

Hazard ID No.

US Army Corps of Engineers Alaska District

WORK PLAN ADDENDUM

Revision 1

2014 Northeast Cape HTRW Remedial Actions Northeast Cape, St. Lawrence Island, Alaska

> Contract No. W911KB-14-D-0006 Task Order 0002

FUDS Nos. F10AK0969-03 and F10AK0969-05

August 2015

F10AK096903_07.04_0512_p F10AK096905_07.04_0513_p 200-1f

AUG 1 1 2015 Department of Environmental Conservation

WORK PLAN ADDENDUM

Revision 1

2014 Northeast Cape HTRW Remedial Actions Northeast Cape, St. Lawrence Island, Alaska

> Contract No. W911KB-14-D-0006 Task Order 0002

FUDS Nos. F10AK0969-03 and F10AK0969-05

Prepared for

US Army Corps of Engineers Alaska District CEPOA-EN-EE P.O. Box 6898 JBER, Alaska 99506-6898 W911KB-14-D-0006

Prepared by

Bristol Environmental Remediation Services, LLC 111 W. 16th Avenue, Third Floor Anchorage, Alaska 99501

Jurnell E. Hannal Greg Jarrell

Project Manager

Marty Hannah Quality Assurance/Quality Control Manager

August 7, 2015 Date

August 7, 2015 Date

F10AK096903 07.04 0512 p F10AK096905 07.04 0513 p 200-1f

TABLE OF CONTENTS

SECTION PAGE ACRONYMS AND ABBREVIATIONSiii 1.0 INTRODUCTION1 1.1 Field Technical Approach Summary1 2.0 3.0 4.0 4.1 Previous Landfill Capping Activities at Site 7......7 Previous Activities at Site 9......9 4.2 4.3 5.0 5.1 Landfill Cap Visual Inspection at Site 7.....11 5.2 Landfill Cap Visual Inspection at Site 9.....11 5.3 Surface Water Sampling at Site 9.....12 5.4 Groundwater Sampling at the MOC.....12 5.5 Sample Packing and Shipping16 5.5.1 Sample Custody......17 6.0 6.1 MOC Groundwater Monitoring Report21 6.3 7.0

TABLES

Table 5-1Sample Containers, Preservation, an	d Holding Times14
--	-------------------

i

ATTACHMENTS

- Attachment 1 Figures from Historical Reports
- Attachment 2 Field Forms
- Attachment 3 Previous Landfill Cap Inspection Forms

ACRONYMS AND ABBREVIATIONS

,	minutes
o	degrees
°F	degrees Fahrenheit
AC&WS	Aircraft Control and Warning Station
ADEC	Alaska Department of Environmental Conservation
APP	Accident Prevention Plan
AST	aboveground storage tank
bgs	below ground surface
Bristol	Bristol Environmental Remediation Services, LLC
BTEX	benzene, toluene, ethylbenzene, and xylenes
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
CFR	Code of Federal Regulations
COC	contaminant of concern
DoD	U.S. Department of Defense
DRO	diesel range organics
ELAP	Environmental Laboratory Accreditation Program
EM	Engineer Manual
GRO	gasoline range organics
HSM	Health and Safety Manager
HTRW	hazardous, toxic, and radioactive waste
HWAP	hazardous waste accumulation point
IDW	investigation-derived waste
mg/kg	milligrams per kilogram
MNA	monitored natural attenuation
MOC	Main Operations Complex
NE Cape	Northeast Cape
ORP	oxygen-reduction potential
OSHA	Occupational Safety & Health Administration

ACRONYMS AND ABBREVIATIONS (continued)

PAH	polynuclear aromatic hydrocarbon
PCB	polychlorinated biphenyl
PM	Project Manager
POL	petroleum, oil, and lubricants
PPE	personal protective equipment
PVC	polyvinyl chloride
QAR	Quality Assurance Representative
QC	quality control
RA	remedial action
RCRA	Resource Conservation and Recovery Act
RI	remedial investigation
RRO	residual range organics
SOW	Scope of Work
SSHO	Site Safety and Health Officer
SSHP	Site Safety and Health Plan
TestAmerica	TestAmerica Laboratories, Inc.
UFP-QAPP	Uniform Federal Policy-Quality Assurance Project Plan
USACE	US Army Corps of Engineers
UST	underground storage tank
UTV	utility terrain vehicle
UVOST	Ultra-Violet Optical Screening Tool
WP	Work Plan

iv

1.0 INTRODUCTION

This work plan addendum to the 2014 Northeast Cape HTRW Remedial Actions Work Plan (Revision 1) has been developed for acceptance by the US Army Corps of Engineers (USACE), Alaska District, as a control mechanism for the work to be performed under Contract No. W911KB-14-D-0006, Task order 0002, modification P0003, for Hazardous, Toxic, and Radioactive Waste (HTRW) remedial actions (RAs) at Northeast Cape (NE Cape), Saint Lawrence Island, Alaska (Attachment 1, Figures 1 and 2). All quality control procedures described in detail in the 2014 NE Cape Work Plan (WP) and UFP-QAPP will be followed for this task. The USACE has awarded the contract to Bristol Environmental Remediation Services, LLC (Bristol). This WP addendum describes three specific activities to be performed at sites 7, 9 and the MOC located at the former NE Cape installation (Attachment 1, Figure 3). Three surface water samples will be collected at Site 9 from previously sampled locations, groundwater will be sampled at 15 monitoring wells at the Main Operations Complex (MOC) and the landfill caps will be visually inspected at Site 7 and Site 9.

1.1 FIELD TECHNICAL APPROACH SUMMARY

Bristol will utilize three field staff to complete the tasks required for Modification P0003. The crew will spend one day mobilizing to Nome from Anchorage prior to the start of field work and one day demobilizing from Nome back to Anchorage upon completion of field activities. The crew will overnight in Nome and charter two daily round-trip flights (Navajo aircraft) to/from NE Cape during sampling activities and visual inspections. A utility terrain vehicle (UTV) will be flown to NE Cape to transport the crew and equipment from the airstrip to the work locations at the MOC, Site 7 and Site 9. A safety container will be shipped to NE Cape with all supplies necessary to house/support the field crew for three days should weather conditions necessitate. Bristol anticipates field work will be completed in six days. The three main objectives of this task are:

- Visually inspect the Site 7 Landfill Cap and complete landfill cap inspection checklist and photograph current site conditions.
- Visual inspection of the Site 9 Landfill Cap and complete landfill cap inspection checklist and photograph current site conditions. Collect three surface water analytical samples from previously established locations and submit them for analyses
- Collect 15 primary groundwater samples from monitoring wells at the MOC and field analyze the samples for monitored natural attenuation (MNA) parameters.

2.0 LOGISTICS AND AIR SUPPORT

Most of the items to support field activities will be air-freighted to Nome on Alaska Airlines or Northern Air Cargo. Field crew and sampling equipment transport will be accomplished using charter flights out of Nome. Bristol will use Bering Air for chartered aircraft flights between NE Cape and Nome. A CASA 212 chartered out of Nome will be used to transport large items such as the UTV. Communications from the site with the air carrier will be via satellite telephone for scheduling and weather conditions.

(Intentionally blank)

3.0 SCOPE OF WORK

Section 3.0 outlines the SOW for this project:

- Visually inspect the Site 7 Landfill Cap and complete landfill cap inspection checklist and photograph current site conditions.
- Visual inspection of the Site 9 Landfill Cap and complete landfill cap inspection checklist and photograph current site conditions. Collect three surface water analytical samples from previously established locations and submit them to the fixed laboratory for analyses.
- Collect 15 primary groundwater samples from monitoring wells at the MOC and field analyze the samples for monitored natural attenuation (MNA) parameters. The MNA parameters that will be collected are temperature, pH, dissolved oxygen (DO), conductivity, and oxygen reduction potential
- Prepare a *2015 Annual Groundwater MNA Sampling Report* that describes the field effort and the groundwater sampling results, interpretations and conclusions.
- Prepare a *Landfill Periodic Visual Inspection Report* that summarizes previous inspections; details the 2015 field inspections, observations and recommendations for future maintenance activities, if any.

(Intentionally blank)

NE Cape HTRW Remedial Actions Bristol Project No. 34140087

4.0 PREVIOUS ACTIVITIES

4.1 PREVIOUS LANDFILL CAPPING ACTIVITIES AT SITE 7

A geophysical investigation was performed in 2007 at the Site 7 Landfill by R&M for the USACE. Bristol was awarded a contract in 2009 for drum and debris removal at Site 7 along with completing a landfill cap and revegetation. Bristol was furnished the geophysical investigation results and incorporated it into a Global Positioning System (GPS) unit. Using the GPS unit, Bristol was able to navigate to the magnetically anomalous locations indicated on the geophysical investigation. These were the areas demonstrating the highest probability of containing drums. Additionally, these were the areas in which Bristol focused its debris exposure, trenching, and excavation activities. Prior to debris exposure activities, Bristol made the decision to use a potholing method to provide information, in addition to the magnetic survey, on where the debris and drums were located within the landfill. The potholes were dug in areas both within and outside of the magnetic anomaly areas. The pothole locations were surveyed during the preconstruction survey. The initial step in locating drums involved shallow excavations in the areas containing the magnetic anomalies. Bristol uncovered the top 1 foot of material in all of these areas. The next step involved digging "potholes" in areas with high anolomous readings. Most drums were identified along the perimeter of the landfill area both by magnetic survey and visual observation of partially exposed drums. This initial excavation helped to define the locations that would require further excavation/trenching and aided in excluding areas which would require no further excavation activity. Empty drums were washed and disposed of as solid waste. Drums containing liquids were carefully exposed, field tested for hazardous characteristics, liquid contents were removed and the empty drums were exposed and moved to a waste accumulation point. Most drums encountered were in poor condition, containing holes, rust, and bends and creases

Revision 1

7

in the metal. The condition of the drums was such that, occasionally, product was leaked onto the soil. Consequently, this soil was removed and disposed of off-site.

A significant portion of the fieldwork performed by Bristol in 2009 focused on the construction of a gravel landfill cap at Site 7. Material was hauled from a local source and a cap was constructed across the surface of the landfill following drum removal activities. Appropriate grading was set to ensure minimal erosion of the cap. Grade was set by the dozer operator with oversight from the foreman and site superintendent. Grade played an important role in determining the thickness of the cap. As stated above, the minimum thickness of material overlying trash and debris was set at 24 inches; however, some of these areas required more material in order to set grade. In the locations of the landfill where no debris was encountered, such as the areas not corresponding to magnetic anomalies, material thickness may be less than 24 inches. The thickness in these areas was again dependent on grade, but Bristol was not concerned with maintaining a minimum thickness of 24 inches in non-debris containing locations.

Bristol performed reseeding upon completion of the landfill cap. The landfill cap was revegetated based on recommendations provided by the Alaska Plant Materials Center. The seed mixture consisted of two different native grass species, both of which are adapted to the St. Lawrence Island environment. The seed mixture a mixture by weight consisting of 70% Tufted Hairgrass and 30% Red Fescue

Seed was applied at a uniform rate of one pound per 100 square feet. Fertilizer was applied at a rate of 450 pounds per acre, and had a nitrogen-phosphorus-potassium ratio of 20 percent nitrogen; 20 percent phosphorus; and 10 percent potassium. Bristol did not apply water to seeded areas; however, seeding was conducted during days of light precipitation.

Revision 1

4.2 PREVIOUS ACTIVITIES AT SITE 9

In 2010, surface debris, abandoned vehicles and empty drum carcasses were removed from the Site 9 Housing and Operations Landfill. The landfill was capped with a minimum 2 feet local gravel fill material and graded and completed to assure no water pooling or excessive runoff. Site 9 was reseeded and fertilized to facilitate site stabilization. A seed mixture was utilized consisting of 70 percent Tufted Hairgrass and 30 percent Red Fescue and planted at a rate of 1 pound per 1,000 ft². Fertilizer was applied at a rate of 500 pounds per acre.

Three surface water samples were collected from three locations (Shown on Figure A-5 located in Attachment 1) from two ponds adjacent to Site 9 and from a drainage that flowed along the edge of Site 9. Samples were collected in three events; before, during and after the Site 9 removal and capping operations were completed. The nine primary samples and QC were analyzed for gasoline range organics (GRO), volatile organic compounds (VOCs), diesel and residual range organics (DRO/RRO), polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and RCRA 8 metals plus zinc. During the final sampling event conducted following completion of the landfill cap, samples were submitted to the laboratory for full VOC analyses, but due to laboratory error, the samples were only analyzed for benzene, toluene, ethylbenzene and total xylenes (BTEX) within holding times (the remaining VOC analyses were analyzed outside of holding times). To fill the data gaps, Bristol collected surface water samples in 2011 for VOCs from the same locations as those collected in 2010. No analytical samples have been collected since 2011 at Site 9. None of the surface water samples collected during the 2010 and 2011 field seasons contained contaminant concentrations above cleanup levels.

4.3 **PREVIOUS GROUNDWATER MONITORING AT THE MOC**

Groundwater has been monitored at the MOC for over two decades at various intervals. Groundwater at the MOC has been continually sampled and monitored for contaminant

9

concentrations and for MNA evaluation since 2010 in accordance with the 2009 Decision Document (USACE 2009). Analytes not in accordance with the 2009 decision document, which include glycols, nickel vanadium and zinc, were added to the suite of analytes for wells at the request of the Corps due to evolving onsite conditions. Remedial activities including removal of large amounts of contaminated soil have occurred at the MOC since the current monitoring program began. Removal of source contamination has likely decreased concentrations of contaminants in groundwater since 2010 (Bristol, 2014) with source removal operations completed in 2014. The 2015 sampling event will be the first sampling event in recent history where no excavation or other ground disturbance has occurred during the sampling event. It is anticipated that MNA parameter and contaminant reduction trends can be more accurately determined since the removal actions are complete. The locations of the monitoring wells currently present at the MOC are shown in Attachment 1, Figure 7.

5.0 2015 FIELD ACTIVITIES

The following subsections describe the fieldwork to be performed at Site 7, Site 9 and the groundwater sampling to be conducted at the MOC.

5.1 LANDFILL CAP VISUAL INSPECTION AT SITE 7

Bristol will visually inspect the Site 7 landfill cap in accordance with the 2009 Northeast Cape Decision Document (USACE 2009). The cap will be observed for evidence of cap settlement, cracks, erosion, penetrations, exposed debris, or chemical odors. The cap slopes will be visually inspected for instability and the amount (percent coverage) and quality of vegetative cover. The presence or absence of ponded water within, against, or on the surface of each landfill will be recorded, as well as the presence/absence of petroleum sheen on these surface waters. The condition of access roads within the immediate vicinity of the landfill will also be noted. Special attention will be given to the additional fill placed near the top of the Site 7 Landfill cap in 2014 with regard to whether or not positive drainage exists and the amount (percent coverage) and quality of vegetative cover on the filled area and the overall cap. Observations will be recorded on field forms (Attachment 2) and photographs will be taken from viewpoints similar to previous inspections and used for comparison. Examples of previous landfill inspection forms are included in Attachment 3.

5.2 LANDFILL CAP VISUAL INSPECTION AT SITE 9

Bristol will visually inspect the Site 9 landfill cap in accordance with the 2009 Northeast Cape Decision Document (USACE, 2009). The cap will be observed for evidence of cap settlement, cracks, erosion, penetrations, exposed debris, or chemical odors. The cap slopes will be visually inspected for instability and the amount (percent coverage) and quality of vegetative cover. The presence or absence of ponded water within, against, or on the surface of the landfill will be recorded, as well as the presence/absence of petroleum sheen on these surface waters. The Site 9 drainage ditch will be inspected to

11

ensure it continues to provide an effective outflow for the pond adjacent to the landfill cap and therefore minimizes the flow of water through the landfill. The condition of access roads within the immediate vicinity of the landfill will also be noted. Special attention will be given to whether or not positive drainage exists and the amount (percent coverage) and quality of vegetative cover on the cap. Observations will be recorded on field forms and photographs will be taken from viewpoints similar to those previously utilized.

5.3 SURFACE WATER SAMPLING AT SITE 9

Surface water samples will be collected at three locations near Site 9 Landfill. The locations of the surface water samples are shown on Figure A-5 in Attachment 1. Surface water from two ponds and one stream location downgradient from the landfill will be sampled and analyzed for DRO/RRO, GRO/BTEX, PAHs, PCBs, 8 RCRA metals, and zinc. Laboratory QA samples will also be collected along with a field duplicate. Turbidity will also be measured in the field at the time the samples are collected. Surface water sample locations at Site 9 will be re-established using a Trimble GPS with the former sample locations pre-loaded on the GPS. Samples will be collected in the order of volatility with GRO/BTEX collected first followed by semi-volatile and non-volatile containers for analyses.

5.4 GROUNDWATER SAMPLING AT THE MOC

Bristol will collect groundwater samples at the MOC from the fifteen monitoring wells of which seven were newly installed and sampled in 2014. The monitoring well locations that have been selected for the 2015 sampling event include previously existing wells MW 88-1, MW88-3, MW88-10, MW 10-1, 17MW1, 22MW2, 20MW1, and 26MW1 as well as the wells installed in 2014. The new wells are 14MW01, 14MW02, 14MW03, 14MW04, 14MW05, 14MW06 and 14MW07. Depth to water will be measured in the monitoring wells and samples will be collected starting with upgradient wells proceeding

Revision 1

12

from cleanest to the most contaminated wells based on 2014 groundwater sampling results. Field forms are located in Attachment 2.

Depth to water level measurements will be taken from all 15 wells within a single 4 hour period prior to any purging or sampling. The monitoring wells will be purged at a rate of 0.1 to 0.5 liters per minute using a variable speed submersible pump. A minimal drawdown of less than 0.1 meters (approximately 4 inches) is required. Newly installed wells 14MW03 and 14MW07 have a documented slow recharge and were purged dry at low flow rates in 2014. Samples were collected from these two wells after the wells reached 80% recharge. The samples also had high turbidity (>1000 NTU). If such conditions are encountered in 2015 the wells will be sampled in the same fashion for data consistency.

Groundwater samples will be collected using a Monsoon submersible pump or similar submersible pump with disposable high-density polyethylene tubing and following a lowflow sampling protocol, as described in the Bristol *Groundwater Sampling Standard Operating Procedure* BERS-02, and in accordance with Section IV of the ADEC *Draft Field Sampling Guidance* (ADEC, 2010).

Groundwater field parameters will be monitored and recorded at time and volume intervals during purging for stabilization on a groundwater purge form for each well. A copy of the low flow purging form is provided in Attachment 2. Groundwater samples will be collected when parameters (oxidation reduction potential (ORP), turbidity, temperature, pH, conductivity and dissolved oxygen) have stabilized (+/- 10%) or when three casing volumes have been purged in accordance with Section IV of the ADEC *Draft Field Sampling Guidance* (2010). Temperature, pH, dissolved oxygen, conductivity, and ORP, will be collected in the field using a YSI 556 water quality meter with flow-through cell. Turbidity measurements will be taken using a Hach 2100P field turbidimeter, and water level measurements will be taken using a water level meter. Once field parameters

Revision 1

have stabilized, samples will be collected in the appropriate containers are shown on

Table 5-1 in the order of volatility starting with GRO/BTEX followed by semi-volatile,

non-volatile and finally MNA sample containers.

Two (2) field duplicates and at least one set of MS/MSD samples will be collected as part of the field quality control for the groundwater sampling. A trip blank will also be placed in any cooler containing volatile samples (GRO/BTEX).

Parameter	Matrix	Container	Preservation/Holding Times
BTEX/VOCs SW 8260C	Water	(3) 40-mL VOA , Teflon [®] -lined septumated lid	HCL to pH less than 2, 4°± 2°C / 14 days
Methane/RSK-175	Water	(3) 40-mL VOA , Teflon [®] -lined septumated lid	HCL to pH less than 2, 4°± 2°C / 14 days
RCRA 8 Metals + nickel, vanadium and zinc (total and dissolved) SW 6020/7470	Water	(1) 250mL, 500 mL or 1-L HDPE each for total and dissolved metals	HNO_3 to pH less than 2, 4°± 2°C / 180 days, 28 days for mercury
DRO AK 102	Water	(2) 1-L amber glass with Teflon- lined screw caps or low-volume containers if approved (125 mL)	HCL to pH less than 2, $4^{\circ}\pm$ 2°C / 14 days to extract, 40 days to analysis of extract
GRO AK 101	Water	(3) 40-mL VOA, Teflon-lined septumated lid	HCL to pH less than 2, $4^{\circ}\pm$ 2°C / 14 days
Glycols SW 8015C	Water	(1) 250 mL amber glass with Teflon-lined screw caps	Unpreserved, $4^{\circ}\pm 2^{\circ}C / 7$ days to extract, 40 days to analysis of extract
PAHs SW 8270C SIM	Water	(2) 1-L amber glass with Teflon- lined screw caps or low-volume containers if approved (125 mL)	Unpreserved, $4^{\circ}\pm 2^{\circ}C / 7$ days to extract, 40 days to analysis of extract

Table 5-1 Sample Containers, Preservation, and Holding Times

Notes:

BTEX = benzene, toluene, ethylbenzene and total xylenes

DRO = diesel range organics

GRO = gasoline range organics

HCL = hydrochloric acid

HDPE = high density polyethylene

PAHs = polynuclear aromatic hydrocarbons

RCRA = resource conservation and recovery act

VOCs = volatile organic compounds

All groundwater samples will be analyzed at a fixed-based laboratory for several

parameters:

- Methane
- Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX)
- Gasoline Range Organics (GRO)
- Diesel Range Organics (DRO)
- Residual Range Organics (RRO)
- Polynuclear Aromatic Hydrocarbons (PAHs), including naphthalene
- Polychlorinated Biphenyls (PCBs)
- Total and dissolved RCRA metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver) plus nickel, vanadium, and zinc

Additional analyses will be requested for MW10-1:

- Volatile organic compounds (VOCs)
- Glycols

Groundwater samples will be analyzed in the field for MNA parameters within 24 hours of collection using Hach kits for nitrate, sulfate, ferrous iron, alkalinity, and dissolved manganese. Groundwater samples will be analyzed by a fixed-base laboratory for methane. Decontamination efforts will be implemented to prevent cross-contamination and will be conducted according to Section VIII E of the ADEC *Draft Field Sampling Guidance* (2010). Crew will decontaminate non-disposable sampling equipment such as groundwater pumps and water levels with an Alconox wash solution followed by a fresh water rinse and a successive deionized water rinse. The wash and the rinse water generated during decontamination procedures will be treated through a granular activated treatment system before being discharged to the ground. Ground discharge will occur at the same site from which the sample was collected. Purge water from wells with historical concentrations above site-specific cleanup levels will also be treated through the GAC system and discharged to the ground near the respective well. Solid investigation derived

15

waste such as tubing and personal protective equipment will be transported back to Nome and disposed of at the Nome solid waste facility.

5.5 SAMPLE PACKING AND SHIPPING

The sample bottles will be placed in coolers with frozen gel-ice to maintain a temperature of 4°± 2°C. Bristol personnel or a third-party courier (Bering Air) will transport the sample coolers to the Alaska Airlines Goldstreak counter with a completed airway bill for shipment to TestAmerica-Tacoma, an ADEC CS and DoD/ELAP accredited laboratory. Custody seals will be placed on the coolers before release to the third party. A temperature blank (minimum volume of 500 mL) will be included in every sample cooler delivered to the laboratory.

When packing samples, the following guidelines will be followed:

- Place tape over the drain hole inside and outside of the cooler.
- Line the cooler bottom with bubble wrap.
- Tighten all lids and place them with cushion packing in an upright position
- Ensure each cooler contains a labeled temperature blank (greater than or equal to 500 mL).
- Ensure appropriate trip blank is in cooler and are indicated on CoC forms. If both soil and water samples are shipped in the same cooler, two separate trip blanks and MS/MSDs will be placed in the cooler. The trip blank should have a unique sample ID with date prepared.
- Place one layer of bubble wrap over glass jars and place frozen gel-ice on top of the bubble wrap. Do not over pack coolers or over-tighten lids, as this will cause breakage.
- Fill any void space in the cooler with bubble wrap or cardboard and make sure sample containers will not shift during shipment.
- Verify the contents of the cooler are the same as information on the CoC form.
- Place the CoC form in a plastic re-sealable bag and tape it to the underside of the cooler lid.
- Close and latch the cooler cover. Ensure the closure of the cover by the use of tape wraps (filamentous packaging tape) around each end of the cooler.

- Seal the cooler body and lid connection with one wrap of filamentous tape along the upper and lower contact surfaces.
- The person relinquishing cooler custody or sampler will sign and date two cooler custody seals placed across the seam where the lid meets the cooler, one in front and one in back.
- Place "Keep Cool Do Not Freeze," "This End Up," "Fragile," or other applicable stickers on the cooler's exterior top and side surfaces.
- Affix a label with both Bristol and the project laboratory's addresses and phone numbers to each cooler for tracking purposes.
- Notify laboratory of sample delivery after transferring custody and provide shipping document number so that the shipment can be tracked.
- Place CoC documentation in project file with shipping record.

It is critical that the laboratory is notified that samples are being shipped, provided with shipping document number, and number of coolers. The shipper or designated responsible party will verify that samples have arrived at the laboratory in acceptable condition. It is also critical to verify that method of shipment guarantees samples will be stored in a refrigerated area until laboratory can pick them up.

The point of contact at TestAmerica is Rob Greer (<u>Robert.Greer@TestAmericain.com</u>) (253)-922-2310.

5.5.1 Sample Custody

Bristol personnel will maintain standard CoC procedures for all samples collected for laboratory analysis. The project team will keep all samples within their line of sight during the field sampling or within a locked room or vehicle. Custody seals will be used to verify that the CoC was maintained.

Field personnel will use blank CoC forms provided by the laboratory, or CoC forms printed on site from an electronic file.

Each CoC form will have the following information at a minimum:

- Sampling contractor's name, address, telephone number, fax number, and e-mail address
- Project name and number
- Quote number
- USACE North Pacific Division Laboratory (NPDL) Work Order Number (<u>15-061</u>)
- Name or identification given to cooler
- Project laboratory, Point of Contact, and address
- Sample information:
 - Unique sample number (ID)
 - Date and time each sample was collected
 - Preservation type
 - Matrix (SW Surface Water, GW- Groundwater)
 - Analytical methods requested
 - Clearly identified MS/MSD samples with additional volume as required
- Collector's name, signature, date, and time
- Custody seal conditions (upon receipt by lab)
- Custody transfer signatures, dates, and times
- Any special notifications to the laboratory
- Requested turnaround time, deliverable level, and electronic data deliverable requested

The designated field-sampling personnel will sign (with date and time) the CoC forms upon relinquishing to the laboratory, or when sealing coolers for shipment.

Any individual opening the sealed coolers throughout the transportation process must sign each opened cooler's respective CoC form and attach new custody seals.

The name of the receiving person, laboratory sample number, date of sample receipt, sample condition, and temperature will be placed on the CoC forms at the time the sample coolers are received at the project laboratory. The laboratory will scan the CoC form, cooler receipt form, air bill information (if any), and photocopies of the custody seals within 24 hours of receipt at the project laboratory to:

- Receipt.cooler@.usace.army.mil
- USACE Chemist, Sean Benjamin (Sean.P.Benjamin@usace.army.mil)
- Bristol CQCSM, Russell James (<u>rjames@bristol-companies.com</u>)
- Bristol PM, Greg Jarrell (gjarrell@bristol-companies.com)
- Bristol Project Chemist, Marty Hannah (mhannah@bristol-companies.com)

Field sampling personnel will retain a copy of each CoC form for project records and will coordinate transport of samples. In addition, field personnel will collect and retain any other transportation or shipment records for each project sample shipment in the project files. Original CoC forms and shipping documents will be emailed to the PM. This information will be clearly and accurately documented in the field logbook.

(Intentionally blank)

6.0 **REPORTING**

Reports will be prepared and submitted to the USACE detailing groundwater sample results from the MOC and the inspections and sampling, where applicable, at Site 7 and Site 9 Landfills.

6.1 MOC GROUNDWATER MONITORING REPORT

A draft 2015 Annual Groundwater MNA Sampling Report will be prepared and submitted to USACE within 90 days of completion of field activities. The report will describe mobilization and demobilization, groundwater MNA monitoring methods and results as well as comparison with data from previous years including graphical presentation of contaminant concentrations and groundwater elevations (y-axis) over time (x-axis) for all analytes above established cleanup levels for wells with three or more sets of sampling data. Tables including all historic water level and sample results, and figures including a potentiometric surface (showing groundwater elevation for each well, general groundwater flow direction, and ground surface topography), and laboratory detections above established cleanup levels will be included. Scanned copies of field books and field forms will be included as appendices to the report. An ADEC laboratory data checklist will be completed for each work order submitted for analysis. A chemical quality data review will also be completed and submitted as a section of the report. Electronic data deliverables (COELT and SEDD 5.2A) that match the hardcopy laboratory reports will be submitted electronically along with electronic PDF copies of the laboratory reports.

Revision 1

6.3 LANDFILL INSPECTION REPORTS

A draft Landfill Periodic Visual Inspection Report will be prepared that includes a description of mobilization and demobilization, and all previous visual inspections (i.e., previous reports included in an appendix) and maintenance performed as a result of the inspections, as well as pertinent observations and recommendations for potential future maintenance activities during the next 5-year periodic review. Surface water sample locations and historic and current results will also be included.

7.0 REFERENCES

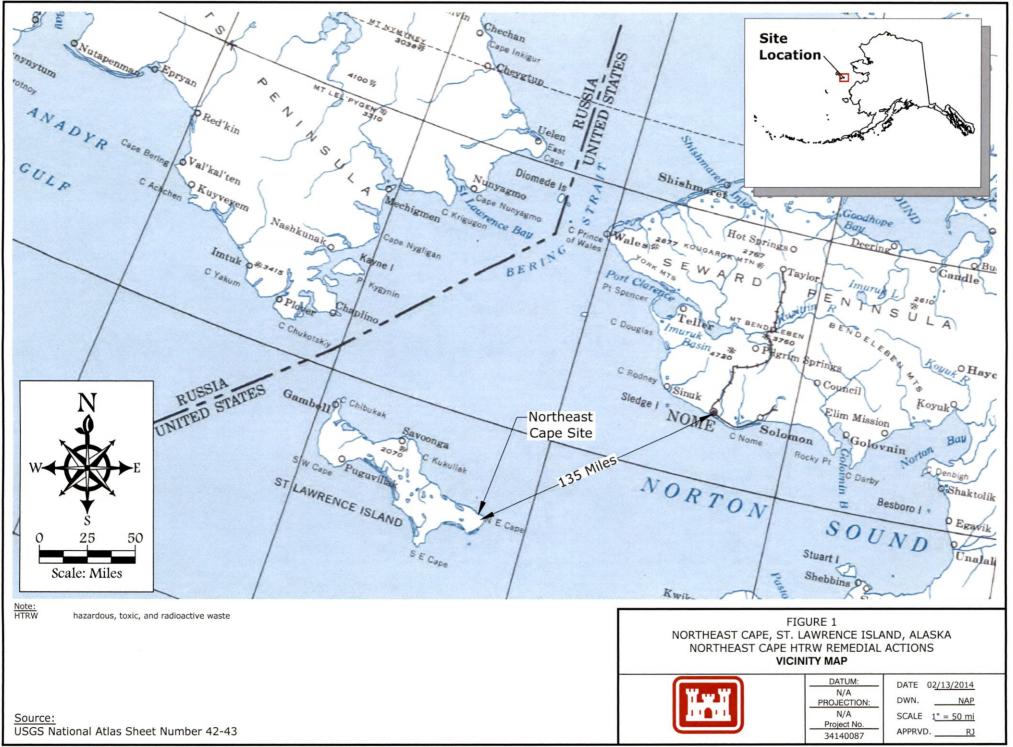
- ADEC. (2013). *Monitoring Well Guidance*. Division of Spill Prevention and Response Contaminated Sites Program. September.
- ADEC. (2010). *Draft Field Sampling Guidance*. Division of Spill Prevention and Response Contaminated Sites Program. May.
- Department of Commerce, Community and Economic Development. (2014). Community Information. Website: http://commerce.state.ak.us/cra/DCRAExternal/community/Details/923b8c80-42ae-4db8-8b32-88bc399ab416. State of Alaska. Last Revised 2014. Accessed December 3.
- Ferrians, O.J., Jr. (1965). Permafrost map of Alaska: U.S. Geological Survey Miscellaneous Geologic Investigations Map 445, 1 sheet, scale 1:2,500,000.
- Gallagher, Steve. (2003). *Environmental Best Practice Guidelines No. 3: Excavating in Waterways.* Waterways & Wetlands Works Manual.
- USACE. (2014). Safety and Health Requirements Manual. Engineer Manual (EM) 385-1-1. November.
- USACE. (2009). Decision Document: Hazardous, Toxic, and Radioactive Waste (HTRW) Project #F10AK096903, Northeast Cape Formerly Used Defense Site (FUDS) St. Lawrence Island, Alaska. Prepared by U.S. Army Corps of Engineers-Alaska District, January.
- USACE (2009) Site 7 Cargo Beach Road Landfill Containerized Hazardous, Toxic, and Radioactive Waste (CON-HTRW) Project # F10AK096905 Northeast Cape Formerly Used Defense Site (FUDS) St. Lawrence Island, Alaska, June
- USACE. (2014). 2013 Sampling Conducted in Conjunction with the 2013 Five-Year Review at Northeast Cape, Northeast Cape, St. Lawrence Island, Alaska. February.

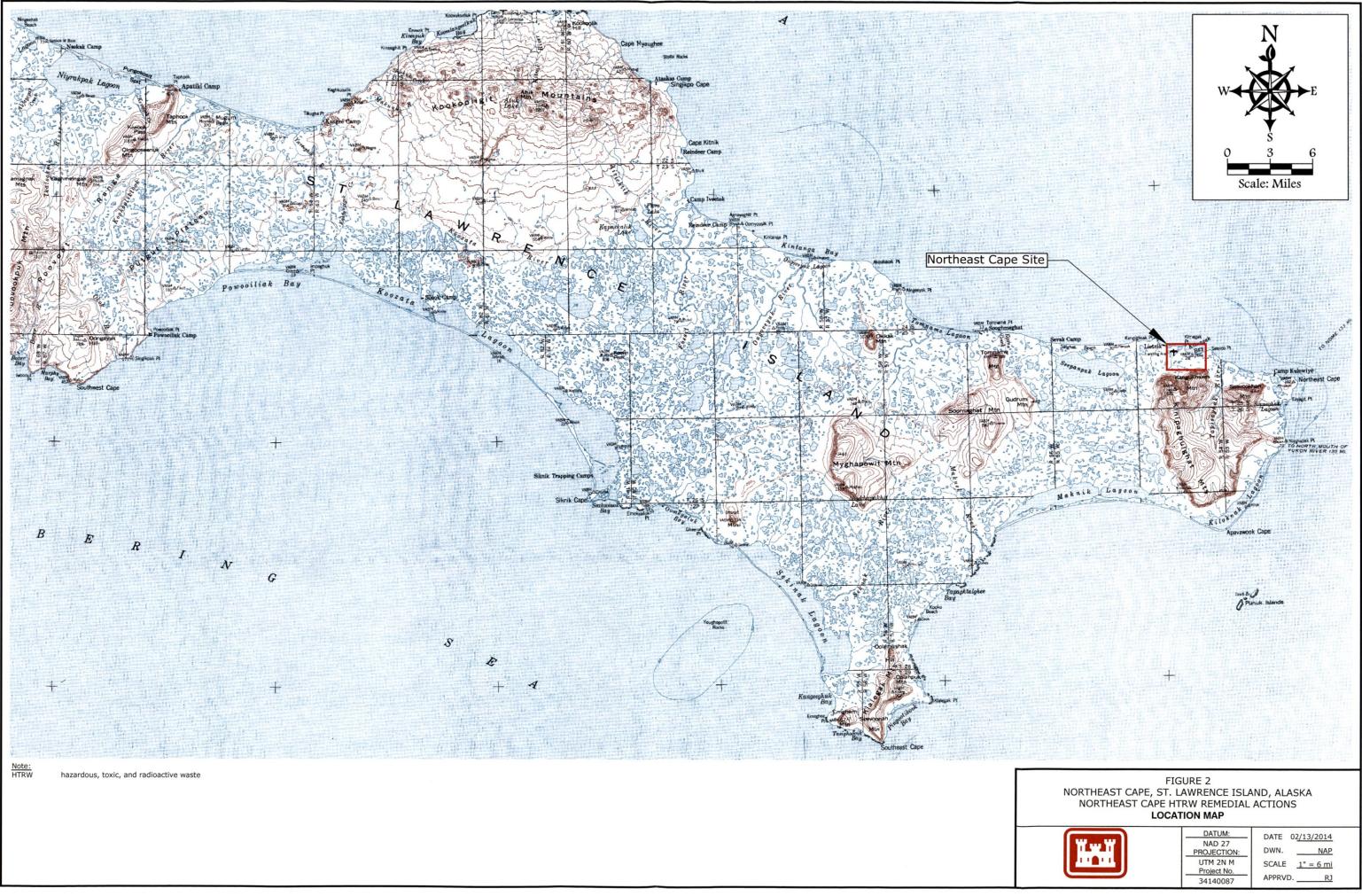
(Intentionally blank)

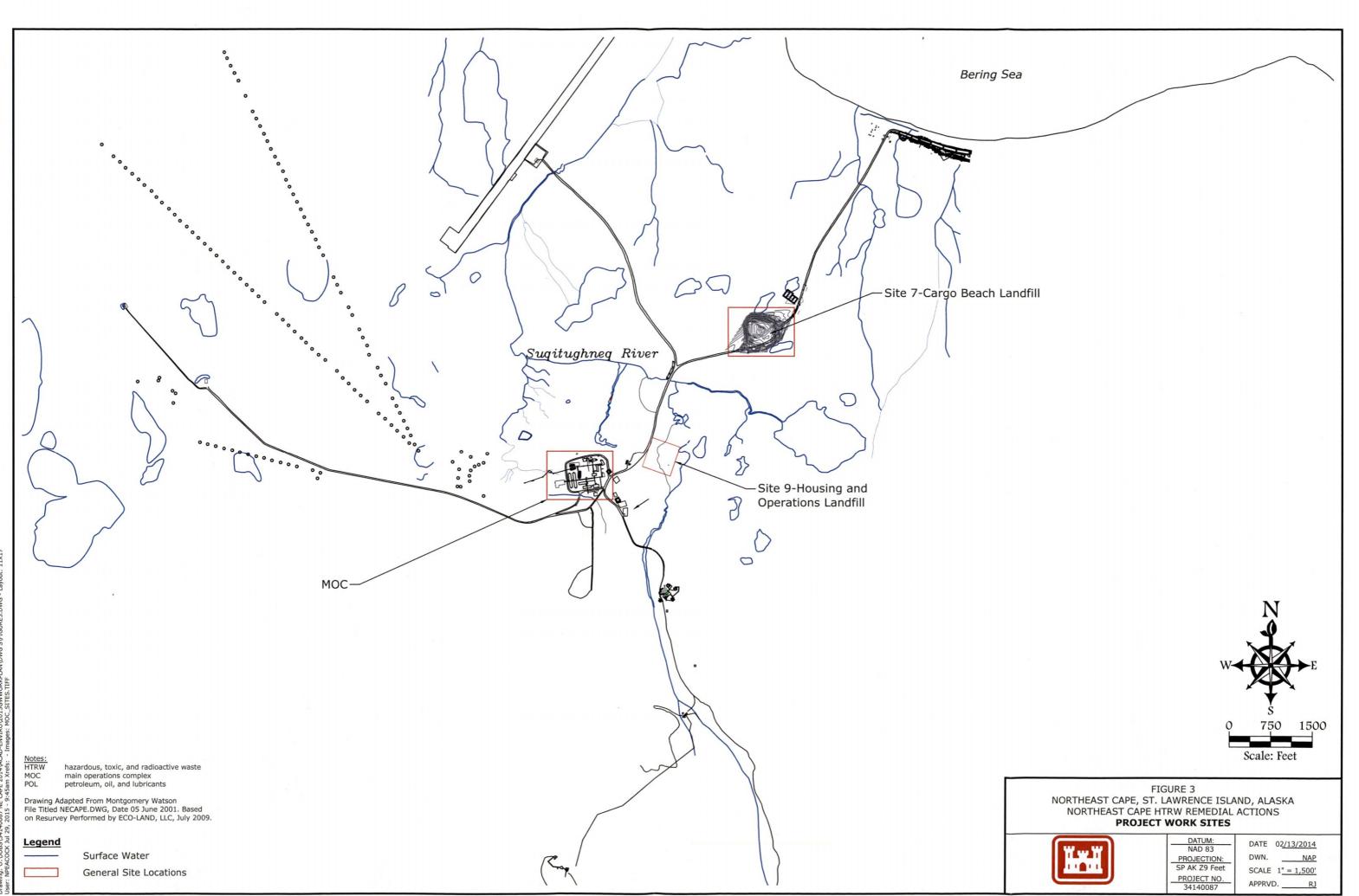
ATTACHMENT 1

Figures from Historical Reports

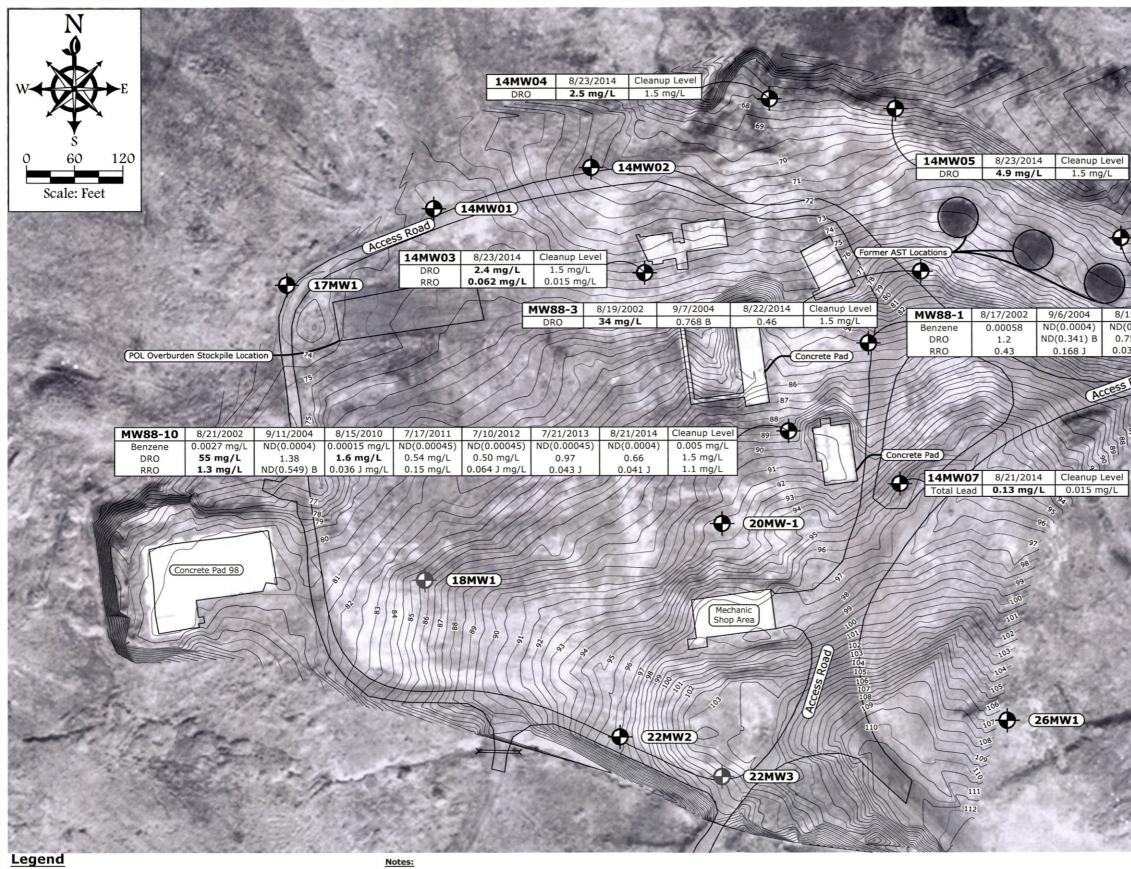
01 – Figure 1, Vicinity Map


02 – Figure 2, Location Map


03 – Figure 3, Project Work Sites


04 – Figure A-5, Site 9 Housing and Operations Landfill

05 – Figure 7, MOC Monitoring Wells


Drawing: 0:\J0BS\34140087 NE CAPE 2014\ACAD-ENVIRO\REPORTV2\DWGS\FIGURE1.DWG - Layout: 8.5 X 11 User: NPEACOCK Mar 19, 2015 - 4:02pm Xrefs: - Images: NECAPE.JPG

	I –
	- 1
	- 1

•

2

-735

Monitoring Well Sample Location

Secondary Topographic Contours Primary Topographic Contours and Ground Elevation mg/kg

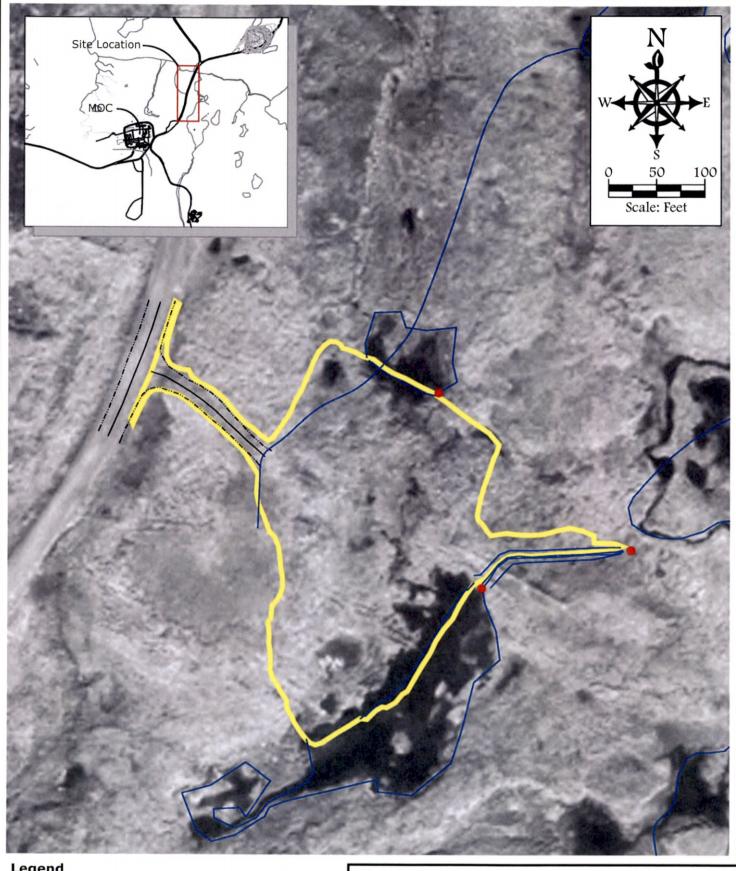
milligrams per kilogram aboveground storage tank

AST analyte detected in method blank, estimated with potential high bias or false positive

В

HTRW hazardous, toxic, and radioactive waste

- 1 laboratory result is an estimate ND non detect at concentration exceeding quantitiation
- POL petroleum, oil, and lubricants

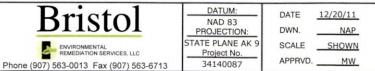

Topo units are in feet, elevations are based on the North American Vertical Datum of 1988.

731	2.1	550	and the second	10.98	P. A.C. I	
Contraction of the second	1	1	-		"First	1 5
1	1	TS/	\$110		JE I	1499
		2411	AR A			7 - 5
	11	116		-76-	11	150
11	1		h	1	Star Internet	
	X			A	JE	
14	MWO	06 8/23/2	19 80 014 Cleanup	Level		20-
-14	DRO	5.2 Q	/L 1.5 m	ng/L	-	Provide State
/15/2010 (0.00019 .75 mg/L	5) N	7/17/2011 D(0.00045) 0.74 mg/L	7/10/2012 ND(0.00045) 1.9 mg/L	7/21/2013 ND(0.00045) 0.22	8/22/2014 ND(0.0004) 0.21	Cleanup Level 0.005 mg/L 1.5 mg/L
037 mg/	2	0.26 mg/L	0.15 mg/L	0.05 J	0.043 J	1.1 mg/L
84	83		T	1	1 h	2
86-	100		L R			
1		(And a	St. X	S all	Carris A	17
and and	a l'all			and the second	~ *	the state
30	Ser.	1 mg			1	AL.
R		1000	Sy have	100	A. M.	117
Topic .	1	A.		163	and the	f f
A.	N. N.	tim	100	The second	- De	-
111	100		2 Gu			
1	1	2.0		and the second	A A	E.
12	Con the second	De la contra de la	10. 1. 1	Call and	14	and the second
	and	1	and an	and the	A STATES	
- Bay	No.	1	1000	1	3-10-3A	
		NORT	AST CAPE, S THEAST CAPE	FIGURE 4 T. LAWRENCE HTRW REME NDWATER S	DIAL ACTION	ASKA NS
		Ĩ W. w	H	DATUM NAD 8 PROJECT	3	01 <u>/23/2015</u> NAP
				STATE PLAN PROJECT	E AK 9 SCALE	= <u>1"=120'</u> /D. B1

3414008

APPRVD.

RJ



Legend

Main Operations Complex Hazardous, Toxic, and Radioactive Waste Proposed Surface Water Sample Location Hydrology Cap Boundary Road Centerline Road Edge

	FIGURE 5
Northeast Cape,	St. Lawrence Island, Alaska
Northeast Cap	e HTRW Remedial Actions
SITE 9 SURFACE	WATER SAMPLE LOCATIONS

	N
	0 50 100 Scale: FEET
NORTHEAST CAPE, ST. L IN-SITU CHEMICAL OX DRUM REMOV	GURE 6 AWRENCE ISLAND, ALASKA (IDATION AND INTRUSIVE AL/LANDFILL CAP PF SITE 7 CAP
Bristol ENVIRONMENTAL REMEDIATION SERVICES, LLC Phone (907) 563-0013 Fax (907) 563-6713 CONTRACT NO: W911KB-09-C-0013	DATUM: DATE 12/09/09 NA DWN. MTG PROJECTION: DWN. MTG NA SCALE SHOWN PROJECT NO. APPRVD. MW

ATTACHMENT 2

Field Forms

Visual Inspection Checklist (Post-Closure) [Insert Name] Landfill

This form is to be filled out annually for 5 years after landfill closure.

Name of Inspector:			Date:		
Weather conditions:			Precipitation	🗆 Yes	🗆 No
Temperature:	°F	Prevailing Wind Direction:	Sp	eed:	

Photographs Taken:

Landfill Post-Closure Monitoring Items	Y	N	COMMENTS
Evidence of settlement or frost jacking within or on surface of landfill?			
Ponded water within, against, or on surface of landfill?			
Evidence of surface erosion on disposal area walls or on exterior berms?			
Erosion of access roads?			
Discoloring of vegetation downslope?			
Any evidence of leakage or escape of waste from cells?			
Airborne ash or dust particles?			
Evidence of wildlife or birds present? Include number and type of birds on site.			
Windblown litter in cells or along access roads or adjacent ponds?			
Landfill odors?			
Fire or combustion in the waste?			
Damage to the structural integrity of a dike wall, culvert, or erosion control feature, if present?			
Is revegetation occurring?			
Estimated Percent Vegetative Cover: On Cap Su Comments:	Irface		_ On Sideslopes:

General Comments:

Corrective Actions Taken:

(Use additional pages if necessary)

GROUNDWATER LOW-FLOW PURGING FORM

	Job Name	NE Cape H	TRW RAs	Well No	.:						
	Job Number			Well Ty		Monitor		Extr	action	Other	
	Company							D PVC			
	Purged by								11	me:	
							Signature)			
					WEL	L PURGING					
PURC	GE VOLUME					PURGE M	THOD				
Casing	Diameter (D in i	nches):				Pump – Ty	pe:				
	ich 🗌 4-inch		☐ Oth	er		Submersib		Centrifugal	🗌 Bla	adder 🗌 Peri	staltic
Total D)epth of Casing (TD in feet BTOC	;):			🗌 Other – Ty	pe:				
Water	Level Depth (WL	in feet BTOC):				PUMP INT	AKE SE	TTING			
						Near Botto		•			
Tubing	Type/Size:					Depth in feet (BTOC):		Sc	reen Interval in Fe	eet (BTOC)
	PURGE T	IME				PURGE RA	TE		ACTL	JAL PURGE V	OLUME
	Start		Stop	Elaps	ed	Initial	gp	om Final		gpm	gallons
FIELD	D PARAMETE	ER MEASUR	EMENT								
	Minutes Since Pumping Began	Water Depth below MP	Pump Dial	Purge Rate (ml/min)	T □ °C □ °F	Specific Cond. (µS/cm)	pН	ORP (mV)	DO (mg/L)	Turbidity (NTU)	Cumulative Volume Purged
-											
-		-									
				I						L	·

GROUNDWATER LOW-FLOW PURGING FORM (continued)

Minutes Since Pumping Began	Water Depth below MP	Pump Dial	Purge Rate (ml/min)	T □ ℃ □ ℉	Specific Cond. (µS/cm)	pН	ORP (mV)	DO (mg/L)	Turbidity (NTU)	Cumulativ Volume Purged

GROUNDWATER SAMPLING FORM (To Accompany Low-Flow Purging Form)

ENVIRONM	Stol					
Job Name	NE Cape HTRW RAs					
Job Number	34140087	Date			Time:	
Recorded by	(Signature)		Sampled by			
		WELL IN	FORMATION	1	r	
Well Number	33		Vell Location		a.	
Casing Diameter (D ir	inches):		otal Depth of Ca	sing (TD in feet B	TOC):	
2-inch 4-inch	n 🗌 6-inch 🗌 Other	v	Vater Level Depth	n (WL in feet BTC	DC):	
		WELL	SAMPLING			
Submersible	Centrifugal Bla	lder	L] Other – Type:		
Sample No.	Volume	Analysis Requested	d Pres	servatives	Lab	Comments
					1	
					,	
	ROL SAMPLES					
	ROL SAMPLES		Blank S	amples	C	ther Samples
QUALITY CONTR	Duplicate Samples	e No.	Blank S Type	amples	С	

WATER LEVEL FORM

page ____ of ____

Project:

NE Cape HTRW RAs

Date:

Personnel:

Water Level Instrument:

Well Name	Measurement Time	Measuring Point	Depth to Water	Elevation of Measuring Point	Water Level Elevation	Comments
			e.			

WATER LEVEL FORM

page ____ of ____

Well Name	Measurement Time	Measuring Point	Depth to Water	Elevation of Measuring Point	Water Level Elevation	Comments
				,		

WATER LEVEL FORM

page ____ of ____

Well Name	Measurement Time	Measuring Point	Depth to Water	Elevation of Measuring Point	Water Level Elevation	Comments
		123				
						с. С

ATTACHMENT 3

Previous Landfill Cap Inspection Forms

Visual Inspection Checklist (Post-Closure) Site 7 Landfill

This form is to be filled out annually for 5 years after landfill closure.

Name of Inspector:Lisa Geist			Date:August 7, 2013
Weather conditions:Partly sunny, overcast		_ Precipitation	
Temperature: _54_°F Prevailing Wind	_E Speed:10-15 mph		
Photographs Taken:Yes			
Landfill Post-Closure Monitoring Items	Y	N	COMMENTS
Evidence of settlement or frost jacking within or on surface of landfill?		X	
Ponded water within, against, or on surface of landfill?	X		Tundra ponds close to toe of landfill on west and north sides.
Evidence of surface erosion on disposal area walls or on exterior berms?		X	
Erosion of access roads?		X	
Discoloring of vegetation downslope?		X	
Any evidence of leakage or escape of waste from cells?		X	
Airborne ash or dust particles?		X	
Evidence of wildlife or birds present? Include number and type of birds on site.	X		One fox sighted on west side of landfill, animal droppings scattered around landfill. Three cranes in nearby tundra. Two Tundra voles on landfill cap.
Windblown litter in cells or along access roads or adjacent ponds?		X	
Landfill odors?		X	
Fire or combustion in the waste?		X	
Damage to the structural integrity of a dike wall, culvert, or erosion control feature, if present?		X	Culvert by gravel access road is clear.
Is revegetation occurring?	X		Grass growing well, areas of moss beginning to appear, but landfill surface still very cobbly with rocks.
	~ ~		

Estimated Percent Vegetative Cover: On Cap Surface ____70___ On Sideslopes: ___70___ Comments: Grasses growing well, but only moss is establishing itself on very rocky surfaces.

General Comments: <u>Landfill cover appears very stable and unchanged</u>. Vegetation on landfill surface appears brownish/yellow/green with surrounding tundra very green, lush, and moist

Corrective Actions Taken: __None___

(Use additional pages if necessary)

F10AK096903_07.11_0503_p F10AK096905_07.11_0502_p 200-1f

Northeast Cape Landfill Cap Inspection Form

Visual Inspection Checklist (Post-Closure) Site 9 Landfill

This form is to be filled out annually for 5 years after landfill closure.

Name of Inspector:L	isa Geist	Date:A	August 7, 2013
Weather conditions:Part	ly sunny, overcast skies	Precipitation	🗆 Yes 🛛 No
Temperature: _54_°F	Prevailing Wind Direction:E	Speed:	_10-15 mph

Photographs Taken: ____Yes_____

Landfill Post-Closure Monitoring Items	Y	N	COMMENTS
Evidence of settlement or frost jacking within or on surface of landfill?		X	
Ponded water within, against, or on surface of landfill?	X		Tundra ponds close to toe of landfill on east and north sides
Evidence of surface erosion on disposal area walls or on exterior berms?		X	
Erosion of access roads?		X	
Discoloring of vegetation downslope?		Х	
Any evidence of leakage or escape of waste from cells?		X	
Airborne ash or dust particles?		X	
Evidence of wildlife or birds present? Include number and type of birds on site.	X		2 cranes in nearby tundra.
Windblown litter in cells or along access roads or adjacent ponds?		X	
Landfill odors?		X	
Fire or combustion in the waste?		X	
Damage to the structural integrity of a dike wall, culvert, or erosion control feature, if present?		X	
Is revegetation occurring?	X		
Estimated Percent Vegetative Cover: On Cap Comments: Grasses growing well with moss estimated			

General Comments: Landfill cover appears very stable and unchanged. Vegetation on landfill surface appears brown/yellow/green with surrounding tundra green, lush, and moist

Corrective Actions Taken: ____None_____

(Use additional pages if necessary)

Photo 1: Site 7 Landfill - Overview of landfill area, facing SW.

Photo 2: Site 7 Landfill - View of south side of landfill from Cargo Beach Road, facing SW.

Photo 3: Site 7 Landfill - View of west side of landfill area, facing south.

Photo 4: Site 7 Landfill – Southeast side of landfill from Cargo Beach Road, facing NW.

Photo 5: Site 7 Landfill – Surface of landfill, note both newer (green) and older (brown) grass tufts, facing east.

Photo 6: Site 7 Landfill – North slope of landfill, note tall grass tufts with seed, facing NW.

Photo 7: Site 9 Landfill – Overview of entire landfill area from site access road, facing south.

Photo 8: Site 9 Landfill – View of landfill facing west, MOC in background.

Photo 9: Site 9 Landfill – North end of landfill, facing NE.

Photo 10: Site 9 Landfill – Close-up view of landfill vegetation.

Photo 11: Site 9 Landfill – Pond along SE side of landfill, facing SW.

Photo 12: Site 9 Landfill – Diversion ditch that drain pond shown in Photo 11, operating sufficiently, facing NE.

Visual Inspection Checklist (Post-Closure) Site 7 Landfill furthest from Moc This form is to be filled out annually for 5 years after landfill closure.

Name of Inspector: Jeremy Cr	anes		Date:	
Weather conditions: foggy/cloudy			Precipitation 💢 Yes 🗆 No	
Temperature: <u>45</u> °F Prevailing Wind I	Directio	on: <u>n</u>	orth Speed: 10-20 mph	
Photographs Taken: None today, taken previously on sunny day.				
Landfill Post-Closure Monitoring Items	Y	N	COMMENTS	
Evidence of settlement or frost jacking within or on surface of landfill?		X	Stuble, Level surface.	
Ponded water within against or on surface of landfill?	X		Natural tundra pollds adjucent to landfill on S, W, N sides.	
Evidence of surface erosion on disposal area		X	To landfill in 3, W, N Sides.	
walls or on exterior berms? Erosion of access roads?		1		
Discoloring of vegetation downslope?		X	· · · · · · · · · · · · · · · · · · ·	
		X		
Any evidence of leakage or escape of waste from cells?		X		
Airborne ash or dust particles?		X		
Evidence of wildlife or birds present? Include	X		Smell white/black birds in	
number and type of birds on site. Windblown litter in cells or along access			Small white/black birds in covey of 15-20 enting hird seed. No visible debring	
roads or adjacent ponds? Landfill odors?		X		
		X		
Fire or combustion in the waste?		X		
Damage to the structural integrity of a dike wall, culvert, or erosion control feature, if		V	NIA	
present?		~		
Is revegetation occurring?	X		Grass is up to 3 ft tall and healty in areas	
Estimated Percent Vegetative Cover: On Car	o Surfa	ice	70 / On Sideslopes: (D)	
Comments: South + East Jusides lope wind Likely blew off seed when	s le ini	ss ve t.alh	setated. Very rocky and	
General Comments: No vis. Le es				
very structurally sound				
well in rocky areas, how				
Corrective Actions Taken: None S	red	wa	is spread by Bristol	
Environmental on 9-13-	11	at	bare areas. Hope	
to propriote regetation ;				
			F10AK096903_07.11_0500 p	
			F10AK096905_07.11_0500_p	
Northeast Cape Landfill Cap Inspection Form			200-1f	

Visual Inspection C Site S د نه در	9 Lan	dfill	
This form is to be filled out annu			•
Name of Inspector: Jeremy Cran	er		Date: 9-17-11
Weather conditions: Clandy /foggy			Precipitation 🕅 Yes 🗆 No
Temperature: <u>45</u> °F Prevailing Wind I	Directio	on: _ <i>N</i>	CRTH Speed: 10-20 mph
Photographs Taken: No, taken pr	evion	shy	on a nice clear sunny day.
Landfill Post-Closure Monitoring Items	Y	N	COMMENTS
Evidence of settlement or frost jacking within or on surface of landfill?		X	Very stable in appearance
Ponded water within, against, or on surface of landfill?	х		Natural fundra pends to north + cast. Ditch drains to NE.
Evidence of surface erosion on disposal area walls or on exterior berms?		Х	
Erosion of access roads?		X	
Discoloring of vegetation downslope?		X	
Any evidence of leakage or escape of waste from cells?		X	
Airborne ash or dust particles?		X	
Evidence of wildlife or birds present? Include number and type of birds on site.		χ	
Windblown litter in cells or along access roads or adjacent ponds?		X	No visible debris.
Landfill odors?		X	
Fire or combustion in the waste?		X	
Damage to the structural integrity of a dike wall, culvert, or erosion control feature, if present?		X	Manmade ditch in excellent condition + functioning properly.
Is revegetation occurring?	X		Grass is short, however, appears to be reveging.
Estimated Percent Vegetative Cover: On Ca Comments: Grass/vegetation not gr	p Surfa	ice ງ ~	10 /o On Sideslopes: 10 /o
General Comments: Land fill app			
No visible prosion, Grass			5
			ape. No evidence of Leachate.
Corrective Actions Taken: None JC		•	
9-13-11, conducted by 1			
to promote veg. in roch	5	are	いて、 (Use additional pages if necessary)

Photo 1: Site 7 Landfill – North slope of landfill, facing east.

Photo 2: Site 7 Landfill – East slope of landfill, facing northeast.

Photo 3: Site 7 Landfill – View from approximate center of landfill, facing northeast.

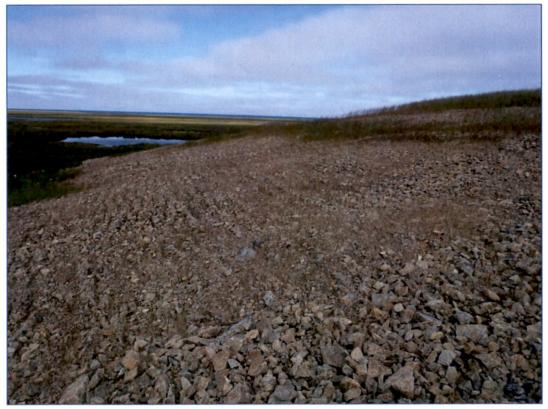


Photo 4: Site 7 Landfill – South slope of landfill, facing west.



Photo 5: Site 7 Landfill – View of top of landfill from south end, facing north.

Photo 6: Site 7 Landfill – South slope of landfill, facing west.

Photo 7: Site 7 Landfill - West slope of landfill, facing south.

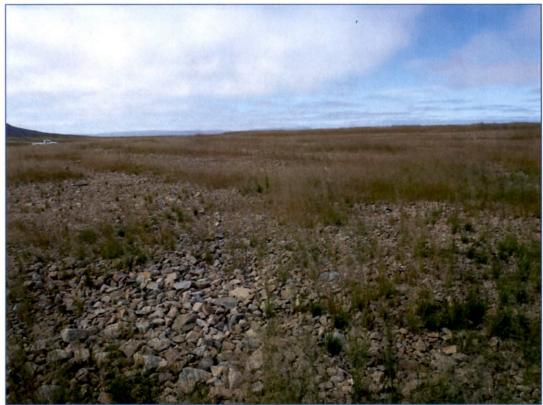


Photo 8: Site 7 Landfill - View of top of landfill from northeast corner, facing southwest.

Photo 9: Site 7 Landfill - View of top of landfill from east side (from road), facing west.

Photo 10: Site 7 Landfill – South slope of landfill, facing northwest with camp in background.

Photo 11: Site 7 Landfill – Surface water pond on northwest side of landfill, facing northwest with camp in background.

Photo 12: Site 9 Landfill – Drainage ditch operating well and in good condition, facing northeast.

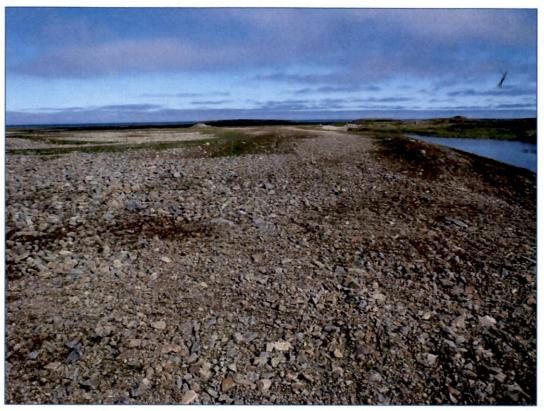


Photo 13: Site 9 Landfill – East side of landfill, facing north.

Photo 14: Site 9 Landfill – North side of landfill, facing east.

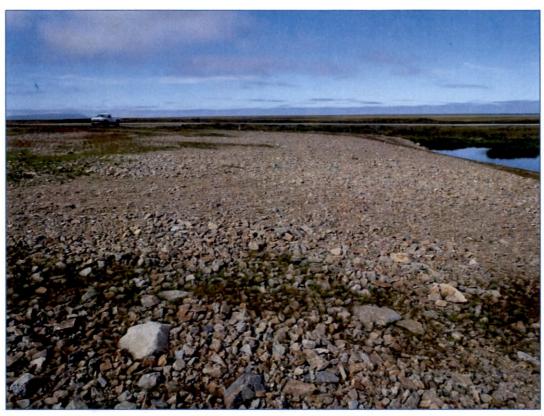


Photo 15: Site 9 Landfill – North side of landfill, facing northwest.

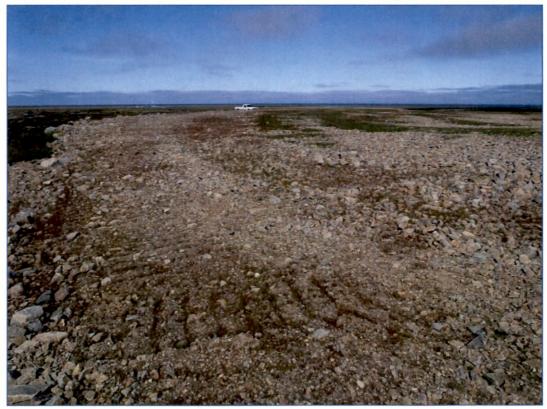


Photo 16: Site 9 Landfill – Southeast side of landfill, facing northwest.

Photo 17: Site 9 Landfill – West side of landfill, facing southwest.

Photo 18: Site 9 Landfill – East side of landfill, facing southwest.

Photo 19: Site 9 Landfill – View of landfill from east side, facing west.

Visual Inspection Checklist (Post-Closure) Site 7 Landfill

This form is to be filled out annually for 5 years after landfill closure.

Name of Inspector:Aaron Shewman			Date: 26 July 2012
Weather conditions:Cloudy, Windy, Rainy_ No			Precipitation X Yes
Temperature: _50_°F Prevailing Wind I		on:	WestSpeed: _15-20 mph
Photographs Taken:Yes			
Landfill Post-Closure Monitoring Items	Y	N	COMMENTS
Evidence of settlement or frost jacking within or on surface of landfill?		X	Stable, level surface
Ponded water within, against, or on surface of landfill?	X		Yes, tundra ponds are against the N, W, and S sides of the landfill cap
Evidence of surface erosion on disposal area walls or on exterior berms?		Х	
Erosion of access roads?		X	
Discoloring of vegetation downslope?		X	
Any evidence of leakage or escape of waste from cells?		X	
Airborne ash or dust particles?		X	
Evidence of wildlife or birds present? Include number and type of birds on site.		Х	
Windblown litter in cells or along access roads or adjacent ponds?		X	
Landfill odors?		X	
Fire or combustion in the waste?		X	
Damage to the structural integrity of a dike wall, culvert, or erosion control feature, if present?		X	

Estimated Percent Vegetative Cover: On Cap Surface _70____ On Sideslopes: ___60__ Comments: S and W sideslopes have less vegetation. These slopes are rocky and subject to high winds.

Х

General Comments: The landfill cap appears structurally sound and stable, Vegetation is not

growing in rocky areas, but these areas remain stable due to the rocky nature of the slope(s).

Corrective Actions Taken: __None_

Is revegetation occurring?

(Use additional pages if necessary) F10AK096903_07.11_0501_p F10AK096905_07.11_0501_p 200-1f

Northeast Cape Landfill Cap Inspection Form

Visual Inspection Checklist (Post-Closure) Site 9 Landfill

This form is to be filled out annually for 5 years after landfill closure.

Name of Inspector:Aaron Shewman	Date:26 July 2012
Weather conditions:Cloudy, Windy, Rainy No	Precipitation X Yes

Temperature: _50_°F Prevailing Wind Direction: __West__ Speed: _15-20 mph____

Photographs Taken: Yes_____

Landfill Post-Closure Monitoring Items	Y	N	COMMENTS
Evidence of settlement or frost jacking within or on surface of landfill?		X	Stable, level surface
Ponded water within, against, or on surface of landfill?	X		Yes, tundra ponds are against the N and E sides of the landfill cap
Evidence of surface erosion on disposal area walls or on exterior berms?		X	
Erosion of access roads?		X	
Discoloring of vegetation downslope?		X	
Any evidence of leakage or escape of waste from cells?		X	~ ~ ~
Airborne ash or dust particles?		X	
Evidence of wildlife or birds present? Include number and type of birds on site.		X	
Windblown litter in cells or along access roads or adjacent ponds?		X	None
Landfill odors?		X	
Fire or combustion in the waste?		X	
Damage to the structural integrity of a dike wall, culvert, or erosion control feature, if present?		X	Ditch from tundra pond in excellent condition and functioning very well
Is revegetation occurring?	X		

General Comments: The cap appears structurally sound and stable. Vegetation is either

sparse or not growing in very rocky areas, but these areas remain stable due to the rocky

nature of the slope(s).

Corrective Actions Taken: __None____

(Use additional pages if necessary)

Photo 1: Site 7 Landfill - Pond on west side of landfill, facing north.

Photo 2: Site 7 Landfill – View of landfill cap from north side, facing southwest.

Photo 3: Site 7 Landfill – Panorama view from south side of landfill, facing north, road on right.

Photo 4: Site 7 Landfill - View of landfill cap, facing east.

Photo 5: Site 7 Landfill – East side of landfill, facing northeast.

Photo 6: Site 7 Landfill – East side of landfill, facing south.

Photo 7: Site 7 Landfill – East side of landfill, facing southwest.

Photo 8: Site 7 Landfill – East side of landfill, facing west.

Photo 9: Site 9 Landfill – View of landfill cap surface, facing west with MOC in background.

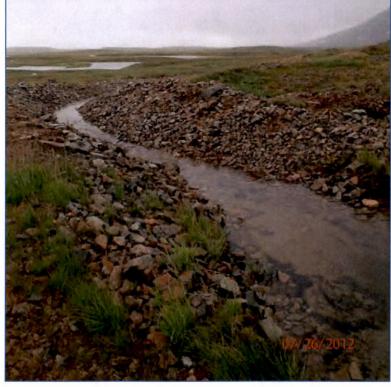


Photo 10: Site 9 Landfill – Pond outlet ditch in good condition and operating efficiently, facing northeast.

Photo 11: Site 9 Landfill – Diversion ditch in good condition, facing northeast.

Photo 12: Site 9 Landfill – Northeast side of landfill and adjacent pond, facing northwest.

Photo 13: Site 9 Landfill – Diversion ditch outfall area into wetland, facing north.

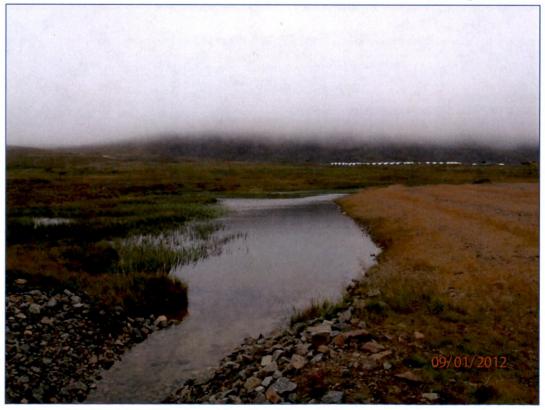


Photo 14: Site 9 Landfill – East side of landfill and adjacent pond, facing southwest.

Photo 15: Site 9 Landfill – Drive point well on east corner of landfill (removed in 2012) facing southwest.

Photo 16: Site 9 Landfill – Drive point well (removed in 2012) and PVC monitoring well on east side of landfill, facing west.

Visual Inspection Checklist (Post-Closure) Site 7 Landfill

This form is to be filled out annually for 5 years after landfill closure.

Name of Inspector:	Lisa Geist	Date:	Augu	st 7, 2013_	
Weather conditions:	_Partly sunny, overcast skies	Pre	cipitation	🗆 Yes 🛛	No
Temperature: _54_°F	Prevailing Wind Direction:E_	,	Speed:	10-15 mph	_
Photographs Taken:	Yes				

Y Landfill Post-Closure Monitoring Items N COMMENTS Evidence of settlement or frost jacking within Х or on surface of landfill? Ponded water within, against, or on surface Х Tundra ponds close to toe of of landfill? landfill on west and north sides. Evidence of surface erosion on disposal area Х walls or on exterior berms? Erosion of access roads? Х Discoloring of vegetation downslope? Х Any evidence of leakage or escape of waste Х from cells? Airborne ash or dust particles? Х Evidence of wildlife or birds present? Include Х One fox sighted on west side of number and type of birds on site. landfill, animal droppings scattered around landfill. Three cranes in nearby tundra. Two Tundra voles on landfill cap. Windblown litter in cells or along access Х roads or adjacent ponds? Landfill odors? Х Fire or combustion in the waste? Х Damage to the structural integrity of a dike Х Culvert by gravel access road is wall, culvert, or erosion control feature, if clear. present? Is revegetation occurring? Х Grass growing well, areas of moss beginning to appear, but landfill surface still very cobbly with rocks.

Estimated Percent Vegetative Cover: On Cap Surface ____70____ On Sideslopes: ____70_ Comments: Grasses growing well, but only moss is establishing itself on very rocky surfaces.

General Comments: ____Landfill cover appears very stable and unchanged. Vegetation on landfill surface appears brownish/yellow/green with surrounding tundra very green, lush, and moist

Corrective Actions Taken: __None____

(Use additional pages if necessary)

F10AK096903_07.11_0503_p F10AK096905_07.11_0502_p 200-1f

Northeast Cape Landfill Cap Inspection Form

Visual Inspection Checklist (Post-Closure) Site 9 Landfill

This form is to be filled out annually for 5 years after landfill closure.

This form is to be filled out ann	ually to	or 5 yea	ars after landfill closure.
Name of Inspector:Lisa Geist			Date:August 7, 2013
Weather conditions:Partly sunny, overcast	t skies		Precipitation 🛛 Yes 🛛 No
Temperature: _54_°F Prevailing Wind	Directi	on:	E Speed: _10-15 mph
Photographs Taken:Yes			
Landfill Post-Closure Monitoring Items	Y	N	COMMENTS
Evidence of settlement or frost jacking within or on surface of landfill?		X	
Ponded water within, against, or on surface of landfill?	X		Tundra ponds close to toe of landfill on east and north sides
Evidence of surface erosion on disposal area walls or on exterior berms?		X	
Erosion of access roads?		X	
Discoloring of vegetation downslope?		X	
Any evidence of leakage or escape of waste from cells?		X	
Airborne ash or dust particles?		X	
Evidence of wildlife or birds present? Include number and type of birds on site.	X		2 cranes in nearby tundra.
Windblown litter in cells or along access roads or adjacent ponds?		X	
Landfill odors?		X	
Fire or combustion in the waste?		X	
Damage to the structural integrity of a dike wall, culvert, or erosion control feature, if present?		x	
Is revegetation occurring?	X		
			•

Estimated Percent Vegetative Cover: On Cap Surface ____80____ On Sideslopes: ___70____ Comments: Grasses growing well with moss establishing on more rocky areas.

General Comments: Landfill cover appears very stable and unchanged. Vegetation on landfill surface appears brown/yellow/green with surrounding tundra green, lush, and moist

Corrective Actions Taken: ____None_____

(Use additional pages if necessary)

Photo 1: Site 7 Landfill - Overview of landfill area, facing SW.

Photo 2: Site 7 Landfill - View of south side of landfill from Cargo Beach Road, facing SW.

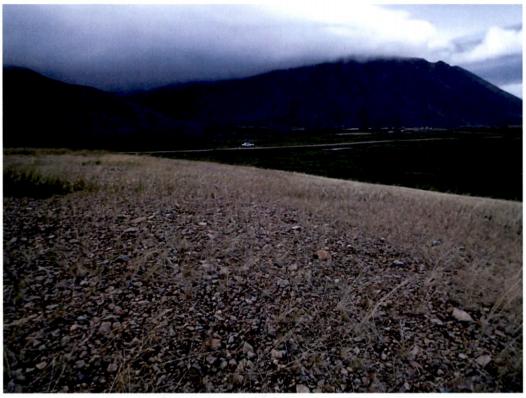


Photo 3: Site 7 Landfill - View of west side of landfill area, facing south.

Photo 4: Site 7 Landfill – Southeast side of landfill from Cargo Beach Road, facing NW.

Photo 5: Site 7 Landfill – Surface of landfill, note both newer (green) and older (brown) grass tufts, facing east.

Photo 6: Site 7 Landfill - North slope of landfill, note tall grass tufts with seed, facing NW.

Photo 7: Site 9 Landfill – Overview of entire landfill area from site access road, facing south.

Photo 8: Site 9 Landfill – View of landfill facing west, MOC in background.

Photo 9: Site 9 Landfill – North end of landfill, facing NE.

Photo 10: Site 9 Landfill – Close-up view of landfill vegetation.

Photo 11: Site 9 Landfill – Pond along SE side of landfill, facing SW.

Photo 12: Site 9 Landfill – Diversion ditch that drain pond shown in Photo 11, operating sufficiently, facing NE.

U.S. Army Corps of Engineers Alaska District

2013 SAMPLING CONDUCTED IN CONJUNCTION WITH THE 2013 FIVE-YEAR REVIEW AT NORTHEAST CAPE

NORTHEAST CAPE ST. LAWRENCE ISLAND, ALASKA

FUDS No. F10AK0969-05

Final February 2014

> F10AK096905_07.11_0503_p 200-1f

U.S. Army Corps of Engineers Alaska District

2013 SAMPLING CONDUCTED IN CONJUNCTION WITH THE 2013 FIVE-YEAR REVIEW AT NORTHEAST CAPE

NORTHEAST CAPE ST. LAWRENCE ISLAND, ALASKA

FUDS No. F10AK0969-05

Final February 2014

F10AK096905_07.11_0503_p 200-1f

TABLE OF CONTENTS

<u>SEC</u>	TIO	<u>N</u> <u>PAGE</u>
ACF	RONY	MS AND ABBREVIATIONS iii
EXE	ECUT	IVE SUMMARYES-1
1.0	INT	RODUCTION1-1
	1.1	OBJECTIVES1-1
	1.2	SCOPE OF WORK
	1.3	FIELD CHANGE FORMS1-2
2.0	FIEI	LD INVESTIGATION ACTIVITIES2-1
	2.1	SAMPLING AND ANALYTICAL APPROACH2-1
	2.2	SURFACE WATER SAMPLING
	2.3	GROUNDWATER GRAB SAMPLING2-2
	2.4	LAND SURVEYING2-3
	2.5	WASTE MANAGEMENT
3.0	INV	ESTIGATION RESULTS
	3.1	SURFACE WATER SAMPLING RESULTS
	3.2	GROUNDWATER GRAB SAMPLING RESULTS
	3.3	DATA EVALUATION
4.0	CON	NCLUSIONS
	4.1	CARGO BEACH ROAD LANDFILL (SITE 7)4-1
	4.2	HOUSING AND OPERATIONS LANDFILL (SITE 9)4-2
	4.3	KANGUKHSAM MOUNTAIN SPRING4-3
5.0	REF	ERENCES

TABLE OF CONTENTS (Continued)

SECTION

PAGE

TABLES

Table 2-1	Liquid Waste Quantities	2-4
Table 3-1	Surface Water Parameters Prior to Sampling	3-1
Table 3-2	Groundwater Parameters Prior to Sampling	3-3

APPENDICES

Appendi	хA	Figures

- Appendix B Data Quality Assessment, ADEC Checklists, and Supporting Documentation
- Appendix C Field Documentation
- Appendix D Photograph Log
- Appendix E Waste Tracking
- Appendix F Survey Data
- Appendix G Response to Comments

ACRONYMS AND ABBREVIATIONS

ADEC	Alaska Department of Environmental Conservation
BERS	Bristol Environmental Remediation Services, LLC.
bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, and xylenes
COC	contaminant of concern
DRO	diesel-range organics
EPA	U.S. Environmental Protection Agency
FUDS	Formerly Used Defense Site
GRO	gasoline-range organics
HTRW	hazardous, toxic, or radioactive waste
Jacobs	Jacobs Engineering Group
KMS	Kangukhsam Mountain Spring
mL	milliliter
PAH	polycyclic aromatic hydrocarbons
PCB	polychlorinated biphenyls
QAPP	Quality Assurance Project Plan
QC	quality control
RCRA	Resource Conservation and Recovery Act
RRO	residual-range organics
USACE	U.S. Army Corps of Engineers
μm	micron

(intentionally blank)

EXECUTIVE SUMMARY

This Report describes sample collection activities conducted at three Northeast Cape sites on St. Lawrence Island, Alaska, which were performed in order to facilitate the first five-year review. Although the five-year review site inspections coincided with the September sample collection, those activities will be described in a separate report.

Sampling activities occurred on 11 and 12 September 2013 at approved locations, as identified in the *Supplement to the Northeast Cape HTRW Remedial Actions Quality Assurance Project Plan* (U. S. Army Corps of Engineers [USACE] 2013b). A summary of the collection activities are listed below:

- At Cargo Beach Road Landfill (Site 7), surface water was collected from three locations and submitted to an offsite analytical laboratory for analysis. Groundwater grab sampling was attempted at four locations downgradient of the landfill. Drive point refusal was encountered at depths ranging from 6 to 30 inches below ground surface, due to large rocks. Groundwater was not encountered during the attempts and sampling was discontinued following consultation with USACE.
- At Housing and Operations Landfill (Site 9), surface water was collected from three locations and submitted to an offsite analytical laboratory for analysis. A single groundwater grab sample was collected from Site 9. Limited water production of 2.5 milliliters (mL) per minute from the drive point screened interval was less than the work plan-specified rate of 250 mL per minute. Sufficient volume was obtained for gasoline-range organics (GRO); benzene, toluene, ethylbenzene, and xylenes (BTEX); and dissolved (field filtered) Resource Conservation and Recovery Act (RCRA) metals with zinc analysis. Groundwater collection was halted following consultation with USACE.
- At Kangukhsam Mountain Spring, surface water was collected from one location and submitted to an offsite analytical laboratory for analysis.

All sample results were compared to the project cleanup level and no exceedances were identified.

(intentionally blank)

 $\label{eq:constraint} $$ ES-2 FINAL $$ 1/30/2014$$

1.0 INTRODUCTION

The Northeast Cape site is located on St. Lawrence Island, Alaska approximately 135 air miles southwest of Nome (Figure A-1). The Village of Savoonga is the closest community, and is located 60 miles northwest of the site (Figure A-2). The Northeast Cape site was constructed as an Aircraft Control and Warning Station during 1950 and 1951, and provided radar coverage and surveillance as part of the Alaska Early Warning System until 1972. The site encompasses approximately 4,800 acres (7.5 square miles) and is bounded by Kitnagak Bay to the northeast, Kangighsak Point to the northwest, and the Kinipaghulghat Mountains to the south. The Northeast Cape site, classified as a Formerly Used Defense Site (FUDS), is comprised of 34 individual sites. These individual sites have previously been subject to several phased remedial investigations and/or removal actions.

Site-specific sampling was requested by community members at the two landfill sites and the seasonal drinking water source, Kangukhsam Mountain Spring (Figure A-3). Sampling activities coincided with five-year review site inspections.

1.1 OBJECTIVES

The purpose of this sampling effort is to determine if site-specific contaminants of concern (COC) are present in groundwater and/or surface water at the Cargo Beach Road Landfill (Site 7), the Housing and Operations Landfill (Site 9), or Kangukhsam Mountain Spring.

1.2 SCOPE OF WORK

The definable features of work include the following:

- Collection of one surface water sample from Kangukhsam Mountain Spring
- Collection of one surface water sample from three locations within Cargo Beach Road Landfill (Site 7)
- Attempt collection of one groundwater grab sample from Cargo Beach Road Landfill (Site 7)
- Collection of one surface water sample from three locations within Housing and Operations Landfill (Site 9)

- Collection of one groundwater grab sample from Housing and Operations Landfill (Site 9)
- Management of investigation-derived waste

1.3 FIELD CHANGE FORMS

Work described in this report was conducted in accordance with the *Supplement to the Northeast Cape HTRW Remedial Actions Quality Assurance Project Plan* (USACE 2013b). Deviations from the Work Plan and/or approved field changes were not generated from this sampling effort.

2.0 FIELD INVESTIGATION ACTIVITIES

Surface water and/or groundwater samples were collected from three Northeast Cape sites between 11 September 2013 and 12 September 2013. Jacobs personnel travelled from Anchorage to Nome via commercial airline, and from Nome to the Northeast Cape site via charter aircraft. While onsite, personnel were housed within a temporary camp maintained by Bristol Environmental Remediation Services, LLC (BERS). Throughout the duration of the sampling activities, BERS was onsite completing work described in the *Northeast Cape HTRW Remedial Actions Work Plan, Revision 1* (USACE 2013a). Ambient temperatures ranged from 35 to 40 degrees Fahrenheit (°F) during the sampling effort.

2.1 SAMPLING AND ANALYTICAL APPROACH

Individual sites within the Northeast Cape site were accessed via existing site roads. Sampling locations were identified using existing landmarks and verified with the onsite USACE Quality Assurance Representative prior to sampling.

Sampling at the Northeast Cape site included the collection of both unfiltered and filtered water samples. Unfiltered water samples were used for analysis of gasoline-range organics (GRO) by Alaska Method 101 (AK101), diesel-range organics (DRO) by AK102, residual-range organics (RRO) by AK103, benzene, toluene, ethylbenzene, and xylenes (BTEX) by U.S. Environmental Protection Agency (EPA) Method SW8260C, polycyclic aromatic hydrocarbons (PAH) by EPA Method SW8270-SIM, polychlorinated biphenyls (PCB) by EPA Method SW8082, eight Resources Conservation and Recovery Act (RCRA) metals, and zinc by EPA Method SW6020A/SW7471. Filtered water samples were collected for analysis of dissolved metals, which was performed using a disposable 0.45-micron (µm) in-line water filter attached to a peristaltic pump. Filtered water was transferred to sample containers provided by the laboratory and used for analysis of eight RCRA metals and zinc by EPA Method SW6020A/SW7471. In addition, filtered and unfiltered water samples collected from Cargo Beach Road Landfill (Site 7) were also analyzed for nickel using EPA Method SW6020A.

A pin flag or lathe was placed at the sampling location to allow for later identification during surveying. Observations, sampling information, and field parameter readings were recorded in the field logbook and/or field sampling forms provided in Appendix C. Photographs relevant to this sampling effort are included in the photograph log (Appendix D). The logbook (Appendix C) was shared between two field teams during this field effort and includes additional photographs and field activities not related to site-specific sampling efforts.

2.2 SURFACE WATER SAMPLING

Surface water samples were collected from Cargo Beach Road Landfill (Site 7), Housing and Operations Landfill (Site 9), and Kangukhsam Mountain Spring. Samples were collected near the shoreline, slightly below the surface of the water. A disposable Teflon[®] dipper was used to retrieve the surface water at each location in accordance with the procedures detailed in the *Supplement to the Northeast Cape HTRW Remedial Actions Quality Assurance Project Plan* (USACE 2013b). Sampling locations are shown in Figures A-4, A-5, and A-6.

2.3 GROUNDWATER GRAB SAMPLING

Groundwater grab sampling was attempted downgradient of Cargo Beach Road Landfill (Site 7) and Housing and Operations Landfill (Site 9). A 30-inch screened drive point was attached to a 36-inch drive rod (totaling 66 inches in length) and advanced into the subsurface using hand tools until groundwater was encountered or refusal was met.

At Cargo Beach Road Landfill (Site 7), large rocks were visible at the surface near the proposed groundwater grab sample location north of the landfill cap. The first attempt to advance the drive point resulted in a ground penetration of 6 inches before refusal was met. The onsite USACE Quality Assurance Representative was consulted along with the USACE Project Manager and a decision was made to step out from the planned groundwater grab sampling location. The drive point was advanced at three additional locations and met with refusal each time. The greatest depth reached during these attempts was 30 inches below ground surface (bgs) and recoverable water was not observed; therefore, groundwater grab

sampling was halted. Figure A-4 displays the attempted groundwater grab sample locations at Cargo Beach Road Landfill (Site 7).

At Housing and Operations Landfill (Site 9), the terrain near the groundwater grab sample location appeared to be tundra with little exposed rock. The drive point was advanced and achieved a ground penetration of 48 inches before resistance – possibly due to permafrost – was noticed. Water was found in the drive point and eventually stabilized at 33 inches bgs as measured by a water level probe.

An unused ¼-inch inside diameter polyethylene tube was inserted through the drive rod (until it was below the water surface) and attached to a peristaltic pump. The pump was set to the lowest speed and water was removed from the drive point into a graduated beaker to determine the flow. The flow rate was found to be 2.5 mL per minute, which is far below the minimum acceptable flow rate of 250 mL per minute, as established in the work plan. Although groundwater production from the well point was low, sufficient volume was collected over a two-hour period for field parameter measurements and to fill sample containers for BTEX, GRO, and dissolved (field filtered) RCRA metals with zinc analysis. The onsite USACE Quality Assurance Representative was consulted along with the USACE Project Manager regarding the limited water production, and groundwater sampling was discontinued. Figure A-5 displays the Housing and Operations Landfill (Site 9) groundwater grab sample location.

2.4 LAND SURVEYING

An optical survey was performed in order to record the sampling and attempted sampling locations. Surveying was conducted by Eco-Land, LLC, a professional land surveyor, subcontracted by BERS. Horizontal data are presented in feet, using the Alaska State Plane Zone 9 projection and the North American Datum of 1983. Survey data tables relevant to sampling locations, and compliant with the *Manual for Electronic Deliverables* (USACE 2011), will be included with the Remedial Actions Report prepared by BERS. An abbreviated survey data table is included in Appendix F.

2.5 WASTE MANAGEMENT

Waste was transported and disposed of in accordance with all applicable local, state, and federal regulations. Investigation-derived waste included used personal protective equipment, disposable filters and bailers, calibration and decontamination water, and general refuse. Solid waste was stored in a contractor bag, co-mingled with BERS waste onsite, and disposed of by BERS in accordance with the *Northeast Cape HTRW Remedial Actions Work Plan, Revision 1* (USACE 2013a). Liquid waste was stored in a 5-gallon bucket and transported to Anchorage, Alaska by Jacobs personnel, then transferred to Emerald Waste Services in Palmer, Alaska for disposal. Liquid waste quantities are summarized in Table 2-1; the liquid waste manifest and certificate of disposal are included in Appendix E.

Table 2-1 Liquid Waste Quantities

Waste Type	Number of Containers	Disposal Quantity
Non-hazardous Wastewater	1	5-gallon bucket

3.0 INVESTIGATION RESULTS

This section summarizes the field and analytical results for the 2013 sampling activities, which were conducted at the Northeast Cape site by Jacobs. The sample summary table, complete analytical results, and assessment of data quality are included in Appendix B.

3.1 SURFACE WATER SAMPLING RESULTS

Prior to sampling, field parameters were recorded directly from the water source using a YSI water quality meter and a Micro turbidimeter. Surface water parameters measured prior to sampling are provided in Table 3-1.

Site ID	Sampling Location	Temperature (°C)	Conductivity (µS/cm)	DO (mg/L)	pН	ORP (mV)	Turbidity (NTU)
KMS	KMS-WS01	4.26	32	17.713	6.31	186.2	0.56
Site 7	7LF-WS01	11.42	42	10.767	6.06	179.9	166.2
Site 7	7LF-WS02	12.77	45	10.251	6.1	160.0	33.44
Site 7	7LF-WS03	11.59	35	11.99	6.64	127.3	2.67
Site 9	9LF-WS01 9LF-WS02 ¹	6.09	36	11.19	5.4	203.8	19.27
Site 9	9LF-WS03	6.07	38	20.022	6.02	172.2	0.54
Site 9	9LF-WS04	7.96	66	10.286	6.34	150.9	210.2

Table 3-1 Surface Water Parameters Prior to Sampling

Notes:

¹Sampling locations 9LF-WS01 and 9LF-WS02 are a duplicate pair

°C = Degrees Celsius

DO = dissolved oxygen

KMS = Kangukhsam Mountain Spring µS/cm = microSiemens per centimeter

mg/L = milligrams per liter

mV = millivolts

NTU = nephelometric turbidity units

ORP = oxidation reduction potential

Turbidity readings for sampling locations 7LF-WS01 and 9LF-WS04 were found to be much greater than other nearby sampling locations. Sampling locations 7LF-WS01 and 9LF-WS04 are located immediately adjacent to the landfill caps for each site and were noted as being turbid with no apparent odor or sheen. Field observations by Jacobs personnel did not identify

any recent disturbances or possible landfill cap erosion that could have contributed to the high turbidity readings.

Seven primary surface water samples and one duplicate sample were collected and sent to ALS Environmental, Inc. (ALS) for analysis. Analytical results were compared to project cleanup levels obtained from Table 15-3 of the *Northeast Cape HTRW Remedial Actions Work Plan, Revision 1* (USACE 2013a), using the cleanup levels from the "Cleanup levels from 2009 Decision Document" column (USACE 2009). Surface water analytical results are presented in the following subsections.

Cargo Beach Road Landfill (Site 7)

Three primary surface water samples were collected for analysis of GRO, DRO, RRO, BTEX, PAHs, PCBs, eight RCRA metals, nickel, and zinc. Sampling locations are shown in Figure A-4.

Analytes did not exceed project cleanup levels in surface water samples collected from this site. The complete analytical results table is provided in Appendix B.

Housing and Operations Landfill (Site 9)

Three primary surface water samples and one duplicate sample were collected for analysis of GRO, DRO, RRO, BTEX, PAHs, PCBs, eight RCRA metals and zinc. Sampling locations are shown in Figure A-5.

Analytes did not exceed project cleanup levels in surface water samples collected from this site. The complete analytical results table is provided in Appendix B.

Kangukhsam Mountain Spring

One surface water sample was collected and analyzed for GRO, DRO, RRO, BTEX, PAHs, PCBs, eight RCRA metals, and zinc. This sampling location is shown in Figure A-6.

Analytes did not exceed project cleanup levels in surface water samples collected from this site. The complete analytical results table is provided in Appendix B.

3.2 GROUNDWATER GRAB SAMPLING RESULTS

Groundwater grab sampling was attempted at locations downgradient from Cargo Beach Road Landfill (Site 7) and Housing and Operations Landfill (Site 9). Due to the limitations described in Section 2.3, only one primary groundwater grab sample was collected from Housing and Operations Landfill (Site 9); it was sent to ALS for analysis. Analytical results were compared to the project cleanup levels obtained from Table 15-3 of the *Northeast Cape HTRW Remedial Actions Work Plan, Revision 1* (USACE 2013a), using the cleanup levels from the "Cleanup levels from 2009 Decision Document" column (USACE 2009).

Prior to sampling, field parameters including: temperature, pH, dissolved oxygen, conductivity, oxidation-reduction potential, and turbidity, were recorded using a YSI water quality meter and a Micro turbidimeter. Groundwater parameters measured at the time of sampling are provided in Table 3-2.

Table 3-2 Groundwater Parameters Prior to Sampling

Site ID	Sampling Location	Temperature (°C)	Conductivity (µS/cm)	DO (mg/L)	рН	ORP (mV)	Turbidity (NTU)
Site 9	9LF-WG01-2	6.22	132	0.73	5.44	177	9999 ¹

Notes:

¹ A reading of "9999" indicates an over range error code. °C = Degrees Celsius DO = dissolved oxygen μS/cm = microSiemens per centimeter mg/L = milligrams per liter mV = millivolts NTU = nephelometric turbidity units ORP = oxidation reduction potential

Cargo Beach Road Landfill (Site 7)

Groundwater grab samples were not collected from Cargo Beach Road Landfill (Site 7).

Housing and Operations Landfill (Site 9)

One primary groundwater grab sample was collected from this site. Sediment and organics in the groundwater continually blocked the flow of groundwater through the screen, resulting in a groundwater production rate of approximately 2.5 milliliters per minute (mL/min). The

groundwater production rate resulted in a limited quantity of groundwater available for analysis. A sufficient volume of groundwater was collected for the analysis of GRO by AK101, BTEX by SW8260C, and dissolved (field filtered) RCRA metals with zinc by SW6020A/SW7471.

Although the analysis of DRO by AK102, RRO by AK103, PAHs by SW8270-SIM, and PCBs by SW8082 were planned, insufficient water production from the well point and the volume of water required to fill the sample containers (six liters) made collection impractical. An unfiltered sample volume for RCRA metals with zinc by SW6020A/SW7471 analysis was not collected due to high turbidity.

GRO, BTEX, and dissolved metals (RCRA metals with zinc) did not exceed project cleanup levels in groundwater obtained from Site 9. The complete analytical results table is provided in Appendix B.

3.3 DATA EVALUATION

Data quality was assessed through the review of the laboratory case narrative, laboratory data deliverables, and completion of ADEC checklists. A review of the analytical results and associated QC samples was performed by the Jacobs Project Chemist, as per the *Work Plan* (USAF 2013b).

Data quality was evaluated against the following requirements: U.S. Department of Defense *Quality Systems Manual for Environmental Laboratories*, version 4.2 (U.S. Department of Defense 2010); ADEC and EPA analytical methods (ADEC 2008; EPA 2007); and laboratory limits. Qualifiers were applied to sample results that did not meet the project data quality objectives. Qualified results are considered estimated and, whenever possible, indicated as biased high or low.

The data assessment found the overall quality of the project data to be acceptable and no results were rejected. The complete dataset, in addition to details of the data validation, is provided in the Data Quality Assessment (Appendix B).

4.0 CONCLUSIONS

Surface water and groundwater results collected during the 2013 sampling effort did not detect analytes greater than the project cleanup levels.

4.1 CARGO BEACH ROAD LANDFILL (SITE 7)

This site has been subject to several remedial efforts, including: investigation of metallic anomalies, removal of approximately 50 drums and 50 cubic yards of severely stained soils, placement of a minimum 2-foot thick, gravel landfill cap in 2009, and revegetation.

Previously identified COCs in surface water include DRO, which was detected in one surface water sample at a concentration of 8.9 mg/L in 1994 (USACE 2007). Groundwater grab samples collected in 2001, approximately 200 feet downgradient of the surface water exceedance, did not contain DRO greater than cleanup levels. Alternatively, lead and RRO were detected at concentrations exceeding cleanup levels (USACE 2007).

The 1994 surface water sampling location was not available for resampling in 2013 because the area had previously been covered by the landfill cap in 2009. As an alternative, site surface water was collected from three ponds located near the base of the landfill cap. The locations were selected as a representative subset of site surface water. Surface water sampling locations are shown in Figure A-4. Surface water samples were analyzed for DRO, RRO, GRO, BTEX, PAHs, PCBs, RCRA metals, nickel, and zinc. Analytical results did not exceed project cleanup levels in surface water samples from this site.

The 2013 groundwater grab sampling was attempted near the 2001 groundwater grab sampling locations; however, as described previously in Section 2.3, groundwater grab samples could not be collected because refusal was met at 30 inches bgs and groundwater was not present. Historically, sampling groundwater at this site has been quite difficult. Previous efforts to install temporary well points were successful at location WP 7-1 in 2001, yet required approximately three days before sampling could take place due to a low groundwater production rate. In some cases, the sampling points purged dry after 48 hours, without producing the required sampling volume (USACE 2007). Two groundwater grab samples

(WP7-2 and WP7-3) collected in 2001 were obtained by digging 'pits' to 36 to 40 inches bgs and allowing them to fill with water prior to sampling.

Significant effort will be required to install and maintain permanent monitoring wells at Cargo Beach Road Landfill (Site 7). The use of a tracked drill rig in addition to air rotary or sonic drilling methods would likely be needed for the successful installation of a monitoring well at this location. Walking the needed the drill rig to boring locations would subject the fragile tundra and surface vegetation to disturbance. Additionally, any monitoring wells would likely be subject to frost jacking due the extreme variability of seasonal conditions.

4.2 HOUSING AND OPERATIONS LANDFILL (SITE 9)

This site has been subject to several remedial actions, including placement of a minimum 2foot thick, gravel landfill cap in 2010, removal of debris from nearby streams, construction of a diversion trench, and revegetation.

Sampling of groundwater in 2001 identified lead, RRO, beryllium, and antimony above cleanup levels at locations downgradient, to the north, east, and west of the landfill (USACE 2007). Figure A-5 shows historical sampling locations from 2001 that exceed cleanup levels. Groundwater sampling in 2013 was located at a downgradient location east of the landfill cap, and did not detect GRO, BTEX, filtered RCRA metals, or zinc above project cleanup levels. Future sampling efforts at this site may benefit from sampling near the 2001 locations that produced sufficient quantities of groundwater and contained contaminants at levels greater than cleanup levels.

Historical analysis of surface water samples did not detect contaminants greater than cleanup levels (USACE 2009). In 2013, surface water samples were collected from a pond located immediately north of the landfill cap and at the northern and southern extents of the constructed diversion trench, located downgradient and immediately adjacent to the landfill cap. Sampling locations are shown in Figure A-5. Analytical results indicate that contaminants did not exceed project cleanup levels.

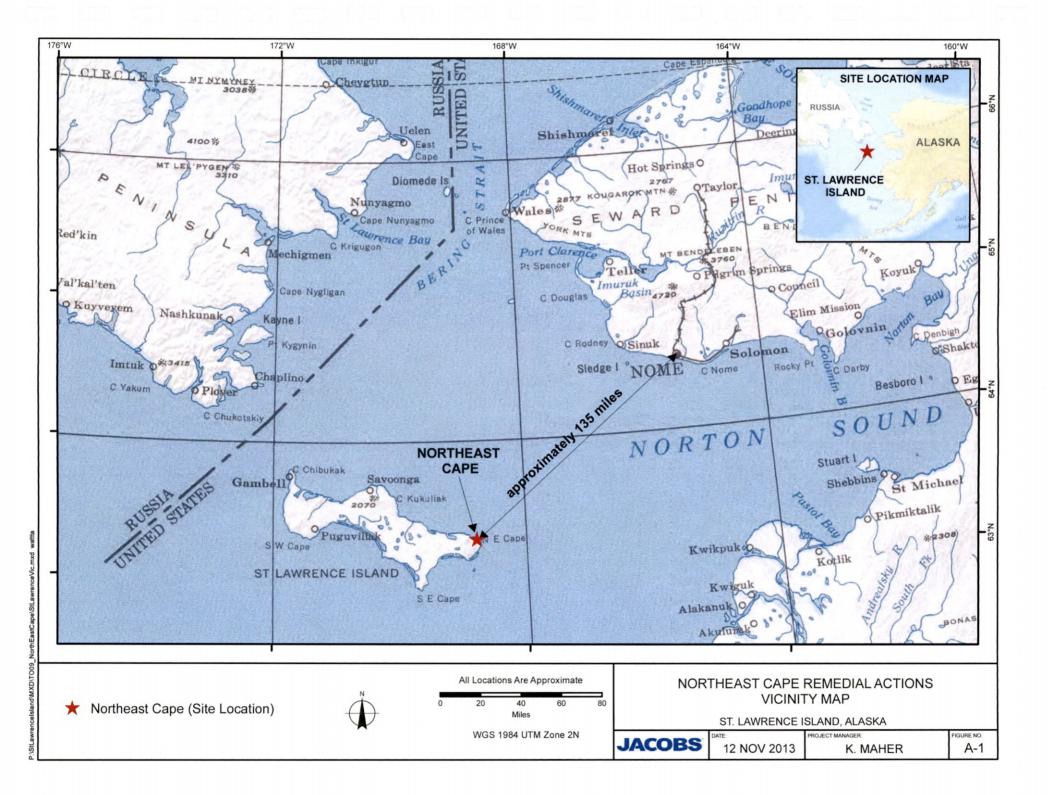
4.3 KANGUKHSAM MOUNTAIN SPRING

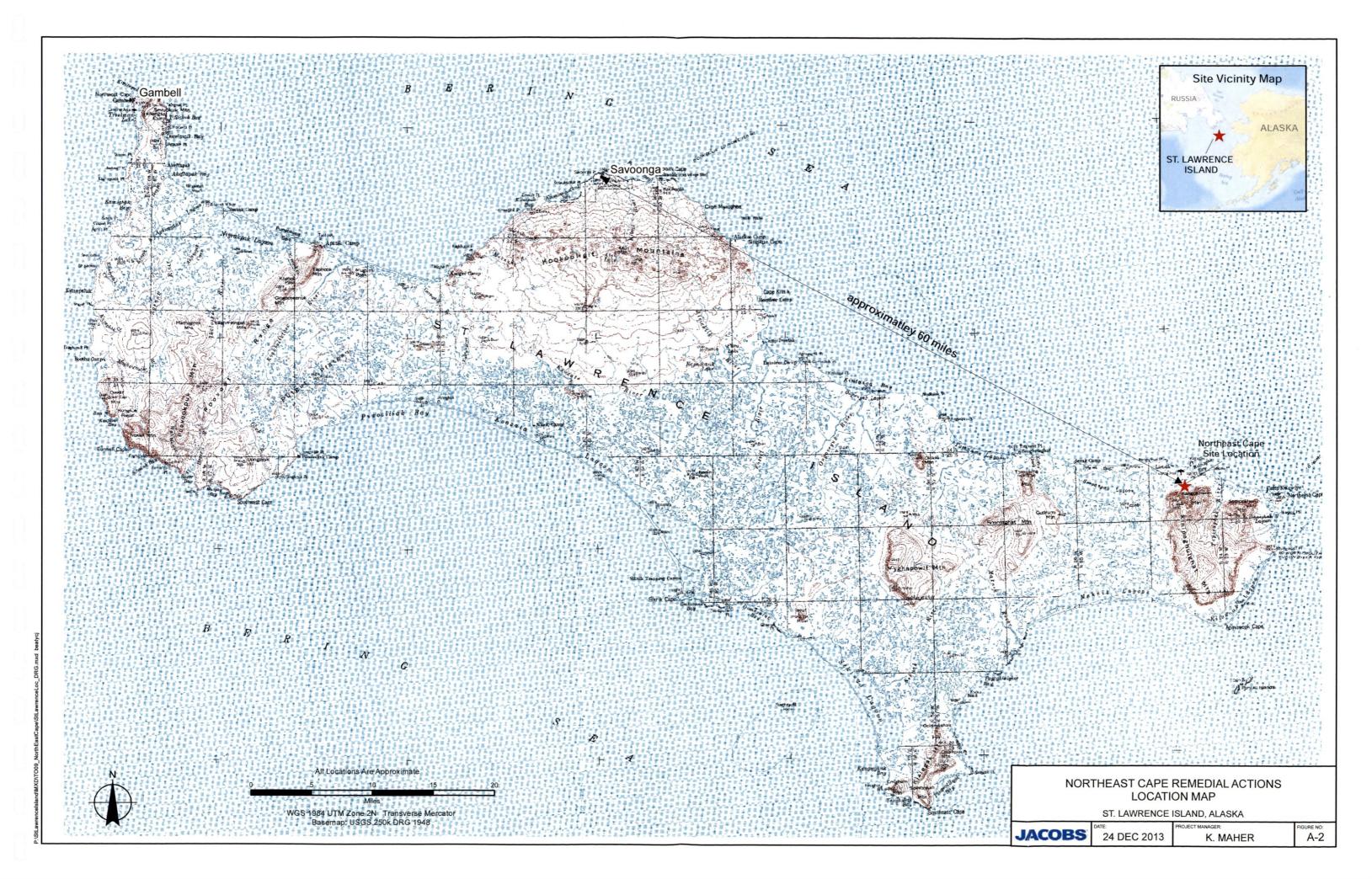
This site was added as a sampling location at the Northeast Cape site after a request from a local community member. The spring is located to the south of the Northeast Cape site, near the Lower Tramway (Site 32), and is used as a seasonal drinking water source. Surface water samples were collected from an area likely to be used for drinking water, upgradient from many of the Northeast Cape sites. Analysis of these samples did not detect contaminants exceeding project cleanup levels.

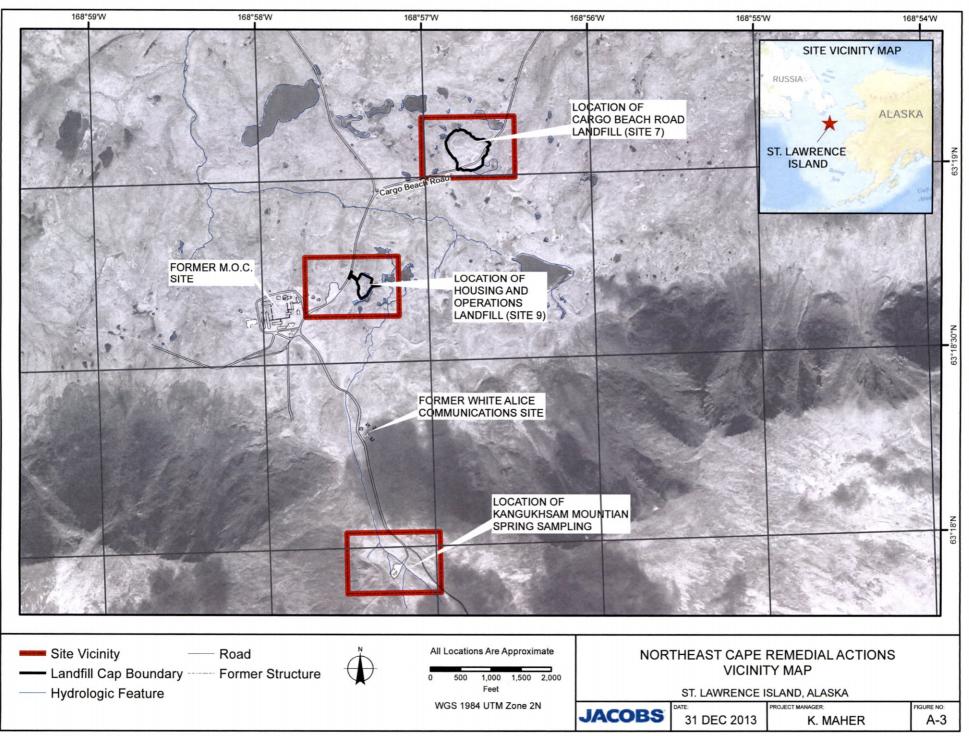
	(interation allocklash)		
	(intentionally blank)		
~			
I. AE LITEW/TO00 Northeast Case/WP/2013 Sampling Path Jast/E104K/066.05 (07.11.0503.200-1f.dorx 4-4	HTRW-J07-05F45902-J22-0002	

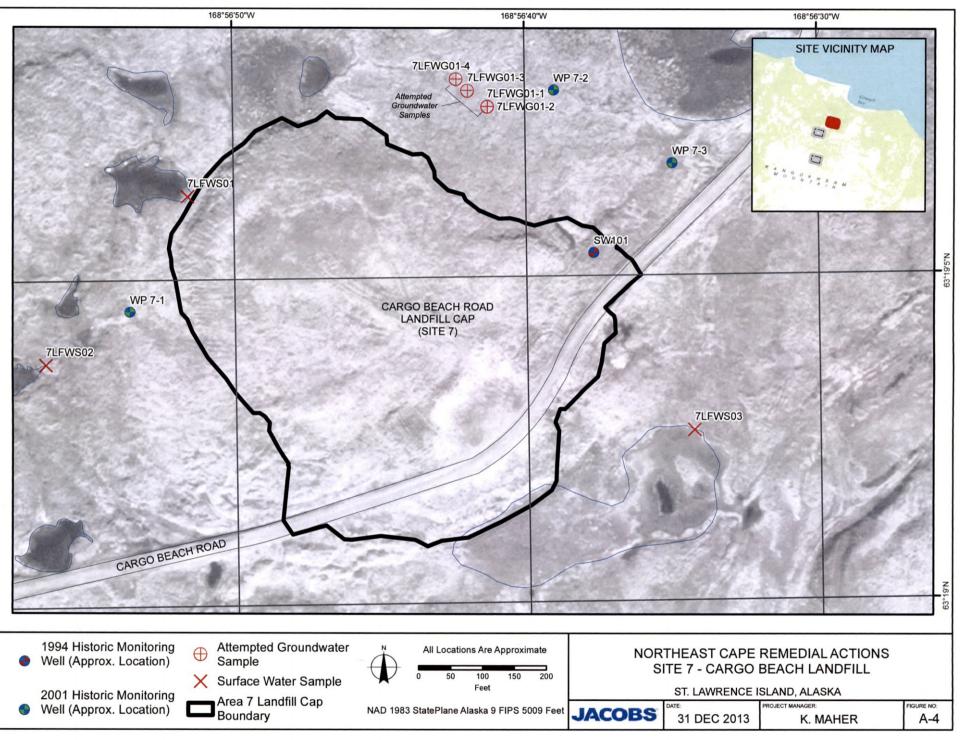
5.0 **REFERENCES**

Alaska Department of Environmental Conservation (ADEC). 2008

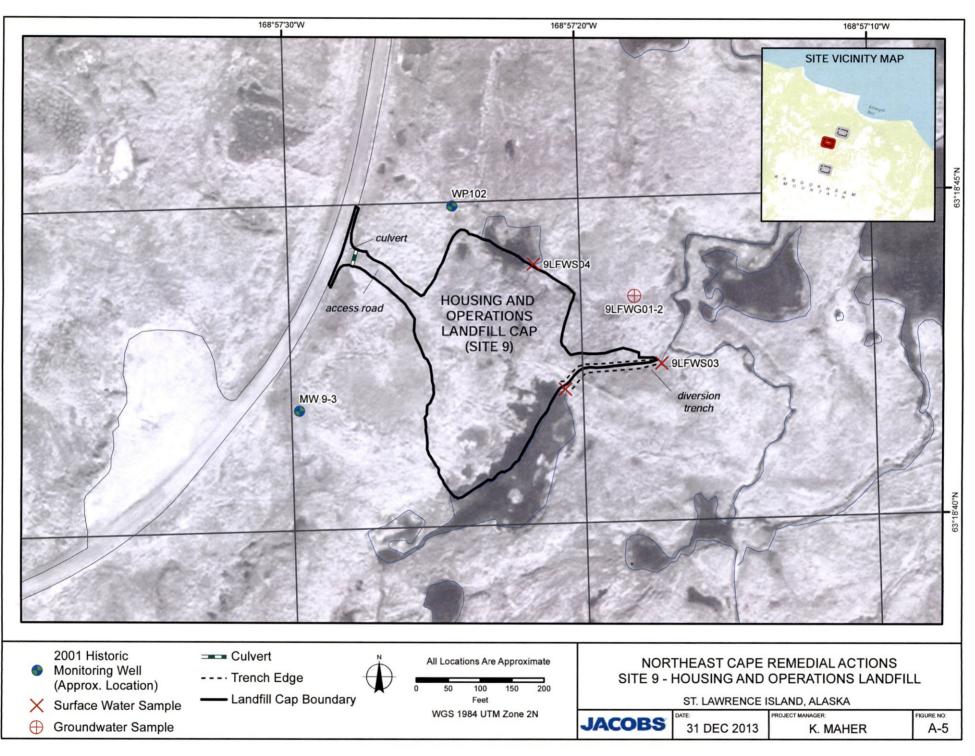

- USACE (U.S. Army Corps of Engineers). 2013a (June). Northeast Cape HTRW Remedial Actions Work Plan. Revision 1. Prepared by Bristol Environmental Remediation Services, LLC.
- USACE. 2013b (September). Supplement to the Northeast Cape HTRW Remedial Actions Quality Assurance Project Plan. Prepared by Jacobs Engineering Group, Inc.
- USACE. 2011 (October). *Manual for Electronic Deliverables*. Prepared by USACE-Alaska District.
- USACE. 2009a (January). Decision Document: Hazardous, Toxic, and Radioactive Waste (HTRW) Project #F10AK096903, Northeast Cape Formerly Used Defense Site (FUDS) St. Lawrence Island, Alaska. Prepared by USACE-Alaska District.
- USACE. 2009b (June). Decision Document: Site 7 Cargo Beach Road Landfill Containerized Hazardous, Toxic, and Radioactive Waste (CON-HTRW) Project #F10AK096905, Northeast Cape Formerly Used Defense Site (FUDS) St. Lawrence Island, Alaska. Prepared by USACE-Alaska District.
- USACE. 2007 (March). Feasibility Study: Hazardous, Toxic, and Radioactive Waste (HTRW) Project #F10AK096903, Northeast Cape Formerly Used Defense Site (FUDS) St. Lawrence Island, Alaska. Prepared by USACE-Alaska District.

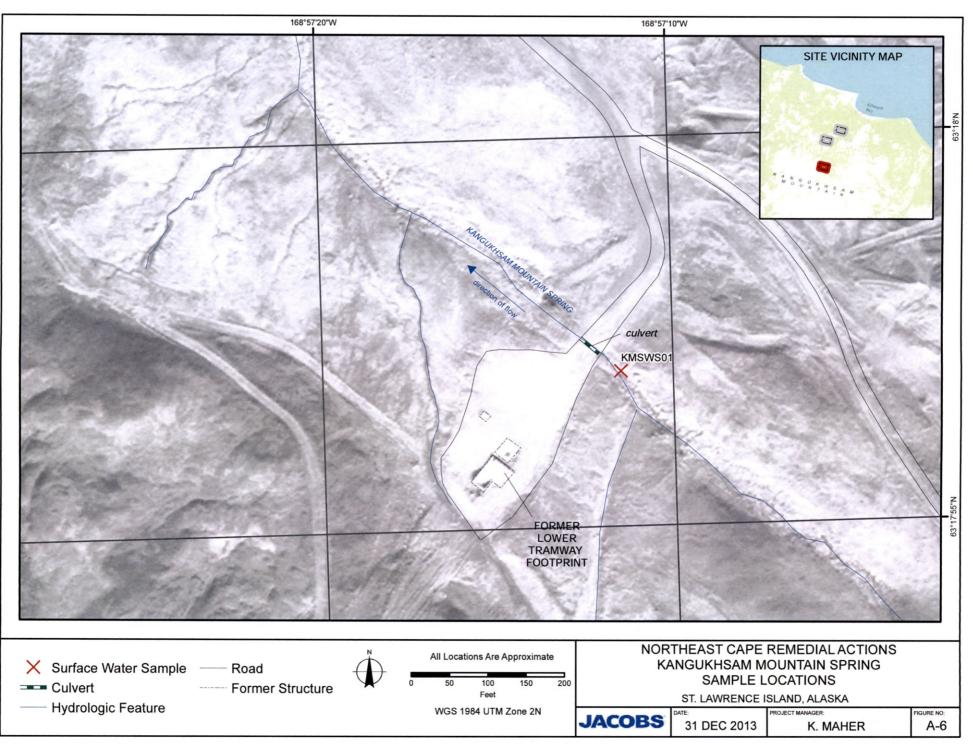

U.S. Department of Defense. 2010.


U.S. Environmental Protection Agency (EPA). 2007.


(intentionally blank)

APPENDIX A Figures





P:\StLawrenceIsland\MXD\TO09_NorthEastCape\StLawrenceSite7.mxd beatycj

÷

APPENDIX B

Data Quality Assessment, ADEC Checklists, and Supporting Documentation

1.0 INTRODUCTION

A Data Quality Assessment and ADEC laboratory data review checklists were completed to assess the overall quality and usability of data from the 2013 NE Cape surface water and groundwater activities. The Jacobs Project Chemist performed a data quality review using the 2013 Supplement to the Northeast Cape HTRW Remedial Actions Work Plan (QAPP 2013).

This DQA, which appears as an appendix to the 2013 Sampling Report, contains analytical data tables, sample summary tables, and Alaska Department of Environmental Conservation (ADEC) Laboratory Data Review Checklists, organized into the following attachments:

- Attachment B-1 contains the sample summary and analytical data tables.
- Attachment B-2 presents tables of sample results that did not meet the project data quality objectives (DQO).
- Attachment B-3 includes the ADEC Laboratory Data Review Checklists for each sample delivery group.
- Attachment B-4 provides laboratory data in electronic format.

Seven primary water samples and one duplicate sample were submitted for gasoline-range organics (GRO); diesel-range organics (DRO); residual-range organics (RRO); polychlorinated biphenyls (PCBs); benzene, toluene, ethylbenzene, and xylene (BTEX); polycyclic aromatic hydrocarbons (PAH); dissolved metals; and total metals analysis. One primary sample was submitted for GRO, BTEX, and dissolved metals; there was insufficient sample volume for further analysis. One trip blank was submitted for GRO and BTEX. ALS Laboratories of Kelso, Washington, provided primary analytical support for these water samples.

2.0 DATA QUALITY SUMMARY

This evaluation consisted of a review of chain-of-custody (CoC) and sample receipt records; laboratory case narratives; and laboratory data, which includes analytical methodology, sample holding times, laboratory blanks, detection limit (DL), limit of detection (LOD), limit of quantitation (LOQ), surrogate recoveries, laboratory control sample (LCS) recoveries, matrix spike (MS) recoveries, and precision. Analytical data quality objectives (DQOs) were considered met when the quality of the sample data met precision, accuracy, representativeness,

completeness, comparability, and sensitivity requirements, as specified in the project Work Plan (QAPP 2013). Results were categorized as acceptable, estimated, or rejected (flagged R). Data was qualified according to the definitions at the bottom of the analytical data table (Attachment B-1). A completeness check of the laboratory data was performed to verify that the data packages and electronic files included all information requested.

The overall quality of the data was acceptable, as qualified with the anomalies below and described in the ADEC laboratory data review checklist.

- AK103 method blank (QC batch KWG1310602) had RRO concentrations above the detection limit. Associated samples that have a concentration within a factor of 10 of the method blank contamination are qualified B and are presented in Table B-2-1 (Attachment B-2). There is no impact on the data since results are biased high and less than the Project Action Limit of 1.1 mg/L.
- AK102/AK103 method blank (QC batch KWG1311318) extract was lost during the initial extraction. Samples were re-extracted within the holding time. During the re-extraction the extraction vial for sample 13-9LF-WS03-0 broke. There was insufficient sample for a third re-extraction. The results from the initial extraction were reported and qualified QN; they are presented in Table B-2-2 (Attachment B-2). The impact is minimal since results were less than the Project Action Limits and there is no bias.
- AK102 MS and MSD recoveries for DRO were less than AK series method criteria at 72% and 74%, respectively. Parent sample 13-9LF-WS01-0 was qualified ML, indicating a low bias due to matrix effects. Impacts are minimal since the DRO result was significantly less than the Project Action Limit. Qualified results are presented in Table B-2-3 (Attachment B-2).
- Field duplicate precision was evaluated by calculating the RPD between the primary sample 13-9LF-WS01-0 and duplicate sample 13-9LF-WS02-0. Multiple analytes had RPDs greater than 30% and were qualified QN. These results are presented in Table B-2-4 (Attachment B-2). The impact is minimal since in all cases the primary and duplicate were less than Project Action Limit.

ATTACHMENT B-1

Sample Summary and Analytical Data Tables

2013 Northeast Cape Sample Summary

Sample ID	Location ID	Collection	Collection	Sampler	Quantity	ContainerT ype	ContainerV	Preservative	Matrix	Analytical Method Requested	QC Type	ТАТ	Notes	COC Number	Cooler Name	Laboratory	SDG Number	Start Sample Depth (feet)	End Sample Depth (feet)
13-9LF-WS01-0	9LF-WS01	12-Sep-13	1000	CF/KM/JO	12	VOA	40 mL	HCl, 4 ± 2 °C	ws	AK101 (GRO)	MS/MSD	14		13NECAPE-01	Kilo	ALS	K1309641	0.00	0.50
13-9LF-WS02-0	9LF-WS02	12-Sep-13	1000	CF/KM/JO	4	VOA	40 mL	HCl, 4 ± 2 °C	ws	BTEX (SW8260) AK101 (GRO)	Dup	14		13NECAPE-01	Kilo	ALS	K1309641	0.00	0.50
13-9LF-WS03-0	9LF-WS03	12-Sep-13	1155	CF/KM/JO	4	VOA	40 mL	HCl, 4 ± 2 °C	WS	BTEX (SW8260) AK101 (GRO)		14		13NECAPE-01	Kilo	ALS	K1309641	0.00	0.50
13-9LF-WS04-0	9LF-WS04	12-Sep-13	1350	CF/KM/JO	4	VOA	40 mL	HCI, 4 ± 2 °C	ws	BTEX (SW8260) AK101 (GRO)		14		13NECAPE-01	Kilo	ALS	K1309641	0.00	0.50
13-9LF-WG01-2	9LF-WG01	12-Sep-13	1351	CF/KM/JO	4	VOA	40 mL	HCl, 4 ± 2 °C	ws	BTEX (SW8260) AK101 (GRO)		14			Kilo	ALS		2.00	2.50
13-KMS-WS01-0	KMS-WS01	12-Sep-13	1521		4	VOA			-	BTEX (SW8260) AK101 (GRO)		-		13NECAPE-01			K1309641		
				CF/KM/JO			40 mL	HCl, 4 ± 2 °C	WS	BTEX (SW8260) AK101 (GRO)		14		13NECAPE-01	Kilo	ALS	K1309641	0.00	0.50
13-7LF-WS01-0	7LF-WS01	12-Sep-13	1630	CF/KM/JO	4	VOA	40 mL	HCl, 4 ± 2 °C	WS	BTEX (SW8260) AK101 (GRO)		14		13NECAPE-01	Kilo	ALS	K1309641	0.00	0.50
13-7LF-WS02-0	7LF-WS02	12-Sep-13	1644	CF/KM/JO	4	VOA	40 mL	HCl, 4 ± 2 °C	WS	BTEX (SW8260) AK101 (GRO)		14		13NECAPE-01	Kilo	ALS	K1309641	0.00	0.50
13-7LF-WS03-0	7LF-WS03	12-Sep-13	1654	CF/KM/JO	4	VOA	40 mL	HCl, 4 ± 2 °C	WS	BTEX (SW8260) AK101 (GRO)		14		13NECAPE-01	Kilo	ALS	K1309641	0.00	0.50
13-TB01		12-Sep-13	0800		4	VOA	40 mL	HCl, 4 ± 2 °C	WS	BTEX (SW8260) AK102 (DRO)	Trip Blank			13NECAPE-01	Kilo	ALS	K1309641		
13-7LF-WS03-0	7LF-WS03	12-Sep-13	1654	CF/KM/JO	2	Amber	1L	HCl, 4 ± 2 °C	WS	AK103 (RRO)		14		13NECAPE-02	Juliett	ALS	K1309641	0.00	0.50
13-9LF-WS01-0	9LF-WS01	12-Sep-13	1000	CF/KM/JO	3	Poly	250 mL	HNO3, 4 ± 2 °C	WS	SW6020 (RCRA Metals, Zn) SW7471 (Mercury)	MS/MSD	14	Filtered (0.45 µm)	13NECAPE-02	Juliett	ALS	K1309641	0.00	0.50
13-9LF-WS01-0	9LF-WS01	12-Sep-13	1000	CF/KM/JO	3	Poly	250 mL	HNO3, 4 ± 2 °C	WS	SW6020 (RCRA Metals, Zn) SW7471 (Mercury)	MS/MSD	14	Unfiltered	13NECAPE-02	Juliett	ALS	K1309641	0.00	0.50
13-9LF-WS02-0	9LF-WS02	12-Sep-13	1000	CF/KM/JO	1	Poly	250 mL	HNO3, 4 ± 2 °C	ws	SW6020 (RCRA Metals, Zn) SW7471 (Mercury)	Dup	14	Filtered (0.45 µm)	13NECAPE-02	Juliett	ALS	K1309641	0.00	0.50
13-9LF-WS02-0	9LF-WS02	12-Sep-13	1000	CF/KM/JO	1	Poly	250 mL	HNO3, 4 ± 2 °C	WS	SW6020 (RCRA Metals, Zn) SW7471 (Mercury)	Dup	14	Unfiltered	13NECAPE-02	Juliett	ALS	K1309641	0.00	0.50
13-9LF-WS03-0	9LF-WS03	12-Sep-13	1155	CF/KM/JO	1	Poly	250 mL	HNO3, 4 ± 2 °C	ws	SW6020 (RCRA Metals, Zn) SW7471 (Mercury)		14	Filtered (0.45 µm)	13NECAPE-02	Juliett	ALS	K1309641	0.00	0.50
13-9LF-WS03-0	9LF-WS03	12-Sep-13	1155	CF/KM/JO	1	Poly	250 mL	HNO3, 4 ± 2 °C	ws	SW6020 (RCRA Metals, Zn) SW7471 (Mercury)		14	Unfiltered	13NECAPE-02	Juliett	ALS	K1309641	0.00	0.50
13-9LF-WS04-0	9LF-WS04	12-Sep-13	1350	CF/KM/JO	1	Poly	250 mL	HNO3, 4 ± 2 °C	ws	SW6020 (RCRA Metals, Zn) SW7471 (Mercury)		14	Filtered (0.45 µm)	13NECAPE-02	Juliett	ALS	K1309641	0.00	0.50
13-9LF-WS04-0	9LF-WS04	12-Sep-13	1350	CF/KM/JO	1	Poly	250 mL	HNO3, 4 ± 2 °C	ws	SW6020 (RCRA Metals, Zn) SW7471 (Mercury)		14	Unfiltered	13NECAPE-02	Juliett	ALS	K1309641	0.00	0.50
13-9LF-WG01-2	9LF-WG01	12-Sep-13	1351	CF/KM/JO	1	Poly	250 mL	HNO3, 4 ± 2 °C	ws	SW6020 (RCRA Metals, Zn)		14	Low Volume	13NECAPE-02	Juliett	ALS	K1309641	2.00	2.50
13-KMS-WS01-0	KMS-WS01	12-Sep-13	1521	CF/KM/JO	1	Poly	250 mL	HNO3, 4 ± 2 °C	ws	SW7471 (Mercury) SW6020 (RCRA Metals, Zn)		14	Filtered (0.45 µm) Filtered (0.45 µm)	13NECAPE-02	Juliett	ALS	K1309641	0.00	0.50
13-KMS-WS01-0	KMS-WS01	12-Sep-13	1521	CF/KM/JO	1	Poly	250 mL	HNO3, 4 ± 2 °C	ws	SW6020 (RCRA Metals, Zn)		14	Unfiltered	13NECAPE-02	Juliett	ALS	K1309641	0.00	0.50
13-7LF-WS01-0	7LF-WS01	12-Sep-13	1630	CF/KM/JO	1	Poly	250 mL	HNO3, 4 ± 2 °C	ws	SW7471 (Mercury) SW6020 (RCRA Metals, Zn, Ni)		14	Filtered (0.45 µm)	13NECAPE-02	Juliett	ALS	K1309641	0.00	0.50
13-7LF-WS01-0	7LF-WS01	12-Sep-13	1630	CF/KM/JO	1	Poly	250 mL	HNO3, 4 ± 2 °C	ws	SW7471 (Mercury) SW6020 (RCRA Metals, Zn, Ni)		14	Unfiltered	13NECAPE-02	Juliett	ALS	K1309641	0.00	0.50
13-7LF-WS02-0	7LF-WS02	12-Sep-13	1644		1	Poly	250 mL		ws	SW7471 (Mercury) SW6020 (RCRA Metals, Zn, Ni)									
				CF/KM/JO				HNO3, 4 ± 2 °C		SW7471 (Mercury) SW6020 (RCRA Metals, Zn, Ni)		14	Filtered (0.45 µm)	13NECAPE-02	Juliett	ALS	K1309641	0.00	0.50
13-7LF-WS02-0	7LF-WS02	12-Sep-13	1644	CF/KM/JO	1	Poly	250 mL	HNO3, 4 ± 2 °C	WS	SW7471 (Mercury) SW6020 (RCRA Metals, Zn, Ni)		14	Unfiltered	13NECAPE-02	Juliett	ALS	K1309641	0.00	0.50
13-7LF-WS03-0	7LF-WS03	12-Sep-13	1654	CF/KM/JO	1	Poly	250 mL	HNO3, 4 ± 2 °C	WS	SW7471 (Mercury) SW6020 (RCRA Metals, Zn, Ni)		14	Filtered (0.45 µm)	13NECAPE-02	Juliett	ALS	K1309641	0.00	0.50
13-7LF-WS03-0	7LF-WS03	12-Sep-13	1654	CF/KM/JO	1	Poly	250 mL	HNO3, 4 ± 2 °C	WS	SW7471 (Mercury)		14	Unfiltered	13NECAPE-02	Juliett	ALS	K1309641	0.00	0.50
13-9LF-WS01-0	9LF- WS01	12-Sep-13	1000	CF/KM/JO	8	Amber	1L	4 ± 2 °C	ws	SW8270 SIM (PAH) SW8082 (PCBs)	MS/MSD	14	1 additional container in 13NECAPE-04	13NECAPE-03	Charlie	ALS	K1309641	0.00	0.50
13-9LF-WS01-0	9LF-WS01	12-Sep-13	1000	CF/KM/JO	1	Amber	1L	4 ± 2 °C	ws	SW8270 SIM (PAH) SW8082 (PCBs)	MS/MSD	14	8 additional container in 13NECAPE-03	13NECAPE-04	Mike	ALS	K1309641	0.00	0.50
13-9LF-WS01-0	9LF-WS01	12-Sep-13	1000	CF/KM/JO	6	Amber	1L	HCl, 4 ± 2 °C	ws	AK102 (DRO) AK103 (RRO)	MS/MSD	14		13NECAPE-04	Mike	ALS	K1309641	0.00	0.50
13-9LF-WS02-0	9LF-WS02	12-Sep-13	1000	CF/KM/JO	1	Amber	1 L	HCl, 4 ± 2 °C	ws	AK102 (DRO) AK103 (RRO)	Dup	14		13NECAPE-04	Mike	ALS	K1309641	0.00	0.50
13-9LF-WS02-0	9LF-WS02	12-Sep-13	1000	CF/KM/JO	1	Amber	1 L	HCl, 4 ± 2 °C	ws	AK102 (DRO) AK103 (RRO)	Dup	14		13NECAPE-05	Alfa	ALS	K1309641	0.00	0.50
13-9LF-WS02-0	9LF-WS02	12-Sep-13	1000	CF/KM/JO	3	Amber	. 1L	4 ± 2 °C	ws	SW8270 SIM (PAH) SW8082 (PCBs)	Dup	14		13NECAPE-05	Alfa	ALS	K1309641	0.00	0.50
13-9LF-WS03-0	9LF-WS03	12-Sep-13	1155	CF/KM/JO	3	Amber	1L	4 ± 2 °C	ws	SW8270 SIM (PAH) SW8082 (PCBs)		14		13NECAPE-05	Alfa	ALS	K1309641	0.00	0.50
13-9LF-WS03-0	9LF-WS03	12-Sep-13	1155	CF/KM/JO	1	Amber	1L	HCl, 4 ± 2 °C	ws	AK102 (DRO) AK103 (RRO)		14		13NECAPE-05	Alfa	ALS	K1309641	0.00	0.50
13-9LF-WS03-0	9LF-WS03	12-Sep-13	1155	CF/KM/JO	1	Amber	1L	HCI, 4 ± 2 °C	ws	AK102 (DRO)		14		13NECAPE-06	Hotel	ALS	K1309641	0.00	0.50
13-9LF-WS04-0	9LF-WS04	12-Sep-13	1350	CF/KM/JO	3	Amber	1L	4 ± 2 °C	ws	AK103 (RRO) SW8270 SIM (PAH)		14		13NECAPE-06	Hotel	ALS	K1309641	0.00	0.50
13-9LF-WS04-0	9LF-WS04	12-Sep-13	1350	CF/KM/JO	2	Amber	1L	HCl, 4 ± 2 °C	ws	SW8082 (PCBs) AK102 (DRO)		14		13NECAPE-06	Hotel	ALS	K1309641	0.00	0.50
13-KMS-WS01-0		12-Sep-13	1521	CF/KM/JO	2	Amber	11	HCI, 4 ± 2 °C	ws	AK103 (RRO) AK102 (DRO)		14		13NECAPE-06	Hotel	ALS	K1309641	0.00	0.50
13-KMS-WS01-0										AK103 (RRO) SW8270 SIM (PAH)				13NECAPE-00				0.00	0.50
		12-Sep-13	1521	CF/KM/JO	3	Amber	1L	4 ± 2 °C	WS	SW8082 (PCBs) AK102 (DRO)		14			Echo	ALS	K1309641		
13-7LF-WS01-0		12-Sep-13	1630	CF/KM/JO	2	Amber	1L	HCl, 4 ± 2 °C	WS	AK103 (RRO) SW8270 SIM (PAH)		14		13NECAPE-07	Echo	ALS	K1309641	0.00	0.50
13-7LF-WS01-0		12-Sep-13	1630	CF/KM/JO	3	Amber	1L	4 ± 2 °C	WS	SW8082 (PCBs) SW8270 SIM (PAH)		14		13NECAPE-07	Echo	ALS	K1309641	0.00	0.50
13-7LF-WS02-0		12-Sep-13	1644	CF/KM/JO	3	Amber	1L	4 ± 2 °C	WS	SW8082 (PCBs) AK102 (DRO)		14		13NECAPE-08	Romeo	ALS	K1309641	0.00	0.50
13-7LF-WS02-0	7LF-WS02	12-Sep-13	1644	CF/KM/JO	2	Amber	1L	HCI, 4 ± 2 °C	ws	AK103 (RRO)		14		13NECAPE-08	Romeo	ALS	K1309641	0.00	0.50
13-7LF-WS03-0	7LF-WS03	12-Sep-13	1654	CF/KM/JO	3	Amber	1L	4 ± 2 °C	WS	SW8270 SIM (PAH) SW8082 (PCBs)		14		13NECAPE-08	Romeo	ALS	K1309641	0.00	0.50

Page 1 of 1

2013 Northeast Cape
Groundwater Analytical Data Table

			Location ID	9LF-WG01	9LF-WG01
			Sample ID	13-9LF-WG01-2	13-9LF-WG01-2
			Lab Sample ID	130964106F	K130964106
			SDG	K1309641	K1309641
			Sample Date	9/12/2013	9/12/2013
			Matrix	WS	WS
			Laboratory	CASK	CASK
			Project Action		
Method	Analyte	Units	Limit ¹		
AK101	Gasoline Range Organics (C6-C10)	mg/L	1.3	-	ND [0.025]
SW6020A	Arsenic	mg/L	0.01	0.00037 [0.00013] J	-
SW6020A	Barium	mg/L	2	0.00936 [0.00003]	-
SW6020A	Cadmium	mg/L	0.005	0.000032 [0.00001]	-
SW6020A	Chromium	mg/L	0.1	0.00109 [0.00005]	-
SW6020A	Lead	mg/L	0.015	0.000501 [0.00001]	-
SW6020A	Nickel	mg/L	0.1	-	-
SW6020A	Selenium	mg/L	0.05	ND [0.0005]	-
SW6020A	Silver	mg/L	0.1	0.00001 [0.00001] J	-
SW6020A	Zinc	mg/L	5	0.00906 [0.00025]	-
SW7470A	Mercury	mg/L	0.002	ND [0.00005]	-
SW8260C	Benzene	mg/L	0.005	-	0.00016 [0.0001] J
SW8260C	Ethylbenzene	mg/L	0.7	-	ND [0.0001]
SW8260C	o-Xylene	mg/L	10	-	ND [0.0002]
SW8260C	Toluene	mg/L	1	-	0.00032 [0.0001] J
SW8260C	Xylene, Isomers m & p	mg/L	10	-	ND [0.0002]

¹ Project action limit from 2013 QAPP (USACE 2013) and 18 AAC 75, Table C Groundwater Cleanup Levels (ADEC 2012)

- = No criteria/ Not analyzed

ND [LOD] = The analyte result is less than the limit of detection [value in brackets].

mg/L = milligram per liter

J = The analyte result is considered an estimated value because the reported result is below the limit of quantitation but above the detection limit (formerly the method detection limit.

SDG = sample delivery group

CASK = ALS Laboratories formerly known as Columbia Analytical Services of Kelso, WA

·					Surface water Analytic					
Method	Analyte	Units	Location ID Sample ID Lab Sample ID SDG Sample Date Matrix Laboratory Project Action	7LF-WS01 13-7LF-WS01-0 130964108F K1309641 9/12/2013 WS CASK	7LF-WS01 13-7LF-WS01-0 K130964108 K1309641 9/12/2013 WS CASK	7LF-WS02 13-7LF-WS02-0 130964109F K1309641 9/12/2013 WS CASK	7LF-WS02 13-7LF-WS02-0 K130964109 K1309641 9/12/2013 WS CASK	7LF-WS03 13-7LF-WS03-0 130964101F K1309641 9/12/2013 WS CASK	7LF-WS03 13-7LF-WS03-0 K130964101 K1309641 9/12/2013 WS CASK	9LF-WS01 13-9LF-WS01-0 130964102F K1309641 9/12/2013 WS CASK
			Limit ¹							
8270SIM	1-Methylnaphthalene	mg/L	-	-	0.0000041 [0.000005]	-	0.0000044 [0.000005]	-	0.0000066 [0.000005]	-
8270SIM	2-Methylnaphthalene	mg/L	-	-	ND [0.000005]	-	ND [0.000005]	-	0.0000025 [0.000005] J	-
8270SIM	Acenaphthene	mg/L	_	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	_
8270SIM	Acenaphthylene	mg/L	_		ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	_
8270SIM	Anthracene	mg/L	_	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-
8270SIM	Benzo(a)anthracene	mg/L	_	-	ND [0.000005]	-	ND [0.000005]	_	ND [0.000005]	-
8270SIM	Benzo(a)pyrene	mg/L	0.0002	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	_
8270SIM	Benzo(b)fluoranthene	mg/L	_	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-
8270SIM	Benzo(g,h,i)perylene	mg/L	-	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	_
8270SIM	Benzo(k)fluoranthene	mg/L	_	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-
8270SIM	Chrysene	mg/L	-	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-
8270SIM	Dibenzo(a,h)anthracene	mg/L	-	-	ND [0.000005]	-	ND [0.000005]	_	ND [0.000005]	—
8270SIM	Fluoranthene	mg/L	-	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-
8270SIM	Fluorene	mg/L	. <u> </u>	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-
8270SIM	Indeno(1,2,3-cd)pyrene	mg/L	-	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-
8270SIM	Naphthalene	mg/L	_	-	0.000016 [0.000005] J	-	0.000047 [0.000005]	-	0.000022 [0.000005]	-
8270SIM	Phenanthrene	mg/L	-	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-
8270SIM	Pyrene	mg/L	-	-	ND [0.000005]	-	ND [0.000005]	-	ND [0.000005]	-
8270SIM	Total Aqueous Hydrocarbons (Sum of PAHs)	mg/L	0.015	-	0.0001001	-	0.0001314	-	0.0001061	-
AK101	Gasoline Range Organics (C6-C10)	mg/L	1.3	-	ND [0.025]	-	ND [0.025]	-	ND [0.025]	—
AK102	Diesel Range Organics (C10-C25)	mg/L	1.5	-	0.058 [0.02] J	-	0.07 [0.02] J	-	0.063 [0.02] J	—
AK103	Residual Range Organics (C25-C36)	mg/L	1.1	-	0.12 [0.05] J, B	-	0.21 [0.05] J, B	-	0.12 [0.05] J, B	-
SW6020A	Arsenic	mg/L	0.01	0.0003 [0.00013] J	0.00031 [0.00013] J	0.00039 [0.00013] J	0.00059 [0.00013]	0.00034 [0.00013] J	0.00046 [0.00013] J	ND [0.00013]
SW6020A	Barium	mg/L	2	0.00962 [0.00003]	0.00927 [0.00003]	0.0079 [0.00003]	0.0088 [0.00003]	0.00378 [0.00003]	0.0045 [0.00003]	0.0065 [0.00003]
SW6020A	Cadmium	mg/L	0.005	0.000013 [0.00001] J	0.00002 [0.00001] J	ND [0.00001]	0.000005 [0.00001] J	0.000015 [0.00001] J	0.000012 [0.00001] J	0.000012 [0.00001] J, QN
SW6020A	Chromium	mg/L	0.1	0.00032 [0.00005]	0.00039 [0.00005]	0.00033 [0.00005]	0.00037 [0.00005]	0.0004 [0.00005]	0.00049 [0.00005]	0.00019 [0.00005] J
SW6020A	Lead	mg/L	-	0.000949 [0.00001]	0.00149 [0.00001]	0.000037 [0.00001]	0.000175 [0.00001]	0.000321 [0.00001]	0.00089 [0.00001]	0.000013 [0.00001] J, QN
SW6020A	Nickel	mg/L	-	0.00121 [0.0001]	0.00095 [0.0001]	0.00069 [0.0001]	0.00062 [0.0001]	0.00075 [0.0001]	0.00082 [0.0001]	-
SW6020A	Selenium	mg/L	0.05	ND [0.0005]						
SW6020A	Silver	mg/L	0.1	0.000005 [0.00001] J	0.000007 [0.00001] J	ND [0.00001]	ND [0.00001]	ND [0.00001]	0.000016 [0.00001] J	ND [0.00001]
SW6020A	Zinc	mg/L	-	0.0125 [0.00025]	0.01148 [0.00025]	0.00328 [0.00025]	0.00376 [0.00025]	0.00649 [0.00025]	0.0062 [0.00025]	0.00183 [0.00025]
SW7470A	Mercury	mg/L	0.002	ND [0.00005]						
SW8082A	PCB-1016 (Aroclor 1016)	mg/L	0.0005	—	ND [0.000002]	-	ND [0.000002]	_	ND [0.000021]	-
SW8082A	PCB-1221 (Aroclor 1221)	mg/L	0.0005	_	ND [0.000008]	-	ND [0.000008]	_	ND [0.000008]	-
SW8082A	PCB-1232 (Aroclor 1232)	mg/L	0.0005	-	ND [0.00002]	-	ND [0.00002]	-	ND [0.0000022]	—

					Surface Water Analytica					
			Location ID Sample ID Lab Sample ID SDG Sample Date Matrix Laboratory	7LF-WS01 13-7LF-WS01-0 130964108F K1309641 9/12/2013 WS CASK	7LF-WS01 13-7LF-WS01-0 K130964108 K1309641 9/12/2013 WS CASK	7LF-WS02 13-7LF-WS02-0 130964109F K1309641 9/12/2013 WS CASK	7LF-WS02 13-7LF-WS02-0 K130964109 K1309641 9/12/2013 WS CASK	7LF-WS03 13-7LF-WS03-0 130964101F K1309641 9/12/2013 WS CASK	7LF-WS03 13-7LF-WS03-0 K130964101 K1309641 9/12/2013 WS CASK	9LF-WS01 13-9LF-WS01-0 130964102F K1309641 9/12/2013 WS CASK
Method	Analyte	Units	Project Action Limit ¹							
SW8082A	PCB-1242 (Aroclor 1242)	mg/L	0.0005	_	ND [0.00002]		ND [0.00002]	_	ND [0.00002]	_
SW8082A	PCB-1248 (Aroclor 1248)	mg/L	0.0005	-	ND [0.00002]	_	ND [0.000002]	-	ND [0.00002]	_
SW8082A	PCB-1254 (Aroclor 1254)	mg/L	0.0005	-	0.0000013 [0.000002] J	-	ND [0.000002]	_	0.0000017 [0.000002] J	-
SW8082A	PCB-1260 (Aroclor 1260)	mg/L	0.0005	-	0.0000023 [0.000002] J	_	ND [0.000002]	-	0.0000018 [0.000002] J	-
SW8082A	PCB-1262 (Aroclor 1262)	mg/L	0.0005	-	ND [0.00002]	-	ND [0.000002]	-	ND [0.00002]	-
SW8082A	PCB-1268 (Aroclor 1268)	mg/L	0.0005	-	ND [0.00002]	-	ND [0.000002]	-	ND [0.00002]	_
SW8260C	Benzene	mg/L	0.005	_	ND [0.0001]	-	ND [0.0001]	-	ND [0.0001]	_
SW8260C	Ethylbenzene	mg/L	0.7	-	ND [0.0001]	-	ND [0.0001]	-	ND [0.0001]	-
SW8260C	o-Xylene	mg/L	10	-	ND [0.0002]	-	ND [0.0002]	-	ND [0.0002]	-
SW8260C	Toluene	mg/L	1	-	0.00032 [0.0001] J	-	0.00023 [0.0001] J	-	0.0002 [0.0001] J	-
SW8260C	Xylene, Isomers m & p	mg/L	10	-	ND [0.0002]	-	ND [0.0002]	-	ND [0.0002]	-

¹ Project action limit from 2013 QAPP (USACE 2013) and 18 AAC 75, Table C Groundwater Cleanup Levels (ADEC 2012)

- = No criteria/ Not analyzed

ND [LOD] = The analyte result is less than the limit of detection [value in brackets].

mg/L = milligram per liter

J = The analyte result is considered an estimated value because the reported result is below the limit of quantitation but above the detection limit (formerly the method detection limit.

B = Analyte result is considered a high biased estimated value due to contamination present in the method blank. Results less than 10 times the reported method blank concentration will be B flagged to indicate bias.

QN = Analyte result is considered estimated value biased uncertain due to due to a laboratory quality control failure.

ML = Analyte result is considered an estimated value biased low due to matrix effects.

SDG = sample delivery group

CASK = ALS Laboratories formerly known as Columbia Analytical Services of Kelso, WA

				Currace	Water Analytical Data	Table			
			Location ID Sample ID Lab Sample ID SDG Sample Date Matrix Laboratory	9LF-WS01 13-9LF-WS01-0 K130964102 K1309641 9/12/2013 WS CASK	9LF-WS02 13-9LF-WS02-0 130964103F K1309641 9/12/2013 WS CASK	9LF-WS02 13-9LF-WS02-0 K130964103 K1309641 9/12/2013 WS CASK	9LF-WS03 13-9LF-WS03-0 130964104F K1309641 9/12/2013 WS CASK	9LF-WS03 13-9LF-WS03-0 K130964104 K1309641 9/12/2013 WS CASK	9LF-WS04 13-9LF-WS04-0 130964105F K1309641 9/12/2013 WS CASK
Method	Analyte	Units	Project Action Limit ¹						
8270SIM	1-Methylnaphthalene	mg/L	-	ND [0.00005]	-	ND [0.000005]	-	ND [0.000005]	-
8270SIM	2-Methylnaphthalene	mg/L	-	0.0000026 [0.000005] J, QN	-	ND [0.000005] QN	-	ND [0.000005]	-
8270SIM	Acenaphthene	mg/L	-	0.0000053 [0.000005] J	-	ND [0.000005]	-	ND [0.000005]	-
8270SIM	Acenaphthylene	mg/L	-	0.0000059 [0.000005] J	-	ND [0.000005]	-	ND [0.000005]	-
8270SIM	Anthracene	mg/L	-	ND [0.00005]	-	ND [0.000005]	-	ND [0.000005]	-
8270SIM	Benzo(a)anthracene	mg/L	-	0.0000038 [0.000005] J	-	ND [0.000005]	-	ND [0.000005]	-
8270SIM	Benzo(a)pyrene	mg/L	0.0002	ND [0.00005]	_	ND [0.000005]	-	ND [0.000005]	-
8270SIM	Benzo(b)fluoranthene	mg/L	-	0.0000026 [0.000005] J, QN	-	ND [0.000005] QN	-	ND [0.000005]	-
8270SIM	Benzo(g,h,i)perylene	mg/L	-	0.0000059 [0.000005] J	-	ND [0.000005]	-	ND [0.000005]	-
8270SIM	Benzo(k)fluoranthene	mg/L	-	ND [0.00005]	-	ND [0.000005]	-	ND [0.000005]	-
8270SIM	Chrysene	mg/L	_	ND [0.00005]	_	ND [0.000005]	-	ND [0.000005]	-
8270SIM	Dibenzo(a,h)anthracene	mg/L	_	0.0000027 [0.000005] J, QN	-	ND [0.000005] QN	-	ND [0.000005]	-
8270SIM	Fluoranthene	mg/L	_	ND [0.00005]	_	ND [0.000005]	-	ND [0.000005]	-
8270SIM	Fluorene	mg/L	· —	0.0000087 [0.000005] J, QN	-	ND [0.000005] QN	-	ND [0.000005]	-
8270SIM	Indeno(1,2,3-cd)pyrene	mg/L	-	0.0000052 [0.000005] J	-	ND [0.000005]	-	ND [0.000005]	-
8270SIM	Naphthalene	mg/L	-	0.000031 [0.000005] QN	-	0.000094 [0.000005] QN	-	0.000027 [0.000005]	-
8270SIM	Phenanthrene	mg/L	-	0.0000087 [0.000005] J, QN	-	ND [0.000005] QN	-	ND [0.000005]	-
8270SIM	Pyrene	mg/L	-	ND [0.00005]	-	ND [0.000005]	-	ND [0.000005]	-
8270SIM	Total Aqueous Hydrocarbons (Sum of PAHs)	mg/L	0.015	0.0001174	_	0.000179	-	0.000112	-
AK101	Gasoline Range Organics (C6-C10)	mg/L	1.3	ND [0.025]	-	ND [0.025]	-	ND [0.025]	-
AK102	Diesel Range Organics (C10-C25)	mg/L	1.5	0.016 [0.02] J, ML	-	0.014 [0.02] J	-	0.014 [0.02] J, QN	-
AK103	Residual Range Organics (C25-C36)	mg/L	1.1	0.036 [0.05] J, B, QN	-	0.024 [0.05] J, B, QN	-	0.03 [0.05] J, QN	-
SW6020A	Arsenic	mg/L	0.01	0.00011 [0.00013] J	0.0001 [0.00013] J	0.00009 [0.00013] J	0.00011 [0.00013] J	0.00009 [0.00013] J	0.00018 [0.00013] J
SW6020A	Barium	mg/L	2	0.00662 [0.00003]	0.00645 [0.00003]	0.00651 [0.00003]	0.00652 [0.00003]	0.0066 [0.00003]	0.0132 [0.00003]
SW6020A	Cadmium	mg/L	0.005	0.000005 [0.00001] J, QN	0.00004 [0.00001] QN	0.00001 [0.00001] J, QN	0.000014 [0.00001] J	0.000009 [0.00001] J	0.000101 [0.00001]
SW6020A	Chromium	mg/L	0.1	0.00015 [0.00005] J	0.00017 [0.00005] J	0.00019 [0.00005] J	0.00013 [0.00005] J	0.00015 [0.00005] J	0.0002 [0.00005]
SW6020A	Lead	mg/L	-	0.000031 [0.00001]	0.000051 [0.00001] QN	0.000027 [0.00001] J	0.000031 [0.00001]	0.000026 [0.00001] J	0.000027 [0.00001] J
SW6020A	Nickel	mg/L	-	-	-	-	-	-	_
SW6020A	Selenium	mg/L	0.05	ND [0.0005]					
SW6020A	Silver	mg/L	0.1	0.000009 [0.00001] J	0.00001 [0.00001] J	ND [0.00001]	ND [0.00001]	ND [0.00001]	ND [0.00001]
SW6020A	Zinc	mg/L	-	0.00178 [0.00025] QN	0.00219 [0.00025]	0.00131 [0.00025] QN	0.00157 [0.00025]	0.0013 [0.00025]	0.02157 [0.00025]
SW7470A	Mercury	mg/L	0.002	ND [0.00005]					
SW8082A	PCB-1016 (Aroclor 1016)	mg/L	0.0005	ND [0.00002]	-	ND [0.00002]	-	ND [0.00002]	-
SW8082A	PCB-1221 (Aroclor 1221)	mg/L	0.0005	ND [0.000008]	-	ND [0.00008]	-	ND [0.00008]	-
SW8082A	PCB-1232 (Aroclor 1232)	mg/L	0.0005	ND [0.000023]	-	ND [0.0000021]	-	ND [0.00002]	_

				Carrace	Water Analytical Data				
			Location ID Sample ID Lab Sample ID SDG Sample Date Matrix Laboratory	9LF-WS01 13-9LF-WS01-0 K130964102 K1309641 9/12/2013 WS CASK	9LF-WS02 13-9LF-WS02-0 130964103F K1309641 9/12/2013 WS CASK	9LF-WS02 13-9LF-WS02-0 K130964103 K1309641 9/12/2013 WS CASK	9LF-WS03 13-9LF-WS03-0 130964104F K1309641 9/12/2013 WS CASK	9LF-WS03 13-9LF-WS03-0 K130964104 K1309641 9/12/2013 WS CASK	9LF-WS04 13-9LF-WS04-0 130964105F K1309641 9/12/2013 WS CASK
Method	Analyte	Units	Project Action Limit ¹						
SW8082A	PCB-1242 (Aroclor 1242)	mg/L	0.0005	ND [0.00002]	-	ND [0.00002]	-	ND [0.00002]	_
SW8082A	PCB-1248 (Aroclor 1248)	mg/L	0.0005	ND [0.000022]		ND [0.00002]	-	ND [0.000002]	-
SW8082A	PCB-1254 (Aroclor 1254)	mg/L	0.0005	ND [0.00002]	-	ND [0.00002]	-	ND [0.00002]	-
SW8082A	PCB-1260 (Aroclor 1260)	mg/L	0.0005	0.0000015 [0.000002] J	-	ND [0.00002]	-	ND [0.00002]	-
SW8082A	PCB-1262 (Aroclor 1262)	mg/L	0.0005	ND [0.00002]	-	ND [0.00002]	-	ND [0.000002]	_
SW8082A	PCB-1268 (Aroclor 1268)	mg/L	0.0005	ND [0.00002]		ND [0.00002]	-	ND [0.000002]	-
SW8260C	Benzene	mg/L	0.005	ND [0.0001]	-	ND [0.0001]	_	ND [0.0001]	-
SW8260C	Ethylbenzene	mg/L	0.7	ND [0.0001]	-	ND [0.0001]	-	ND [0.0001]	-
SW8260C	o-Xylene	mg/L	10	ND [0.0002]	-	ND [0.0002]	-	ND [0.0002]	-
SW8260C	Toluene	mg/L	1	ND [0.0001]	-	0.00008 [0.0001] J	-	0.00007 [0.0001] J	-
SW8260C	Xylene, Isomers m & p	mg/L	10	ND [0.0002]		ND [0.0002]	-	ND [0.0002]	-

¹ Project action limit from 2013 QAPP (USACE 2013) and 18 AAC 75, Table C Groundwater Cleanup Levels (AD

- = No criteria/ Not analyzed

ND [LOD] = The analyte result is less than the limit of detection [value in brackets].

mg/L = milligram per liter

J = The analyte result is considered an estimated value because the reported result is below the limit of quantitat

B = Analyte result is considered a high biased estimated value due to contamination present in the method blank

QN = Analyte result is considered estimated value biased uncertain due to due to a laboratory quality control failu

ML = Analyte result is considered an estimated value biased low due to matrix effects.

SDG = sample delivery group

CASK = ALS Laboratories formerly known as Columbia Analytical Services of Kelso, WA

					race water Analytic		
			Location ID Sample ID Lab Sample ID SDG Sample Date Matrix Laboratory	9LF-WS04 13-9LF-WS04-0 K130964105 K1309641 9/12/2013 WS CASK	KMS-WS01 13-KMS-WS01-0 130964107F K1309641 9/12/2013 WS CASK	KMS-WS01 13-KMS-WS01-0 K130964107 K1309641 9/12/2013 WS CASK	QCTB 13-TB01 K130964110 K1309641 9/12/2013 WS CASK
Method	Analyte	Units	Project Action Limit ¹				
8270SIM	1-Methylnaphthalene	mg/L	_	0.0000048 [0.000005] J	-	ND [0.000005]	-
8270SIM	2-Methylnaphthalene	mg/L	_	0.0000026 [0.000005] J	-	ND [0.000005]	-
8270SIM	Acenaphthene	mg/L	-	ND [0.000005]	_	ND [0.000005]	-
8270SIM	Acenaphthylene	mg/L	_	ND [0.000005]	_	ND [0.000005]	
8270SIM	Anthracene	mg/L	-	ND [0.000005]	-	ND [0.000005]	_
8270SIM	Benzo(a)anthracene	mg/L	_	ND [0.000005]	-	ND [0.000005]	_
8270SIM	Benzo(a)pyrene	mg/L	0.0002	ND [0.000005]	_	ND [0.000005]	-
8270SIM	Benzo(b)fluoranthene	mg/L	_	ND [0.000005]	_	ND [0.000005]	-
8270SIM	Benzo(g,h,i)perylene	mg/L	_	ND [0.000005]	_	ND [0.000005]	-
8270SIM	Benzo(k)fluoranthene	mg/L	_	ND [0.000005]	-	ND [0.000005]	-
8270SIM	Chrysene	mg/L	-	ND [0.000005]	-	ND [0.000005]	-
8270SIM	Dibenzo(a,h)anthracene	mg/L	-	ND [0.000005]	-	ND [0.000005]	-
8270SIM	Fluoranthene	mg/L	_	ND [0.000005]	_	ND [0.000005]	-
8270SIM	Fluorene	mg/L	_	ND [0.000005]	_	ND [0.000005]	-
8270SIM	Indeno(1,2,3-cd)pyrene	mg/L	_	ND [0.000005]	_	ND [0.000005]	-
8270SIM	Naphthalene	mg/L	_	0.000058 [0.000005]	_	0.00002 [0.000005]	-
8270SIM	Phenanthrene	mg/L	_	ND [0.000005]	-	ND [0.000005]	-
8270SIM	Pyrene	mg/L	-	ND [0.000005]	-	ND [0.000005]	-
8270SIM	Total Aqueous Hydrocarbons (Sum of PAHs)	mg/L	0.015	0.0001404	-	0.000105	-
AK101	Gasoline Range Organics (C6-C10)	mg/L	1.3	ND [0.025]	_	ND [0.025]	ND [0.025]
AK102	Diesel Range Organics (C10-C25)	mg/L	1.5	0.031 [0.02] J	-	0.015 [0.02] J	-
AK103	Residual Range Organics (C25-C36)	mg/L	1.1	0.057 [0.05] J, B	-	0.027 [0.05] J, B	-
SW6020A	Arsenic	mg/L	0.01	0.00032 [0.00013] J	ND [0.00013]	0.00008 [0.00013] J	-
SW6020A	Barium	mg/L	2	0.0127 [0.00003]	0.0041 [0.00003]	0.0042 [0.00003]	-
SW6020A	Cadmium	mg/L	0.005	0.000042 [0.00001]	0.000012 [0.00001] J	0.000006 [0.00001] J	-
SW6020A	Chromium	mg/L	0.1	0.00022 [0.00005]	0.00015 [0.00005] J	0.00016 [0.00005] J	-
SW6020A	Lead	mg/L	_	0.000211 [0.00001]	0.000026 [0.00001] J	0.000101 [0.00001]	-
SW6020A	Nickel	mg/L	_	-	-	-	-
SW6020A	Selenium	mg/L	0.05	ND [0.0005]	ND [0.0005]	ND [0.0005]	-
SW6020A	Silver	mg/L	0.1	0.000008 [0.00001] J	ND [0.00001]	ND [0.00001]	-
SW6020A	Zinc	mg/L	_	0.01967 [0.00025]	0.00095 [0.00025]	0.00105 [0.00025]	-
SW7470A	Mercury	mg/L	0.002	ND [0.00005]	ND [0.00005]	ND [0.00005]	-
SW8082A	PCB-1016 (Aroclor 1016)	mg/L	0.0005	ND [0.00002]	-	ND [0.000002]	-
SW8082A	PCB-1221 (Aroclor 1221)	mg/L	0.0005	ND [0.00008]	-	ND [0.000008]	-
SW8082A	PCB-1232 (Aroclor 1232)	mg/L	0.0005	ND [0.000024]	-	ND [0.00002]	-

			Location ID Sample ID Lab Sample ID SDG Sample Date Matrix Laboratory	9LF-WS04 13-9LF-WS04-0 K130964105 K1309641 9/12/2013 WS CASK	KMS-WS01 13-KMS-WS01-0 130964107F K1309641 9/12/2013 WS CASK	KMS-WS01 13-KMS-WS01-0 K130964107 K1309641 9/12/2013 WS CASK	QCTB 13-TB01 K130964110 K1309641 9/12/2013 WS CASK				
Method	Analyte	Units	Project Action Limit ¹								
SW8082A	PCB-1242 (Aroclor 1242)	mg/L	0.0005	ND [0.000002]	-	ND [0.000002]	_				
SW8082A	PCB-1248 (Aroclor 1248)	mg/L	0.0005	ND [0.000002]	-	ND [0.000002]	-				
SW8082A	PCB-1254 (Aroclor 1254)	mg/L	0.0005	ND [0.000002]	_	ND [0.00002]	-				
SW8082A	PCB-1260 (Aroclor 1260)	mg/L	0.0005	ND [0.00002]	_	ND [0.00002]	-				
SW8082A	PCB-1262 (Aroclor 1262)	mg/L	0.0005	ND [0.000002]	_	ND [0.00002]	-				
SW8082A	PCB-1268 (Aroclor 1268)	mg/L	0.0005	ND [0.000002]	_	ND [0.00002]	-				
SW8260C	Benzene	mg/L	0.005	ND [0.0001]		ND [0.0001]	ND [0.0001]				
SW8260C	Ethylbenzene	mg/L	0.7	ND [0.0001]	_	ND [0.0001]	ND [0.0001]				
SW8260C	o-Xylene	mg/L	10	ND [0.0002]	-	ND [0.0002]	ND [0.0002]				
SW8260C	Toluene	mg/L	1	0.00018 [0.0001] J	-	0.00017 [0.0001] J	ND [0.0001]				
SW8260C	Xylene, Isomers m & p	mg/L	10	ND [0.0002]		ND [0.0002]	ND [0.0002]				

¹ Project action limit from 2013 QAPP (USACE 2013) and 18 AAC 75, Table C Groundwater Cleanup Levels (AD

– = No criteria/ Not analyzed

ND [LOD] = The analyte result is less than the limit of detection [value in brackets].

mg/L = milligram per liter

J = The analyte result is considered an estimated value because the reported result is below the limit of quantitat

B = Analyte result is considered a high biased estimated value due to contamination present in the method blank

QN = Analyte result is considered estimated value biased uncertain due to due to a laboratory quality control failu

ML = Analyte result is considered an estimated value biased low due to matrix effects.

SDG = sample delivery group

CASK = ALS Laboratories formerly known as Columbia Analytical Services of Kelso, WA

ATTACHMENT B-2

Sample Results Below Project Data Quality Objectives (DQO)

Table B-2-1 Sample Results Qualified B due to Method Blank Exceedance

Sample ID	QC Batch	SDG	Lab Sample ID	Method	Analyte	Result (mg/L)	Qualifier
Method Blank	KWG1310602	QCK1309641	KWG13106025	AK103	Residual Range Organics (C25-C36)	0.02	
13-KMS-WS01-0	KWG1310602	K1309641	K130964107	AK103	Residual Range Organics (C25-C36)	0.027	J, B
13-9LF-WS02-0	KWG1310602	K1309641	K130964103	AK103	Residual Range Organics (C25-C36)	0.024	J, B
13-9LF-WS04-0	KWG1310602	K1309641	K130964105	AK103	Residual Range Organics (C25-C36)	0.057	J, B
13-9LF-WS01-0	KWG1310602	K1309641	K130964102	AK103	Residual Range Organics (C25-C36)	0.036	J, B
13-7LF-WS03-0	KWG1310602	K1309641	K130964101	AK103	Residual Range Organics (C25-C36)	0.12	J, B
13-7LF-WS02-0	KWG1310602	K1309641	K130964109	AK103	Residual Range Organics (C25-C36)	0.21	J, B
13-7LF-WS01-0	KWG1310602	K1309641	K130964108	AK103	Residual Range Organics (C25-C36)	0.12	J, B

Table B-2-2 Sample Results Qualified QN due to Missing Method Blank

Sample ID	QC Batch	SDG	Lab Sample ID	Method	Analyte	Result (mg/L)	Qualifier
13-9LF-WS03-0	KWG1311316	K1309641	K130964104	AK102	Diesel Range Organics (C10-C25)	0.014	J, QN
13-9LF-WS03-0	KWG1311318	K1309641	K130964104	AK103	Residual Range Organics (C25-C36)	0.03	J, QN

Table B-2-3 Sample Results Qualified QL due to Matrix Spike Exceedance

Sample ID	QC Batch	SDG	Lab Sample ID	Method	Analyte	Result (mg/L)	Percent Recovery	Qualifier
13-9LF-WS01-0	KWG1310603	K1309641	K130964102	AK102	Diesel Range Organics (C10-C25)	0.016	-	QL
Matrix Spike	KWG1310603	QCK1309641	KWG13106031	AK102	Diesel Range Organics (C10-C25)	1.13	74	
Matrix Spike Dup	KWG1310603	QCK1309641	KWG13106032	AK102	Diesel Range Organics (C10-C25)	1.12	72	

Table B-2-4 Sample Results Qualified QN due to Duplicate RPD Exceeding 30%

Sample ID	Lab Sample ID	Dup Sample ID	Dup Lab Sample ID	Method	Analyte	Result (mg/L)	Duplicate Result (mg/L)	RPD (%)
13-9LF-WS01-0	130964102F	13-9LF-WS02-0	130964103F	SW6020A	Cadmium	0.000012	0.00004	108
13-9LF-WS01-0	130964102F	13-9LF-WS02-0	130964103F	SW6020A	Lead	0.000013	0.000051	119
13-9LF-WS01-0	K130964102	13-9LF-WS02-0	K130964103	8270SIM	2-Methylnaphthalene	0.0000026	0.000005	63
13-9LF-WS01-0	K130964102	13-9LF-WS02-0	K130964103	8270SIM	Benzo(b)fluoranthene	0.0000026	0.000005	63
13-9LF-WS01-0	K130964102	13-9LF-WS02-0	K130964103	SW6020A	Cadmium	0.000005	0.00001	67
13-9LF-WS01-0	K130964102	13-9LF-WS02-0	K130964103	8270SIM	Dibenzo(a,h)anthracene	0.0000027	0.000005	60
13-9LF-WS01-0	K130964102	13-9LF-WS02-0	K130964103	8270SIM	Fluorene	0.0000087	0.000005	54
13-9LF-WS01-0	K130964102	13-9LF-WS02-0	K130964103	8270SIM	Naphthalene	0.000031	0.000094	101
13-9LF-WS01-0	K130964102	13-9LF-WS02-0	K130964103	8270SIM	Phenanthrene	0.000087	0.000005	54
13-9LF-WS01-0	K130964102	13-9LF-WS02-0	K130964103	AK103	Residual Range Organics (C25-C36)	0.036	0.024	40
13-9LF-WS01-0	K130964102	13-9LF-WS02-0	K130964103	SW6020A	Zinc	0.00178	0.00131	30

ATTACHMENT B-3

ADEC Laboratory Data Review Checklists

. . .

Laboratory Data Review Checklist

Comp	leted by:	Angela DiBerardino					
Title:		Project Chemist		Date:	October 22, 2013		
CS Re	port Name:	North East Cape		Report Date:	November 2013		
Consu	ltant Firm:	Jacobs Engineering Group In	c.				
Labor	atory Name:	ALS Environmental	Laboratory	y Report Number:	K1309641		
ADEC	File Number:		ADEC Rec	Key Number:			
	<u>boratory</u> a. Did an ADEC	CS-approved laboratory receiption	ive and perfo	orm all of the submi	tted sample analyses?		
		o □ NA (Please explain.)		Comments:	1 9		
[VA performed all analysis.					
	 b. If the <u>samples</u> were transferred to another "network" laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses ADEC CS approved? □ Yes □ No □ NA (Please explain.) Comments: 						
[
2. <u>Ch</u>		<u>CoC)</u> tion completed, signed, and da No □ NA (Please explain.)	ated (includin	ng released/received Comments:	l by)?		
l	b. Correct Anal	yses requested? No		Comments:			
l							
3. <u>La</u>	a. Sample/coole	e Receipt Documentation er temperature documented and No 「NA (Please explain.)	d within rang	ge at receipt $(4^\circ \pm 2)$ Comments:	° C)?		
	Cooler Mike - Te Cooler Kilo - Te Cooler Juliet - T Cooler Echo - Te Cooler Romeo - Cooler Charlie -	Cemperature Blank 1.8°C, Coo emperature Blank 1.2°C, Cool mperature Blank NA, Cooler emperature Blank 1.7°C, Cool emperature Blank 2.8°C, Cool Temperature Blank 3.2°C, Co Temperature Blank 1.2°C, Co emperature Blank 2.4°C, Cool	er Temperature Femperature er Temperature oler Temperature oler Temperature	ure 0.8°C 0.8°C ure 2.7°C ure 4.6°C ature 3.7°C ature 4.6°C	Υ.		

b. Sample preservation acceptable – acidified waters, Methanol preserved VOC soil (GRO, BTEX, Volatile Chlorinated Solvents, etc.)?

ſ		▼ Yes	∟ No	□ NA (Please explain.)	Comments:
l	<u> </u>	Sample	conditio	documented - broken le	aking (Methanol), zero headspace (VOC vials)?
	c .	-		\Box NA (Please explain.)	Comments:
	d.		ers/preser	1	documented? For example, incorrect sample e outside of acceptable range, insufficient or missing
		Ves Yes	∟ No	□ NA (Please explain.)	Comments:
	Th	ere were	no discre	epancies according to the c	cooler receipt form besides the temperature.
	e.	Data qu	ality or u	sability affected? (Please e	explain.) Comments:
		ta quality eipt at th			the low temperature since no samples were frozen upon
4.		<u>se Narra</u> Present		erstandable?	
,		▼ Yes	□ No	□ NA (Please explain.)	Comments:
	b.	Discrep	ancies, e	rrors or QC failures identif	ied by the lab?
	`	✓ Yes	□ No	□ NA (Please explain.)	Comments:
	AK	(102, AK	103, SW	performed by the laborato 78082 SW8260, and SW82 ussed in the relevant section	
I	QC		are uise	ussed in the relevant sectio	ins of this checklist.
	c.	Were al	l correcti	ve actions documented?	
		⊢ Yes	∟ No	▼ NA (Please explain.)	Comments:
				· · · · · · · · · · · · · · · · · · ·	
	d.	What is	the effec	t on data quality/usability	according to the case narrative? Comments:
	Eff	fects on c	lata quali	ty and usability are discus	sed in the relevant sections of this checklist.
Sa	mnl	es Resul	ts		
Ja				performed/reported as req	uested on COC?
	An and a 1973	Ves		\Box NA (Please explain.)	Comments:

5.

b.	All	applicable	holding	times met	?
----	-----	------------	---------	-----------	---

Ves Yes \Box No \Box NA (Please explain.) Comments: c. All soils reported on a dry weight basis? Comments:

□ Yes □ No □ NA (Please explain.)

Water samples were submitted with this SDG.

d. Are the reported PQLs less than the Cleanup Level or the minimum required detection level for the project?

Ves Yes \Box No \Box NA (Please explain.)

e. Data quality or usability affected?

Data quality and usability were not affected.

6. QC Samples

- a. Method Blank
 - One method blank reported per matrix, analysis and 20 samples? i.
 - □ Yes

Comments:

Comments:

Comments:

AK102/103 - Sample 13-9LF-WS03-0 was reported without a method blank. During the initial preparation batch KWG1311318, the method blank extract was lost. The samples were re-extracted except for sample 13-9LF-WS03-0 had insufficient sample for re-extraction.

ii. All method blank results less than POL?

□ Yes Comments:

AK103 – Method blank (QC batch KWG1310602) had a detection for RRO above the DL at 0.02 mg/L.

iii. If above PQL, what samples are affected?

Ves Yes \square No \square NA (Please explain.)

Associated samples were 13-KMS-WS01-0, 13-9LF-WS02-0, 13-9LF-WS04-0, 13-9LF-WS01-0, 13-7LF-WS03-0, 13-7LF-WS02-0, and 13-7LF-WS01-0.

iv. Do the affected sample(s) have data flags and if so, are the data flags clearly defined?

Ves Yes \Box No \Box NA (Please explain.)

Comments:

Associated samples were qualified B. Sample 13-9LF-WS03-0 was qualified QN for AK102/AK103.

v. Data quality or usability affected? (please explain)

Comments:

Comments:

Data quality is minimally affected for sample results qualified B since they have a high bias and were less than the Project Action Limit.

Sample 13-9LF-WS03-0 was qualified without a bias. The data quality is minimally affected; if there were to be a bias based on the method blank it would be high and the sample result is significantly less than ADEC Cleanup criteria.

- b. Laboratory Control Sample/Duplicate (LCS/LCSD)
 - i. Organics One LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

 \overrightarrow{V} Yes \overrightarrow{V} No \overrightarrow{V} NA (Please explain.)

Comments:

ii. Metals/Inorganics – one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

 \overrightarrow{V} Yes $\[\ \ No \] \[\ \ NA \]$ (Please explain.) Comments:

iii. Accuracy – All percent recoveries (%R) reported and within method or laboratory limits? And project specified DQOs, if applicable. (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

 \Box Yes $\overline{\lor}$ No \Box NA (Please explain.) Comments:

All LCS percent recoveries were within DoD QSM and AK series criteria.

AK102 – MS and MSD recovery for DRO was less than ADEC method criteria at 72% and 74%. SW8270 – MS recovery for Benzo(a)pyrene was greater than DoD QSM criteria at 113%.

 iv. Precision – All relative percent differences (RPD) reported and less than method or laboratory limits? And project specified DQOs, if applicable. RPD reported from LCS/LCSD, MS/MSD, and or sample/sample duplicate. (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

 $\overline{\lor}$ Yes \Box No \Box NA (Please explain.)

Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments:

AK102 – Parent sample 13-9LF-WS01-0 was affected SW8270 – Parent sample 13-9LF-WS01-0 was not affected since the bias was high and the parent sample result was nondetect.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

 \overrightarrow{V} Yes \overrightarrow{V} No \overrightarrow{V} NA (Please explain.)

Comments:

AK102 – Parent sample 13-9LF-WS01-0 was qualified ML

SW8270 – Parent sample 13-9LF-WS01-0 was not qualified since the bias was high and the parent sample result was nondetect.

vii. Data quality or usability affected? (Use comment box to explain.)

Comments:

Data quality was minimally affected even though the bias was low; the AK102 sample result 13-9LF-WS01-0 was significantly below the Project Action Limit.

c. Surrogates – Organics Only
 i. Are surrogate recoveries reported for organic analyses – field, QC and laboratory samples?

\checkmark Yes \sqcap No \sqcap NA (Please explain.)	Comments:
 ii. Accuracy – All percent recoveries (%R) reported an project specified DQOs, if applicable. (AK Petroleur see the laboratory report pages) 	
Ves $\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Comments:
iii. Do the sample results with failed surrogate recoverie clearly defined?	es have data flags? If so, are the data flags
\Box Yes \Box No $\overline{\Box}$ NA (Please explain.)	Comments:
iv. Data quality or usability affected? (Use the commen	t box to explain.) Comments:
Data quality and usability were not affected.	
 d. Trip blank – Volatile analyses only (GRO, BTEX, Volation <u>Water and Soil</u> i. One trip blank reported per matrix, analysis and for (If not, enter explanation below.) 	
Ves $\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Comments:
ii. Is the cooler used to transport the trip blank and VO. (If not, a comment explaining why must be entered l	
Ves $\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Comments:
iii. All results less than POL?	
\overrightarrow{V} Yes \overrightarrow{V} No \overrightarrow{V} NA (Please explain.)	Comments:
iv. If above PQL, what samples are affected?	Comments:
NA	
v. Data quality or usability affected? (Please explain.)	Comments:
Data quality and usability were not affected.	

e. Field Duplicate

i. One field duplicate submitted per matrix, analysis and 10 project samples?

✓ Yes ☐ No ☐ NA (Please explain.)	Ves Yes	□ No	NA	(Please	explain.)
-------------------------------------	---------	------	-----------	---------	----------	---

Comments:

ii. Submitted blind to lab?

 \overrightarrow{V} Yes \overrightarrow{V} No \overrightarrow{V} NA (Please explain.)

Comments: Primary 13-9LF-WS01-0 / Duplicate 13-9LF-WS02-0

iii. Precision – All relative percent differences (RPD) less than specified DQOs? (Recommended: 30% water, 50% soil)

RPD (%) = Absolute value of: $(R_1 - R_2)$

_ x 100

Comments:

 $((R_1+R_2)/2)$

Where $R_1 =$ Sample Concentration R_2 = Field Duplicate Concentration

□ Yes

RPDs were greater than 30% for the following analytes and results were qualified QN: SW6020 Dissolved - cadmium, lead

SW6020 - cadmium, zinc

SW8270 - 2-Methylnaphthalene, Benzo(b)fluoranthene, Dibenzo(a,h)anthracene, Fluorene,

Naphthalene, and Phenanthrene

AK103 - Residual Range Organics (C25-C36)

In cases where the result is nondetect, the LOD was used for calculation purposes.

iv. Data quality or usability affected? (Use the comment box to explain why or why not.)

Comments:

Data quality was minimally affected, all results qualified QN were less than the Project Action Limit. The largest value between the primary and duplicate value will be used.

f. Decontamination or Equipment Blank (If not used explain why).

Г	Yes ΓNo	✓ NA (Please explain.)	Comments:	
Dispos	able sampling	g equipment was used.		
i.	All results les	ss than PQL?		

□ No □ NA (Please explain.) □ Yes

Comments:

ii. If above PQL, what samples are affected?

Comments:

NA

iii. Data quality or usability affected? (Please explain.)

Comments:

Data quality and usability were not affected.

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab-Specific, etc.)

a. Defined and appropriate?

 \overrightarrow{V} Yes \Box No \Box NA (Please explain.)

Comments:

Qualifiers are defined in the Data Quality section of the report.

ATTACHMENT B-4 Laboratory Data (Available electronically)

APPENDIX C

Field Documentation

Field Logbooks Groundwater Sampling Forms

Outdoor writing products * for Outdoor writing people

This cover contains post-consumer recycled material

A patented, environmentally responsible, all-weather writing paper that sheds water and enables you to write anywhere, in any weather.

Using a pencil or all-weather pen. Rite in the Rain ensures that your notes survive the rigors of the field, regardless of the conditions.

J. L. DARLING CORPORATION Tacoma, WA 98424-1017 USA www.RiteintheRain.com

> Item No. 373 ISBN: 978-1-932149-87-6

Made in the USA US Pat No. 6,863,940

LOGBOOK #11 SITE NOTES

9/11/13 TO 9/16/13

Nº 373

C.FELL J. ORCZEWSKA K. MAHER

Sector Bar

6

Sector Box

Same Ing

Carl and

HTRW-JOF-05F45902-HOH-0001. OSF45902

Daily Logbook Checklist

- Project name / Site ID / Client
- Date
- Weather, site conditions, and other salient observations
- Level of PPE used
- Full names of onsite personnel and affiliations (including all visitors)
- Daily objectives
- Field measurements and calibrations
- Time and location of activity
- Field observations and comments
- Deviations from the Work Plan
- □ Site photographs
- □ Site sketches (with reference i.e. "N" arrow)
- Survey and location i.e. samples or debris (GPS coordinates when possible)
- \Box For each sample record:
 - Date, time, sampler(s)
 - Sample ID
 - Media,
 - container(s), preservatives
 - OC
 - QC
 - (dup/MS/MSD)
 - Analysis
 - MeOH lot #
 - Tare weight
- □ Sample shipments (when, what, destination)
- □ Waste tracking (when, how much, destination)
- Daily summary of activities (i.e. # of samples collected)

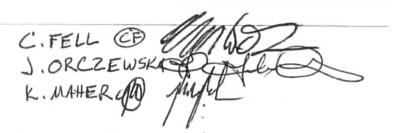
LOGBOOK#1 SITE NOTES

lite in the Kair ALL-WEATHER WRITING PAPER

-

5-3

-


10 - AT

HTRW-JO7-05F45902-HO4-0001

Name JACOBS ENGIN ERERIN G

Address 4300 B STREET SUITE 600 AUCHORAGE AK 99503 Phone 907 563 3322

Project NE CAPE 5-YR REVIEW 05F45902

Rite in the Rain — A patented, environmentally responsible, all-weather writing paper that sheds water and enables you to write anywhere, in any weather. Using a pencil or all-weather pen. *Rite in the Rain* ensures that your notes survive the rigors of the field, regardless of the conditions.

RiteintheRain.com

AND AND AND

CONTENTS	-	NE CHPE, 5-YRREVIEW, USACE ~1240 LEFT NOME FOR NE CAPE ON	9/11/13 DERING XIR
AGE REFERENCE	DATE	~ 1400 ARRIVED AT BRISTOL ENG. C.	AMP an
-3 DAY 1 ! SITE SETUP	9/11/13	NE CAPIE	1
	9/12/13		
	9/13/13	SITE ORIENTATION W/ CHUCK CR	LOLEY
0-21 DATBISITE 31 SITE WALK (WHES)	9/13/13 📻	PERSONNEL (LEVEL D PPE)	
2-24 DAY3; SITE 7 SITE WALK (KOAU LANDAU)	9/13/13		
-26 DAY 3' SITE 9 SITE WALK (CHERATIONS LAW DATE)	9/13/13	JACOBS K. MAHER P.N	
	9/14/13		XCG15T
-32 DAY 4: SITE 3 SITE WALK (FUEL PURPHOUSE) 9	114/13		XOG:ST
-34 DAUHISITE & SITE WALK (GRAVEL)	9/14/13	BRISTOL C. CROLEY SITE	SUPER
5-37 DAY 42 SITE 29 SUTE WALK (SUQITOGHING)	9/14/13	USACE J. CRANER QA	R
7-38 DAY 4'SITE 8 SITE WALK (POL SPILL)	9/14/13	3	
-40 PAY 42 SITE 10 SITE WALK (BURIED DRUMS)	T/14/13	1430 GOT SITUATED IN LODGING AND	REPED
-42 DAY 4: SITE IL SITE WALK (FUEL TAWKS)	9/14/13	SOME OF THE FIELD GEAR	
-46 DAYS ISITE 28 SITE WALL (DEALWAGE BASW)		GEL ICE IN FREEZER	
N N		SONLY 12 COOLERS -> Sta	E ISSUE?
48 DAYS SITE 21 SITE WALK (WASTE WATER TANK)	9/15/3	A L	
=50 DAY 5: SITE 16 SITE WHERE (PHINT & POPE STURKE)	9/15/2	NO PLAN TO SPEND REMAINDER OF	Dty
5 DAYS: SITE 13 SITE WALK (HEAT & POWER PLANT)	alucha C	SCOUTING SITES AND FLAGGIN	
H SITE IS SITE WALK (FUEL PIRELINE)	9/15/13		
5 SITE 19 SITE WALL (AUTO MANDTENANCE)	9/15/13		
SITE 27 SITE WALK (DIESEL FUEL PUMP)	9/15/13	WX: MOSTLY CLOUDY TO OVERCAST	
5 DAY 6: DEMOBIE & USACEONSITE INTERVIEW		South wind Stold uplt temp m	
-62 PHOPOLOG & WASTE TRACKIANG	9/11-9/11	Joba Cina Store white tong in	p-

NE CAPE NECHPE S-YR REVIEW USACE 5-YRREVIEW USACE 9/11/12 9/11/13 SITE DRIVE W/ THE ORAR (USACE) 1521 1711 LO SITE 16 15 ESSENTIALLY AT THE GAC STATION DISITE & IS THE LOW LYING AREA ALONG JUST BREFORE THE GAC STATION * DIRECTIONS ARE BASED ON COMING FROM CAMP THE RIGHT SIDE OF THE ROUTD (CAMP) LOSITE 7 IS THE THICLY VEGETATED HILL 1742 END OF SITE WALK LEFT FROM SITES 1745 DINNER FROM H SITEG IS WHERE OUTERMODAL CONTAINERS TO 1815 ARE STAGED C LEFT 1820 GEAR ORGANIZATION & CODLER PRED HISTIE 3 15 OW THE RIGHT JUST BEFORE DECH 45ITE 4 IS ON THE LEFT JUST BEFORE BEACH 6 FROM WP. Battle Count SITES IS ON THE BEACH 2519 Automatic Party Coolers = 12 Flead NOTE MARK BOUNDARIES OF SITES WHERE ------250 Holoz Polys = 33 30 1 L Hu = 35 30 OBSERVED OF MAKE SKETCHES 210 1 L No pres = 1240 50 45 GO YOUL HEL VOA = 29 Ľ 1612, LASITE 9 15 THE BARE AREA ON LEFT SIDE OF ROAD JUST BEFORE INTERMODIL CONTINUE Per cooler Some Location STAGING AREA ON THE RIGHT Grewind water + SW SITE 10 IS THE NEWLY GRADED ARKEN JUST PAST 1 ----- 11 el - 6x 40mi von CONTAINER STAGING AREA, ALC: NO - 2 x 16 Hel Amber SITE 11 IS THE NEWLY DISTURBED AREA JUST - 3 × 16 No pus A DABER 15 -11 -DOWNHILL OF THE CEPILIE SITE ID -2 × 250 mC HNO3 [WEILER SITE 28 IS THE LOW AREA BELOW SITE 10 LISITE 31 232 ARE UP THE ROAD TOWARD QUARRIES - MPA -- 11 65 2005 END OF DAY -932 15 FOUNDATION AT BASE OF HILL PAGES PAGE 2 Scale: 1 square = Rite in the Rain Scale: 1 square =

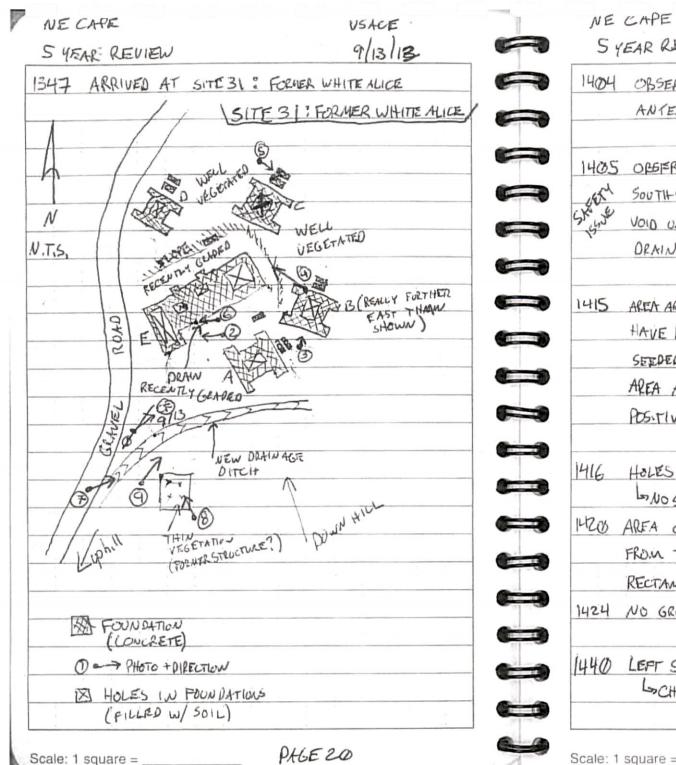
NE CAPE USACE USACE NE CAPE 9/12/13 9/12/13 5-YEAR REVIEW 5 YEAR REVIEW 0655 HEALTH AND SAFETY MEETING (BRISTOL) 0754 TURBIDIMETER (5/2 6192) GRALIBRATED ON 9/6/13 BY TIT ENVIRO 0715 DAILY TAIL GATE (JACOBS) YSI (5/N 1000449) CALLORATION VERIFICATION 0905 GAERSONNEL (LEVEL D PPE) LOCALIBRATED ON 9/6/13 BYTT ENVIRO LABAROMETER CAL: 29.72 In HS JALOBS K. MAHER SITELEAD JACOBS C.FELL SSHO/TECH LOCAL VERIFICATION JACOBS J. ORCZEWSKA TECH -ORP: 240 MV exp. 12/17 = 256.8 MV OK +> COND: 1413 un cm/1020um/cm=9:290K > pH70: 6.95 OK 11 I TT -> fH 10.01: 10.01 OK 11 110 7pH 4.01: 3.95 OK WX: PARTLY TO MOSTLY CLOUDY 35°F TO 405F 09400 LOADED SUPPLIES IN PICKED AND CALM TO LIGHT BREEZE TRAVELLED TO SITE 9 Con a 0752 DAILY OBJECTIVES: 0945 ARRIVED AT SITE 9 LANDFILL - COMPLETE GW/SURFACE WATER SAMPLUS H BEGAN SAMPLING PROCEPURE AT -SITE WALKS FOR SITE 7 \$9 (LANDFILL) LOCATIONS 94F-WSON \$ Dr. 5-09 12/13 GLF-WS02 0950 ADVANCED DRIVE POINT ALE 4 Scale: 1 square = PAGE 5 Rete in the Rain Scale: 1 square = _

USACE NE CAPE NE CAPE USACE S YEAR REVIEW 9/12/13 9/12/13 S YEAR REVIEW * SAMPLE: 13-9LF-WSOI-0 BEGAN SAMPLING PROCEDURE AT 1000 1.149 PRIMAPY GOLLECTED WITH DEPICATED DIPAER LOCATION 94F-SW03 MSMSD -4 40m VOAS (HCI) AKIOI / BEEX SWEEGO 1155 * SAMPLE: 13-94F-W503-0 SW7471 MERCURY unfiltered in 1 250poly (HWO3) SUNCOD (X KA)30 L (ZSODOLY (HAD) SUGOZO RURA METALS 507471 GOLLECTED WITH DEDICATED DIPPER filterod 1 PRIMARY MERCURY CE (KM/20 174 4021 VOAS (HCI) AKIOI /SWEECO LJZ IL AMBER/HCI) AK102/AK103 -17 250poly (HAW3) SWEDZO 5107471 unfiltered L73 1 LAMBER (none) SUBZTUSIM (SWE082 NERCURY 507471 Ly 250pcly (HAD3) SW 6020 REFA ANETALS filtered -> SURFACE WATER MERCURY FOR MS/MSD -----5211 AMBER (IKI) AKIOZ/AKIO3 FILTEPED METALS COLLECTED W/RERISTALTIC 53 ILAMBER (none) SUBZ70 SIM/SW8082 -* SAMPLE: 13-9LF-W502-0 - SURFACE WATER 1000 919-1-1-A-8 GOLLECTED WITH DEDICATED DIPPER - FILTERED METALS COLLECTED W/ PERISTALTA DUPLICATE 174 40AI WOAS (HEI) ALLIOI /BTEX SWEECO 1211 FINISHED SAMPLING AT LOCATION SW 747H NERCIRY SW 747H by 1 250 poly (HNO3) SUGOZO by 1 250 poly (HNO3) SUGOZO k 1 250 poly (HNO3) RCRA METHIS unfiltered 9LF-WS03 Filteral MERCIRY 5-1-1-8 M OF/KM/20 In ZIL AMBER (HCI AK102/AK103 SAMPLING LOCATIONS ARE 1212 503 1L AMBER (NOR) SW8270051M /SW8082 RECORDED DN APPENDIX A FIGURES -> SURFACE WATER --FILTERED METALS COLLECTED W/PERISMOTIC IN THE WORKPLAN (FIELD COPY) AND ON PAGE 8 FINISHED SAMPLING 9LF-WSON 1135 9LF -WSOZ 1215 LEFT FOR LUNCH SAMPLES MAINTAINED AT 4 ± 2 °C APTER COLLECTION PAGEG PALE 7 Rite in the Rain Scale: 1 square = Scale: 1 square =

USAEE USACOZ NE CAPE NE CAPE 9/12/13 9/12/13 5 YEAR REVIEW 5 YEAR REVIEW 1350 + SAMPLE: 13-91F-WS04-0 WSOH MOLLECTED W/ DEPICATED PRIMARY VCR DIPPER, FILTERED METALS 11 POND COLLECTED W/PERISTALTIC FØ9 6 674 40ml Wots (Hec) AKIOI/SWEZED (BTEX) OWCOL ICAP 1.1.5 172 IL AMBER (HEL) ALLOZ/ALIOS WSOI 14 V4 FILTERED 4 1 250ml POLY (HAD) SWEDED SW7471 @ WSO2 MERCURY UNFILTERED 4 250ml POLY (HNO3) SW GOED SW 7471 MERCURY POND WSQJ Carlo and 53 IL AMBER(none) SWEE 70 SIM/SW 8082 SWAMPY DRAINAGE > SORFACE WATER P1-188 AREA CANAL 1 Art - 140 1351 * SAMPLE: 13-915-655 PRIMARY 13-96F-WCO1-2 DICOLLECTED W/PERISTACTIC PUMP 13005 HEMED BACK TO SITE 54 40m (VOAS (HCI) 4KION /SWERCO (BTEX) 1416 ISSO FIGHER 250m POLY (HNO3) SWEDZO SW7471 KRA-METALS MERCURY P 1 COLUMN 1310 AD VANCED DRIVE POINT AT 250ml POLY(HAD) CED G/12 SITE 7 LAOD FILL HO REFUSAL AT APROX 4-6 MONTES 365 AT STEPPED OUT APPROX IFT - TREFUSAL AT 61 AT GH IN STEPPED OUT APPROX LOFT NORTH -> REFUSIL Fe LOSTEPPED OUT APPROX 20 FT NORTH- REFUSHL AT 300 BEGAN SAMPLING AT GLF-WGOL 1340 BEGAN SAMPLING PROCEDURE AT 1348 OCATION 9LF-WSOH PAGE 9 PAGE 8 Scale: 1 square = Rite in the Rain Scale: 1 square =

NIE CAPIE	USACIE	NE CAPE	USACE
S YEAR REVIEW	9/12/13	S YEAR REVIEW	9/12/13
1437 GROUNDWATER GRAB	SAMPLING AT	= 1516 STARTED SAN	NPUNG PROCEDURE
LOCATION 9LF-	WGO		NGUKSHAM MOUNTAIN
- WATER EXTREME	ILT TURBID W/	SARING	
SILT/FINE SAND	E OROANICS.		
- SCREEN CONTINI	ALLY POULS WITH	IS21 *SAMPLE: 13-	KMS-WSOI-Ø
FINE ORCANICS	\$ SEDIMENT		ED WITH DEDICATED DIPDER,
- PRODUCTION RAT	E MUCH LOWER	PRIMARY FILTERED-	of EDglie METALS COLLECTED
THAN 250ml/			RISTALTIC PUMP
-4 40ml vo	AS IN ONE HOUR	Di Lit 40 ml	VOAS (HCI) AKIDI SWBZERCISTE
		L7 250m	Par (HNO) SWEOZD SW 7471 POLY (HNO) PERA METALS MERCURY
450 FINISITED SAMPLING	9LF-WSO4	LJ 2SOM	POLY (HAND) SWEDZO SW7471 POLY (HAND) RCRA METALS MELCIE
			BER (HCI) AKIOZ/AKIO3
504 ARRIVED AT KANGU	KSHAM MOUNTAIN		MBER (none) SWEZTOSIN/SW808
SPRING SAMPLING LOC	ATTOW (KMS		E WATER
1	ят", р	1539 FINISHED	5+4PLING AT
A - EKSIEST P In WI MINI MARE FALL			M MOUNTAW GRING
N - 1 - 1- 10-10-101		1550 FINISHED SAM	PLING AT
t.s. CONVERT		OILF WEG	
· · · · · · · · · · · · · · · · · · ·		9LF-WGOI	- Z OUE TO EXTREME
		LOW WATER	PRODUCTION FROM THE
		WELL POINT	
	•		
cale: 1 square =	PAGE 10	Scale: 1 square =	PAGE II Reter and Ra

NE CAVE NE CAPE USACE 9/12/13 S YEAR REVIEW 5 YEAR REVIEW 9/12/13 1644 * SAMPLE: 13-76F-WS02-0 1600 ARRIVED AT SITE 7 LANDFILL PRIMITY GCOLLECTED W/DEPICATED DIPPER, PRIMITY FILTERED MANUE 65 LAD OUT LOXATIONS DICELEM 1625 STARTED SAMPLING PROCEDURE AT PERISTACTIC PUMP 1574 40m VOAS (HU) AKIO1/SW8260 (BTEX) 7LF-WSOI 250ml POLY (HUD3) SWUCED REREATED SW747 FILTERED LAI SW747 MERCURY SWGOZO PCRAMETALS UNFILTERED LAT 630 #SAMPLE! 13-74F-WS01-0 250ml AULY (HUD) PR/MAP-4 GCOLLECTED W/ DEDICATED DIPPER, (LAMBER(HCI) 677 AK102 / AK103 LABER(none) SW3270 SIM/SW8082 FILTERED METHUS COLLECTED W/ FJOH - SURFACE WATER PERISTALTIC PUMP 67 4 40m Vilts (Hel) AKIDI /SUSECO (BTEX) SW 7471 MERCURY FILTERED 13 | 250ml POLY (HNO) SWEDD 10-1 --- J mp 1653 STARTED SAMPLING PROCEDURE AT UNFILTERED LA 1 250 A POLY/MAD SWGOZO SW7474 MERCURY 71F-WS03-0 PBHA IL AMBER (HCI) AKIOZ (AKIO3) 42 LABER (none) SW8270 SIM/SWED82 1654 *SAMPLE: 13-76-WS03-0 - SURFACE WATER OR WARK LOCALECTED W/ DEPICATED DIPPER, FILTERED NETALS 1 DICE LAND WITH PERISTALTIC PUMP 650 FINISHED SAMPLING AT FLEWSOI 40ml VOAS (HCI) AKIOI /SW8260 (BTEX) SW747H MERCURY FILTERED LOI 250ml POLY (11NO3) SWOOZE 640 STARTED SAMPLING PROCEDURE AT UNFILTERED LA 1 ZSOM POLY (HNO3) RCRA METALS MERCLEY 71F-WS02 LAZ IL AMDER (Hei) AK102/AK103 63 ILAMBER (none) SWS27051M/SW8082 -7 SURFACE WATER PAGE 12 Scale: 1 square = _____ RAGE 13 Rite in the Rain Scale: 1 square = _____

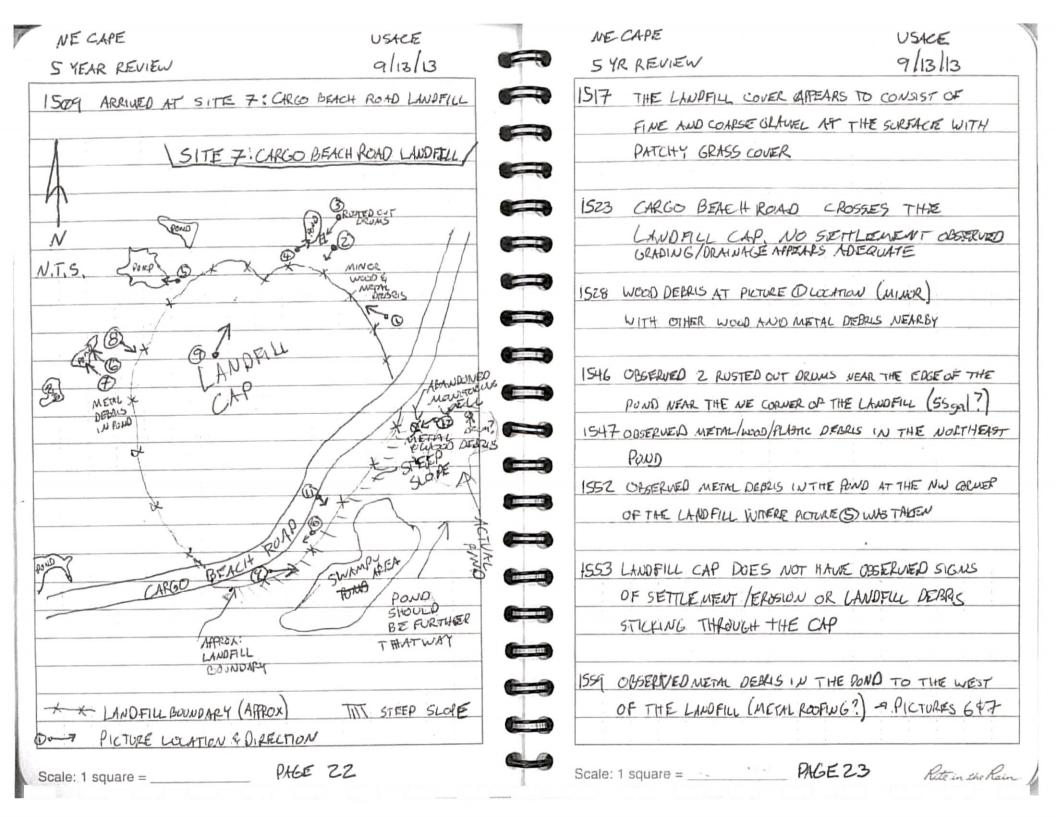

NECAPE USACE USACE NECAPE 5 YEAR REVIEW 9/12/13 9/12/13 5 YEAR REVIEW R 1720 FINISHED SAMPLING AT 74F-WSOZ 749 LEFT SITE FOR THE OAT LA TRANSPERRED SAMPLES BLEK TO CAMP 1738 FINSHED SAMPLING AT FLF-WSO3 LA SAMPLING WASTE/IDW TRAUSFERED BACK TO CAMP IN 5 GALLOM LEFT SITE FOR THE DAY (D)9/12 BUCKETS (PAGE 62) 1736 FLF. GW SAMPLING LOCATION (1 KTTENPT) Q1 19 + WSOI POND Paulo. 3 N (I ATTEMPT) XESTEDOUT ITI A DWSOLW LANDFILL OLIGINAL CAP GW LOC ZATTEMPTY Carlos and POND 0 TO CHEGO BEACH ROAD LANDFILL CKP SLOPEN ------POND \$ (SWSOB) Chine PAGE 14 Scale: 1 square = PAGE 15 Rite in the Rain Scale: 1 square = _

NECAPE	USACE	NE CAPE	USACE
SYEAR REVIEW	9/13/13	5 YEAR REVIEW	9/13/13
FOO JACOBS TAILGHE	F		1
	F		HAWS OF CUSTODY
ERSONNEL	~	FOR D LOC	LERS WITH
JACOBS K. MAHER	SHELERD	SAMPLES CO	LECTED ON
JACOBS C. FFLL	SSHO/TEAL	9/12/13	
JACOBS J. ORCZEWS	KA TECH	CODLERS	
		-KILO	
K. MAHER DEPARTED AT	APPLON 1440	-JULIETT	
	(C)	- CHARLIDE	
WX WINDY 10-20mp	of cousts	- MIKTE	
305F TO 40	OSF	- ALFA	
OVERCAST		- HOTEL	
D720 DAILY OBJECTIVES		- ECHO	
- COOLER PACKIN	6	- ROMEO	
- RENTAL DIEMOBR	6		
- 5 YR REUIEW TRAI	NING	= 1140 SYEAR REVIE	W CHECKLIST
-BEGIN SYR REUL	EWS 🖛	=> TRA INING	
1800 BRISTOL TAILGATTE	-	1200 LUNCH	
		1230 BACK FROM LUI	CH-GOING TO
		STURRT SITE WA	
			ATTING W CAMP FOR
		AIRPLANES T	

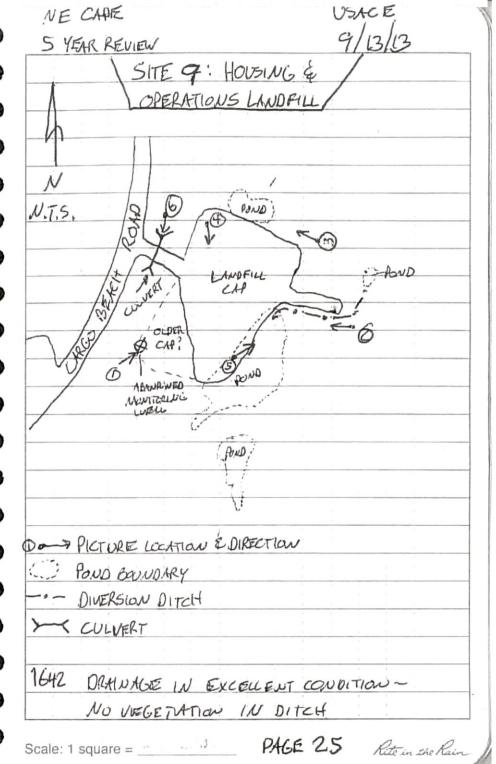
NE CAPE USACE NE CAPE 5 YEAR REVIEW 9/13/13 SYEAR REVIEW R 1240 SITE WARKOF SITE 32 - LOWER TRAMWAY 1313 OBSERVED MINUR WOOD AND METAL DEBELS SEE CHECKLIST FOR FURTHER ON SITE INFORMATION 1321 OBSERVED MINOR ASPHALTIC SHWELE DEBRIG SITE 32 LOVER TRAMWAY 1x2FT TO 2×2FT (APPROX) DIMENSIONS ON THE GROUND WEST OF THE OLD FOUNDATION BORROW PIT N 1325 OBSERVED APPARENT GROUN DISTURBANDER (RECENT) TO THE EAST OF THE OLD FOUNDATION. N.T.S. FLOW COM THIN VEGETATION IS GROWING ON THE EXAREMELY ROCKY SOIL A 1327 NO GROUNDWATER MONITORING WELLS WERE EROSION/ MINUR SETTLEMENT OBSERVED CULUERF Contraction of the (2) and 1330 CULVERT UNDER RUAD AT THE SITE IS APPROX FOUNDATION 5 TOG FT IN DIAMETER SUL (7) ~0 1332 ONGOING REMEDIAL ACTIVITY IS MINIAG APPARENT GROUND ONNER DISTUROMNER BORROW FOR BACK FILL ADJACENT TO THE SITE ON THE OPPOSITE SIDE OF KANGUKHSAM MOUNTAIN SPRING (D PICTURE LOCATION. 2440 - 44 1343 LEFT SITE 32: LOWER TRAMWAY Scale: 1 square = PHGE 19 Rite in the Rain PAGE 18 Scale: 1 square =

USICE

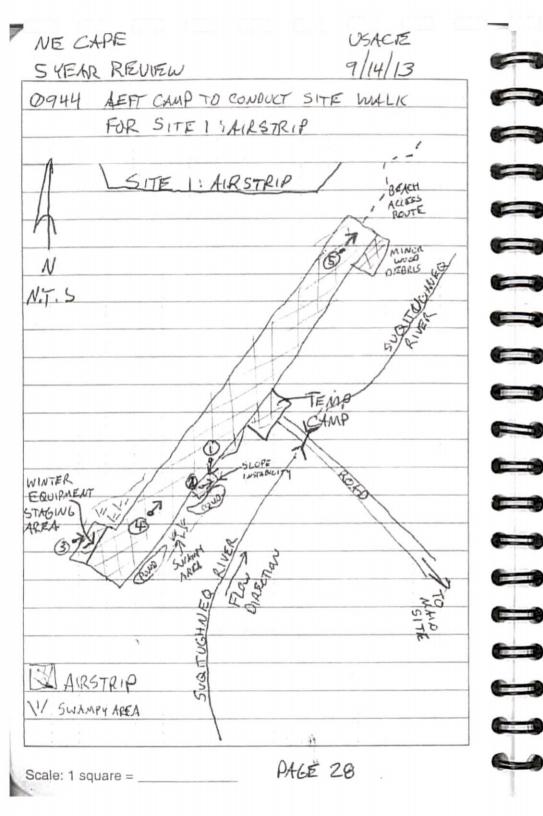
9/13/13

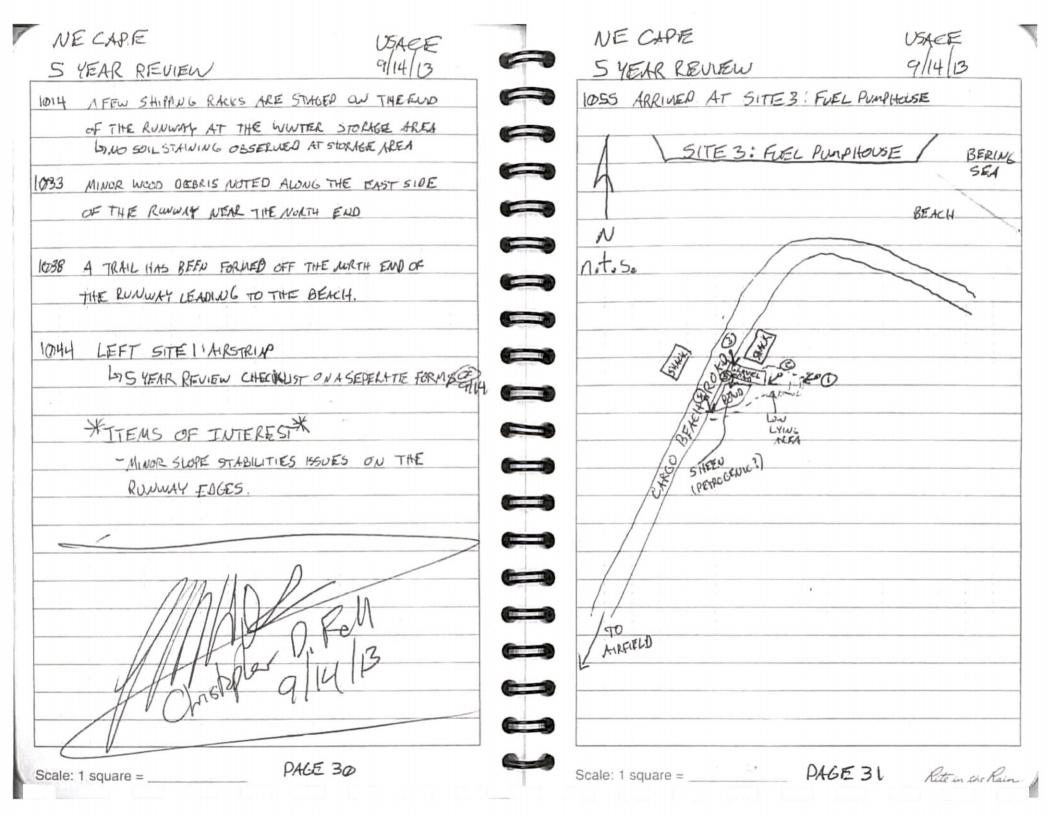


9/13/13 SYEAR REVIEW 1404 OBSERVED MINOR WOOD/METAL/WRING DEBRIS NEAR ANTENNA FOUNDATION "C" 1405 OBSERVED A DRAIN COVER (RUSTED) ON THE SOUTHSIDE OF FOUNDATION "E" WITH AN UNFILLED VOID UNDER NEATH (APPROX 6 FT DEEP, SWIDE, 9FT LENGTH) DRAIN IS APPROX 4FT LONG & GINCHES WIDE. 1415 AREA AROUND FOUNDATION "E" AND ANTENNA FOUNDATION "4" HAVE BEEN RECENTLY GRADED, CONPACTED, AND SEEDED, NEW NEGETATION IS JUST SPROUTING AREA APPEARS TO BE GLADED TO PROMOTE POSITIVE DRAWAGE AND MITIGATE ERUSION HOLES IN POUNDATIONS HAVE BEEN FILLED WITH SOIL IN NO STAINING OF CONCRETE OBSERVED 14203 AREA OF STUNTED VEGETATION CHE Sha UPHILL FROM THE WARS SITE (APPROX 20PT BY30FT RECTANGLE) 1424 NO GROUNDWATER MONITORING WELLS OBSERVED 1440 LEFT SITE : 31 : WHITE ALICE SCHECKLIST ON SEP ERTE FORM


USACE

Scale: 1 square = 11 PAGE 21

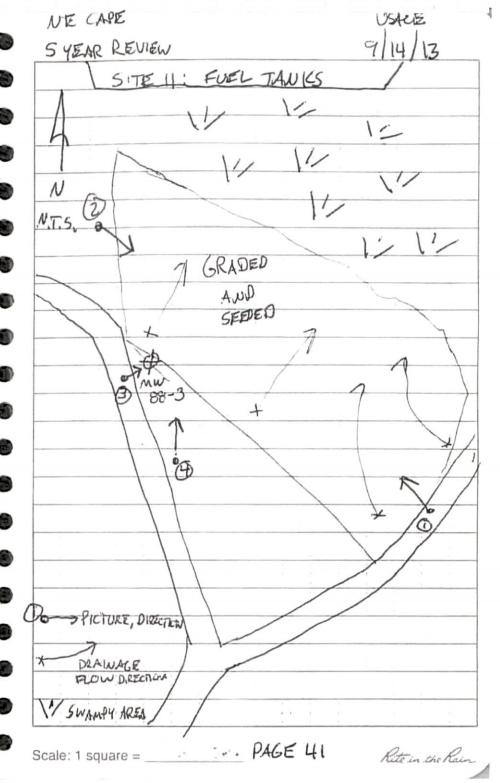

Rite in the Rain


NEC	APJE	USACE
5 YEA	RREVIEW	9/13/13
1607 R.	EBER HOSE STICKING THROUGH	LAWDFILL CAP
AL	ONG WITH SOME METAL DE	BRIS NEAR
PI	CTURES 10 411	
1615 GB	SERVED AN ABANDONED MONITORING	G WELL WEAR
TH	E SE CORNER OF THE LAN THE HYDRATED BEMOUNTE	UDFILL-ABANDONED
1616 OBS	ERVED METAL DEBRIS A	WD OTHER DEALLS
1	THE POND NEAR THE SE COR	
	POBSERVED A SUBMERGED OBJ	
	OPENING (DRUM?)	
1633	TEMS OF INTEREST	
	- DEBAIS PROTRU PING THROUGH	CAP ON SSIDE (MWOR)
	- SIGNIFICANT METAL & WOOD D	
	SURROUNDING PONDS (INCL.	UDING AFEN RUSTED
	OUT DRUM'S	
637	LEFT SITE 7 LANDELL	
	175 YR REVIEW CHECKLIST ON	SEPERATE FORM
1640	ARRIVED AT SITE 9:	HOUSING &
	OPERATIONS LANDFILL	-
	LAS YR REVIEW CHECKLIST	INCLUPED ON
	A SEPERATE FORM	
Scale: 1 sc	uare = PAGE	E 24

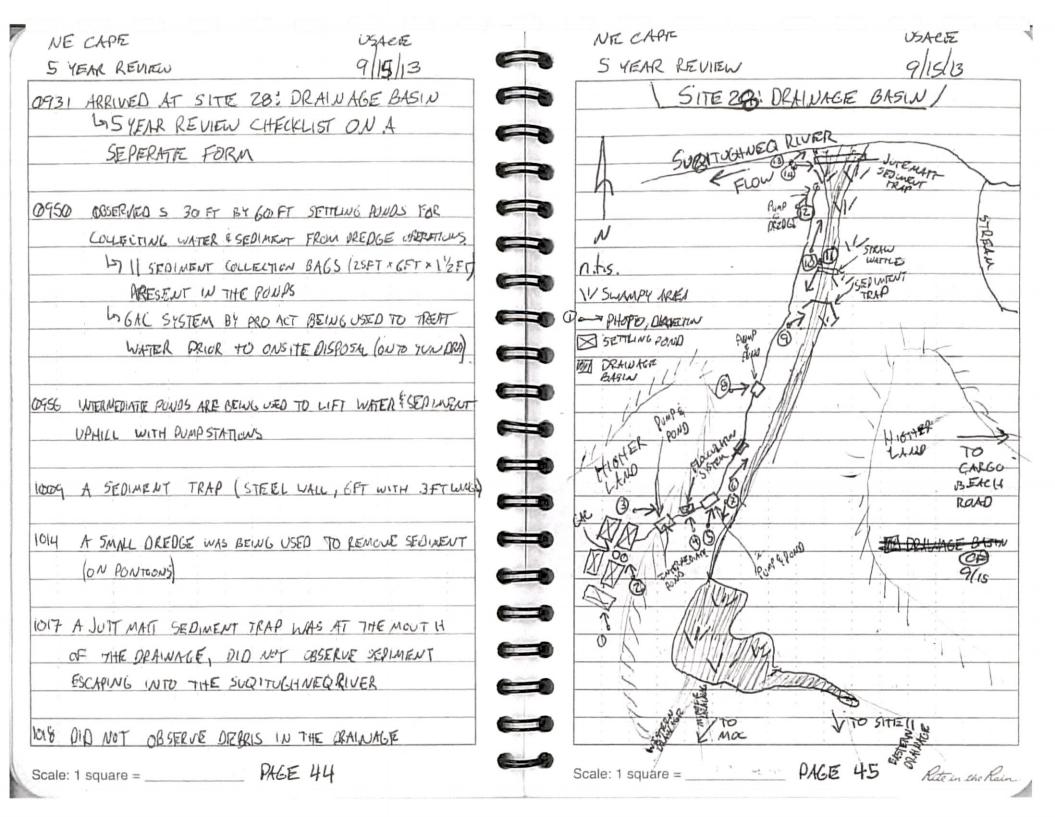
NE CHPE	USICE	NE CAPI		USA al	ee 4/13
S YEAR REVIEW	9/13/13		REVIEW		כיוקרו
1649 LANDFILL CAP APPEARS TO BE		0800	BRISTOL	TAKGATE	
CONDITION WITH THIN GRASSY			A		
CHP IS COMPOSED OF COARSE		0830	JACOBS	TAILGATE	
(GDAVEL) THAT MAKES VEGET	ATTUEZ GROWTH				
DIFFICUT.	F		PERSONNE		
			HEABS	CIFELL	SITE LEAD
1651 EROSIAN ÉSETTLEMENT WER			JACOBS	J. ORCZEWSK	A SSHE/TECH
OBSERVED. GRADING APPEARS TO	O AUDU DRHWACE				
	(F				
1657 OBSERVED AN ABANDON FO NON TERM	UG WELL AT				
THE SW CORVER OF THE OLD LA	WD FILL CMP		WX: CAL	M	
			30	S TO 405F	
GOULD NOT FIND THE OTHER	2 MONTORIUG		OVE	RCAST	
WELLS SHOW IN THE DECISI					
		35D	DAILYO	BIECTIVES	
1734 LEFT SITE 9: HOUSING & OPERA	TIQUS LANDFILL		- SYEAR	REVIEW SITE W,	+LKS
			- PAPERL	VORK QC	
ENO OVE DAY	6		- CONTIN	UE AREP FOR DE	MOBE
MA DOS	ceru -	850 5	ITE HISTOR	Y REVIVEN	
All printed 121	3			7	
Att Arrivelle					
Scale: 1 square = PAGE	26	Scale: 1 squ	are =	PAGE 27	Rite in the Rain

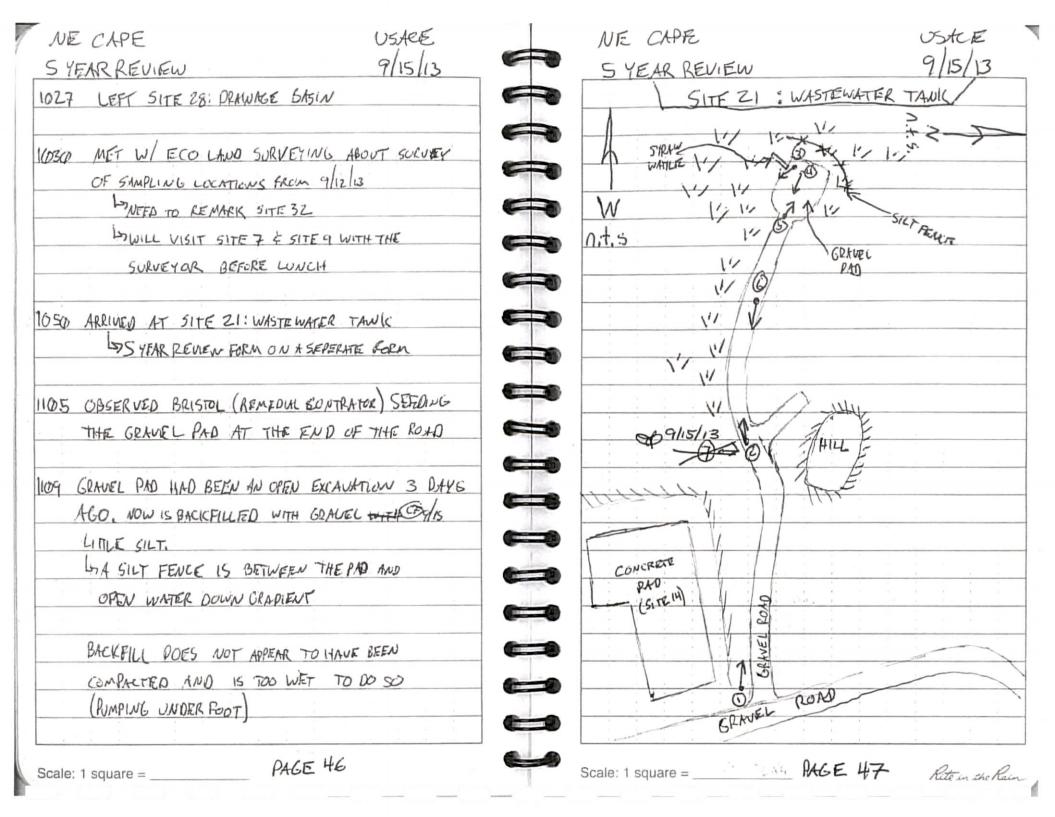
SYE	AR REVIEW	9/14/13
0955	OBSERVED ITOGINCH TENSIO.	N CRACKS IN THE
	SLOPE OF & SIDING OFF TH	ESIDE OF THE
	RUNWAY, THE NORTHEAST	r CORNER OF
	THE PAD HAS APPROXIMATE	at IPT OP
	SETTLE MENT AT THE	TOP OF THE
	SLOPE.	
,		
	HSLOPE INSTRABILITY IS	APPROX 30-40PT
	FROM THE EDGE OF TH	
	WILL NOT AFFECT OPERATIO	INS ON THE
	RUNWAY	
1000	RUNWAY SURFACE WAS OBSET	WED TO BE IN
,	GOOD CONDITION AND WAS F	
	RUTTING, SETTLEMENT, OR	
	SLOPES IMMEDIATELY AL	JOININGTHE
	RUNWAY SURFACE WERE	FREE OF SIGNS
	OF SLOPK INSTABILITY,	
	SLOPED BETWEEN 1/2-	7
	WHICH MAY LEAD TO EA	
	OVER TIME	
	IS SMALL TENSION CRAC	KS ON 3/4 TO I SEC

NECAPE	USACTE	NE CAPIE	USACE
5 YEAR REVIEW	9/14/13	S YEAR REVIEW	9/14/13
12 OBSERVED + SALVALED PIECE OF	RUSTED OUT	SITE 6: GRAV	EL PAD
EQUIPMENT STAGED FOR REMOVE	с. б		
113 EXCANATION AREA NOTED IN THE &	600 AREARS TO		21000 UTER 21000 UTER
NOW BE AROND			SHIPPING where has
HA BIOGENIC SHEFN (BRITLE) NOTED FROM THE ROAD	ON SOMIE WHITTER IN		SRAVEL S SH
116 FORMER PIPELINE WAS NOT OBS	SERVIED (REMOVED?)		
FORMER PUMPHOUSE STRUCTURE H	AS REEN REMOVED		AS DE DEC OU
19 SHEEN NOTED ON PONDED WATTER	MEDR THE ORAMEL	Abuno Micustre Luce	19 SHINDING
PAP. SHEEN WAS NOT BRITTLE / TOGETHER AFTER BEING DISTUR		LAND FILL	CONTAINERS
126 VEGETATION IS GROWING W	ELL ONSITE	SITE 7-	R
EXCEPT ON A NEW GRAVEL	PAD C		}
32 LEFT SITE 3 FUEL PUMP			
33 ARRIVED AT SITE 6: GRAVEL	PAD C		
LA SYEAR REVIEW CHECKLIST O.	NA SEPELATE FERM	GRAVEL PAD	
	C	DOD PHOTO LOCATION, DIRFECTION	
icale: 1 square = PAGTE	32	Scale: 1 square = PA	6E 33 Rite in the Re

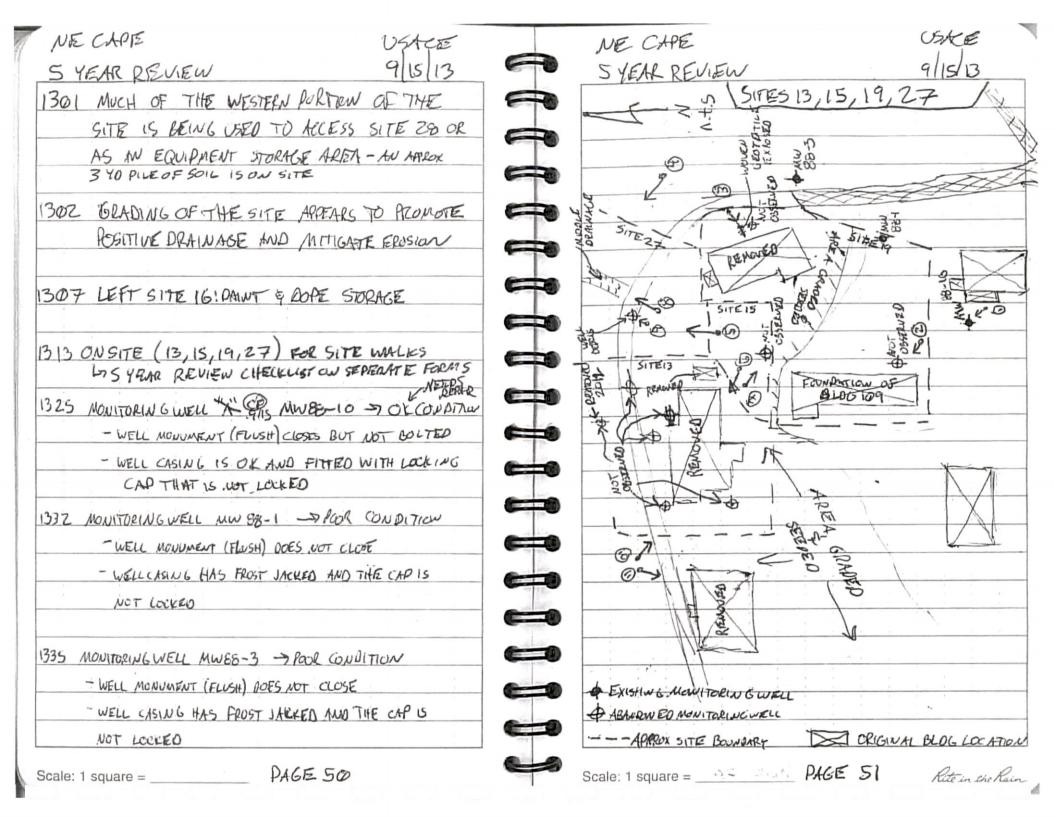

NE CHPE	USACE	NECAPE	USACTE
5 YEAR REVIEW	9/14/13	5 YEAR REVIDEN	9/14/13
1140 OBSERVES AN ABANRONED MONTORN SW SIDE OF THE SITE. (14YORATED	BENTONITIE)	1341 SITEWALK FOR SITE 2 L75 YEAR REVIEW CHE SEPERATE FORM	
143 A SECOND ABANDONED MONITCHING THE WEST CORNER OF THE PAL		SITE 29: SUQITUGHN	EQ RIVER
148 DID NOT OBSERVE STAINING C GRAPED GRAVEL PAD THEFT IS BEING USED TO STORE SHIPPIN	N TITE NEWLY S CURRENTLY	N AIRFIELD ESTURA N AIRFIELD ESTURA AIRFIELD ESTURA AIRFIELD ESTURA AIRFIELD ESTURA AIRFIELD ESTURA AIRFIELD AIRFIELD ESTURA AIRFIELD AIRFIELD ESTURA AIRFIELD AIRFIE	Pic TAKEN LOOK MUL
HPAD GRADED TO PROMOTE DRAWAGE		STUMPER CAMPE	2 <i>0</i> AD
1153 DID NOT OBSERVE DEBRIS OR A TO THE SOUTH OF THE SITE	SHEEN W THE BUD	CP-1/14	CHGO BEHLH ROND
1155 LEFT SITE 6: GRAVEL PAD	G	BUSINE DE POUR	
1206 LUNCH	6	RIVER STREAM WALKE	C
1230 DONE WITH LUNCK	•	TO LOWER TRANNA	
1230 VIEWED HISTORICAL PH 1340 JEREMY CRANER (USA		OF GR PHOTO, DIRECTION	FLOW
	JE 34		SE 35 Rite in the Rain

ť.


NE WHE	USACOE	NEC	CAPIE	USLED
5 YEAR REVIEW	9/14/13	5 YEA	HR REVIEW	9/14/13
1352 WALKED THE SURITUGHNER R CAMP ROAD TO THE ESTURY	LIVER FROM		ALKED THE SUCRIFUGHMED RIVE	R FROM CARGO BATCI
1357 DIPNOT OBSERVE ANY DEBRIS OR SI	HERN LOOKS LIKE	3	LOWATER HOSE (4) IN THE CULVERT FOR CARGO BEACH	
ARIVER			USE AS A WATER SOULCE REMEDIATION ACTIVITIES	
1402 CONSTRUCTION CAMP IS PUMPING W SURITUGH NER RIVER FOR GEVERA	MITTER FROM THE H USE (SOUTH OF ROAD)	1500 DI	D NOT SEE DEBRIS/SHEEN (JE ORITUGHNEQRIVER	ROGENIC) ALONG THE
END OF THE RUNWAY		15/2 4	EFT SITE 29: SUQ ITUGHNE	Q RIVER
1412 OIDNER PALY OID NET OUEFUT (ERILL SHEEN (PETROGENIC)	4 ANY DEBRIS CR		TE WALK FOR SITE 8: POL 75 YEAR CIVECKLIST ON A SEPE	
TRAVELLED UP RIVER	C		EGETATION IS THICK AND HE O ODOR OBSERVED	ALTHY
1426 WALKED THE SUCHTUGHNED RIVE CARGO BEACH ROAD TOWARDS TH		N	O DEBRIS OBSERVED	٥
1433 OBSERVED + DRUM IN A PUND = VERY A	USTED, NO SHEEN	1533 L	EFT SITE 8: POL SPILL	
OBSERVIED 1445 DID NOT SEE DEBRIS/SHEEN(DETROGENIC)				
	SE 36	-	uare = PAGE 3	7 Rite in the Ra


NE CAPE USTER USACE NE CAPE 9/14/13 9/14/13 5 YEAR REVIEW 5 YEAR REVIEW SITES! POL SPILL F 1534 ARRIVED AT SITE 10: BURIED DRUMS 5 YEAR REVIEW CHECKLIST ON A SEPERATUR FORM A TO AIR FIELD TOCARCO ALADAT SITE 10 ! BUR LED DRUMS N n.t.s. POM BLURONED TUTE 11 3 21 NG DIAMETTO Poko N NTER MODAL CONTAINERS B ANNUM n.t.S. GITE BERKE LOW MW10-RUM HLSP RON CANGO DEACH ROAD 1-12 JUDC (4) at the SUGITUCH MED 1 FLOW --PHOTO, DIRECTION FACING ET INTERMODAL CONTAINER 1/ SWHAPY AREA CULVERT DAYLIGHT () ~> PHOTO, AIRECTION FACING PAGE 38 Scale: 1 square = _____ PAGE 39 Rite in the Rain Scale: 1 square =

NE	CAPE USACE	NE CAPE
54	EAR REVIEW 9/14/13	SYEAR RE
1547	OBSERVED WOOD TWD MENTAL DEORIS (MINOR) AT THE	
	NE CORNER OF THE SITE	
		4
5500	OBSERVED MONITORIUS WELL CASING	
	HAS JACKED I FOOT ABOVE THE PROTECTIVE	N
	STEEL CASING, NO LOCKING CAP OR PROTECTIVE	M.T.S. a
	BOLLAROS)
1554	EVIDEN BAILY OSSERVED EVIDENCE OF RECENT	
	SOIL BORINGS & SAMPLING ACTIVITY	
1558	SITE IS CORPENTLY BEING USED AS A LAYDOWN	
	AREA BY THE REMEDIAL CONTRACTOR (BRISTOL),	
	SITE IS GRADED AND COMPLETED TO PROMOTE	
	POSITIVE DRAWAGE AND MITIGATE EROSUN	
	NO VEGETATION PRESENT ON THE GRAVEL PAP.	
	VEGETATION ADOUND THE PHD APPEARS HEALTHY	
1604	OBSERVED A DRUM BOTTOM AT PLASE OF SLOPE	aller
1608	ZUD MONTORING WELL SHOWN ON THE FIGURE	Do-PICTURE
	IN THE ROD WAS NOT FOUND.	
	LAJEREMY CRANKER INDICATES IT WAS DECOMMISIONED	* DEAWAG
1	(USACE) GOBSERVED THE ADANDONED WELL	FLOW D.R
1624	LEFT SITE 10 ; BULLED DRUMS	SWAMPY AR
	square = PAGE 40	Scale: 1 square



NE CAPE	USACTE	NE CAR	死	USACE
S YEAR REVIEW	9/ 4/13	5 YEAR	REVIEW	9/15/13
1625 ARRIVED AT SITE IS CE	Sty 11: FUEL TAWKS	0730	PADERWORK & STREP	
FOR A SITE WALK	6	0745	BREAKEAST	
LAS YEAR REVIEW CHECKLIS	TON A SEPERATE FORM	0800	BRISTOL TAILGATE	
1635 OBSERVED MONITORING WE		@830	JACORS TAILGATE	
	ENT DUES NOT CLOSE		PERSUNNEL	
AS THE WELL APPEL			LACOBS J. ORCZI	EWSKA SSHO/TEC
JACKED			JACOBS C. FIELL	SITELEN
1643 SITE HAS BEEN GRAP			WX:	
SEEDED TO PROMOTE			OVERCAST	
AND MUTIGATE EROSIO	ν		LIGHT BREEZE	
			LOW 405F	
DOBSERVED THE REM	EDIAL CONTRACTOR (13:41 STOL)		· · · · · · · · · · · · · · · · · · ·	
SPREADING SEEP ON	THE HREA		PPE: LEWEL D MODIFIL	ED .
645 LOCATIONS OF THE FO	LAER ASTS ARE		DAILY OBJECTIVES	
NOT XPPARANA			-SITEWALK REMAININ	67-SITES
			- PREP FOR DEMOBI	Ź
1650 DEBRIS NOT OBSERVE	DONSITE OR AROUND			
THE PERIMETER				
1715 LEPT THE SITE Z	Chropper D. Fell 9/14/13			· -
Scale: 1 square = P	6E 4Z	Scale: 1 sou	are = PAGE	43 Rite in the Rai

S YEAR REVIEW		NE CAPE	USACIE
- I-m- Breitho	9/15/13	SYEAR REVIEW	9/15/13
121 LEPT SITE ZI! WASTELWATER	TANK F	SITE 16: HE	AF & PULLER PLANTERS
1123 ARRIVED AT SITE 18: HEAT & 135 YEAR LEVIEW FORM ON 1125 MET WITH SURVEYORS TO TO SAMPLINGLOCATIONS JEVE 1155	A SERERATE FORM	N A.T.S.	
1155 LEFT SITE FOR LUNCH			MUDDUED , ABANDONED
1230 LEFT CAMP FOR SITE	F		MUNITURIO WELL
1241 ARRIVED ON SITE 16: HEX 1251 OBSERVED AN ABANDOMED MU THAT WAS NEAR THE SW FORMER BUILDING	ONITURING WELL	GRAVEL ROM	GRADED GRADED
1257 OBSERVED AN ABANDOMED MONIT	TORWG WELL THAT		
WAS NEAR THE NW CORNER	OF THE SITE.	APEROX SITE BOUNT	
LO SURFACE WAS FILLED WITH	NATIVE MATERIAL	+ ABANDONED MUNITORIN	
SOME OF THE CONCRETE FRO	M TITESULFICE	DISTURBED GROWN.D/G	RADED AREA
COMPLETION	E		
2916 CITE AN AREAL ATIMATING	ARA AND SEEDED	US INTHIN APPTER PICTU	RE IL AT NOC SITTE (PG 51)
ON THE SE BREN RECENTLY GRA		1 .	
Scale: 1 square = PAGE	<u>^</u>	Scale: 1 square =	PAGE 49 Rite in the Ke

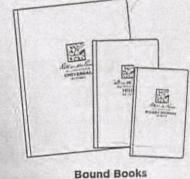
NECAPE	USACOE	NE CA		USACE
5 YEAR REVIEW	9/15/13	5 YEAR		9/15/13
1350 BUILDING AT SITTE 13 HAS BE	EEN REMOVED	1415 5	YEAR REVIEW PAPIERWOR	lς
ALONG WITH THE FOUNDATION	E	to	and QC	
		1800		
1353 BUILDING & FOUNDATION ON THE	NOE PORTION OF			
SITE 19 HAS BEEN REMOVED, T	HE FOUNDATION			
FOR THE BUILDING ON THE SW	AURTION OF			
SITE 19 REMAINS,			a U)
			f Does	/
1355 SITES 13, 15, \$27 HAVE BEEN RI	rcently F		EndofDays	
GRADED, AND SEEDED TO PROMOT	TR POSITIVE			
DRAINAGE AND MITIGATE ERO	SEW ALONG WITH			
THE NORTHERH NALF OF SITE	-19			
1356, NONITOPING WELLS IN THE CE.	2102		\mathbf{X}	
OF THE MAW OPERATIONS COMPLE	(max) WERE			
NOT OBSEVED				
LIKELY DECOMMISSIONED	OR REMOVED			
OURING EXCAULTION			D gliet	
			1 1/3/13	
1400 LEFT SITE			i i	
1415 BACK AT CAMP				N I I I -1 -1 -1 -1 -1 -1 -1 -1
	C		i i	1 · · · · · · · · · · · · · · · · · · ·
Scale: 1 square = PAGE S	iz 🕒	Scale: 1 squar	e=PAGE 53	3 Rite in the

NE CAPE USACE 9 5 YEAR REVIEW 9/10/13 Personnel: C. FELL J. OPCZEWSKA Weather: Rain, 30-40°F light wind **C** PPE: Mod. Level D Objectives: - Prep site for Demobe - OC paperwork - Internew QAR for any remaining guestions 09/15/13 08-0755: Bristol Tailgate Carl - L - AND 0800: Jacobs Tailgate 0830: Continue site paperwork and QC. 0 (P) +300 (2)9/16/13 Scale: 1 square = ____ PAGE 54

NE CAPE USACE 5 YEAR REVIEW 9/14/2013 1030 - PREP gear for Demob 1415 FLIGHT TO DOME OD 9/16/13 1300 - INTERVIEW W/ J. CRANTER (USACE) 45 ME 28 SEDIMENTATION AUDOS - PLAN TO NOT CONSTRUCT AS SEDIMENT LOAD IN THIS DRAWABE IS LOW AND CONSTRUCTION WOULD LIKELY INCREASE RISIC OF SPREADING CONTRAINATED SEDIMENT ISITES W/ MNK REMEDIES -PLAN TO REPAIR WELLS NEXT SFASON - PLAN TO AUGUTENT NETWORK TO PROVIDE SUPPICIENT MONITORIUS MEXEYEAR 1415-PENOBE TO NOME 2000-DEMOBE TO ANC Christoper D. Fell 9/16/32 2130 - END OF ATY Scale: 1 square = _____ PAGE 55 Rite in the Rain

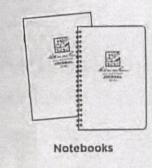
NE CAPE SYRAR REVIEW * CONTINUED FI	PHOTOLOG 2011 PG 61-X	A S	ECAPE	Ð	Photo LOG
	ription	A Da	te Photo#	Dir	Description
9/14/13 Q7 ONA SIKE	7 Drum in Pond		$ _{13}$ 093	SNU	Site 28 Overview
Q71SE Site	29 Sugi River		094	E	Site 28 Water Runp
	29 Sugi River		095	E	Site 28 Sedunent TRap
	3 South overview		096	N	Site 28 Bristo Demob
074 NE Sites	8 Northovenview		097	S	Site 38 averien
075 W Sitel	0 Debris		098	S	Site 28 Dredge
D74NIA Sitel	O Monitoring well		099	E	Site 28 Drainage to Sugi
	10 Bristol Staging		100	E	Site 28 Wattles before Sugi
/ Q78 N Site	10 Bristol Staging		101	W	Siteal Road
	10 Concrete Ring		102	W	Site 21 Road
Q80 NIA Sitel	O drum lid		103	SE	Siteal Backfill
Ø81 NIA Siteli	abandonedwell		104	E	Site 21 Backfill
083 NW Sitel	overview		105	W	Siteal Silt Fence
083 SW Sitel	(overview		104	S	SiteRI Seeding
	1 monitoring well		107	E	Site 21 Road
91413085 N Sitel	seeding		108	N	Site 21 Road 528 Sitelly Overview Arcess
9/15/13 086 N Sites	8 Sedin Pond	-	$ \phi 9$	NA	Site lie Abandoned well
(D87 W Sitea	8 Water filters		IID	E	Sitelle Duerview
(088 NW 5742	8 Sediment Tubes		111	S	Sitelle Overview
	8 Intermed Rond		/ 112	NA	Site 110 abandoned well
) Q90 N Sitea	SFloculate add		113	N	Sitelle Abandonedurl
	& Intermed Pord		114	N	MOCOVERVIEW
	28 OVELVIEW.	9/15	13/15	N	MOC Duewiew
	GE 56	Scale	: 1 square =	• • • • • • • • • • • • • • • • • • •	PAGE 57 Rite in the hain

5year Review USACE NE CAPE USLEDE NE CAPE PHOTOLOG A PHOTO LOG S-YR REVIEW Date Photo# Dir. Description DIRECTION FACING -PHOTO # DATE DESCRIPTION 9/15/13/1 6 Site 19 Monitoring well 9/12/13 001 N S CALIBRATION YSI Site 19 GeoTek 9/12/0 002 7 W S SITE KAS SAMPLING 9/12/13 003 W MOC Overview N SITEONERVIEW WN REALE Oveniew 9/12/13 004 N 7LF GW SAMPLING LOCATION 20 Site 13 overview 9/12/13 005 N NE 9LF GW SANPLING 9/12/13 006 8E Site15 Overirew 9LF GW TURBIDITY na GWattempts 7LEpal1313 9/13/13 007 Site 27 drainage N 22 N Site 32 Reading depression Site 32 lower handway 008 N Site 27 Welldebris 23, 9/13 009 WE 24 E MOC avenien 9/13 Site 32 Diatourdation Q I Ø PSW 9/15/13 S 9/13 25 MOC Overview a marker by OI 1 WS Site 32 Debris Old fundate 9/13 9/13 012 Site32 Debris M 9/13 3 Q1 N/A Site 32 Asphaltic debris 4 9/13 01 N Site32 culvert 9/13 Q15 Site 32 culvert E 91/13 S ØI 6 Site 32 metal debris 9/13 W ØI Site 31 Recent gradune 7 9/3 Site 31 Antenna foundation N 8 Ø1 -0 9/13 019 Site 31 Antenna foundation W 020 Site31 Metal debris 9/13 E 9/13 021 Site31 Drain NA 9/13 022 Site31 Drainage N 9/13/13 023 Site31 Depression N. Scale: 1 square = _____ PAGE 58 Rite in the Rain. Scale: 1 square = _____ BACH PAGE 59


NE	CAPIE		USACIE		NE	CAPE		USACIE
	REVIEW	/	PHOTO LOG	9	5-4	R REVIEN		PHOTO LOG
DATE		DIRECTION	DESCRIPTION	F	DATE	PHOTO #	PIRECTION	DESCRIPTION
		N	Site 31 Foundations HE	9	9/13/13	Ø47	S	Siteg Cullert
	φ_{25}	N	Site 7 Debris	-	9/14/13	048	S	Sitel Pond
	926	NA	Site 7 Metal Debiis		C	Q49	E	Sitel cracking edge
	027	NA	Site 7 Metal Debris			050	Ē	Site lading equip
	028	N	Site 7 Rusted Druins			051	NE	Sitel Runwaly
	029	N	Site7 debris in Ronds			Ø52	NE	Site 4- wheel trail offerning
	\$30	N	Site 7 Landfill cap			Ø53	W	Site3 Overview
	\$ 31	N	Site7 Debrisin Rond			Ø54		
	032	NW	Site7 Debis in Pond		1	Ø55	S	Site3 Pond onsite
	\$33	W	Site 7 Debrisin Pond			Ø5 4	SE	Site 3 Recent excavation
	\$ 34	E	Site7 landfill cap		<u> </u>	Ø57		
	Ø 35	E	Site7 topofcap					Site Le Abandoned well
	0.36	E	Soite7 Armored ecck			Ø59	NA	Site 10 Abandoned well
	Ø 37	NA	Site7 Debris			000		Site le Bristol Staging
	038	5	Site7 Debnis	<u> </u>		001		Sitely BRISTOL Stagunox
	Ø 39	NA	Site7 Abandoned well loc.			\$62		
	Ø40	S	Site 7 Debris in Pond			Q63		Site 29 areenew off Road
	Ø 41	N/A	Site 7 Bssille Deam			\$64	W	Site 29 Over view from Road
	Ø42	N/A	Site 9 Abandoned well loc			\$65	E	Site29 Sugi River
	Ø43	W	Site 9 Diversion trench			066	SE	Site29 BIRIST&I Water Intake
	ØHH	W	Site and fill cap			067	E	Site29 Sugi River
. /	045	E	Siteg Vegetation			068	E	Site 29 Culvert
9/13/13	ØNQ	N	Siteg Pond near cap		9/14/13	069	W	Site 29 Suge Ruer
Scale: 1	square =		PAGE 60		Scale: 1 :	square =	NUEL	PAGE 61 Rite in the Rain

SYR REV COUTAINER ID	1 GEN	CONTENTS	WASTE TRACKING CONTAINER TYPE/ DESCRIPTION	=
BNECAPE-B1	9/12/13	DECON/PURGE 120/CAL WAS	Sgillon he ket Nov-HAZ	-
			LOSHIPPED TO NOME	-
		-T0 / 0015	9/13/13	5
13NECAPE-BZ	9/12/13	TAN/APE WASTE	S-gallen bucket NOW - HAZ	F
			HODED TO BRISTOL'S	F
				6
				È
				-
				-
				9
				¢
	-			
				¢
				6
		1		
				9
				¢
	1			6

Outdoor writing products * for Outdoor writing people


Copier & Ink-Jet Paper

All-Weather Pens

Memo Books

RiteintheRain.com

O

O

 \bigcirc

JACOBS

aLE .	1	Name		Event					_	F45902	
9LF -	Weather	Conditions	1	GRAB SAMPLING PID Readings of Total VOCs (ppm) N/A Ambient D/G Breathing Zone A/G In Well						ampler Initials	
avera	ast, s	light	Breeze	Ambient A	A Breathing	Zone Ala	9/10		M/JO/CE		
			20.00	1000	Well Infe			1			
Well	Integrity	a second s	TOC Stickup (ft	1			- le		Gallons per lines	property and a second second	
Good		oor	and the second	la	PVC	- 11-			3 4/ 0.653		
Depth to	Product (E I	Depth to SW (ft	DIDC	Total Depth of	(final)					
Max purge w		ell casing	volumes) = (pre	tota	VA S	SUCEFAL	E W	ATER	linear foot of ca		
	Sec. P.		1 191-3		I Purging	g Inform	ation	X			
	rt Time DØ		Finish Time	2	Depth of Tu	bing (ft btoc)	Batter		Used for Purgin Pump Subme		
-	<u>Color</u> udy Brow	n	None Mode Faint Stro	10 C	Sheen Yes No	Purged Dr Yes					
Purging rea	ached: St	ability M	ax Vol. Purg	e-water wa	as: Treated	Stored Oth	er Note: [HCON +	120 For a	FFSitt Dis	
	Volu	ume	Section 1					trate Stability			
	(Galions	or Liters)	±02°C	± 3%		± 10% or 0.2 mg/L (whichever is greater)		±0.1 ±10 mV <10 NTU and ±1 Drawd			
(HH:mm)	a strange of the stra		and the second se				and the second se				
(HH:mm)	Change	Total	Temperature (°C)	Conducti (uB/cm	wity (x Je	pH (std units)	ORIP (Vm)	Turbidity (NTU)		
(HH:mm)	Change N/A	Total	Temperature (°C) (0, (*T)		wity (Turbidity	(feet blog)	
	Sherring and a state of	Acres Street and	[°C]	(µ8/cm	wity (x Je	(std units)	(mY)	Turbidity (NTU)	(feet blog)	
	Sherring and a state of	Acres Street and	[°C]	(µ8/cm	wity (x Je	(std units)	(mY)	Turbidity (NTU)	(feet blog)	
	Sherring and a state of	Acres Street and	[°C]	(µ8/cm	wity (x Je	(std units)	(mY)	Turbidity (NTU)	(feet blog)	
	Sherring and a state of	Acres Street and	(°C)	(µ8/cm	wity (x Je	(std units)	(mY)	Turbidity (NTU)	(feet blog)	
	Sherring and a state of	Acres Street and	(°C)	(µ8/cm	wity (x Je	(std units)	(mY)	Turbidity (NTU)	(feet blog)	
	Sherring and a state of	Acres Street and	(°C)	(µ8/cm	wity (x Je	(std units)	(mY)	Turbidity (NTU)	(feet blog)	
	Sherring and a state of	Acres Street and	(°C)	(µ8/cm	wity (x Je	(std units)	(mY)	Turbidity (NTU)	(feet blog)	
	Sherring and a state of	Acres Street and	(°C)	(µ8/cm	wity (x Je	(std units)	(mY)	Turbidity (NTU)	(feet blog)	
	Sherring and a state of	Acres Street and	(°C)	(µ8/cm	wity (x Je	(std units)	(mY)	Turbidity (NTU)	(feet blog)	
	Sherring and a state of	Acres Street and	(°C)	(µ8/cm	wity (x Je	(std units)	(mY)	Turbidity (NTU)	Water Lave (feet bloo)	

Start Time	Finish Time/ Date 1135 91213	Depth of Tubing (ft btoo)	Peristaltic Pump Su	for Sampling ubmersible Pump
SAMPLE ID: 13-94F	-WSOI-D	QC: Dup MS/MSD	Ferrous Iron (Fe2+) (mg/L) =	N/A per work plan
Container/Pres		alysis Requested	Notes	
See le	gbook pg	6		

"----" = not measured " \checkmark "= stable "+" = rising "-" = falling "" = all parameters stable $N \mid A = N \delta t \land p p t \circ o t t$

_ Additional observations on back

0

C

JACOBS

	Site	Name			Event		We	IID P	roject Number		
91E	-WS			600	B SAMP	ING.		-	1. 1. 1. 1. 1. 1.		
ILF	Weather	Conditions			eadings of Total VC		De		ampler Initials		
sunny	sligh	it bra	1820		and the second				1 1		
	U	0.	LIFL	Amblent	Breathing Zone		9/12	1.2 K	m/J0/11		
Well	Integrity	-	TOC Stickup (ff		ell Informati	and the second se	Dismeter/in) /	Gallone per lines	r foot(asl#)		
Sec. 25.	CALCULATION OF	-	and the second second		THE REAL PROPERTY OF		Casing Diameter(in) / Gailons per linear foot(gal/ft)				
Good		noor	NA		PVC SS			3 4/0.653			
Depth to	Product (f		Depth to GW (ft	Dtoc) Tot	al Depth of Casing (ft bt NA (fin	194	t Thickness (ft)	and Volume Rec	<u>xovered (mL)</u>		
ax purge v	olume (3 w				pth of casing (ft) - o						
SHOW WO	DRK N	hax Purge	Volume = (urging Infor		gal • 3.	785 L/gal =	t		
Sta #	F 114	9	PISh Time	e <u>D</u> e	NA-	<u>)</u>		Used for Purgin Pump Subme	1. The second		
	Color		Odor		heen Purged	Dry	Meter Use	d During Purgin	9		
Clear Clos Other:	udy Brow	n (.		erate ong	Yes Yes No	NA (Y	SI Multi Meter	Hach Turbi	dimeter		
Durales		110	Shares and and and		Treated Stored	Wher Mater			and the second		
r-urging rea	ached: St	ability A	ax Vol. Purg	e water was:				Star The second			
	Volu	ime			Acceptable Ra		trate Stability	L do Altil and d	Downson		
Time (HH:mm)	Print State State	ime	±0.2°C	± 3%	Acceptable Ras	nge to Demons ±0.1	± 10 mV	<10 NTU and ±1 NTU	1		
Time (HH:mm)	Volu	ime		± 3% Conductivily (µS/om)	Acceptable Ra: ± 10% or 0.2 mg/L (whichever is greater) DO (mg/L)	nge to Demons ± 0.1 pH (sid units)	± 10 mV ORP (mV)		Drawdown < (ft Water Lave (faet blog)		
Time	Volu (Gellons	ime or Litens)	±0.2 °C Temperature	± 3% Conductivity	Acceptable Ra: ± 10% or 0.2 mg/L (whichever is greater) DO	nge to Demons ±0.1 pH	± 10 mV ORP	NTU Turbidity	ft Water Leve		
Time (HH:mm)	Volu (Gellons	ime or Litens)	± 0.2 °C Temperature (°C)	± 3% Conductivily (µS/om)	Acceptable Ra: ± 10% or 0.2 mg/L (whichever is greater) DO (mg/L)	nge to Demons ± 0.1 pH (sid units)	± 10 mV ORP (mV)	NTU Turbidity (NTU)	ft Water Leve (feet blog)		
Time (HH:mm)	Volu (Gellons	ime or Litens)	± 0.2 °C Temperature (°C)	± 3% Conductivily (µS/om)	Acceptable Ra: ± 10% or 0.2 mg/L (whichever is greater) DO (mg/L)	nge to Demons ± 0.1 pH (sid units)	± 10 mV ORP (mV)	NTU Turbidity (NTU)	ft Water Leve (faet blog)		
Time (HH:mm)	Volu (Gellons	ime or Litens)	± 0.2 °C Temperature (°C)	± 3% Conductivily (µS/om)	Acceptable Ra: ± 10% or 0.2 mg/L (whichever is greater) DO (mg/L)	nge to Demons ± 0.1 pH (sid units)	± 10 mV ORP (mV)	NTU Turbidity (NTU)	ft Water Leve (faet blog)		
Time (HH:mm)	Volu (Gellons	ime or Litens)	± 0.2 °C Temperature (°C)	± 3% Conductivily (µS/om)	Acceptable Ra: ± 10% or 0.2 mg/L (whichever is greater) DO (mg/L)	nge to Demons ± 0.1 pH (sid units)	± 10 mV ORP (mV)	NTU Turbidity (NTU)	ft Water Leve (feet blog)		
Time (HH:mm)	Volu (Gellons	ime or Litens)	± 0.2 °C Temperature (°C)	± 3% Conductivily (µS/om)	Acceptable Ra: ± 10% or 0.2 mg/L (whichever is greater) DO (mg/L)	nge to Demons ± 0.1 pH (sid units)	± 10 mV ORP (mV)	NTU Turbidity (NTU)	ft Water Leve (feet blog)		
Time (HH:mm)	Volu (Gellons	ime or Litens)	± 0.2 °C Temperature (°C)	± 3% Conductivily (µS/om)	Acceptable Ra: ± 10% or 0.2 mg/L (whichever is greater) DO (mg/L)	nge to Demons ± 0.1 pH (sid units)	± 10 mV ORP (mV)	NTU Turbidity (NTU)	ft Water Leve (feet blog)		
Time (HH:mm)	Volu (Gellons	ime or Litens)	± 0.2 °C Temperature (°C)	± 3% Conductivily (µS/om)	Acceptable Ra: ± 10% or 0.2 mg/L (whichever is greater) DO (mg/L)	nge to Demons ± 0.1 pH (sid units)	± 10 mV ORP (mV)	NTU Turbidity (NTU)	ft Water Leve (feet blog)		
Time (HH:mm)	Volu (Gellons	ime or Litens)	± 0.2 °C Temperature (°C)	± 3% Conductivily (µS/om)	Acceptable Ra: ± 10% or 0.2 mg/L (whichever is greater) DO (mg/L)	nge to Demons ± 0.1 pH (sid units)	± 10 mV ORP (mV)	NTU Turbidity (NTU)	ft Water Leve (feet blog)		
Time (HH:mm)	Volu (Gellons	ime or Litens)	± 0.2 °C Temperature (°C)	± 3% Conductivily (µS/om)	Acceptable Ra: ± 10% or 0.2 mg/L (whichever is greater) DO (mg/L)	nge to Demons ± 0.1 pH (sid units)	± 10 mV ORP (mV)	NTU Turbidity (NTU)	ft Water Leve (faet blog)		
Time (HH:mm)	Volu (Gellons	ime or Litens)	± 0.2 °C Temperature (°C)	± 3% Conductivily (µS/om)	Acceptable Ra: ± 10% or 0.2 mg/L (whichever is greater) DO (mg/L)	nge to Demons ± 0.1 pH (sid units)	± 10 mV ORP (mV)	NTU Turbidity (NTU)	ft Water Leve (feet blog)		
Time (HH:mm)	Volu (Gellons	ime or Litens)	± 0.2 °C Temperature (°C)	± 3% Conductivily (µS/om)	Acceptable Ra: ± 10% or 0.2 mg/L (whichever is greater) DO (mg/L)	nge to Demons ± 0.1 pH (sid units)	± 10 mV ORP (mV)	NTU Turbidity (NTU)	ft Water Leve (faet blog)		
Time (HH:mm)	Volu (Gellons	ime or Litens)	± 0.2 °C Temperature (°C)	± 3% Conductivily (µS/om)	Acceptable Ra: ± 10% or 0.2 mg/L (whichever is greater) DO (mg/L)	nge to Demons ± 0.1 pH (sid units)	± 10 mV ORP (mV)	NTU Turbidity (NTU)	ft Water Leve (faet blog)		

Sample Collection Information

Start Time	Finish Time / Date	Depth of Tubing (ft btoc)	PIPPE Equipment Used for Sampling				
1155	1211		Reristaltic Pump Submersible Pump				
SAMPLE ID: 13-9LF	-WS03-0	QC: Dup MS/MSD	Ferrous Iron (Fe ²⁺) (mg/L) = N/A per work plan				
Container/Press	arvative Ar	alysis Requested	Notes				
See	logbook						

"----" = not measured "" = stable "+" = rising "-" = falling "" = all parameters stable

_____ Additional observations on back

O

 \bigcirc

JACOBS

0.		Name /		Event					1	IID	Project Number
12.5	- WS	Conditions	1		GRAB SAMPLING				Da	A ate	05P-/5902 Sampler Initials
Stinn	yi s	TISE	VELTE	Ambient_		Breathing Zone	In Wei		9/12	113	KINDOLCE
	0	and the		Ser and	We	Il Informat	ion		A. S.		
Well	Integrity	3-34	TOC Stickup	(ft ags)	W	ell Casing Mater	<u>al</u> (Casing Di	ameter(in) /	Gallons per li	near foot(gal/ft)
Good)	Fair Po	noor	nte	2	PVC SS			170.04	1 2/0.18	3 4/0.653	0/1.469
Depth to	Product (f	0	Depth to GW	(ft btoc)	Total	Depth of Casing (ft	epth of Casing (ft bloc) Product Thickness (ft) and Volume Reco				
-	ata	1.1	N/	a	1		mal)				and the second second
Max purge v						th of casing (ft)					
			No.	·We	II Pu	arging Info	rmation	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	rt Time		Finish T	ime		oth of Tubing (ft b			Equipment	Used for Pu	rging
134	an and the second s		135	the second s	-		the state of the state of	Bailer	The second secon		mersible Pump
Clear Clo Other:	udy Brown	•		: oderate Strong	5	No Purge		YSI	Meter Use Multi Meter	Micro Hach Ti	and the statement of the
Purging rea	ached: Sta	ability Ma	ax Vol. P	urge water v	was: 1	reated Stored	Other No	ote:	1		Same State
		1				Acceptable R	ange to De	monstra	te Stability	100.00	
Time (HH:mm)	(Gallons) ±02°C ±3		L IN a Offerd		Lato NTU and at Draudous				
(Change	Total	Temperatur (°C)	Conduc		DO 70	pH (std uni	(a)	ORP (mY)	Turbidity (NTU)	Water Level (feet bloc)
1345		-	7.94	100	1.20	84.8	10.34	1	150.9	210.5	
									£		
				1.							1
						0 A					1
				-	1	1					1
				pla	1			-	/	-	
		-	/	NII L	1.1	A					
			11		m-	11			Care State 1		
			////	1	HR	1	1				
		L	////	A/0		- 15	el				
		-/	1/1/	1		Jey,	112	-			1
	/	U	IF	TCL	ASTO	al	My				
		H	11	0M	· ····	010	/				
/	6	1/		11 S							
1		V	S	a la trata construction de la construcción de la construcción de la construcción de la construcción de la const		tener warmen	and and			and the second sec	

Sample Collection Information

1350	Finish Time / Date	Depth of Tubing (ft btoc)	DIP Peristaltic Pump Submersible Pump
SAMPLE ID: 13-9LF	-ws04-Ø	QC: Dup MS/MSD	Ferrous Iron (Fe ²⁺) (mg/L) = <u>N/A per</u> work plan
Container/Pres	ervative	Analysis Requested	Notes
see la	ogbook		
"" = not measured "+	/"= stable "+" = rising "-"	= falling "" = all parameters si	table Additional observations on bac

0

JACOBS

0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Name				Event				<u>all ID</u>	Project Num
517	Eq	LAN	DFILL	GW GRAB SAMPLIE					94F-1	ical	05F4590
	Weather (and the set of the set	-	PID Readings of Total VOCs (ppm) Date Sampler Initial Ambient <u>NK</u> Breathing Zonen 6 in Well <u>N/a</u> 9/12/13 Ku/cF/J							
F	, ch	OUPY	1	Ambient 1	1K Breathle	ng Zone	a in	Well 10	a 9/12	113	Kulce /
					Well In	formati	on				
Well	Integrity	1	TOC Stickup	ft ags)	Well Cas	ing Materia	1	Casing	Diameter(in) /	Gallons per	linear foot(gal/
Good	Fair Po	nor	1.5	17	PVC	SS		1/0.	041 2/0.1	ST 410.65	8- 6/1.489
Depth to	Product (f	n	Depth to GW	ft bloc)	Total Depth o	of Casing (ft bi	DC)	Product	Thickness (ft)	and Volume	Recovered (m
0	10		2.8	695	4	1' salig	aŭ,	2	1	na	
lax purge vi SHOW WC			volumes) = [p Volume = (_/	1	1	1	2.0	1. 1. 1. 1. 1.	1		1
			1 Carlos		ll Purgir			ion —			
	rt Time	2012	Finish Tir	ne		lubing (ft bt	95	92.2		t Used for Pr	
	51	- 23			3.3	FI	-	Bailer	Contraction of the Owner of the	and the second se	bmeroible Pum
and the second	<u>Solor</u>		Odor	-	Sheen	Purged		1	Meter Us	ed During Pu	IPW -
Clear Clo Other:	udy Brown	ש		derate trong	Yes	(Yes No		Y	SI Multi Meter		Furbidimeter
Purging rea	ached: St	ability Ma	ax Vol. Pu	rge water v	vas: Treated	Stored (Other	Note:	~		
	Volu					A REAL PROPERTY AND A REAL PROPERTY.	nge to	Demonst	trate Stability	and the second second second	1.415
Time (HH:mm)	(Gations	tor Litens) ±0.2 °C		± 3% ± 10% or 0.2 m (whichever is gre		wer is greater)	Section of the sectio	:0.1	± 10 mV	<10 NTU an	R
	Change	Total	Temperature (°C)	Conduc (µ6/c	and the second se	DO (mg/L)		pH units)	ORP (mY)	Turbidi (NTU)	
1351	NA	NA	6,22	13		590	5	44	177	overly	1.1
	Sh	- spin	VILL	1.2							7 1
-				-			-				>
				-	1				/		
			A		1	1	1	3			
	1			1	A	\ g	21	-			
					14.1	14					
					1	F					
			C	-	AT/	-					
			1		af 1						-
			/			:					
		/			'						
		/									
				1			1			1	
-/	-									+	
6							-				
					le Colle			nation			
Sta	It Time		Finish Time 15:50		Depth of T	ubing (ft bit	ES.	DIPPER	Equipment efistaltic Pum	Used for Sa	1.00
SAMPLE		7LF-1	NGO1-		QC: Dup	MS/MSD					per work plan
	Container				alysis Reque					otes	
			Se	e	$l \alpha$	360	ol		19C	. For	Notes

for temp wellpoint

"-----" = not measured "1"= stable "+" = rising "-" = falling "" = all parameters stable

Regarding poor when production

_ Additional observations on back

JACOBS

		Name	~	0	2012	Event	o	0	We	and the second sec	SF4590	
teus	Weather	Condition			PID Readings of Total VOCs (ppm)					A section to the second section of the	ampler Initials	
Sun	Ni S	1.1.	FR	and the second second	Ambient n/a Breathing Zone n/a In Well n/a				1.1	1	P/JOH	
	0 0	Sh	1 Dr.	- J		formati			11-	110 10	1 JON	
We	I Integrity	1	TOC Stik	ckup (ft ags)	and the second se	sing Materia	and the second second second second	Casing Dia	meter(in) /	Gallons per linea	r foot(gal/ft)	
Good	Fair P	oor		nla	_PV	S SS		1/0.041	2/0.16	3 4/ 0.653	6/1.469	
Depth t	o Product (f	n –	Depth to	GW (ft btoc)	Total Depth	of Casing (It bi	DC) E	Product Thi	ckness (ft)	kness (ft) and Volume Recovered (mL)		
-	<u>^</u>	10	-	- nla		-na (fin		n/	19 -	-		
lax purge	volume (3 w	ell casing	g volumes) = [previous ⁺ to	tal depth of c	asing (ft) - (depth to w	rater (ft)] *	gallons per	r linear foot of ca	sing + 3	
SHOW W	ORK M	Max Purge	e Volume	=(<u>nfa t</u> f	- nea	ft) • <u>n/s</u>	gal/ft •	3=_AF	4 gal + 3	.785 L/gal = 71	ta L	
					II Purgi			n	2. ann			
	art Time			sh Time SIG	Depth of	Tubing (ft bt		Bailer	Peristaitic	Used for Purgin	g sible Pump	
150	Color			Odor	Sheen	Purged	Dry	Dalioi		d During Purain	and the second	
	oudy Brown		None		Yes	Yes		Vela	Aulti Meter	Hach Turbi	c.co	
Other:-		-	Faint	Strong	No	No	~					
Purging re	ached: St	ability M	lax Vol.	Purge water v	vas: Treated	d Stored (Other No	ote: For	OFFSIT	E DISPUSAL		
Sugar La	Volu				the second se	eptable Ra	nge to De	monstrat	e Stability	1.4.000	1- 1	
(HH:mm)	(Gallons	or Liters)	±0.2		to (which	k or 0 2 mg/L ever is greater)	±0.1		± 10 mV	<10 NTU and ±1 NTU	ħ	
	Change	Total	Temper			DO 20	pH (std uni	ta)	ORP (mV)	Turbidity (NTU)	Water Leve (feet blog	
1516	na	nla	4.2	34 3	2 -	HIBD	6.3	1 /	86.2	0,50	nla	
				1.	A						1	
											1	
			•								C .	
								-				
						17	2	and the second				
					In	K	2/		1		-	
					HIM		X	E				
						// · ·	1	1 401				
			/		///		lest		3			
		/		1	16	154	all	211	-			
1	+			1	Δ	N	-11					
1					Y							
L												
L					le Colle		forma	tion				
	art Time			Time / Date		Fubing (ft bto	forma	PPER	Equipment	Used for Sampli	ng Promo	
15	art Time [2] ID: 3-k	(M4-	15	Time / Date 39	Depth of		<u>xc)</u> D1	PPER I	include 1 citit	Used for Sampli Submersible L) = (VA per	1 amp	

 \bigcirc

 \bigcirc

0 1.2

JACOBS

		1.000.10									
	<u>Site Name</u> FLF-WSØ/			Event				We	/	olect Number	
FLF					RAB			nl	02	F45902	
	Weather (Conditions	-		Readings o			1	ampler Initials		
sunn	Wibi	cene	-	Ambient	Breathing	Zone Ala	_ In Well <u>At</u>	9/12/	13 CF	114/10	
		0	1		Well Inf			and the second general second s	141 141		
	Integrity		TOC Stickup (ft	o (ft ags) Well		Well Casing Material Casi		g Diameter(in) / (Gallons per linea	r foot(gal/ft)	
Good	Fair 1/G	Dor	na		PVO	SATA	1/	1/0.041 2/0.163 4/0.653 6/1.469			
Depth to	Product (f	1	Depth to GW (ft	btoc)	Total Depth of	Casing (It bloc	Produc	t Thickness (ft)	and Volume Rec	overed (mL)	
	nla		nla		nte			nla -	_		
SHOW WC				1	1		a she was shown	1	linear foot of cas 785 L/gal = \underline{ML}	/	
and the					Purgin	2	mill the second				
Sta	rt Time		Finish Time		Depth of Tu			Equipment	Used for Purgin	1	
10:	25		1626			-	Baile		Pump Submer		
	olor		Odor	Sheen Purged Dry			x	Meter Use	d Daring Purging	1	
Olear Close Other:	udý Brew		None Mod	ong-	No	NATes No		Si Multi Meter	Hach Turble	limeter	
Purging rea	ached: St	ability Ma	ax Vol. Purg	e water wa	s: Treated	Stored Ot	her Note:				
Terra	Volu	me			Acce	ptable Rang	e to Demon	strate Stability		2 miles	
Time (HH:mm)	(Gallons or Liters) ±0.2 °C		±0.2 °C	± 3% ± 10% or 0.2 mg/L (whichever is greater)		±0.1	±0.1 ± 10 mV <10 NTU and ±1 Drawdown NTU ft				
(memory)	Change	Total	Temperature (°C)	Conducth (uS/cm	dity (0 7.	pH (std unite)	ORP (mV)	Turbidity (NTU)	Water Level (leal blog)	
1625	-		11.42	42			1000	179.9	100.2	Lidit Alivit	
ives	-		11.700	70	- 10		21-4	1+1.1	104.2		
			1								
										· · · · ·	
							-				
				1		Dh	2/13				
					J10	TAC	_				
						1.1					
				6							
				$\left(\right)$							
				$\left(\right)$							
				\langle							
				<							
				<							

Start Time	Finish Tim 1650		Depth of Tubing (ft bloc)	DIPPER Equipment Used for Sampling Peristalitic Pump Submersible Pump
SAMPLE ID: 13-74	F-WSØ	1-01	QC: Dup MS/MSD	Ferrous Iron (Fe ²⁺) (mg/L) = N/A per-work plan
Container/Pres	ervative	Ana	alysis Requested	Notes
	SEE	LOG	BOOK	

JACOBS

76	-	<u>Name</u> JSØ2	2	Gen	IR C	Event AMPLINC				7	F45'90	
1-		Conditions		UKA	PID Rea	dings of Total V) OCs ((maa	Da		ampler li	
SINU	1	GHTBR	SF		1	Breathing Zone	1	1	17	9/12/13 CR/KM/		
JUNN	1500	GHI Dr	WREEK.		-	Il Informat		11 VY GII (11/1)	- 111611	5 4	INAL	
Well	Integrity /	- 1	TOC Stickup (f	tags)		all Casing Materi		Casing	Diameter(in) /	Gallons per linea	r foot(g	
Good	Fair A/	dor	nt		Ne	PVC SS	-	+++	0.041 2/0.16	041 2/0.163 4/0.653 6/1.469		
Depth to	Product (ft)	Depth to GW (ff	btoc)		Depth of Casing (it t	ntoc)	Produc	t Thickness (ft)	and Volume Rec	overed	
Ne			nla		0	1	nal)		nla			
Max purge v SHOW WC				1		th of casing (ft) -				/	sing * 3	
-				We		rging Info		tion				
	rt Time		Finish Tim	8		th of Tubing (ft b				Used for Purgin		
11	40 Color	-	1712 Odor	-	Sh	een Purged	Dry	Baile		Pump Subme d During Purgin		
Clear Clo				erate			1000	1			_	
Other:		1		ong		10 .Ne	C	C	SI Multi Meter	Hack Turbi	dimeter	
Purging rea	ached: -S	tability M	a x Vol. Purg	e water	was: T	reated Stored	Other	Note:	OR OFFITE	DISPOSAL		
		ume			See 1	Acceptable R			strate Stability			
Time (HH:mm)	(Gallons	or Lilers)	±0.2 °C	±3	and with some la	± 10% or 0.2 mg/L (whichever is greater)		±0.1	± 10 mV	<10 NTU and ±1 NTU	and the	
a second	Change	Total	Temperature (°C)	Condu (µS/		bo To	19-12-20	pH td unite)	ORP (mY)	Turbidity (NTU)	Wate (fee	
1710	1/4	Na	12,77	45		96.8		10	160.0	33.44	1	
							-		-			
							1	13				
						19	10					
	-				(RV	1				1-	
	2	-		-	-	~					-	
						/					-	
	-					(-	
							-				+	
											-	
											-	
											-	
						ollection In	for	mation	0			
	rt Time		Finish Time/	Date	Dept	h of Tubing (ft bi	toc)	DIPPE	Equipment	Used for Samplin	<u>ng</u>	
	544	745	1120	0	00	nlg						
SAMPLEI		/Preserva	-WS02-		-	Dup MS/MSD	-	renous		L) = (N/A per	WORK DI	
	containe					Requested			Not	53		
		10	F L	n/	B	ONC						

"----" = not measured "1"= stable "+" = rising "-" = falling "" = all parameters stable

Additional observations on back

0

 \bigcirc

 \bigcirc

JACOBS

	C111- 1	lama			E		141-11	10 1 -	alant Mirmher		
710	Site N	22 - 12		CQI	B SAMPL	ALL.	Well		F4S902		
7LF	WSC	Conditions	403 2	PID P	adings of Total V		Dat	, Date Sampler			
	Trougelor C	OART	443 -						shalin		
UMWY	SUGHT	BLEE	a		Breathing Zone		2 914	3 4	DOTRA		
Well	Integrity		TOC Stickup (ft		ell Informati		Diameter(in) / G	allons per linea	r foot(gal/ft)		
/	nla	or-	1	0/9			Casing Diameter(in) / Gallons per linear foot(gal/ft) 1/0.041 2/0.163 4/0.055 0/1.460				
1.2.2	Depth to Product (ft) Depth to GW (Teres Teres	and the second		State Action				
		2 1	Depth to Gvy (it		al Depth of Casing (it b	nal)	t Thickness (ft) a		Overed (INL)		
k purge v HOW W(/	pth of casing (ft) -				1		
					urging Info	and the second se					
Ste	art Time	-	Finish Time		oth of Tubing (ft b		Equipment	Used for Purgin	2		
10	54		1052	1	na	Baile			sible Pump		
3	Color		Odor		heen Purged	1. T	Meter Used	During Purging	1		
lear Cló ther:	udy Brown	' (None Mode Faint Stro		Ves Ves		SI Multi Meter	HachTurbie	limeter		
	ached: Sta	billiby Mr			Treated Stored	1			4.7.7		
n An A is	1			o wator was.			to the Oto billion		-		
Time	Volu (Gelloos c		Acceptable Range to Demonstrate Stability								
HH mm)	(Gallons or Liters)		±0.2 °C	± 3% Conductivity	(whichever is greater) DO	der) ±0.1	± 10 mV NTU ORP Turbidity		ft Water Level		
	Change	Total	(°C)	(u8/cm)	LEPISAN 10	pH (etd unite)	(mY)	(NTU)	(feet blog)		
-	and the second se	Record Street				A CONTRACTOR OF A CONTRACTOR O	11				
1054			11,59	35	110.2	6.64	127.3	2.07			
1054			11,59	35	110.2	6.64	127.3	2.67	-		
1054			<i>]1,59</i>	35	110.2	(e. 64	127.3	2.67			
1054			11.59	35	[10. 2_	6.64	127.3	2.67			
1054	~		11.59	35	[10. 2_	(e. 64	127.3	2.67			
1054			11,59	35	110.2	4/12 a/12	127.3	2.67			
1054			11.59	35	110.2 TIG	4/12 a/12	127.3	2.67			
USY	2		11,59	35	710.2 TIC	(e. 64 a/12	127.3	2.67			
USY			11,59	35	710.2 TIG	4/12 a/12	127.3	2.67			
454	2		11,59	35	710.2 The	(e. 64 a/12	127.3	2.67			
¢54			11,59	35	710.2 T10	4/12 a/12	127.3	2.67			
1054			11,59	35	710.2 The	4/12 a/12	127.3	2.67			
VE54			11,59	35	J10.2	4.44 a/12	127.3	2.67			
			11,59	35	710.2 710	4/12 a/12	127.3	2.67			

Sample Collection Information

Start Time	Finish Tim	e / Date	Depth of Tubing (ft btoc)	Peristaltic Pump S	A ALL A REAL
SAMPLE ID: (3-7LF-	W503-0		QC: Dup MS/MSD	Ferrous Iron (Fe ²⁺) (mg/L) =	N/A per work plan
Container/Prese	rvative	Ana	alysis Requested	Notes	
	SEE	L06	BOOK		

_ Additional observations on back

--

APPENDIX D Photograph Log

Northeast Cape Sampling – St. Lawrence Island, Alaska

PHOTOGRAPH LOG TABLE OF CONTENTS

Photo Number

Photo No. 1 – 12 September 2013 Calibrating the YSI water quality meter. Facing south.	1
Photo No. 2 – 12 September 2013 Sampling at Kangukhsam Mountain Spring. Facing south.	1
Photo No. 3 – 12 September 2013 Overview of Northeast Cape. Photograph taken facing north.	2
Photo No. 4 – 12 September 2013 Attempted groundwater grab sampling locations at Site 7. Facing north.	2
Photo No. 5 – 12 September 2013 Measuring surface water quality parameters prior to sampling at Site 9. Facing northeast.	3
Photo No. 6 – 21 September 2013 Sampling surface water at Site 9. Facing northeast	3
Photo No. 7 – 12 September 2013 Recording sampling efforts in the field logbook. Facing south.	4

Northeast Cape Sampling – St. Lawrence Island, Alaska

(intentionally blank)

Photo No. 1 – 12 September 2013 Calibrating the YSI water quality meter. Facing south.

Photo No. 2 – 12 September 2013 Sampling at Kangukhsam Mountain Spring. Facing south.

Northeast Cape Sampling - St. Lawrence Island, Alaska

Photo No. 3 – 12 September 2013 Overview of Northeast Cape. Photograph taken facing north.

Photo No. 4 – 12 September 2013 Attempted groundwater grab sampling locations at Site 7. Facing north.

Photograph Log D-2 Northeast Cape Sampling - St. Lawrence Island, Alaska

Photo No. 5 – 12 September 2013 Measuring surface water quality parameters prior to sampling at Site 9. Facing northeast.

Photo No. 6 – 21 September 2013 Sampling surface water at Site 9. Facing northeast

Photograph Log D-3 Northeast Cape Sampling – St. Lawrence Island, Alaska

Photo No. 7 – 12 September 2013 Recording sampling efforts in the field logbook. Facing south.

Photograph Log D-4 APPENDIX E Waste Tracking

CERTIFICATE OF DISPOSAL/RECYCLE

GENERATOR:	NE CAPE - ST LAWREN		ISLAND 99769
DISPOSAL FACILITY:	EMERALD ALASKA, IN	C.	

ANCHORAGE AK 99501
EPA ID NUMBER: AKO000228395

MANIFEST/DOCUMENT #: NEC-1 DATE OF DISPOSAL/RECYCLE: 09/27/2013

LINE WASTE DESCRIPTION

1 DECON WATER

CONTAINERS	TYPE	QUANTITY	UOM	
1	DF05	5	Р	

I certify, on behalf of the above listed treatment facility, that to the best of my knowledge, the above described waste was managed in compliance with all applicable laws, regulations, permits, and licenses on the date listed above.

PREPARED BY:	JOHN PEREZ
SIGNATURE:	Clar Par

DATE: 9/27/2013

Your Local Partner for Recycling Environmental Services

425 Outer Springer Loop Road - Palmer, AK 99645 - (907) 258-1558 - Fax (907) 746-3651 - Toll Free (877) 375-504

		nator's US EPA ID No			Master		0.00
	NON-HAZARDOUS WASTE MANIFEST	AL 0000	228395		Manifest Document No	NEC-1	2. Page 1 of
1	3 Generator's Name and Mailing Address		8 5	,			
	USACE, POBOx 689	18, JPEK	MK, 4950	6			
	CEPDA-EN-EE 4. Generator's Phone (907) 753-2628						
ŀ	5. Transporter 1 Company Name	6.	US EPA ID Number		A. State Transporte	er's ID	
1	ALASKA AIRLAND	Exe	mat		B Transporter 1 Pl		3-337
	7. Transporter 2 Company Name				C State Transport	1	
+	7 Transporter 2 Company Name Jacob 5 Ensineerin Gert Gre 9. Designa'ed Facility Name and Site Address D	DOP Exe	MOT		D. Transporter 2 Pl E. State Facility's II	List - M-	5.3322
				011	L State Facility's I	-	
	godostry Greek Avery	Spine KK	20000041	84	F. Facility's Phone		
	HIGH 1 1001	-44					
	11. WASTE DESCRIPTION			No.	Type	13. Total Quantity	14. Unit WL/Vo
1	A A A C I	1.1		-	h m	- Julion of y	
	" MAteus 1 Not hegethold B	y LOT		1	10M	5	P
}							· ·
	b.						
ŀ	۵.						
1							
	d.						+
L							
	G. Additional Descriptions for Materials Listed Above				H. Handling Codes	for Wastes Listed Above	
	Rinse Wotern From eg	upment Dere	intom watio.	~			
		1					
	AKO2909	'					
and	AK02908	'					
		·				,	
	15. Special Handling Instructions and Additional Information						
	15. Special Handling Instructions and Additional Information						
	15. Special Handling Instructions and Additional Information						
	15. Special Handling Instructions and Additional Information $NONE$		e fully and accurately descrit	bed and are is	n all respects		
	15. Special Handling Instructions and Additional Information		e fully and accurately descrit at to federal hazardous waste	bed and are is a regulations.	n all respects		
	15. Special Handling Instructions and Additional Information NONE 16. GENERATOR'S CERTIFICATION: I hereby certify that the in proper condition for transport. The materials described of	contents of this shipment ar n this manifest are not subject			(1)		Date
	15. Special Handling Instructions and Additional Information NONE 16. GENERATOR'S CERTIFICATION: I hereby certify that the in proper condition for transport. The materials described of Printed/Typed Name	contents of this shipment ar n this manifest are not subject	ignative		on behalf	Mont	
	15. Special Handling Instructions and Additional Information NONE 16. GENERATOR'S CERTIFICATION: I hereby certify that the in proper condition for transport. The materials described of	contents of this shipment ar n this manifest are not subject	ignative		(1)	Mont 0 9	
	15. Special Handling Instructions and Additional Information NONE 16. GENERATOR'S CERTIFICATION: I hereby certify that the in proper condition for transport. The materials described of Printed/Typed Name DECRMY 17. Transporte: 1 Acknowledgement of Receipt of Materials Printed/Typed Name	contents of this shipment ar n this manifest are not subject S	ignature		on behalf	Mont 0 9 Mont	h Day Y]3 Date
	15. Special Handling Instructions and Additional Information NONE 16. GENERATOR'S CERTIFICATION: I hereby certify that the in proper condition for transport. The materials described of Printed/Typed Name TECRMY 17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name Tech Spotter Reco	contents of this shipment ar n this manifest are not subject S	ignature for		on behalf	09	h Day Y]3 Date
	15. Special Handling Instructions and Additional Information NONE 16. GENERATOR'S CERTIFICATION: I hereby certify that the in proper condition for transport. The materials described of Printed/Typed Name TECRMY 17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name Transporter 2 Acknowledgement of Receipt of Materials 18. Transporter 2 Acknowledgement of Receipt of Materials	contents of this shipment ar n this manifest are not subject sed to sign	ignature gnature SP.		on behalf	09 Mont	h Day Y 131 Date h Day Y Date
	15. Special Handling Instructions and Additional Information NONE 16. GENERATOR'S CERTIFICATION: I hereby certify that the In proper condition for transport. The materials described of Printed/Typed Name Printed/Typed Name Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name	sed to sign	ignature		on behalf	09	h Day Y 131 Date h Day Y Date h Day Y
	15. Special Handling Instructions and Additional Information NONE 16. GENERATOR'S CERTIFICATION: I hereby certify that the in proper condition for transport. The materials described of Printed/Typed Name TECRMY 17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name Transporter 2 Acknowledgement of Receipt of Materials 18. Transporter 2 Acknowledgement of Receipt of Materials	sed to sign	ignature gnature SP.		on behalf	09 Mont	h Day Y 131 Date h Day Y Date h Day Y
	15. Special Handling Instructions and Additional Information NONE 16. GENERATOR'S CERTIFICATION: I hereby certify that the In proper condition for transport. The materials described of Printed/Typed Name Printed/Typed Name Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name Printed/Typed Name	sed to sign	ignature gnature SP.		on behalf	09 Mont	h Day Y 131 Date h Day Y Date h Day Y
	15. Special Handling Instructions and Additional Information NONE 16. GENERATOR'S CERTIFICATION: I hereby certify that the in proper condition for transport. The materials described of Printed/Typed Name Scremy Crack 17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name New Make Agent For 19. Discrepancy indication Space	sed to sign states of this shipment ar n this manifest are not subject sed to sign s sed to sign s	ignature SP. Ignature	un	on behalf	09 Mont	h Day Y 131 Date h Day Y Date h Day Y
	15. Special Handling Instructions and Additional Information NONE 16. GENERATOR'S CERTIFICATION: I hereby certify that the In proper condition for transport. The materials described of Printed/Typed Name Printed/Typed Name Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name Printed/Typed Name	sed to sign states of this shipment ar n this manifest are not subject sed to sign s sed to sign s	ignature SP. Ignature	un	on behalf	09 Mont	h Day Y Date h Day Y Date h Day Y
	15. Special Handling Instructions and Additional Information NONE 16. GENERATOR'S CERTIFICATION: I hereby certify that the in proper condition for transport. The materials described of Printed/Typed Name Scremy Crack 17. Transporter 1 Acknowledgement of Receipt of Materials Printed/Typed Name Transporter 2 Acknowledgement of Receipt of Materials Printed/Typed Name New Make Agent For 19. Discrepancy indication Space	scontents of this shipment ar n this manifest are not subject sed to sign sed to sign society of the ster materiais covered by the	ignature SP. Ignature	un	on behalf	09 Mont	h Day Y Date h Day Y Date h Day Y Date h Day Y

APPENDIX F Survey Data

Surveying & Mapping P.O. Box 1444 Nome, Alaska 99876 (907) 443-6068 www.eco-land-llc.com

Northeast Cape Project 2013 September 17, 2013

Jacob's Engineering Water Sample Locations Alaska State Plane Zone 9

Point Number, Northing, Easting, Elevation, Sample ID

39391,3406023.04,1814169.89,51.9,7LFWS03 39392,3406532.21,1813851.12,53.1,7LFWG01-1 39393,3406532.88,1813851.41,52.9,7LFWG01-2 39394,3406557.94,1813820.25,51.9,7LFWG01-3 39395,3406576.07,1813802.30,51.4,7LFWG01-4 39396,3406398.38,1813380.95,48.2,7LFWS01 39397,3406135.59,1813156.81,50.8,7LFWS02 39399,3404131.67,1812013.37,62.6,9LFWS04 39400,3404076.75,1812169.64,66.7,9LFWG01 39401,3403970.29,1812209.87,68.1,9LFWS03 39402,3403934.10,1812058.57,71.9,9LFWS01/WS02 39403,3399356.33,1812480.49,385.6,KMSWS01

ECO-Land, LLC

Jamison L. Allan, Senior Field Party Chief

Table F-1 Sampling Points

Point number	Northing	Easting	Elevation	Sample ID
39392	3406532.21	1813851.12	53.1	7LFWG01-1
39393	3406532.88	1813851.41	52.9	7LFWG01-2
39394	3406557.94	1813820.25	51.9	7LFWG01-3
39395	3406576.07	1813802.3	51.4	7LFWG01-4
39396	3406398.38	1813380.95	48.2	7LFWS01
39397	3406135.59	1813156.81	50.8	7LFWS02
39391	3406023.04	1814169.89	51.9	7LFWS03
39400	3404076.75	1812169.64	66.7	9LFWG01
39402	3403934.1	1812058.57	71.9	9LFWS01/WS02
39401	3403970.29	1812209.87	68.1	9LFWS03
39399	3404131.67	1812013.37	62.6	9LFWS04
39403	3399356.33	1812480.49	385.6	KMSWS01

APPENDIX G

Response to comments

Alaska Department of Environmental Conservation (ADEC)

Contaminated Sites Program

Document Reviewed: Draft November 2013 Northeast Cape Five-year Review Supplemental Site Investigation Report Commenter: Curtis Dunkin-ADEC Date Submitted: December 18, 2013

#	Page #	Section	ADEC Comment	Response
1.		Document Title	The title of the document should be revised to clarify that this field effort was specifically associated with the first Five-year Review of sites 7 and 9. Note the work plan was titled 'Supplement to the NEC HTRW Remedial Actions Work Plan'.	Accepted The report title will be changed to the following: "2013 SAMPLING CONDUCTED IN CONJUNCTION WITH THE 2013 FIVE YEAR REVIEW AT NORTHEAST CAPE"
2.	ES-1	Executive Summary	Revise the second sentence by omitting the latter half beginning with 'associated' as this part of the sentence doesn't make sense (it is assumed that samples were collected 'where sampling occurred'). Also state here that only one of 5 attempts to collect groundwater samples was successful at sites 7 and 9 due to refusal. Also state wherever applicable throughout the document what the cause of refusal was (i.e. rock, bedrock, permafrost, etc.). Note that the work plan stated that refusal due to permafrost was expected at two feet bgs. Please briefly state in the executive summary and elsewhere in the document where applicable (objectives, etc.) that the field team also conducted site inspections of all sites being evaluated as part of the first Five-year Review. ADEC realizes that the results and observations of these inspections will be provided in the draft Five-year review report and that the subject report is intended to detail the sampling efforts and results. However all efforts conducted as a part of the mobilization associated with this sampling event and/or the Five-year review should be stated in this report.	Accepted The text of the Executive Summary was updated for clarity.

3.	1-2	1.2	Second paragraph of this section (and elsewhere throughout the document) please replace 'Record of Decision' with 'Decision Document'.	Accepted All references to "Record of Decision" will	
2			Revise the third sentence of the second paragraph of this section to clarify that the site-specific sampling conducted at sites 7 and 9 in 2013 was not part of the DD, rather determined in 2013 to be necessary to facilitate the 5-year Review Report.	be updated to "Decision Document." Noted. The text of the second paragraph of Section 1.0 has been updated as follows: "Site-specific sampling was requested by community members at the two landfill sites and the seasonal drinking water source Kangukhsam Mountain Spring (Figure A- 3). Sampling activities coincided with five- year review site inspections."	
4.	1-2	1.3	Add a sentence in the beginning of this section to clarify that in respect to groundwater, one of the objectives was to determine if groundwater was present within the targeted sampling zone at the time of the investigation.	The QAPP supplement used to complete the fieldwork does not define establishing the presence or absence of groundwater in the targeted sampling zone an objective.	
5.	3-4	3.2	 Site 9: Please explain how it was determined as stated in the second sentence of the first paragraph that 'groundwater was encountered at 2.8 feet bgs' when this well only produced 2.5 mL/min. The second paragraph should be revised and should further explain the issue why the analyses were not conducted due to the stated low groundwater production rate. Did this well point experience refusal at 2.8 feet bgs? Please revise the last sentence of this subsection to clarify that only the 	The text of section 2.3 will be updated to provide additional details regarding Cargo Beach Road Landfill (Site 7) Text regarding Cargo Beach Road Landfill (Site 7) will be deleted from the results Section 3.2	
6.	4-1	4.0	 analytes which were analyzed did not exceed cleanup levels. Per the comments in # 5 above, the conclusions section should briefly elaborate on the potential data gaps which potentially exist as a result of 1) all well points except for one hitting refusal given that groundwater was encountered within the targeted sampling depth for the one well; and 	Noted. The Five Year Review report will elaborate on any potential data gaps identified from the comprehensive review of site information. The Sampling Data Report only represents a single event and as	

Page 2 of 3 February 12, 2014

			2) the hydrogenetical dynamic approximation of the second se	such those conclusions are not appropriate
			2) the hydrogeological dynamic associated with and specific to each of	for this report.
7		Figure A-2	the site 7 and 9 landfills not being well characterized/understood.	
7.			The site location of NEC is incorrectly depicted (too far east/northeast).	Accepted. Figure A-2 has been updated.
8.		Figure A-3	Please state Site 7 and 9 within the respective call out box for each site.	Accepted. Figure A-3 has been updated.
			Please add 'boundary' to the reference of landfill in the legend.	
9.		Figures	The previous surface and groundwater sampling locations which have	Accepted. Historical sampling locations
		A-3 and	been discussed in both this report and its associated ADEC-approved	referenced in this report have been added to
		A-4	final work plan should be depicted in these figures.	the appropriate figures.
			Please apply revision requests stated in comment # 8 above to these figures.	-
10.	B1	1.0	Please explain why the field team didn't or couldn't collect enough	Accepted. The narrative regarding limited
			sample volume to run all of the planned analysis of analytes.	groundwater and why planned samples were
				not collected is now present in Sections 2.3.
11.	1-6	Analytical	al Surface Water: The narrative of the data quality assessment should	Noted. The surface water samples with
		Data	explain why so many of the analytes in many of the samples are depicted	analytes depicted as 'no criteria/not
		Table	as 'no criteria/not analyzed'.	analyzed' correlate with the column
				adjacent. The samples were analyzed for
				dissolved metals and total metals; in order
				to distinguish between the two an "F" was
				added to the lab sample ID for dissolved
				metals analysis. The USACE MED requires
				lab sample ID to be present in the header
				information; therefore, the analysis for the
				sample was split in two columns.
12.	1	Analytical	Groundwater: Why are man of analytes/COCs not listed in this table?	Noted. See response to comment 11 as it
		Data Table		also applies to groundwater.

Visual Inspection Checklist (Post-Closure) Site 9 Landfill

This form is to be filled out annually for 5 years after landfill closure.				
Name of Inspector: Jerimy Cranker	Date: TEANG 2014			
Weather conditions: Sunny w/ few clands	Precipitation 🗆 Yes 💆 No			
Temperature: <u>45</u> °F Prevailing Wind Direction: <u>5</u>	W Speed: 5 mph			
Photographs Taken: <u>7ES</u>				

Landfill Post-Closure Monitoring Items	Y	N	COMMENTS			
Evidence of settlement or frost jacking within or on surface of landfill?		X				
Ponded water within, against or on surface of landfill?			Adjacent ponds. No. WATER			
Evidence of surface erosion on disposal area walls or on exterior berms?		X				
Erosion of access roads?		X				
Discoloring of vegetation downslope?		X				
Any evidence of leakage or escape of waste from cells?		X				
Airborne ash or dust particles?		X				
Evidence of wildlife or birds present? Include number and type of birds on site.		Х				
Windblown litter in cells or along access roads or adjacent ponds?		Х				
Landfill odors?		X				
Fire or combustion in the waste?		X				
Damage to the structural integrity of a dike wall, culvert, or erosion control feature, if present?		X	Diversion ditch functioning Well. Might be in seed stage.			
Is revegetation occurring?	X		Might be in seed stage.			
Estimated Percent Vegetative Cover: On Cap Surface 25% On Sideslopes: 75% Comments:						
General Comments: Structural integrity of land fill capingreat condition. Vigetative cover in seed phase and/or						
condition. Vigetative co	uer	in	seed phase and/or			
strugging to become establish in course surface cap material.						

(Use additional pages if necessary) F10AK096903_07.11_0505_p F10AK096905_07.11_0504_p 200-1f

Northeast Cape Landfill Cap Inspection Form

Corrective Actions Taken: _______ NONE .

Photo 1: View of landfill cap surface looking toward road, facing NW. Photo 2: View of landfill cap surface, facing north toward Site 7 landfill (in background).

Photo 3: Surface of landfill cap, facing west. Photo 4: Surface of landfill cap, facing SW.

Photo 5: View of diversion ditch, functioning very well, facing NE. Photo 6: East side of landfill cap surface water pond, facing south.