                                                                                                                                                                                                                                                                                                             | Accepted. Pages 3 and 4 of the Site 21 checklist were inadvertently omitted from the document and will be added to the final document.  ADEC-Accepted February 5, 2020                                                                                                                                                                                                                                                                                                                                                     |
|     |        |            | Site 21, D. page 12: Please clarify whether the monitoring wells being referred to in this section (and throughout the inspection checklist and other related references throughout the document), are intended to imply the MOC network and associated remedy. Please also see and apply comment above related to whether or not there is a relationship between the groundwater remedy and LTM required for the MOC, and the protectiveness and Site 21. | Noted. Although USACE agrees that it would be appropriate for the checklist to indicate:  1) The monitoring wells discussed in the Site 21 checklist are intended to imply the MOC network and associated remedy and that although Site 21 is near the MOC, it has not been affected by contamination associated with the MOC  2) Continued periodic monitoring of MOC groundwater, as required by the multi-site DD until cleanup levels are met, will ensure any potential migration of the contaminated MOC groundwater |

| # | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---|--------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |        |         | Site 28, page 1: Remedy for Site 28 requires ICs, MNA, and CERCLA FYRs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | does not affect adjacent sites and is therefore protective of the Site 21 groundwater.  The field documentation cannot be revised or amended. ADEC-Accepted February 5, 2020  Noted.  "CERCLA FYRs" was inadvertently not included as a portion of the remedy because it was not included as a check-box in the EPA standard form. Although USACE agrees this is a component of the remedy, the                                                                                                                                                                                                          |
|   |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | field documentation cannot be revised or amended.  ADEC-Accepted February 5, 2020  Please note MNA and ICs are not selected remedies for Site 28. ADEC-Not Accepted February 5, 2020, although they are not specified in the remedy description or referred to as the selected remedy they are both implied and required.  Accepted.                                                                                                                                                                                                                                                                     |
|   |        |         | ADEC-Partially Accepted February 14, 2020; noting that ADEC does not disagree with the RTC, as well as USACE's proposal to incorporate management of the southern boundary areas of Site 28 into the UECA for the MOC, however ADEC notes its non-concurrence with USACE's position that no CERCLA contamination remains at Site 28 (specifically but not limited to extents of CERCLA contamination in soil and groundwater); as will also be further discussed in ADEC's non-concurrence letter transmitted along with this template. | USACE agrees that an informational LUC, in accordance with UECA, describing residual POL-related contamination in sediment within the Site 28 drainage basin is recommended to prohibit disturbance of Site 28 sediment.  ADEC- Accepted February 14, 2020  LUCs with regard to soil and groundwater POL-related contamination at the southern boundary of Site 28 and within the previously defined "UVOST plumes" are also recommended, however, these will be included within the Environmental Covenant for the MOC. ADEC-Partially Accepted February 14, 2020; per additional response on the left. |

| # | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                                | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---|--------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |        |         | Site 28, Section V. C page 4: Periodic reviews should be revised to CERCLA-FYRs,                                                                                                                                                                                                                                            | Noted. Although USACE agrees that "CERCLA FYRs" should replace "Periodic Reviews", the field documentation cannot be revised or amended.  ADEC-Accepted February 5, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |        |         | the 'yes' should be changed to 'no' for the 'specific requirements in deed' question, and a narrative description should be included in the 'other' in order to adequately summarize the status of the remedy, stilling basin, ICs, NEC, etc which as of the date of ADEC comments is superseded by State-promulgated UECA. | Disagree. Deed notices are not required for Site 28 as part of the selected remedy. ADEC-Not Accepted February 5, 2020, although the notice (now UECA) is not specified in the remedy description or referred to as the selected remedy, it is implied and required. ADEC's position as previously mentioned is that the status of not yet having finalized LUCs and notices (now UECA) impacts the functionability and protectiveness of the remedy.                                                                                                                                                          |
|   |        |         |                                                                                                                                                                                                                                                                                                                             | USACE agrees that an informational LUC, in accordance with UECA, describing residual POL-related contamination in sediment within the Site 28 drainage basin is recommended to prohibit disturbance of Site 28 sediment.  ADEC- Accepted February 14, 2020  LUCs with regard to soil and groundwater POL-related contamination at the southern boundary of Site 28 and within the previously defined "UVOST plumes" are also recommended, however, these will be included within the Environmental Covenant for the MOC. ADEC-Partially Accepted February 14, 2020; per previous related responses above left. |

| # | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---|--------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |        |         | Site 28, Section XI. B page 12: The summary should be revised/amended to specify that contamination does remain in place, since this was actually part of the remedy and known at the time of the inspection, and also that contamination has been confirmed to be migrating via sediment which is re-accumulating,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Noted. Although USACE agrees that the summary should be revised to specify that contamination remains in place, as the intention of the remedy was not to remove all of the contaminated material, and that contaminated material appears to be re-accumulating in previous removal areas, the field documentation cannot be revised or amended.  ADEC-Accepted February 5, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   |        |         | and, that it still has not been definitively confirmed whether or not contamination is migrating offsite to downgradient areas and/or receptors. ADEC-Partially Accepted February 5, 2020; ADEC and USACE previously agreed that it was not appropriate to apply the 2016 Suqi River results to fate and transport conclusions associated with upgradient areas. While demonstrating that contaminant concentrations in downgradient sediments are below the respective DD SSCLs is a primary component of the remedy, it is not the only factor in determining/demonstrating whether or not the remedy is protective; which includes demonstrating stable state contamination plumes and source areas for soil, sediment, and groundwater. Subsequently when migration is being considered, the driver should not be limited to whether or not SSCLs are being exceeded, rather also whether or not contamination is migrating offsite at diluted concentrations. | Disagree. Please see RTC 17. There is a natural stilling area in Site 28 approximately 200 feet south of the Suqi River (Figure B-5) where the surface water flow channels disperse. This stilling area, in addition to the existing, natural ponds, has been found to prevent migration of contaminants above risk-based cleanup levels into the Suqi River. This has been confirmed by the 2018 sampling (Appendix F), in which no contaminants exceeded the SSCLs beyond the natural stilling area in Site 28. In addition, results of a surface water and sediment sampling effort of the Suqi River conducted in 2016 (USACE 2017) also indicated no contaminants exceeded the SSCLs in Suqi River samples. Therefore, the Suqi River is not receiving contamination from an upgradient source such as Site 28. ADEC-Partially Accepted February 5, 2020; please see additional response on the left.  Accepted.  The response will be revised to state: |

| # | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                                     | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---|--------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |        |         | Photograph Log: For the purposes of consistency and clarity it would be helpful to always specify the site (either 21 or 28) in each of the photo titles (noting that most do but several do not); and then also apply the respective changes to the Photo Log TOC list.  Please include more photos of the AOCs associated with | There is a natural stilling area in Site 28 approximately 200 feet south of the Suqi River (Figure B-5) where the surface water flow channels disperse. This stilling area, in addition to the existing, natural ponds, has been found to prevent migration of contaminants above risk-based cleanup levels into the Suqi River. This has been confirmed by the 2018 sampling (Appendix F), in which no contaminants exceeded the SSCLs downstream of the natural stilling area in Site 28. Therefore, the Suqi River is not receiving contamination from an upgradient source such as Site 28. In addition, results of a surface water and sediment sampling effort of the Suqi River conducted in 2016 (USACE 2017) is an additional line of evidence that indicated no contaminants exceeded the SSCLs in Suqi River samples.  ADEC- Accepted February 14, 2020  Accepted.  The associated site name will be added to all photos. The Photo Log TOC will be updated accordingly.  ADEC-Accepted February 5, 2020  Accepted. |
|   |        |         | Please include more photos of the AOCs associated with Site 21, especially the areas within and adjacent to the wetland(s) and surface water features as well as the 2014 sampling areas.                                                                                                                                        | Accepted. Two photos of Site 21 were not included in the original submission of the document. They will be added to the Photo Log. However, no photos of areas within and adjacent to the wetland(s) and surface water features or the 2014 sampling areas were collected. ADEC-Accepted February 5, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   |        |         | <u>Photo No. 4</u> : Were the sheen and site conditions observed in the subject photo representative of all the locations that                                                                                                                                                                                                   | Accepted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| #   | Page #     | Section                               | ADEC Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----|------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |            |                                       | were sampled and/or surveyed in 2018? If some were different it would be helpful to note this and additionally specify which sediment accumulation and survey location within Site 28 is represented in the photo.                                                                                                                                                                                                                                                                                                                                                                                        | Unfortunately, not all photos were collected from surveyed locations because the site inspection occurred prior to and while sampling was occurring.  ADEC-Accepted February 5, 2020 Photos collected at surveyed locations will be labeled with the appropriate lath number, if noted by the photographer. ADEC-Accepted February 5, 2020 Please note, this is now Photo No. 6.  ADEC-Accepted February 5, 2020 Sheen was not noted past the natural stilling area described in the main body of the text.  ADEC-Accepted February 5, 2020 An additional photo showing the clear water and non-stressed vegetation have been added (photo 20).  ADEC-Accepted February 5, 2020                                                                                        |
| 26. |            |                                       | Appendix F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 27. | F-ES-<br>1 | Executive<br>Summary,<br>1.0, and 1.1 | The listed sections should include summary statements and/or references to an additional section of this report (to be added) that clarify the Site 8 activities that were implemented, decisions, and field work changes that occurred in 2018. This may best be accomplished by a standalone introduction section that summarizes and references a more detailed description to be included in the 'Multi-site FYR Report'; which ADEC notes currently includes some of the necessary/requested information in section 5.3.3.4, including a brief mention in 5.3.3.2 however, more detail is necessary. | It is important to capture the Site 8 activities, decisions, and fieldwork changes that occurred in 2018. However, the Site 28 Sediment Report is a standalone report that is appended to the Second FYR Report. Although planned work at Site 8 (a petroleum site) and work performed at Site 28 (a CERCLA site) both included sediment sampling, the work was not related. ADEC-Accepted February 5, 2020  A summary of the Site 8 planned activities, decisions, and fieldwork changes that occurred in 2018 will be added to the Executive Summary of the Second Periodic Review Report for Multiple Sites. Some of this information is already captured in Section 3.6.1 of the Second Periodic Review Report for Multiple Sites.  ADEC-Accepted February 5, 2020 |

| #   | Page # | Section              | ADEC Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Response                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----|--------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 28. | F-ES-2 | Executive<br>Summary | Please revise the second bullet on this page to specify/clarify that the statement re: PCBs is relevant only to sediment sampled in 2018. Please apply this comment to all other similar statements throughout this report and document, in conjunction with related comments above, in order to be very clear whenever discussing sediment vs. the greater drainage area (incl. e.g. tundra).                                                                                                                            | Accepted. The second bullet will specify the year samples were collected. Similar revisions will be made throughout the report. ADEC-Accepted February 5, 2020                                                                                                                                                                                                                                                                                    |
| 29. | F-2-5  | 2.2.1                | All prior comments above which are relevant to Site 28 (e.g. sediment, residual contamination left in place vs. reaccumulated contaminated sediment, surface water criteria, etc.), should be applied to the respective discussions and references throughout this report; applicable to all relevant comments and statements but especially with regard to statements related to e.g. 'cleanup levels [or criteria] were met', 'no contamination remains', 'only certain contaminants remain above cleanup levels', etc. | Accepted. Prior comments relevant to Site 28 will be applied to Appendix F. ADEC-Accepted February 5, 2020                                                                                                                                                                                                                                                                                                                                        |
|     |        |                      | DD-Selected Remedy for Site 28: discussion needs to be revised to include ICs, MNA, CERCLA FYRs, and LTM.                                                                                                                                                                                                                                                                                                                                                                                                                 | Accepted. The section will be revised to present three remedy components and will be revised to include: "; and (3) performance of Comprehensive Environmental Response, Compensation, and Liability Act Five-Year Reviews." ADEC-Accepted February 5, 2020  Please note that MNA, ICs, or LTM are not selected remedies for Site 28. ADEC-Noted February 5, 2020; however please see and apply related responses above to this issue.  Accepted. |

| #   | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|-----|--------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|     |        |         | ADEC-Partially Accepted February 14, 2020; noting that ADEC does not disagree with the RTC, as well as USACE's proposal to incorporate management of the southern boundary areas of Site 28 into the UECA for the MOC, however ADEC notes its non-concurrence with USACE's position that no CERCLA contamination remains at Site 28 (specifically but not limited to extents of CERCLA contamination in soil and groundwater); as will also be further discussed in ADEC's non-concurrence letter transmitted along with this template. | An additional paragraph will be added to the Section "DD-Selected Remedy for Site 28":  An informational LUC, in accordance with UECA, describing residual POL-related contamination in sediment within the Site 28 drainage basin is recommended to prohibit disturbance of Site 28 sediment. LUCs with regard to soil and groundwater POL-related contamination at the southern boundary of Site 28 and within the previously defined "UVOST plumes" are also recommended, however, these will be included within the Environmental Covenant for the MOC. ADEC-Partially Accepted February 14, 2020; per additional response on the left.                                                                                                                                                                                  |  |  |  |
| 30. | F-3-1  | 3.1     | With regard to the discussion in the first bullet, please make a summary statement and reference the data quality review report to emphasize if and how the data and/or DQOs were effected as a result of changing to the composite vs. the grab method.                                                                                                                                                                                                                                                                                | Accepted. The data and DQOs were not affected by the collection of a composite sample rather than a grab sample. The bullet will be revised to state: "In order to meet the DQO for sediment sample collection at Site 28, two samples were collected as composite samples rather than grab samples. The volume of sediment present within the ponded area at surveyed sample locations 18NEC-S28-SD-36 and 18NEC-S28-SD-37 was limited; most of the substrate either consisted of rock or vegetative mat. The collection of two composite samples rather than grab samples did not affect data quality (Attachment F), however, results from the composite samples are representative of a larger spatial extent than the grab samples that were collected from other locations at Site 28." ADEC-Accepted February 5, 2020 |  |  |  |

| # | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                      | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|---|--------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|   |        |         | Please amend the second bullet to specify whether the obstructions and impacted areas were considered by default to be sediment areas, or whether they were excluded from/not considered sediment areas.                                                                                          | Accepted. The following text will be added to the end of the bullet: "However, the obstructions were considered sediment for purposes of drawing sediment transect lines and no sediment depth was recorded at the two locations where obstructions were encountered."  ADEC-Accepted February 5, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|   |        |         | In the third bullet of this section, please specify whether or not the 7 original locations were previously sampled and/or had prior removal actions and/or previously mapped sediment; and summarize the same for the 7 relocated sample locations.                                              | Accepted. The seven original locations were proposed for collection in areas previously sampled and with prior removal actions. The following text will be added to the bullet to state: "either vegetative mat or on dry land in 2018 and both from areas previously sampled and with prior removal actions".  ADEC-Accepted February 5, 2020 The third paragraph in Section 3.6 will be revised to describe that all proposed sample locations were at historical sample locations within historical removal action boundaries, which samples collected in 2018 were not collocated with previous sample locations and/or outside of historical removal action boundaries. In addition, Figure B-6 (now B-7) through Figure B-9 (now B-10) and Figure F-5 through Figure F-8 will be revised to include the boundaries of the previous removal actions. ADEC-Accepted February 5, 2020 |  |  |
|   |        |         | Please revise/amend the discussion in the last bullet on this page for the following: 1) does the lack of survey data for the vegetative map effect DQOs and/or the information needs associated with Site 28 LTM and/or this FYR, 2) the wording of the second sentence is unclear and should be | Accepted.  1) Although mapping of the vegetative mat extents was not performed using survey equipment, the extent of vegetative mat was measured in the field and incorporated into the analysis of conditions at Site 28.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |

| # | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                                                                                                         | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---|--------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |        |         | rephrased/worded according to a) ADEC presumes the survey continued up to the vertical and horizontal extents of sediment and ceased upon encountering the interface of a substrate profile that was not predominantly characterized as sediment, and b) the intended meaning and context of the latter half of this second sentence is unclear and should be amended/elaborated to specify/clarify; | This does not affect the DQO because the waterbody extents were professionally surveyed and vegetative mat was measured (at transect locations);  ADEC-Accepted February 5, 2020 and 2) the text in the second sentence will be revised for clarity. The last bullet in Section 3.1 will be revised to state: was not surveyed by professional surveyors as indicated in the 2018 work plan (USACE 2018).  Instead, the field team collected measurements at each of the surveyed locations using a tape measure and projected the extent on the figures in Attachment F-1. This did not affect the DQO to map the extent of the vegetative mat, because the measurements were still collected." ADEC-Accepted February 5, 2020 |
|   |        |         | and 3) the last sentence should be amended/elaborated in conjunction with the general discussion of 'surveying' in this bullet and throughout the document where applicable to better clarify the difference between what appears to be professional survey activities associated with the primary extents of sediment vs. additional tape measurements that were collected by the field team.       | Accepted. See response to part 4 of comment above. ADEC-Accepted February 5, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   |        |         | Also, please better clarify whether the hand-collected tape measurements included presumed sediment and/or surface water areas; or whether the hand-collected tape measurements were intended to measure and inventory what was determined in the field to be characteristic of vegetative mat.                                                                                                      | Accepted. See response to part 4 of comment above. ADEC-Accepted February 5, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| #   | Page # | Section            | ADEC Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----|--------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 31. | F-3-10 | 3.6                | The discussion on this page references 54 samples, but then states/discusses groups of 45, 7, and 3 samples - which equals 55 samples, please clarify.                                                                                                                                                                                                                                                                                                                                                     | Accepted. Fifty-four sediment samples were collected from Site 28. The second sentence of the third paragraph will be revised to state: "A total of 44 samples were collected"  ADEC-Accepted February 5, 2020 Also, the three samples of opportunity were collected from locations S28-52, 53, and 54. Location S28-51 was not a sample of opportunity but was relocated to a suitable sample location that contained sediment. The seventh sentence will be revised to state: "fuel odor or sheen (locations S28-52, 53, and 54)" ADEC-Accepted February 5, 2020 |
|     |        |                    | Amend/rephrase the statements in the two sentences re: surveyor demobilization and field tape measurements to specify e.g. 'prior to relocating the sample locations and were therefore not included in the professional survey rather'.                                                                                                                                                                                                                                                                   | Accepted. The referenced sentence will be removed and the following sentence will be revised to state: The new locations were recorded using a tape measure and compass (Photographs F-3-9 and F-3-10).  ADEC-Accepted February 5, 2020                                                                                                                                                                                                                                                                                                                            |
| 32. | F-5-1  | 5.0 and<br>Figures | All prior comments above which are relevant to Site 28 (e.g. sediment, residual contamination left in place vs. reaccumulated contaminated sediment, surface water criteria, etc.), should be applied to the respective discussions and references throughout this report; applicable to all relevant comments but especially with regard to statements related to e.g. 'cleanup levels [or criteria] were met', 'no contamination remains', 'only certain contaminants remain above cleanup levels', etc. | Accepted. Prior comments relevant to Site 28 will be applied to Appendix F. ADEC-Accepted February 5, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 33. |        | Appendix G         | Community Issues:  Page 2 of 19: Re: the statement in the third USACE Response statement on this page that 'ADEC concurred                                                                                                                                                                                                                                                                                                                                                                                 | Accepted. Response will be revised to: "The ADEC concurred with the adequacy of the investigation, provided that                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| # | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---|--------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |        |         | with the adequacy of the investigations', this statement and related discussion (and other similar statements throughout the document) should be revised/amended in order to provide the accurate and adequate context. While ADEC did concur with the extents of investigation and site characterization, as well as the Corps' position re: its implementation of the CERCLA process, ADEC has consistently noted and emphasized its positions that much of this concurrence is conditional to ongoing and continued work e.g. LTM, additional site characterization as needed, LUCs and ICs, FYRs and periodic reviews, etc. in order to continue investigating and/or evaluating site conductions and remedy functionability as needed in order to achieve and/or maintain protectiveness. | the remedy is properly implemented and the CERCLA process continues to be followed in order to achieve and/or maintain protectiveness." Similar statements will also be revised accordingly.  ADEC-Accepted February 5, 2020                                                                                                                                                                                                                                                   |
|   |        |         | Page 7 of 19: The responses in this section and throughout the document associated with NEC and LUCS should be amended/revised in order to include the current requirements of the Universal Environmental Covenants Act (UECA).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Accepted. USACE is currently preparing covenants consistent with UECA for the Northeast Cape FUDS. The response in this section and elsewhere will remove reference to Notices of Environmental Contamination and instead reference the UECA.  ADEC-Accepted February 5, 2020                                                                                                                                                                                                  |
|   |        |         | Page 10 of 19 First USACE Response: The response does not address the comment. The DD document states 'and applicable surface water criteria' however it did not adequately list the COCs and respective protective criteria; and instead only itemized TAH and TAqH COCs as SSCLs. ADEC has consistently noted this discrepancy in association with prior document reviews and comments and has not concurred with the USACE's interpretation and implementation of 'applicable' surface water cleanup                                                                                                                                                                                                                                                                                        | Clarification. Page 75 of the Decision Document states the following with regard to surface water criteria: Surface water cleanup levels are the same as the Main Complex groundwater cleanup levels, assuming the water is used as a drinking water source. In addition, surface water must meet water quality standards as promulgated by the State of Alaska in 18 AAC 70. The water quality criteria for petroleum hydrocarbons, oil, and grease are set out in regulation |

| # | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---|--------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |        |         | levels, noting that this is a potential issue that requires consideration with re: to amending the DD and/or developing e.g. an ESD, memorandum, etc.  ADEC-Partially Accepted February 5, 2020; additional text needs to be added in order to clarify and adequately emphasize that although the DD only specifies TAH/TAqH and sheen as the applicable surface water criteria, that all applicable surface water criteria apply for all confirmed Site 28 COCs. | at 18 AAC 70.020(b) and stipulate these compounds may not cause a visible sheen upon the surface of the water. In addition, the regulations contain surface water quality levels of 0.010 milligrams per Liter (mg/L) total aromatic hydrocarbons (TAH) and 0.015 mg/L total aqueous hydrocarbons (TAqH). TAH is the sum of concentrations of benzene, toluene, ethylbenzene, and xylenes, commonly called BTEX. TAqH is the sum of concentrations of TAH (BTEX) plus the polycyclic aromatic hydrocarbons (PAH). The italicized text above describes the surface water criteria within the DD for non-drinking water sources, which are considered protective of human health and the environment. ADEC-Partially Accepted February 5, 2020; please see additional response on the left. |
|   |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Accepted.  The following text will be added to the referenced response:  The surface water criteria applicable to Northeast Cape sites, as stated in Section 2.10 of the DD, "are the same [levels] as the Main Complex groundwater cleanup levels, assuming the water is used as a drinking water source. In addition, surface water must meet water quality standards as promulgated by the State of Alaska in 18 AAC 70. The water quality criteria for petroleum hydrocarbons, oil, and grease are set out in regulation at 18 AAC 70.020(b) and                                                                                                                                                                                                                                      |

| # | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---|--------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| " |        |         | Page 10 of 19: Second USACE Response: ADEC disagrees with the general statement in the second USACE Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | stipulate these compounds may not cause a visible sheen upon the surface of the water. In addition, the regulations contain surface water quality levels of 0.010 milligrams per Liter (mg/L) total aromatic hydrocarbons (TAH) and 0.015 mg/L total aqueous hydrocarbons (TAqH)." Surface waters considered a drinking water source are the surface waters of the Suqitughneq River, upstream of the intersection of the Airport and Cargo Beach Road, which is presented in Section 2.8.3 of the DD.  ADEC- Accepted February 14, 2020  Accepted. The sentences, "Sites 7 and 9 have been investigated,                                  |
|   |        |         | on this page that 'there are no uncharacterized areas of concern', noting that the Sites 7, 9, and 28 do have areas that have not been entirely characterized. Site 28 requires a CERCLA FYR and that Sites 7 and 9 conditionally (as previously discussed and agreed by USACE and ADEC during the first FYR), require at a minimum Periodic Reviews until otherwise determined that changes are necessary (e.g. that CERCLA FYRs are necessary or that Periodic Reviews could be discontinued). This needs to be adequately and accurately presented and specified in the respective USACE Responses and related discussions throughout this document, including the FYR(s) and appendices. | the remedies selected, and aside from LUCs, the remedies have been implemented. There are no uncharacterized areas of concern that require CERCLA Five-Year Reviews" have been deleted from the response. USACE agrees that Sites 7 and 9 conditionally (as previously discussed and agreed by USACE and ADEC during the first FYR), require at a minimum Periodic Reviews until otherwise determined that changes are necessary (e.g., that CERCLA FYRs are necessary or that Periodic Reviews could be discontinued). This will be clarified throughout reports and USACE Responses to Community Issues.  ADEC-Accepted February 5, 2020 |
|   |        |         | General: ADEC will submit any additional detailed comments related to other sites (besides Site 21 and/or 28) in an additional submittal specific to either the Site 7 FYR and/or the Multi-site FYR since this document is intended                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Noted.  ADEC-Accepted February 5, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| # | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---|--------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |        |         | to be to be the focus of the subject standalone FYRs and assessments for Sites 21 and 28 and a 2018 Site 28 LTM Investigation Report.  Page 15 of 19: ADEC disagrees with the last USACE                                                                                                                                                                                                                                                                                                                                           | Clarification.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   |        |         | Response on this page that additional investigation at Site 28 is not warranted, noting that the response is focused on the limits of the investigation at the MOC and does not address the suggestion.                                                                                                                                                                                                                                                                                                                            | The following text will replace the referenced text, "As stated in this FYR, the selected remedies are currently protective and are functioning as intended, therefore, collecting additional data in this area is not warranted at this time."  ADEC-Accepted February 5, 2020                                                                                                                                                                                                                                                                                  |
|   |        |         | Page 16 of 19: Please revise/amend the statement in the last sentence of the first paragraph of the first USACE Response on this page, in relation ADEC's prior comments which note disagreement with making statements that don't evaluate and present the results of surface water samples with re: to applicable surface water criteria in addition and not limited to TAH/TAqH and sheen. Apply similarly to the USACE Responses in the first and second paragraphs on page 9 and others throughout this section and document. | Please see the response above regarding page 10 of 19. ADEC-Noted/Partially Accepted February 5, 2020; please see additional response on the above left.  Accepted. Clarification will be added to the referenced sentence with the following revision: None of the surface water samples exceeded the DD criteria applicable to non-drinking water sources for TAH/TAqH, and no hydrocarbon sheen was observed. ADEC- Accepted February 14, 2020 Clarification will also be added to Page 10 (as noted in the above response). ADEC- Accepted February 14, 2020 |
|   |        |         | ADEC disagrees with the last paragraph of the USACE Response re: Site 28 that is at the top half of this page. The discussion in this paragraph should be revised and amended in order to provide the proper context, noting that ATSDR only evaluated fish species that were 1) confirmed present                                                                                                                                                                                                                                 | The 3 <sup>rd</sup> paragraph of 1 <sup>st</sup> response on page 16 of 19 will be replaced with the following: "Contaminants remaining in sediment at Site 28 are organic chemicals (POL) that partition much more strongly to sediment than to surface water. Thus, sampling sediment captures the "worst-case" media contamination, and                                                                                                                                                                                                                       |

| # | Page # | Section | ADEC Comment                                                                                                                                                                                                                                                                                                                                                                                                       | Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---|--------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |        |         | in the waterways associated with NECape and 2) that were confirmed to be consumed. ATSDR did not evaluate environmental health and/or exposure risk concerns to other receptors and instead only focused the health consultation on contamination exposure risk to humans. Further, it is inaccurate and inappropriate to state that tissue sampling is 'not warranted based on historic and 2018 sample results'. | additional surface water samples are unlikely to provide substantial additional benefit.  At ADEC's request, USACE considered whether additional fish tissue sampling is warranted at NEC. We concluded that tissue sampling is not warranted, for the following three reasons:  1. An independent federal public health agency, ATSDR, evaluated contaminant levels in Suqi River fish tissue and concluded that "eating fish from NEC in the summer (3 months) is not expected to harm people's health" because "contaminants are not present in fish at sufficiently elevated levels to be harmful." Thus, contaminant levels in edible fish species have been determined not to threaten the health of Saint Lawrence Island residents who might consume them.  2. Contaminant levels in biota are not specified as an RAO, and "comparison" or "threshold" values of site contaminants in biota were not specified in the DD.  3. Site 28 contaminants are not present in Suqi River surface water or sediments at levels of human health or environmental concern.  ADEC-Accepted February 5, 2020 |
|   |        |         | Page 19 of 19: The second USACE Response on this page should be amended to also include all sites that require Periodic Reviews, LUCs, etc. in addition to CERCLA-FYR sites.  Meeting Minutes: ADEC PM is spelled 'Dunkin' instead of                                                                                                                                                                              | Page 19 of 19: Agreed. The following phrase will be appended to the end of the first sentence of this response: ", and/or during periodic reviews for non-CERCLA (POL) sites."  ADEC-Accepted February 5, 2020  Accepted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |        |         | the typo 'Duncan'.                                                                                                                                                                                                                                                                                                                                                                                                 | The typo will be corrected in the Meeting Minutes.  ADEC- Accepted February 5, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1 | -      |         | End of ADEC Comments                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Table 8. Comparison of Multi-Site DD Cleanup Levels and Risk-Based Benchmarks.

|                                        | Multi-Site DD Cleanup Levels<br>(USACE, 2009) |               | Risk-based Criteria for Benthic Macroinvertebrates and Wildlife<br>(mg/kg dw) |                                                            |                                                                |                                                                      |               |  |
|----------------------------------------|-----------------------------------------------|---------------|-------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|---------------|--|
| сос                                    | Cleanup<br>Level (mg/kg)                      | Source        | Sediment Cleanup<br>Level<br>(WAC, 2013)                                      | EqP Sediment<br>Benchmarks<br>(EPA, 2003 and EPA,<br>2012) | Soil/Sediment<br>EcoPRG<br>Wildlife<br>(AUF=1)<br>(LANL, 2017) | Soil/Sediment<br>EcoPRG<br>Wildlife<br>(AUF=Site 28)<br>(LANL, 2017) | Receptor      |  |
| DRO C <sub>10</sub> to C <sub>25</sub> | 3,500                                         | Site-specific |                                                                               |                                                            |                                                                |                                                                      |               |  |
| RRO C <sub>25</sub> to C <sub>36</sub> | 3,500                                         | Site-specific |                                                                               |                                                            |                                                                |                                                                      |               |  |
| Acenaphthene                           | 0.5                                           | WAC, 1995     | 0.57                                                                          | 4.2                                                        | 1300                                                           | 3600                                                                 | shrew         |  |
| Benzo(g,h,i)perylene                   | 1.7                                           | WDNR, 2003    | 0.78                                                                          | 10.9                                                       | 260                                                            | 710                                                                  | shrew         |  |
| Fluoranthene                           | 2                                             | WDNR, 2003    | 12                                                                            | 7.1                                                        | 230                                                            | 620                                                                  | shrew         |  |
| Fluorene                               | 0.8                                           | WAC, 1995     | 0.79                                                                          | 5.4                                                        | 520                                                            | 1400                                                                 | shrew         |  |
| Indeno(1,2,3-cd)pyrene                 | 3.2                                           | WDNR, 2003    | 0.88                                                                          | 11.2                                                       | 740                                                            | 2000                                                                 | shrew         |  |
| 2-Methylnaphthalene                    | 0.6                                           | WAC, 1995     | 0.64                                                                          | 4.3                                                        | 160                                                            | 450                                                                  | shrew<br>deer |  |
| Naphthalene                            | 1.7                                           | WAC, 1995     | 1.7                                                                           | 3.9                                                        | 30                                                             | 83                                                                   | mouse         |  |
| Phenanthrene                           | 4.8                                           | WAC, 1995     | 4.8                                                                           | 6                                                          | 110                                                            | 300                                                                  | shrew         |  |
| Total LPAHs                            | 7.8                                           | WAC, 1995     | 7.8                                                                           |                                                            |                                                                |                                                                      |               |  |
| Total HPAHs                            | 9.6                                           | WAC, 1995     | 53                                                                            | <b></b>                                                    |                                                                |                                                                      |               |  |
| PCBs (sum)                             | 0.7                                           | WAC, 1995     | 0.65                                                                          | <b></b>                                                    |                                                                |                                                                      |               |  |
| Arsenic                                | 93                                            | WAC, 1995     | 93                                                                            |                                                            | 200                                                            | 540                                                                  | shrew         |  |
| Chromium                               | 270                                           | WAC, 1995     | 270                                                                           |                                                            | 280                                                            | 770                                                                  | robin         |  |
| Lead                                   | 530                                           | WAC, 1995     | 530                                                                           |                                                            | 290                                                            | 3800                                                                 | robin         |  |
| Zinc                                   | 960                                           | WAC, 1995     | 960                                                                           |                                                            | 340                                                            | 930                                                                  | robin         |  |

## Notes:

Criteria higher (less conservative) than that used in the multi-site DD.
Criteria lower (more conservative) than that used in the multi-site DD.

EqP = Equilibrium partitioning sediment benchmark, assumes 1% total organic carbon (EPA, 2012)

EcoPRG = ecological preliminary remedial goal. Lowest value for birds or mammals based on the lowest observed adverse effect level (LOAEL). EcoPRGs calculated using AUF=1 and using Site 28 acreage of 14.65 acres.

## **ADEC- Accepted February 5, 2020**

Page 62 of 62

From: <u>Dunkin, Curtis S (DEC)</u>

To: <u>Elconin, Andrea B POA; Shewman, Aaron F CIV USARMY CEPOA (USA)</u>

Subject: NEC Site 28 historical soil and surface water investigation results

Andrea, thank you again for the productive resolution meeting with the project team yesterday. I apologize for the long email but wanted to provide you with the summary of ADEC's perspective, based on our comment resolution discussions yesterday and also my preliminary re-review of select documents and data today. Per our discussion, ADEC's position with re: to the status of CERCLA contaminants at Site 28, is that there is currently not enough continuity in the presentation of supporting data that would provide ADEC with the adequate confidence to concur with USACE's determination that no CERCLA contaminants and/or CERCLA contamination sources remain at Site 28 with respect to soil; and additionally potentially the same would apply for groundwater. In an attempt to provide some clarity to this I've been re-reviewing the March 2004 Risk Assessment, the Phase III RI report documents and the 2011 Site 28 Tech Memo.

My preliminary review indicates that CERCLA contaminants (primarily PCBs but also other metals) were detected in association with multiple investigation efforts at varying depths at concentrations that exceeded cleanup levels in what is designated as 'soil'. Further, many/most of the designated soil locations appear to be outside of what was mapped as areas where surface water and/or sediment are depicted - and/or where removal actions were completed. The Phase III RI and the 2004 risk assessment identified CERCLA contaminants as COPCs and COPECs in soil based upon sampling and analysis that were targeted in soil up to conducting the risk assessment in the 2001-2003 timeframe. As a note, the 2011 Site 28 transect locations were entirely different than those conducted in 2001, and the 2001 data tables do not specify soil samples, rather appear to list/designate all of the samples as sediment. Additionally the 2011 effort identified PCBs and metals in designated 'soil' at locations that also appear to be outside of the targeted removal action areas. Lastly based on my records review, the only other 'soil' investigation work that appears to have occurred within the site 28 AOC (with the exception of the 2011-2013 mapping and removal efforts) was the 2010 UVOST investigation that was focused on supporting characterization of the extent of fuel contamination associated with the MOC, and did not include any CERCLA contaminants in the soil analyses. My recollection is that ADEC had requested USACE consider adding the other non-POL site COCs to focused/limited locations of correlation sampling associated with the the UVOST investigation however my recollection is that USACE did not add those analytes.

In summary ADEC's position on the status of CERCLA contaminants at Site 28 include but are not limited to the following:

- 1. It may not be appropriate or accurate to assume that the selected remedy for site 28 (removal of contaminated sediment) was the result of data-based determinations that no CERCLA contamination sources remained that impacted soil and/or groundwater at site 28;
- 2. Data indicate that CERCLA contaminants may remain at concentrations which exceed respective applicable cleanup levels at locations which have been designated as soil and may not have been entirely removed during removal action efforts;
- 3. Based on current records review, the majority of soils in the southern-most and furthest upgradient areas of Site 28 which are directly downgradient from and adjacent to the MOC have not been adequately characterized for CERCLA contaminants, mainly as a result of not including non-POL contaminants as analytes in prior sampling and analysis; and

4. Confirmation samples collected post removal action in 2013 are referenced as having been designated as soil or sediment samples, however these locations were all collected within areas where removal actions of sediment occurred. Further, the 2016 re-evaluation of human health risk for site 28 was 1) limited to confirmation sample locations where removal had occurred and was not based upon additional soil sampling locations, and 2) did not consider Eco- or HH risk based upon residual contamination in soils outside of the sediment removal areas.

As a result of the above, ADEC would not be able to concur at this time with USACE's determination that CERCLA contaminants and/or CERCLA contaminant sources are no longer present at Site 28; based upon which, ADEC would disagree with the FYR's current recommendation to discontinue FYRs and to transition to Periodic Reviews.

I don't think that our agreed additional/revised RTCs and revisions to the FYR that we discussed yesterday will resolve the CERCLA contamination status issue and/or proposal to discontinue FYRs. I'll continue to confer internally between now and Friday to determine ADEC's preference on how to document our disagreement, whether that is via the comment template, this email, additional letter to the FYR, etc. and I'll also look out for and be prepared to review and approve the revised RTCs before Friday COB (hopefully if those can be received by latest first thing Fri. morning). Thank you again Andrea, and please contact me anytime throughout this week or next to discuss/resolve further. Best regards